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Abstract 

 

This paper aims at finding the optimal design of MW-size organic Rankine cycles by employing the multi-

objective optimization with the genetic algorithm as the optimizer. We consider three objective functions: 

thermal efficiency, total volume of the system and net present value. The optimization variables are the working 

fluid, the turbine inlet pressure and temperature, the condensing temperature, the pinch points and the fluid 

velocities in the heat exchangers. The optimization process also includes the complete design of the shell and 

tube heat exchangers utilized in the organic Rankine cycle. The methodology is applied to recover the waste heat 

from the SGT-500 gas turbine installed on the Draugen off-shore oil and gas platform in the North Sea. Results 

suggest two optimal working fluids, i.e. acetone and cyclopentane. Thermal efficiency and net present value are 

higher for cyclopentane than for acetone. Other promising working fluids are cyclohexane, hexane and 

isohexane. The present methodology can be utilized in waste heat recovery applications where a compromise 

between performance, compactness and economic revenue is required.    
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1. Introduction 

 

In March 2007 the Commission of the European Communities [1] set the “20-20-20” targets as the three key 

objectives for 2020. The requirements are, namely, a 20% reduction in greenhouse gas emission from the 1990 

levels, a 20% share of renewable sources in the energy demand and a 20% improvement in the energy efficiency. 

De Paepe [2] considers the annual recoverable industrial waste heat potential to be about 140 TWh in Europe, 

corresponding to a CO2 reduction of about 14 Mt/y. As surveyed by Colonna [3], this waste heat is available at 

high (350-250 °C), medium (250-150 °C) and low temperatures (150-90 °C) and the power capacity may range 

from large to small in size (15 MW to 3 kW). With increasing incentives for reducing the CO2 emissions off-

shore, waste heat recovery on off-shore platforms has become a focus area. In off-shore applications, the key 

selection criteria for the waste heat recovery unit supporting the electrical demand on the platform are high 

efficiency, fuel flexibility, compactness and low weight. 

 

Single and dual-pressure steam Rankine cycles are established and reliable solutions for high-temperature waste 

heat recovery as discussed, for example, in Gewald et al. [4], Rokni [5] and Domingues et al. [6]. However, the 

moisture content at the turbine outlet and the limits on the turbine blade height in practice restrict the application 

to MW-size power units. The organic Rankine cycle (ORC) is a technology that is receiving more and more 

attention from the academic world, companies and research institutes. Major ORC advantages are the simplicity 

of the cycle and the possibility of tailoring the working fluid to the specific temperature profile of the heat 

source. Furthermore, the ORC eliminates the problem of turbine blade erosion due to the liquid droplet 

formation by utilizing a “dry” fluid as the working fluid. Vélez et al. [7] provide an ample review of existing and 

possible applications of the ORC technology. A crucial aspect in the design of an ORC is the selection of the 
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working fluid. Moreover, the thermal efficiency, compactness, weight, availability and cost are among the most 

important concerns of a complete design process. Additionally, the operating fluid should be chemically stable, 

environmentally friendly and safe in terms of toxicity and flammability. As emphasized in Velez et al. [7], no 

fluid satisfies all these aspects; therefore, the selection is a compromise between the different possibilities.  

 

In the past, much research was conducted to develop optimization algorithms to adapt the ORC to the specific 

heat source and to address different objectives. Sun and Li [8] implement the ROSENB optimization algorithm 

to search the optimal set of operating variables to maximize either the system net power generation or the system 

thermal efficiency.  Roy et al. [9] carry out a parametric optimization and performance analysis of an organic 

Rankine cycle where the heat source is the flue gas at a temperature of 140 ºC exiting the discharged fans of a 

coal power plant. Hettiarachchi et al. [10] use as the objective function the ratio of total heat exchange area to net 

power output. Quoilin et al. [11] optimize a small-scale ORC for waste heat recovery applications; economic 

profitability and thermodynamic efficiency are the objective functions. Baik et al. [12] employ the pattern search 

algorithm to maximize the net power output considering the overall heat transfer conductance and turbine inlet 

pressure and temperature as optimization variables. In Wang et al. [13] and in Dai et al. [14], the genetic 

algorithm (GA) is used as the optimization method for a comparative study of ORCs for low-temperature waste 

heat recovery. Cayer et al. [15] present a parametric study of a CO2 supercritical power cycle using six 

performance indicators: thermal efficiency, specific net output, exergetic efficiency, total UA and surface of the 

heat exchangers, and the relative cost of the system. The concept is extended by Shengjun et al. [16] to 

subcritical and supercritical ORCs minimizing the levelized energy cost and heat exchanger area per unit power 

output. Salcedo et al. [17] apply the multi-objective optimization to solar Rankine cycles coupled with reverse 

osmosis desalination considering the specific total cost and the environmental impact of the plant. Wang et al. 

[18] perform a parametric optimization using a multi-objective optimization to design ORCs for low temperature 

waste heat. The screening criteria include heat exchanger area per unit power output and heat recovery 

efficiency.  
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The present paper aims at presenting a generic methodology to design and optimize ORCs where shell and tube 

heat exchangers are used. In order to assess the compactness of the system, a detailed dimensioning of the shell 

and tube heat exchanger is carried out considering both the heat transfer coefficients and the pressure drops on 

the shell and tube sides. We use a multi-objective optimization modeled by the genetic algorithm using the 

following objective functions: thermal efficiency, total volume of the ORC and net present value. We apply the 

methodology to recuperate the waste heat from the SGT-500 gas turbine installed on the Draugen platform 

(Kristiansund, The North Sea). Compared with previous works [8-18], the approach in this paper is novel in the 

sense that it includes the total volume of the organic Rankine cycle and the net present value as objective 

functions. Furthermore, in contrast to previous works, the geometry of the shell-and-tube heat exchanger is 

included in the optimization procedure. The novel set of optimization variables includes 109 working fluids, 

turbine inlet pressure and temperature, pinch points of condenser, internal recuperator and 

evaporator/economizer and fluid velocities in the tubes and on the shell side, respectively, of all heat exchangers. 

Other characteristics of the working fluids, such as health, fire and physical hazards [19], and the global 

warming potential (GWP) are, to some extent, also considered. The methodology presented in this paper can be 

applied in waste heat recovery applications where the ORC design is the result of a compromise between 

performance, compactness and economic revenue. 

 

We describe the shell and tube design process, the ORC’s governing equations and the multi-objective 

optimization in section 2. The case study is also presented in section 2. Results of the multi-objective 

optimization are reported in section 3 and discussed in detail in section 4. Finally, we state the main conclusions 

in section 5. 

 

2. Methodology 
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We outline the features and details of the new methodology in this section. The modeling of shell and tube heat 

exchangers is described introducing the equations computing the heat transfer coefficients, the geometry and the 

investment cost. In subsection 2.2, we present the modeling of the other ORC components. The heat transfer 

fluid, Dowtherm Q, is introduced in subsection 2.3. Finally, subsections 2.4 and 2.5 introduce the multi-objective 

optimization and the case study where the methodology is applied.   

 

2.1 Shell and tube heat exchangers 

 

The basic design procedure requires determining the surface area that is needed using the available temperature 

difference. The governing equation for the heat transfer across a surface is 

 

�̇� = 𝑈 𝐴 𝐹𝑡  𝛥𝑇𝑙𝑚                                                                                                                                                    (1) 

 

where �̇� is the heat rate, 𝑈 is the overall heat transfer coefficient, A is the heat transfer area, 𝛥𝑇𝑙𝑚 is the 

logarithm mean temperature difference and 𝐹𝑡 is the temperature correction factor which accounts for co-current 

and cross-flow. We compute the correction factor in Eq. (1) utilizing the method proposed by Fakheri [20]. The 

overall heat transfer coefficient can be regarded as the sum of the following five different items: the outside fluid 

film coefficient ho, the inside fluid film coefficient hi, the outside dirt coefficient (fouling factor) hod, the inside 

dirt coefficient hid and the thermal conductivity of the tube wall material λw. The overall coefficient based on the 

outside area of the tube can be calculated as follows: 

 

1
𝑈𝑜

= 1
ℎ𝑜

+ 1
ℎ𝑜𝑑

+
𝑑0 ln

𝑑0
𝑑𝑖

2𝜆𝑤
+ 𝑑0

𝑑𝑖

1
ℎ𝑖𝑑

+ 𝑑0
𝑑𝑖

1
ℎ𝑖

                                                                                                                   (2) 

 

where d0 and di are the outer and inner diameter of the tubes.  
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Figure 1. Shell and tube heat exchanger geometry and tube pattern. 

 

Fig. 1 shows the generic geometry of the shell and tube heat exchanger. The geometrical parameters considered 

in the design are the following: the inner and outer diameters of the tubes, the tube length lt, the distance between 

the tube centers (pitch) pt, the number of tube passes Nt and the baffle spacing lb. Based on the well-established 

design procedure outlined in Richardson and Peacock [21], the geometry of the heat exchanger and the fluid 

velocity in the tubes and on the shell side can be calculated. We evaluate the volume 𝑉ℎ𝑡 of the shell and tube 

heat exchanger assuming a cylindrical shape:  

 

𝑉ℎ𝑡 = 𝐹𝑡𝑠
𝜋
4
𝑑𝑠

2𝑙𝑡                                                                                                                                                     (3) 

 

 

The shell diameter ds and the tube length are the diameter of the base and the height of the cylinder (see Eq. (3)). 

A correction factor Fts is applied to account for the space occupied by the shell and tube inlet and outlet ducts. As 

formulated in Hall [22], the purchased-equipment cost 𝑃𝐸𝐶ℎ𝑡 is a function of the heat exchanger area A and it 

can be computed as follows: 
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𝑃𝐸𝐶ℎ𝑡 = 10000 + 324𝐴0.91                                                                                                                                  (4) 

 

The heat transfer coefficient ht and the pressure drop ∆pt on the tube side in the subcooled liquid and superheated 

vapor regions are related the Reynolds number Re, Prandtl number Pr and velocity in the tubes 𝑢𝑡 and are 

evaluated using the following methodology [21]:  

 

ℎ𝑡 = 𝑗𝑡ℎ
𝜆𝑡
𝑑𝑖
𝑅𝑒 𝑃𝑟0.33 � 𝜇𝑡

𝜇𝑡𝑤
�
0.14

                                                                                                                               (5) 

 

∆𝑝𝑡 = 𝑁𝑡 �8𝑗𝑡𝑓
𝑙𝑡
𝑑𝑖
� 𝜇𝑡
𝜇𝑡𝑤

�
−𝑚

+ 2.5� 𝜌𝑡𝑢𝑡
2

2
                                                                                                                  (6) 

 

where ρt, λt and μt are the density, the thermal conductivity and the dynamic viscosity calculated at the average 

temperature between the inlet and the outlet conditions of the tube; μtw is the dynamic viscosity of the fluid 

calculated at the temperature of the inner wall of the tube. The quantities 𝑗𝑡ℎ and 𝑗𝑡𝑓 are the heat transfer and 

friction factor of the tubes and are evaluated as reported in [21]. The coefficient m is equal to 0.25 for laminar 

flow (Re < 2100) and 0.14 for turbulent flow (Re > 2100). The following equation gives a more accurate 

estimate of the heat transfer coefficient of water, utilized as the cooling fluid in the condenser tubes [21]: 

 

ℎ𝑡 = 4200(1.35+0.02𝑡)𝑢𝑡0.8

𝑑𝑖0.2                                                                                                                                          (7) 

 

where t is the average temperature of the water in the tube. The calculation of the heat transfer coefficient on the 

shell side hs is based on the experimental work carried out by Kern [23] on commercial exchangers with standard 

tolerances. Richardson and Peacock [21] state that the methodology gives a satisfactory prediction of the heat-

transfer coefficient. The heat transfer coefficient hs and the pressure drop ∆ps on the shell side in the subcooled 
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liquid and superheated vapor regions are related to the Reynolds number Re, Prandtl number Pr and velocity on 

the shell side 𝑢𝑠 and are evaluated using the following methodology [21]:  

 

ℎ𝑠 = 𝑗𝑠ℎ
𝜆𝑠
𝑑𝑒
𝑅𝑒 𝑃𝑟1/3 � 𝜇𝑠

𝜇𝑠𝑤
�
0.14

                                                                                                                               (8) 

 

∆𝑝𝑠 = 8𝑗𝑠𝑓
𝑑𝑠
𝑑𝑒

𝑙𝑡
𝑙𝑏
� 𝜇𝑠
𝜇𝑠𝑤

�
−0.14 𝜌𝑠𝑢𝑠2

2
                                                                                                                            (9) 

 

where de, ρs, λs and μs are the equivalent shell diameter, the density, the thermal conductivity and viscosity 

calculated with the average temperature between the inlet and the outlet conditions of the shell; μsw is the 

viscosity of the fluid calculated with the temperature of the outer wall of the tube. The quantities 𝑗𝑠ℎ and 𝑗𝑠𝑓 are 

the heat transfer and friction factor of the shell and are evaluated as reported in [21]. Assuming that the 

evaporator operates in the nucleate boiling region, we evaluate the heat transfer coefficient with the Cooper 

correlation [24]. The nucleate boiling heat transfer coefficient hnb is a function of the reduced pressure pr, the 

molecular weight of the fluid M, the specific heat rate �̇� 𝐴⁄  and the surface roughness Rp (assumed to be 1 μm 

[23]) and it can be expressed by mathematically as  

 

ℎ𝑛𝑏 = 55𝑝𝑟0.12−0.4343 ln𝑅𝑝(−0.4343 ln 𝑝𝑟)−0.55𝑀−0.5 ��̇�
𝐴
�
0.67

                                                                         (10) 

 

The pressure drops are evaluated as the average between the pressure drops calculated with the thermodynamic 

properties and the speed computed at the saturated liquid and saturated vapor states.  In ORCs the heat rejection 

starts in the superheated region. Hence, the calculation of the heat transfer coefficient is split into two processes: 

de-superheating and condensation. Since it is assumed that the condensation takes place on the shell side, Eq. (8) 
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is utilized. In the second step, assuming condensation outside the horizontal tubes, the following equations are 

utilized as suggested by Richardson and Peacock [21]: 

 

ℎ𝑐𝑜𝑛𝑑 = 0.95𝜆𝑙 �
𝜌𝑙�𝜌𝑙−𝜌𝑔�𝑔

𝜇𝑙𝛤
�
1/3

                                                                                                                            (11) 

 

𝛤 = �̇�
𝑁𝑡𝑙𝑡

                                                                                                                                                                 (12) 

 

where g is the standard gravity, Γ is the tube loading and ρl, λl, μl are the density, thermal conductivity and 

dynamic viscosity at the saturated liquid state, while ρg is the density at the saturated vapor condition. As 

suggested by Kern [23], the pressure drop on the condensing side is quantified as half of the pressure drop (Eq. 

(9)) based on the vapor inlet conditions. 

 

2.2 Organic Rankine cycle modeling 

 

As shown in Fig. 2, the ORC components are the turbine (TUR), connected through the shaft to the electric 

generator (GEN), the liquid pump and five different heat exchangers: economizer (ECO), evaporator (EVA), 

superheater (SUP), internal recuperator (IR) and condenser. Each component is modeled at steady state 

conditions.  
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Figure 2. Organic Rankine cycle layout. 

The outlet enthalpy ℎ2 and the power consumption �̇�𝑝 of the pump are calculated as follows:  

 

ℎ2 = ℎ1 + 𝑝2−𝑝1
𝜌

                                                                                                                                                   (13) 

 

�̇�𝑝 = �̇�(ℎ2−ℎ1)
𝜂𝑚

                                                                                                                                                       (14) 

 



11 
 

where p1 and p2 are the pressure at the inlet and at the outlet of the pump, h1 is the inlet enthalpy, ρ is the density 

of the working fluid, �̇� is the mass flow circulating in the organic cycle and 𝜂𝑚 is the mechanical efficiency of 

the pump.  

 

𝑃𝐸𝐶𝑝 = 422�̇�𝑝
0.71 �1.41 + 1.41 �1−0.8

1−𝜂𝑚
��                                                                                                            (15) 

 

The purchased-equipment cost 𝑃𝐸𝐶𝑝 is evaluated with Eq. (15) which was utilized by Arsalis et al. [25] for 

water pumps. The volume of the pump is considered negligible. The turbine is modeled by using the polytropic 

efficiency. The purchased-equipment cost of the turbine 𝑃𝐸𝐶𝑡𝑢𝑟 is assumed to be comparable with the purchase 

price of conventional steam axial turbines. In this paper we use the analytical expression proposed by Lian et al. 

[26] which depends on the power output �̇�𝑡𝑢𝑟: 

 

𝑃𝐸𝐶𝑡𝑢𝑟 = 6000�̇�𝑡𝑢𝑟
0.7                                                                                                                                        (16) 

 

Since the methodology is applied to MW-size ORCs, it is assumed that the expander is an axial turbine with a 

unique stage (nozzle and rotor). As shown in Fig. 3, the volume 𝑉𝑡𝑢𝑟 is modeled as a cylindrical trapezoid. We 

evaluate the inlet and outlet flow areas Ain and Aout through the continuity equation considering an inlet Mach 

number of 0.3 [27]. The external inlet and outlet diameter din,e and dout,e are calculated assuming a tip to hub ratio 

of 1.43 [28] and an axial length lx of 0.3 m. A correction factor Ftv of 1.2 is applied to account for the space 

required by the inlet and outlet ducts and the electric generator.   
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Figure 3. Geometric representation (cylindrical trapezoid) of the axial turbine in the organic Rankine cycle. 

 

𝑉𝑡𝑢𝑟 = 𝐹𝑡𝑣 �
𝜋
4
�𝑑𝑜𝑢𝑡,𝑒

2 + 𝑑𝑖𝑛,𝑒
2�+ 𝜋

4
𝑑𝑜𝑢𝑡,𝑒𝑑𝑖𝑛,𝑒�

𝑙𝑥
3

                                                                                             (17) 

 

We calculate the electric power output �̇�𝑔𝑒𝑛 and the PEC of the electric generator 𝑃𝐸𝐶𝑔𝑒𝑛 as follows:  

 

�̇�𝑔𝑒𝑛 = 𝜂𝑒𝑙�̇�𝑡𝑢𝑟                                                                                                                                                     (18) 

 

𝑃𝐸𝐶𝑔𝑒𝑛 = 60�̇�𝑔𝑒𝑛
0.95                                                                                                                                           (19) 

 

where 𝜂𝑒𝑙 is the electric efficiency of the generator. According to the previous equations, the net power output 

�̇�𝑛𝑒𝑡  and the thermal efficiency ηth of the ORC are defined as 

 

�̇�𝑛𝑒𝑡 = �̇�𝑔𝑒𝑛 − �̇�𝑝                                                                                                                                                  (20) 
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𝜂𝑡ℎ = �̇�𝑛𝑒𝑡
�̇�(ℎ6−ℎ3)                                                                                                                                                      (21) 

 

where h6 and h3 are the enthalpies at the outlet of the superheater and at the inlet of the economizer. 

 

2.3 Dowtherm Q thermodynamic and physical properties 

 

The ORC working fluid is typically a carbon-based or hydrogen-based fluid, and the combustion products of a 

biomass plant or the exhaust gases exiting gas turbines, diesel and gas engines have high oxygen content. Hence, 

for safety reasons, an intermediate loop is placed between the ORC and the heat source. As suggested by 

Pierobon et al. [29], Dowtherm Q is selected as an intermediate heat carrier. We calculate the thermodynamic 

and physical properties by fitting the experimental data released by DOW Chemical Company [30] and 

assuming an incompressible liquid with a high density: 

 

𝜌 = 1187 − 206.51 𝑇
273.15

                                                                                                                                   (22) 

 

𝑐𝑝 = 0.7702− 0.8264 𝑇
273.15

                                                                                                                               (23) 

 

ℎ = ∫ 𝑐𝑝(𝑇)𝑇
𝑇0

𝑑𝑇                                                                                                                                                   (24) 

 

𝜆 = 0.1651− 0.0398 𝑇
273.15

                                                                                                                                 (25) 

 

𝜇 = 𝑒𝑥𝑝 �−4.053994 + 6.0844339/ � 𝑇
273.15

�
1.5
�                                                                                              (26) 
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where 𝑐𝑝 is the specific heat capacity at constant pressure and T is the Dowtherm Q temperature in Kelvin. 

 

2.4 The multi-objective optimization 

 

A multi-objective optimization involves minimizing or maximizing simultaneously two or more functions 

subjected to a set of constraints. In contrast to single-objective optimization, a solution to a multi-objective 

problem is a range of optimal points, the so-called Pareto front [31]. We use the genetic algorithm [32] for the 

benefits of avoiding the calculation of derivatives and enabling the search of global optima. The genetic 

algorithm parameters are specified according to the following values: population size 1000, generation size 200, 

crossover fraction 0.8 and migration fraction 0.2. These numerical values are selected in order to ensure the 

repeatability of the solution when different simulations are performed. The genetic algorithm stops when the 

maximum number of generations is reached or when the average change in the spread of the Pareto front is 

lower than the specified tolerance (which in this paper is 10-3). Fig. 4 shows the structure of the algorithm. As 

indicated in the figure, the multi-objective optimization governs a global routine developed in MATLAB 2012a. 

The thermodynamic properties of the ORC working fluid are acquired by linking MATLAB and the commercial 

software REFPROP 9 [33].  
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Figure 4. Structure of the multi-objective algorithm. The optimization routine involves the pre-screening 

process, the ORC solver, the Nelder-Mead direct search optimizer, the shell and tube designer, and the volume 

and economic evaluations. 

First, in the pre-screening process the number of available working fluids is restricted by discarding the fluids for 

which the physical, health, fire hazard or GWP exceed the maximum allowable values set by the user. This is 

carried out by linking mathematically the working fluids to a unique integer number (from 1 to 109) 

corresponding to a specific fluid in REFPROP. Consequently, the algorithm can interpret and operate 
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numerically on this optimization variable. The listed fluids, their GWPs in 100 years and their hazards, are taken 

from Pierobon et al. [34]. After this preliminary step, the optimization variables are passed to the GA. In the 

present paper the following variables (see Fig. 4) are optimized: 

 

a) ORC working fluid 

b) Condenser outlet temperature T1  

c) Condenser pinch point (located at the saturated vapor state) 

d) Internal recuperator pinch point T2-T8 

e) Minimum temperature difference (pinch point) in the economizer or vaporizer  

f) Turbine inlet pressure p6 

g) Superheating temperature difference T10-T6  

h) Target velocities in the tubes and on the shell side for each heat exchanger utt, ust 

 

The ORC solver then acquires these values and computes the thermodynamic properties at each state, the 

thermal efficiency and the net power output. During the first run of the ORC solver, the pressure drops in the 

heat exchangers are set to zero. The solution is then utilized as the design condition for the heat exchangers and 

the expander. The heat rate, the mass flow, the inlet and outlet temperatures, and the fluid velocities in the tubes 

and on the shell side are passed to the shell and tube designer. At this point the constrained Nelder-Mead 

optimizer [35] is employed to select the tube and shell geometry that gives the specified velocity in the tubes and 

on the shell side. In order to reduce the computational time required by the sub-optimization, we use the tube 

length to obtain the specified velocity in the tubes; thereby, the function to be minimized can be expressed by the 

following equation: 

 

𝑓(𝑑𝑜,𝑢𝑡𝑡,𝑝𝑡 , 𝑙𝑏) = |𝑢𝑡𝑠−𝑢𝑠|
𝑢𝑡𝑠

                                                                                                                                   (27) 
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where |𝑢𝑡𝑠 − 𝑢𝑠| is the absolute difference between the targeted shell speed uts and the shell speed calculated in 

the shell and tube design process. Table 1 lists the lower and upper bounds of the geometric variables and the 

design parameters which are kept constant in the shell and tube heat exchanger design. If the heat transfer 

process occurs in the two-phase region, we employ an average velocity evaluated at the saturated liquid and 

saturated vapor condition.  

 

Table 1. Lower and upper bounds of the geometric variables utilized in the shell and tube heat exchanger design 

process.  

Variable Lower bound Upper bound 

   

Outer diameter do [21] 16 mm  50 mm  

Tube pitch pt [36] 1.15d0   2.25d0   

Baffle spacing lb [21] 0.2ds   1.0ds   

Parameters [21]   

Baffle cut bc  25 %  

Configuration  triangular   

Outside dirt coefficient hod  6000 W/(m2 ºC) 

Inside dirt coefficient hid  6000 W/(m2 ºC) 

Thermal conductivity (tube wall)  50 W/(m ºC)   

Correction factor Fts  1.2    

 

The outcomes of the heat exchanger design are the overall heat transfer coefficient, the surface area, the volume 

and the pressure drops. The pressure drops are set as inputs to the ORC solver, and a new thermal efficiency and 

net power output are computed. We then check the consistency of the results. For each heat exchanger we verify 
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that the value of the function, calculated with Eq. (27), is lower than the required accuracy, which we specify to 

be 10-2. Furthermore, in case the inlet temperature difference T13-T3 of the economizer or T12-T4 of the vaporizer 

is lower than the specified minimum temperature difference, we discard the solution.  The three objective 

functions are expressed below. The function f1 aims at maximizing the thermal efficiency. To increase the ORC 

compactness, the sum of the volumes of the ORC components is minimized (function f2) and to analyze the 

profitability of the investment, the net present value is maximized (function f3).    

 

𝑓1 = −𝜂𝑡ℎ                                                                                                                                                             (28)     

 

𝑓2 = 𝑉𝑒𝑐𝑜 + 𝑉𝑒𝑣𝑎 + 𝑉𝑠𝑢𝑝 + 𝑉𝐼𝑅 + 𝑉𝑐𝑜𝑛𝑑 + 𝑉𝑡𝑢𝑟 = 𝑉𝑡𝑜𝑡                                                                                        (29)    

  

𝑓3 = −𝑁𝑃𝑉                                                                                                                                                          (30)  

 

According to Bejan et al. [37], the NPV can be calculated considering the equipment lifespan n, the interest 

factor q, the total capital investment 𝐼𝑇𝑂𝑇 and the annual income Ri: 

 

𝑁𝑃𝑉 = ∑ 𝑅𝑖
(1+𝑞)𝑖

𝑛
𝑖=1 − 𝐼𝑇𝑂𝑇                                                                                                                                   (31)   

 

The discounted payback period DPB that estimates the time required to recover the principal amount of an 

investment is mathematically defined as the minimum year at which the NPV is greater than zero:  

 

𝐷𝑃𝐵 = min {𝑛 ∶ 𝑁𝑃𝑉(𝑛) > 0}                                                                                                                            (32)  
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As suggested by Bejan et al. [37], the total investment cost of the ORC can be regarded by evaluating the direct 

and indirect costs.   

 

Table 2. Estimate of total capital investment based on direct and indirect costs as suggested by Bejan et al. [37]. 

 Total capital investment  

 

A. Direct costs  

1. Onsite costs  

a) Purchased - equipment costs (PEC)  

b) Purchased - equipment installation 45 %PEC  

c) Piping  35 %PEC  

d) Instrumentation + controls  20 %PEC  

e) Electrical equipment + materials  11 %PEC  

2. Offsite costs  

f) Civil, structural + architectural work  30 %PEC  

g) Service facilities  50 %PEC  

B. Indirect costs  

i) Engineering + supervision  8 %DC  

j) Construction costs + constructors profit  15 %DC  

k) Contingency  15 %(of i and j)  

 

Using the values reported in Table 2, we calculate the total investment cost of the ORC as follows: 

 

𝐼𝑇𝑂𝑇 = 3.7�𝑃𝐸𝐶𝑡𝑢𝑟 + 𝑃𝐸𝐶𝑒𝑐𝑜 + 𝑃𝐸𝐶𝑒𝑣𝑎 + 𝑃𝐸𝐶𝑠𝑢𝑝 + 𝑃𝐸𝐶𝐼𝑅 + 𝑃𝐸𝐶𝑝 + 𝑃𝐸𝐶𝑐𝑜𝑛𝑑 + 𝑃𝐸𝐶𝑔𝑒𝑛�                        (33) 
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2.5 Case study – the Draugen platform 

 

We applied this methodology to recover the waste heat from the Siemens SGT-500 gas turbine employed on the 

Draugen off-shore platform, located 150 km from Kristiansund, in the Norwegian Sea. The platform, operated 

by A/S Norske Shell, produces gas and oil. Gas is exported via the Åsgard gas pipeline to Kårstø (Norway). Oil 

is first stored in storage cells at the bottom of the sea and then exported via a shuttle tanker (once every 1-2 

weeks). The platform has three SGT-500 engines to provide the normal total electric load. The SGT-500 is an 

industrial twin-spool gas turbine, and the engine model is the C-version launched in the beginning of the 1980s. 

Table 3 reports the design point specifications of the SGT-500.  

 

Table 3. Design point specifications for the Siemens SGT-500 twin-spool gas turbine [29]. 

Model Siemens SGT-500 

  

Turbine inlet temperature  850 ˚C 

Exhaust gas temperature 376 ˚C 

Exhaust gas mass flow 93.5 kg/s 

Net power output 17.014 MW 

Heat rate 11312 kJ/kWh 

Fuel Naphtha, crude oil, heavy fuel oil, 

bio oil, natural gas, syngas 
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Figure 5. Combined cycle layout including the SGT-500 Siemens twin-spool gas turbine, the intermediate loop 

and the organic Rankine cycle. 



22 
 

 

We apply the multi-objective optimization described in section 2.4 to design the ORC for recovering the waste 

heat from the SGT-500 gas turbine. Figure 5 shows the plant layout including the SGT-500 twin-spool gas 

turbine, the intermediate loop and the ORC. The design point parameters of the ORC are listed in Table 4 and 

are maintained constant. The terminal temperature of the off-gases exiting the waste heat recovery unit is fixed 

to 145°C [29]. A prudential value of 335˚C [29] is assumed for the maximum temperature. We evaluate the cold 

temperature (130 °C) and the mass flow (49.5 kg/s) of Dowtherm Q in the intermediate loop by applying an 

energy balance in the internal heat exchanger.  

 

Table 4. Organic Rankine cycle parameters assumed in the multi-objective optimization. 

Parameter Value 

  

Exhaust gas inlet temperature tex,in 376 °C  

Exhaust gas outlet temperature tex,out 145 °C [29] 

Exhaust gas mass flow �̇�𝑒𝑥 93.5 kg/s 

Dowtherm Q inlet  temperature t10 335 °C [29] 

Dowtherm Q outlet temperature t13 130 °C  

Dowtherm Q mass flow �̇�𝑑𝑜𝑤 49.5 kg/s 

Pump efficiency ηm 80 %  

Turbine polytropic efficiency  80 %  

Generator efficiency ηel 98 % 

Cooling water t1w 5 ˚C  
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Next, we must decide the necessary fluid allocation in order to dimension the shell and tube heat exchangers. 

Where a phase change occurs (evaporator and condenser) the ORC working fluid is placed on the shell side, 

since it is the most common configuration [21]. For the economizer and superheater, the fluid with the greatest 

tendency to foul (which is Dowtherm Q) is allocated on the tube side; while for the internal recuperator, the fluid 

with the highest temperature (working fluid exiting the ORC turbine) is placed on the tube side to reduce heat 

loss and meet safety conditions [21].   

 

We expect two major sources of income with the installation of the waste heat recovery unit. The first is 

associated with the fuel savings and the second with the CO2 taxes. In fact, the power produced by the ORC 

enables a reduction of the load of the other gas turbines operating on the platform. Consequently, the saved 

natural gas can be exported and sold to the market. The income related to the saved natural gas 𝑅𝑁𝐺 is estimated 

as follows: 

 

𝑅𝑁𝐺 = 3.6 �̇�𝑛𝑒𝑡
�̇�𝐺𝑇

 𝑝𝑁𝐺  ℎ𝑢 �̇�𝑁𝐺                                                                                                                                 (34) 

 

where �̇�𝐺𝑇 is the gas turbine net power output, hu is the utilization factor, 𝑝𝑁𝐺  is the price of natural gas and �̇�𝑁𝐺 

is the volumetric flow of natural gas. The volumetric flow �̇�𝑁𝐺 of natural gas is calculated as follows: 

 

�̇�𝑁𝐺 = 𝑣𝑁𝐺
 �̇�𝑛𝑒𝑡 𝐻𝑅
3600 𝐿𝐻𝑉

                                                                                                                                              (35) 

 

where vNG is the specific volume calculated at 15 ˚C and 1.013 bar, HR is the heat rate of the gas turbine and 

LHV is the low heat value of natural gas. The second major income is due to the CO2 tax. Since 1991 Norway 

levies carbon tax on petroleum, mineral fuel and natural gas with the rates based on the fuel’s carbon content 



24 
 

[39]. Thus, the new method alleviates the carbon tax cost associated with the combustion of natural gas. The 

income 𝑅𝐶𝑂2 related to the CO2 savings is computed as follows: 

 

 𝑅𝐶𝑂2 = 3.6 �̇�𝑛𝑒𝑡
�̇�𝐺𝑇

 𝑝𝐶𝑂2 ℎ𝑢 �̇�𝐶𝑂2                                                                                                                           (36) 

 

where 𝑝𝐶𝑂2 is the carbon tax and �̇�𝐶𝑂2 is the mass flow of the avoided carbon dioxide. The net present value of 

the SGT-500 and ORC combined cycle can be rewritten as 

 

𝑁𝑃𝑉 = ∑ Ma (𝑅𝑁𝐺+𝑅𝐶𝑂2)
(1+𝑞)𝑖

𝑛
𝑖=1 − 𝐼𝑇𝑂𝑇                                                                                                                      (37)  

 

where Ma is a non-dimensional factor that accounts for the operating and maintenance costs. The numerical 

values assumed in Eqs. (34)-(37) are reported in Table 5. 

 

Table 5. Parameters assumed for the economic analysis. 

Parameter Value 

  

Natural gas price pNG 681.65 NOK/tonm3
st [38] 

Utilization factor ℎ𝑢 7000 h/y [26] 

Low heating value (natural gas) 48530 kJ/kg 

Specific volume (natural gas) 1.3139 m3/kg 

Carbon tax  410 NOK/t of CO2  [40] 

Carbon dioxide emission rate 2.75 kg(CO2)/kg(NG) [41] 

Maintenance  0.9 [26]  



25 
 

Equipment lifespan n 20 y 

Interest factor q 10 % 

Conversion factor 0.18 NOK/$ 

 

3. Results 

 

Table 6 lists the variables, and the lower and upper bounds set in the multi-objective optimization. The velocities 

of Dowtherm Q in the economizer, evaporator and superheater, and the velocity of the water in the condenser are 

not included in Table 6. These are all set to 1 m/s. We assume that the pump work in the intermediate loop is 

negligible and that the inlet pressure of the water is sufficient to overcome the pressure drops associated with the 

flow through the condenser.  

 

Table 6. Lower and upper bounds specified for the variables included in the multi-objective optimization 

(bounds for all velocities are taken from Richardson and Peacock [21]). 

Parameter Lower bound Upper bound 

   

Outlet condenser temperature T1 25 °C 35 °C 

Condenser pinch point 10 °C 25 °C 

Internal recuperator pinch point T2-T8 15 °C  40 °C  

Evaporator or economizer pinch point  10 °C  30 °C  

Turbine inlet pressure p6 10 bar 40 bar 

Superheating temperature difference T10-T6  50 °C 130 °C 

Economizer velocity on the shell side 0.3 m/s  1 m/s  

Evaporator velocity on the shell side 5 m/s  10 m/s  
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Superheater velocity on the shell side 5 m/s  10 m/s  

Internal recuperator velocity on the shell side 0.3 m/s  1 m/s  

Internal recuperator velocity in the tubes 10 m/s  30 m/s  

Condenser velocity on the shell side 10 m/s  30 m/s  

 

We set a maximum GWP of 50 and a maximum physical, fire and health hazards level of 3 in the pre-screening 

process of the available working fluids. The pre-screening process decreases the number of available working 

fluids from 109 down to 20. The GWP boundary excludes all the refrigerants (namely R113, R114, RC318 and 

R134A) except for R1234YF and R1234ZE. Gaseous fluids, such as air, were eliminated because their critical 

temperatures are below 25 ºC (Table 6). The limit on the fire hazard eliminates fluids that may ignite 

spontaneously with air (e.g. ethane, butane, pentane, propane and methane). Among the available fluids, seven 

(hexane, i-hexane, heptane, decane, nonane, octane, dodecane) belong to the alkane class and five 

(methylcyclohexane, propylcyclohexane, cyclohexane, cyclopentane and cyclopropane) to the cycloalkane 

group. Other possible fluids are acetone, ammonia, benzene, ethanol, methanol, carbon dioxide, toluene and 

trifluoroiodomethane. The results suggest that variations of the GWP limits and of the hazard levels do not 

change the results considerably. The multi-objective optimization provides a three-dimensional Pareto front 

composed of 350 points. The GA selects two fluids, cyclopentane and acetone, as optimal. In general 

cyclopentane shows the highest efficiency, but at the cost of greater total volumes and investment. However, 

regarding the net present value, cyclopentane is the best choice.  

 

Figure 6 depicts the total volume of the ORC plant versus the thermal efficiency. Acetone exhibits a Pareto front 

ranging from a thermal efficiency of 23.7 to 27.0% and from a volume of 14.5 to 57.5 m3. For cyclopentane, the 

thermal efficiency varies from 27.0 to 28.1% and the volume ranges from 55.0 to 98.4 m3. 
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Figure 6. Pareto fronts (acetone and cyclopentane) obtained through the multi-objective optimization 

representing the total volume of the ORC versus thermal efficiency. 

  

The net present value is given as a function of the total volume in Fig. 7. The NPV increases from 17.7 up to 

19.8 M$ for acetone and from 19.7 up to 20.1 M$ for cyclopentane. It can be noticed that the trend of the two 

Pareto fronts initially increases and subsequently flattens out. Since the net present value is a function of the total 

investment cost and the yearly incomes (dependent on the thermal efficiency of the ORC), an optimum is 

reached at a volume of 49.8 m3 for acetone and 86.2 m3 for cyclopentane. After this maximum, increasing the 

performance of the ORC by increasing the volume diminishes the economic revenue since the total investment 

cost becomes too high.   
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Figure 7. Pareto fronts (acetone and cyclopentane) obtained through the multi-objective optimization 

representing the net present value versus the total volume of the ORC.  

 

To illustrate how other working fluids perform, we run the multi-objective optimization excluding acetone and 

cyclopentane from the candidates. The results are shown in Figs. (8) and (9), where the Pareto fronts of the three 

optimal fluids (cyclohexane, hexane and i-hexane) are reported. The population size in the GA is limited to 500. 
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Figure 8. Pareto fronts (cyclohexane, hexane and i-hexane) obtained through the multi-objective optimization 

representing the total volume of the ORC versus thermal efficiency. Cyclopentane and acetone are excluded. 
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Figure 9. Pareto fronts (cyclohexane, hexane and i-hexane) obtained through the multi-objective optimization 

representing the net present value versus the total volume of the ORC. Cyclopentane and acetone are excluded. 

 

The trend of the thermal efficiency versus total volume and of the total volume versus net present value for both 

acetone and cyclopentane can be fitted by interpolating the results shown in Figs. (6) and (7) using the 

commercial software TableCurve 2D v5.01 [42].  

 

1
𝑉𝑡𝑜𝑡

= 𝑎 + 𝑏 𝜂𝑡ℎ3                                                                                                                                                  (38) 

 

𝑁𝑃𝑉2 = 𝑐 + 𝑑 𝑉𝑡𝑜𝑡 + 𝑒 𝑉𝑡𝑜𝑡2                                                                                                                              (39) 

 

Table 7 reports the coefficients a, b, c, d, e and the coefficient of determination for acetone and cyclopentane. 

Table 7. Coefficients a, b, c, d, e and coefficient of determination for acetone and cyclopentane obtained by 

interpolating in the Pareto fronts in Figs. (6) and (7). 

Coefficient Acetone Cyclopentane 

   

a 0.1629 0.0802 

b -7.3035 -3.1202 

Coefficient of determination for Eq. (38) 0.9580 0.8858 

c 230.9653 277.1201 

d 7.0789 3.0718 

e -0.0759 -0.0187 

Coefficient of determination for Eq. (39) 0.9905 0.8197 
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Regarding the optimization variables, the pinch point is located in the evaporator rather than in the economizer 

and it ranges between 13.9 and 19.6 °C. The minimum temperature difference in the condenser is constant along 

the Pareto front (20.0 °C in average).  The optimal turbine inlet pressure varies between 37.2 and 39.7 bar, and it 

almost reaches the upper bound of 40 bar (see Table 6). The profile of the outlet temperature of the condenser 

throughout the Pareto front ranges from 25.9 up to 29.5 °C for acetone and from 25.9 up to 27.1 °C for 

cyclopentane. 

 

Figures 6 and 7 enable the selection of the design point of the ORC employed as the waste heat recovery unit for 

the SGT-500 gas turbine. If an upper limit for the total volume is specified and the NPV increases at greater 

volumes, the optimal solution corresponds to that of the maximal acceptable total volume. On the contrary, if the 

NPV decreases or if the specified volume is greater than the maximum volume in the Pareto front, the optimum 

is located where the NPV is maximized. For example, if the available volume is lower than 30 m3, the optimal 

solution falls in the acetone Pareto front at a total volume of 29.9 m3; the thermal efficiency and net present 

value are 26.1% and 19.4 M$ (see Figs. (6) and (7)). If the available volume is greater than 100 m3, cyclopentane 

is the most suitable working fluid and an optimum is set where the NPV reaches the maximum (20.1 M$). This 

corresponds to a total volume of 86.2 m3 and a thermal efficiency of 27.8%. The discounted payback period for 

both cases is estimated to be around 5 years. Table 8 lists the geometry, the volume and the investment cost of 

the heat exchangers and axial turbine for the two alternatives. It can be noted that the largest components are the 

internal recuperator, the economizer and the condenser. In the internal recuperator, the heat is exchanged 

between liquid and vapor, thus the heat transfer coefficient of the vapor side is relatively low. The economizer 

and the condenser are associated with a high overall heat transfer coefficient. However, a large volume is 

required since a large heat rate is exchanged.  

 

Table 8. Geometry, investment cost and volume for the proposed optimal solution selected from the Pareto front 

of acetone and cyclopentane. 
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 Case a) Case b) 

   

ORC thermal efficiency 26.1 % 27.8 % 

ORC net power output 6.04 MW 6.43 MW 

Total volume 29.9 m3 86.2 m3 

Net present value 19.4 M$ 20.1 M$ 

Discounted payback time 4.9 year 5.2 year 

Economizer 

Tube length 5.44 m 17.51 m 

Tube diameter 17.3 mm 37.3 mm 

Baffle spacing 0.29 0.28 

Pitch ratio 1.36  1.13  

Volume 5.77 m3 32.8 m3 

Purchased-equipment cost 0.1195 M$ 0.2137 M$ 

Evaporator 

Tube length 7.16 m 6.66 m 

Tube diameter 25.8 mm 21.7 mm 

Baffle spacing 0.27 0.28 

Pitch ratio 1.41  1.40  

Volume 1.84 m3 1.8 m3 

Purchased-equipment cost 0.0335 M$ 0.0378 M$ 

Superheater 

Tube length 4.19 m 8.6 m 

Tube diameter 16.0 mm 16.3 mm 
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Baffle spacing 0.32 0.36 

Pitch ratio 1.55  1.9  

Volume 1.44 m3 2.8 m3 

Purchased-equipment cost 0.0415 M$ 0.0679 M$ 

Internal recuperator 

Tube length 1.33 m 2.24 m 

Tube diameter 41.1 mm 45.9 mm 

Baffle spacing 0.29 0.29 

Pitch ratio 1.02  1.01  

Volume 12.0 m3 37.6 m3 

Purchased-equipment cost 0.1157 M$ 0.2316 M$ 

Condenser 

Tube length 1.19 m 1.59 m 

Tube diameter 16.0 mm 16.9 mm 

Baffle spacing 0.31 0.31 

Pitch ratio 1.55  1.52  

Volume 8.2 m3 10.4 m3 

Purchased-equipment cost 0.2003 M$ 0.2609 M$ 

Axial turbine 

Axial speed 66.3 m/s 58.3 m/s 

Volume 0.5 m3 0.5 m3 

Purchased-equipment cost 2.7656 M$ 2.9181 M$ 

 

4. Discussion 
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We compare the shell and tube heat exchanger model, outlined in subsection 2.1, using an example outlined in 

Richardson and Peacock [21], comprising the design of a heat exchanger to sub-cool condensate from a 

methanol condenser with the use of liquid water as coolant. The results indicate differences less than 1% in 

overall heat transfer coefficients and pressure drops between the models derived here and the results provided in 

Richardson and Peacock [21]. These small differences are expected to be caused by differences in the 

calculations of thermodynamic properties of fluids, suggesting that the shell and tube heat exchanger model 

derived here gives reasonable results.   

 

The total investment cost for case a) is 13.1 M$ and 15.0 M$ for case b). The axial turbine is the major 

contributor to the total investment cost of the ORC, namely, 78.6% and 72.5% for case a) and b). In Gonçalves 

et al. [43], the price of the expander and generator represents 48.4% of the total cost of a 385 kW ORC fuelled 

by sawmill wastes. However, the presence of a boiler increases the total expense by around 24.2%. Assuming 

the component prices reported in Gonçalves et al. [43] and a conversion factor of 1.31 $/€, the total investment 

cost calculated with Eq. (33) is 18.4% lower for case a) and 10.1% lower for case b). The total investment cost 

calculated with Eq. (33) is also compared with the results of an equation derived in Ghirardo et al. [44] utilizing 

the cost of the Turboden T1100-CHP ORC and a scale factor coefficient equal to 0.867. The investment costs 

computed with Eq. (33) are 22.8% and 28.8% greater than the values calculated with Ghirardo’s approach. 

Findings suggest that the pay-back time is within the same range (4-6 years) as the one reported by Wang et al. 

[18] for heat source temperatures of 120 ºC and 140 ºC.  The results of these comparisons suggest that the 

economic analysis in this paper is in accordance with the results available in the literature. 

 

In accordance with the results presented in Sun and Li [8] and Roy et al. [9], higher expander inlet pressures 

provide a higher net power generation and a higher compactness of the economizer, evaporator and superheater. 

Similarly to the works carried out by Roy et al. [9], Baik et al. [12] and Dai et al. [14], an optimal value for the 

turbine inlet temperature can be found. In this paper average turbine inlet temperatures of 320 ºC (cyclopentane) 
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and of 300 ºC (acetone) are found to be the optimal compromise between system performance, compactness and 

economic revenue. As is also suggested in Baik et al. [12], increasing the size of the evaporator and condenser 

enhances the thermal efficiency of the ORC (see Figs. (6) and (8)). However, this results in a higher investment 

cost of the heat transfer equipment. Hence, an optimal volume is found where the net present value reaches the 

maximum (see Figs. (7) and (9)). 

 

As reported in section 3, the multi-objective process indicates that acetone and cyclopentane are the optimal 

working fluids in terms of efficiency, compactness and economy. The optimal working fluids differ from the 

ones suggested in previous works refs. [8-18] since in this paper the heat source is at around 370 ºC while in refs. 

[8-18] the heat source is at lower temperature level (100 – 200 ºC). However, acetone and cyclopentane are 

suggested to be suitable working fluids for ORC applications also in other works. In He et al. [45], cyclopentane 

provides the highest thermal efficiency (20.8%) in an ORC used for waste heat recovery of an internal 

combustion engine. Lai et al. [46] rank cyclopentane as the third best working fluid: ORC net power output is 1 

MW and the heat carrier inlet and outlet temperatures are 280ºC and 350 ºC. Ginosar et al. [47] assess the 

thermal stability of cyclopentane. The authors measure a decomposition rate up to 1500 ppm at 350 ºC [47]. The 

maximum temperature in the ORC should then be lower than 300 ºC where the decomposition rate is in the order 

of 270 ppm [47]. In the present paper, the highest turbine inlet temperature is 276.9 ºC. Wang et al. [48] show 

that acetone exhibits the lowest exergy destruction in the overall ORC for low-temperature waste heat recovery. 

However, the authors discard the fluid, since the condensing pressure is less than the atmospheric pressure 

leading to the infiltration of ambient air into the loop. As reported by Dai et al. [14], low specific volumes are 

crucial to decrease the dimensions of the expander. As surveyed by Nouman [49], acetone presents the lowest 

volumetric flow rate and expansion ratio in ORC applications. Therefore, the fluid is proposed for the design of 

compact ORCs, since the size and material cost of the system are reduced. 
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The present methodology can be implemented to design ORC units converting heat at different temperature 

levels into electric or mechanical power. At each temperature level, the three-dimensional Pareto front for each 

optimal working fluid is identified. In the multi-objective optimization method proposed in Salcedo et al. [17], 

the objective functions are the environmental impact and the specific cost of a solar steam Rankine cycle. Wang 

et al. [18] employs the heat exchanger area per unit power output and heat recovery efficiency as targets. In this 

paper the desired compactness and economic revenue can be selected from the optimal front (see Figs. (6) and 

(7)). As an improvement of the work presented by Wang et al. [18], in this work the optimal pinch points and the 

fluid velocities in the shell and on the tubes side of economizer, evaporator, superheater, and internal recuperator 

can be identified. In contrast with Wang et al. [18] where simple heat transfer and pressure drop correlations for 

horizontal tubes are employed, this paper introduces specific equations (see Eqs. (5)-(11)) for the shell and tube 

heat exchanger in the multi-objective optimization. Thus, the geometry of the heat transfer equipment can be 

assessed and utilized to select available components on the market.  

 

However, since the heat transfer equipment considered in this analysis is the shell and tube heat exchanger, the 

field of application is directed towards MW-size systems with high temperature heat sources (350 ºC - 250 ºC). 

In fact, shell and tube heat exchangers are normally employed for high temperature and pressure processes. At a 

maximum operating temperature and pressure in the ORC lower than 250 ºC and 30 bar and at mass flow rates 

lower than 2500 m3/h [21], the plate heat exchanger are the preferable heat transfer equipment due to its 

flexibility and compactness. The algorithm provides also the geometry of the economizer, evaporator, 

superheater, internal recuperator and condenser. Hence, the standard dimensions of the tubes (outer diameter and 

length), the shell diameter, the baffle spacing and the pitch ratio can be selected directly from the outcomes of 

the shell and tube design process. However, for a more accurate estimation of the overall heat transfer coefficient 

and of the pressure drop, specific correlations for the selected working fluid should replace the more generic 

approach presented in section 2.1.        
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5. Conclusions 

 

We propose a multi-objective optimization that considers the thermal efficiency, compactness and net present 

value, by employing the genetic algorithm to design organic Rankine cycles. The shell and tube heat exchangers 

are the heat transfer equipment. The space requirement of the ORC is assessed by calculating the geometry (tube 

diameter and length, pitch and baffle spacing) of the shell and tube heat exchanger following a well-established 

design procedure. We employ different heat transfer correlations depending on the fluid phase, and we also 

quantify pressure drops within the cycle. The variables considered in the optimization routine are the turbine 

inlet pressure, pinch points of the evaporator, superheater, internal recuperator and condenser, the velocity on the 

shell side of the heat exchangers, and the temperature at the outlet of the condenser.  

 

We apply the methodology to recover the waste heat from the SGT-500 gas turbine utilized to support the power 

demand in the Draugen off-shore platform. The results suggest that the two most suitable working fluids are 

acetone and cyclopentane. For acetone, the thermal efficiency ranges from 23.7 to 27.0%, in volume from 14.5 

to 57.5 m3, and in net present value from 17.7 to 19.8 M$. Cyclopentane performs better both in terms of thermal 

efficiency (27.0 to 28.1%) and of net present value (19.7 to 20.1 M$). However, the usable volume becomes 

larger (55.0 to 98.4 m3). Based on the volume versus thermal efficiency and NPV versus volume curves, we 

propose two possible solutions and list the geometry of the economizer, evaporator, superheater, internal 

recuperator and condenser.  

 

Acknowledgements  

 

The funding from the Norwegian Research Council through Petromaks with project number 203404/E30 is 

acknowledged. We also acknowledge the kind support from Siemens Industrial Turbomachinery AB, Finspång, 

Sweden for providing necessary technical documentation. 



38 
 

Nomenclature 

 

Abbreviations 

CC combustion chamber 

DC  direct cost 

DPB  discounted payback period [year] 

ECO  economizer 

EVA  evaporator 

GA genetic algorithm 

GEN  electric generator 

GT gas turbine 

GWP global warming potential 

HPC  high-pressure compressor 

HPT  high-pressure turbine 

INH  intermediate heat exchanger 

IR  internal recuperator 

𝐿𝐻𝑉  lower heating value [kJ/kg] 

LPC  low-pressure compressor 

LPT  low-pressure turbine 

NG  natural gas 

NPV  net present value 

ORC  organic Rankine cycle 

PEC  purchased-equipment cost 

PT  power turbine 

SUP  superheater 

TUR  turbine 

 

Notations             

𝐴  area [m2] 

𝑎, 𝑏, 𝑐,𝑑, 𝑒  coefficients in Eqs. (38) and (39) 

𝑏𝑐  baffle cut 

𝑐  speed [m/s]  

𝑐𝑝  specific heat capacity [kJ/(kg ºC)] 

𝑑  diameter [m]  

𝑓  function  

𝐹𝑡  temperature correction factor 

𝐹𝑡𝑠  heat exchanger correction factor 

𝐹𝑡𝑣  turbine correction factor 

𝑔  acceleration of gravity [m/s2] 

ℎ  heat transfer coefficient [W/(m2 ºC)] 

or enthalpy [kJ/kg]  

ℎ𝑢  utilization factor [h/y] 

HR  heat rate [kJ/kWh] 

𝐼𝑇𝑂𝑇 total capital investment [$] 

𝑖  year 

𝑗𝑡ℎ  tube side heat transfer factor 

𝑗𝑡𝑓  tube side friction factor 

𝑗𝑠ℎ  shell side heat transfer factor 

𝑗𝑠𝑓  shell side friction factor 
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𝑙  length [m] 

𝐿𝐻𝑉  lower heating value [kJ/kg] 

𝑀  molecular mass [kg/kmol] 

𝑀𝑎  operating and maintenance factor 

𝑚  exponent in Eq. (6) 

�̇�  mass flow [kg/s]  

𝑁𝑡  number of tubes 

𝑛  number of years 

NPV  net present value 

𝑁𝑢  Nusselt number 

�̇�  electric power [kW] 

𝑝  pressure [Pa] or price [NOK/tons] 

𝑝𝑡  tube pitch [m] 

PEC  purchased-equipment cost 

𝑃𝑟  Prandtl number 

𝑞  interest factor 

�̇�  heat rate [kW]  

𝑅  yearly income [$/y]  

𝑅𝑝  surface roughness [μm] 

𝑅𝑒  Reynolds number 

𝑇  temperature [K] 

𝑡  temperature [ºC] 

𝑈  overall heat transfer coefficient 

[kW/(m2 K)] 

𝑢  fluid velocity [m/s] 

𝑉  volume [m3] 

𝑣  specific volume [m3/kg] 

�̇�  volume rate [m3/s] 

�̇�  mechanical power [kW]  

                                                                                                                                                                                                                                                                                         

Greek symbols 

∆  difference 

𝜌  density [kg/m3] 

𝜆  thermal conductivity [kW/(m ºC)] 

𝜇  dynamic viscosity [N s/m2] 

𝛤  tube loading [kg/(m s)] 

𝜂  efficiency  

 

Subscripts 

𝑏  baffle 

CO2  carbon dioxide 

𝑐𝑜𝑛𝑑  condenser 

𝑒  equivalent 

𝑒𝑐𝑜  economizer  

𝑒𝑙  electric 

𝑒𝑣𝑎  evaporator  

𝑔  gas 

𝑔𝑒𝑛  generator  
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ℎ𝑡  heat exchanger 

𝑖  inside 

𝑖𝑑  inside dirt coefficient 

𝑖𝑛  inlet  

𝑙  liquid 

𝑙𝑚  logarithmic mean 

𝑚  mechanical  

𝑛𝑏  nucleate boiling 

𝑛𝑒𝑡 net 

𝑜  outside 

𝑜𝑑  outside dirt coefficient 

𝑜𝑢𝑡  outlet 

𝑝  pump  

𝑟  reduced 

𝑠  shell 

𝑠𝑢𝑝  superheater  

 𝑠𝑤  shell wall 

𝑡  tube 

𝑡ℎ  thermal 

tot  total 

𝑡𝑠  target shell 

𝑡𝑡  target tube  

𝑡𝑢𝑟  turbine  

𝑡𝑤  tube wall 

w  wall or water 

𝑥  axial 
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