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Discussion
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A R T I C L E I N F O A B S T R A C T

Available online 7 December 2012 In large-scale proteomics studies there is a temptation, after months of experimental work,
to plug resulting data into a convenient—if poorly implemented—set of tools, which may
neither do the data justice nor help answer the scientific question. In this paper we have
captured key concerns, including arguments for community-wide open source software
development and “big data” compatible solutions for the future. For the meantime, we have
laid out ten top tips for data processing. With these at hand, a first large-scale proteomics
analysis hopefully becomes less daunting to navigate.
However there is clearly a real need for robust tools, standard operating procedures and
general acceptance of best practises. Thus we submit to the proteomics community a call
for a community-wide open set of proteomics analysis challenges—PROTEINCHALLENGE—
that directly target and compare data analysis workflows, with the aim of setting a
community-driven gold standard for data handling, reporting and sharing.
This article is part of a Special Issue entitled: New Horizons and Applications for Proteomics
[EuPA 2012].

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Compared to other fields such as transcriptomics, computation-
al biology, genomics and imaging, bioinformatics activities in
mass spectrometry-based proteomics have been rather vendor
specific, closed sourced and not involving large parts of the

community [1–3]. This is in stark contrast to highly successful
academic open source software solutions in other fields, such as
Cytoscape.org, Openmicroscopy.org, Ensembl.org and BLAST.
Academic software development efforts in proteomics have
tended to be based within large individual labs, and only a
relatively fewhavebeen shared openly andmorewidely. Despite
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the lack of open source development, there have been successes,
such as the broad community utilisation of academic—if
closed-source—tools such as MaxQuant [4].

In this paper we share the fruit of the round-table
discussion group at EUPA2012 on the topic of “Dealing with
the Data Mountain”. Participants included end-users, statisti-
cians, programmers, software developers, biologists and
medical and drug discovery researchers from both industry
and academia. Firstly we will discuss the current problems
with data analysis in proteomics and justify the case for
community-based open source software development;
secondly we propose a set of 10 tips to enable the robust
analysis of data with current tools and lastly we propose a
community-based challenge solution to enable the advance-
ment of proteomics tools.

2. The case for open source software tools

The first issue to address as a community is to make
proteomics analysis tools open source. The reason this is
essential is that publication of scientific data should be
accompanied by full disclosure of how they were analysed
and processed. This ultimately requires access and insight
into the source code, as even with full disclosure of parameter
settings and algorithms, results will not be reproducible on an
alternative platform. A serious concern with closed-source
platforms is the omnipresent nature of software bugs.
Imagine a bug in Mascot which affects search results: such
an error could impact on hundreds of publications in our field.
Such a scenario is not unheard of: in 2008 a bug was identified
in the BLAST matrices [5]. While some may argue that
closed-source code is better protected from the introduction
of bugs, the bug in BLAST was in fact only discovered due to
the global availability of the source code. The fear that open
source code may lead to uncontrolled development and
different spin-off versions on the other hand, can be fully
controlled in both the method by which the code is shared
and by licensing. It may be useful if journals adopt open
access to underlying analysis source code as a requirement
for publication of data.

Second, instead of having the entire responsibility for the
flawlessness of a tool such as MaxQuant within just one or a
handful of labs, it is common knowledge that far cleaner,
better performing, less-error prone, faster evolving and more
popular software arises from development in communities
and more diverse groups. For example, software solutions
designed initially for a single vendor's output files could be
made compatible with other vendor-specific formats much
faster if implemented as a community-wide effort, following
the full disclosure of the source code. In academia the optimal
way forward is through open source development, like for
example the LINUX kernel and Cytoscape.org.

Finally, an ever pending issue is that of maintenance and
funding of software. It is a big burden for any one lab (no
matter how large) and again is better handled by community
efforts or dedicated consortia. Cytoscape.org for example
enables plugins from community projects, a powerful and
embracing strategy. This does however not replace the need
for full open-source access as discussed above.

3. The “big data” future

There are several technical reasons why a more broad
development scenario is attractive. There is a lack of
cross-platform deployment options and of high-performance
computing (HPC) capable tools. In our experience, while some
developers (e.g. Mascot) claim they support HPC operating
systems such as Linux, the performance on these platforms is
poor and not up to par with larger instrument fleets.
Furthermore, the dependency of some tools on the Windows
operating system makes them incompatible with high-
performance pipelines. Deployment of tools in a pipeline
mode is critical for any large scale proteomics project.

Automation of workflows including searching, fraction
and sample handling and tracking is important for system-
scale biology projects, such as implemented in the PepTracker
project (www.peptracker.com). This is also critical for envi-
ronments using laboratory informationmanagement systems
and bar-coding for processing of large sets of samples or
where tracking is mission critical, e.g. in clinical analysis.
Such developments would also benefit the adoption of
Standard Operating Procedures (SOPs) outside sample prepa-
ration, in the actual analysis of data and in the representation
and sharing of results.

The reliance on workstation-centric software is also in
direct conflict with robust storage solutions capable of
handling terabytes of data with automated backup, versioning
control systems and low-energy consuming data migration.
Biology and in particular genomics and proteomics are ‘big
data’ sciences and will benefit from adopting technologies
used in other ‘big data’ fields such as physics, finance and
engineering where HPC and open source tools are the norm
rather than exception.

4. Sharing and collaboration tools

What happens with proteomics data once they are published
in a public database? From a statistical point of view, could
these be re-used? How are data shared with collaborators?
These are all important and somewhat open questions.

The easiest way to share data is still via old-school (S)FTP,
shipping of hard-drives or HTTP. However, with the ever
increase of cheap cloud computing (for example Amazon or
Google) data sharing via online accounts is increasingly
popular. In terms of long-term public storage of proteomics
data, the PRIDE database is a primary repository, much like
PDB is for structural data. The future of alternative reposito-
ries (e.g. Proteome Commons) is currently uncertain which
leaves PRIDE as the key global database formass spectrometry
data [1]. The PRIDE database provides statistical tools for
using and building upon past data. While some participants
still found it hard to get data into PRIDE it seems that this is
currently the only way to ensure long-term public storage and
increased likelihood of the data being re-used by others.

It is critical to release the RAW files alongside publications,
as these contain some of the important parameters of the
experiment necessary for reproducibility, such as measuring
strategies, run-times and ideally HPLC gradients. Releasing
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this information should be compulsory for any publication.
The potential for re-use of data is particularly important since
in the main text of publications authors typically discuss a
subset of proteins (e.g. concerning a particular pathway), and
only significantly up/down-regulated findings. Placing the full
list of identified proteins, whether significant under treat-
ment or not, in the public domain provides a potential source
of data for similar studies and avoids duplication of expensive
and time-consuming experiments. Identifying proteins that
were not significantly altered following a particular treatment
could be of great interest to other labs. A further reason for the
publication of all identifications is that EBI is assembling such
published information as evidence of expression in protein
databases.

5. Ten tips for data processing in proteomics

While we are waiting for a community-wide, open source and
high-performance analysis package to become available for
any type of infrastructure, what can be done now with
existing tools, and what are the guidelines that result in an
optimal analysis of data? Which of the many tools out there
can we rely on?

Here we provide a set of tips in the order of a typical
analysis workflow:

1. Use a platform-specific peak selection and inspect spectra
manually

A first key point is that if a peptide is not detected in a
proteomics dataset, this does not mean it is not present in
the sample. Efficient peak selection is the first critical
analysis step to maximise identifications. It can be hard to
navigate the tool jungle, and the choice of several tools
claiming to be the best for the job is not always helpful to
the end-user. This may be the result of the never ending
search for better performance and a reflection of different
users' requirements. In our experience, instrument pro-
ducers have optimised platform-specific solutions for peak
selection, and recommend relying on instrument specific
software for this step. We do however suggest to always
check a statistical representative set of spectra manually.
While this inspection step may sound very old-school and
tedious, we would argue it is a sound way to spot any
systematic errors. You may want to check all spectra in
your final set of proteins/peptides, or pick a random
representative subset. We suggest that it would be useful
to have more versatile spectra browsers available, also on
mobile platforms to enable on-the-move browsing while
streaming data.
2. Combine search tools for peptide identification
In a typical shotgun proteomics experiment, MSMS data is
searched against protein databases to gain peptide identifi-
cations, using dedicated software (e.g. MASCOT, Andromeda
or SEQUEST). While there is no single top-performing,
high-performance and open source search engine out there
yet, there has been a recent trend to utilize multiple search
engines and combine the results [6]. Crowd sourcing of
search algorithms has been shown to outperform individual
algorithms [7]. But how are multiple search results best

combined? One successful approach is by probabilistic
integration, as the tools Scaffold [8], TPP [9] and Peptide
Shaker perform (peptide-shaker.googlecode.com). While
this type of meta-searching can increase the coverage and
decrease the errors in identified peptides, there is still a need
for new search algorithms to be developed to go beyond the
performance of current tools.
3. Beware of FDR-assigned modification sites
The false discovery rate (FDR) of peptide identifications in
database searches is typically assessed in comparison to a
search of the same data against a reversed, or otherwise
artificially created, decoy database. While FDR calculations
are a useful and legitimate tool for peptide identification
purposes, a big issue with the use of decoy searches arises
when assigning confidence scores and localization predic-
tion to post-translational modification sites. The problem
is that basing statistical significance on a null-model that
utilizes peptide sequences that do not exist in reality is
inherently flawed.
The cut off set for FDR is often 1% by default, however to
avoid losing identifications, a cut-off of 2–3% is more
advisable [10].
There are two ways to improve this issue:
1) using novelmass-spectrometers and technologies such

as ionmobilitymay resolve some localization problems
2) searching for numerous PTMs for the same set of

spectra and then estimate a p-value for the best
matching modification/localisation. This approach is
very heavy computationally and would require
streamlined search engines. The error tolerant search
from Mascot or the Preview software [11] can be used
for this, but these are not an open-source.

4. Customise themost suitable peptide quantificationmethod
Peptide quantification has been one of the most successful
aspects of mass spectrometry-based proteomics in recent
years. Software solutions for SILAC [12,9], stable isotope [13],
TMT and iTRAQ [14] labelled samples now enable conve-
nient and robust relative quantification of pooled samples.
Great improvements in label-free and spectral counting
methods [15] now enable the relative quantification in silico
without the need for labelling or pre-processing. Several
targeted proteomics (MRM/SRM/SWATH) tools such as
SkyLine [16] have also been developed.
These tools are commonly complemented with in-house
scripting based pipelines using Python, Perl, R and SQL for
large projects where full control and automation of the
quantification workflow are required. It is also important
to consider proline and arginine conversion in SILAC
quantification workflows, often this can be corrected for
by custom developed R-scripts.
The choice of quantification strategy, whether labelled or
not, must be part of the earliest stages of experimental
planning, with considerations including desired proteome
coverage, expected fold-changes in signals and statistical
power (replicates required to achieve significant results at
the desired sensitivity), as well as expertise—quantifica-
tion is a specialist topic and experience in applying a
technique will influence reproducibility [17].
These applications are increasingly adapted to enable nov-
el proteome-wide measurements beyond plain intensity
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comparisons between samples, two examples being quan-
titative measurements of protein turnover [18,19,13] and
sub-cellular localisation [20].
5. Use one sequence identifier type and stick to it
This is a never-ending, time consuming issue in almost
any project involving bioinformatics. The short answer is
‘pick one and stick to it across the project’. I.e. select a well
annotated database and use it in all aspects of the project.
It is a waste of time to try to translate across databases and
will result in data loss and corruption, no matter how
robust a scheme is used. We also note that it is important
to use representative genome-wide databases which have
developed highly robust mapping/linkage schemes, for
example ENSEMBL at EBI, which ensure data linkage and
integrity.
6. Choose network mining tools over pathway analysis
A frequently asked question is whether to perform
network or so-called ‘pathway’ analysis and if it is worth
investing in commercial pathway tools [21]. The recom-
mendation is a clear yes on network analysis but no to
existing ‘pathway tools’. The main problem is that unlike
metabolic pathways, protein interactions cannot be de-
scribed as linear pathways [22–24]. In addition to this we
know very little about signalling networks, and in partic-
ular their dynamics, which are essential to their impact on
the cell phenotype. Thus relying on tools that claim they
have a ‘pathway knowledgebase’ for proteins is funda-
mentally flawed.
That said, it does make sense to use probabilistic re-
sources that integrate the ‘entire scientific literature’ such
as STRING [25] and GeneMania [26]. These tools attempt to
comprehensively index all reported interactions and
functional associations between proteins across all se-
quenced species. As such these tools by far outperform
‘pathway tools’ in terms of sheer coverage of the
interactome. They also have the advantage of assigning
confidence scores to any reported interaction which gives
the analysis a probabilistic basis which is important. In
addition to this we recommend using NetPhorest [27]
and NetworKIN [28] to model and reconstruct networks
specifically for phospho-proteomics data.
7. Integrate your data with other sources
Once we have a network model of identified proteins,
peptides and PTMs it is critical to visualize it and to
perhaps overlay with other types of data (not necessarily
from proteomics). This is currently best facilitated by
Cytoscape.org. While the interface can be slow and
complicated at times, it is the most advanced network
tool available and once basic tasks such as file-based
colouring and node-shaping are mastered, it is relatively
easy to write own scripts to create input files for it.
Cytoscape also has a plethora of plug-ins that allow
sub-graph and functional enrichment analyses. More
features are continuously added. Cytoscape integrates
many different types of data and once a network model
is set up it can be exported as a vector graphic and
customised for publication in a drawing tool.
8. Use only experimentally evidenced GO annotation
GO annotation [29] has become cyclic, with electronically
inferred termspropagatinguncontrolled errors.GO-annotated

results should always be filtered based on experimental data,
using e.g. UniProt for filtering and PantherDB for functional
searching.
At the end of the daywe aremore interested inmechanistic
network dynamics rather than a pie diagram showing 10%
transcription. GO may be useful for categorising data but
not for drawing conclusions.
9. Make use of packages in R, Perl and Python
It is also a matter of respecting data. While people happily
spend months preparing samples, often the data analysis
can't go fast enough. Data which was so carefully gathered
deserves a careful and customised analysis to help answer
the biological questions at hand.
10. Test multiple modelling approaches
While a discussion of computational modelling of e.g. cell
signalling networks is beyond the scope of this write-up,
we did raise some general points which may help people
starting out:
1) Modelling greatly depends on the question at hand, and
which data are available to answer it. Thus while several
modelling methods have been used to analyse mass
spectrometry data in the past with some degree of
success [30], it does not mean that they will be applicable
more generally in other cases.

2) There is no ‘best’ or ‘only approach’, and often several
options will work equally well. In fact tools like e.g.
DataRail [31] enable trials of different approaches. Ideally
one would sample across many strategies and pick the
best performing one and—crucially—determine whether
this choice is statistically robust.

3) In general probabilistic approaches are preferred as they
give confidence values for decision making. Also these
are much less dogmatic in nature compared to modelling
approaches that assume we know the system. For
example ordinary differential equation (ODE) modelling
may perform poorly if not all rate constants are known.
Furthermore, the concentration of proteins in cells can
be highly localized and interactions resemble solid phase
chemistry more than diffusion limited reactions, yielding
measured rate constants irrelevant [32].

4) It is likely that some development in house will be
required, but this may result in new features being
discovered in data.

Approaches such as Principal Component Analysis (PCA)
coupled with Partial Linear Regression (LDR) modelling
have been used in different projects which have provided
new biological insight [33]. However, there are also
weaknesses with these approaches as they are linear and
tend to scale-up noise in the data. Thus there is a need for
new non-linear approaches and for hybrid approaches
aiming to use probabilistic suppression of noise.

6. Crowd sourcing initiatives

Comparisons of performance in both computational and
experimental approaches and tools are essential to technolog-
ical and scientific progress. This has been shown repeatedly in
structural biology, bioinformatics, interactome screening, RNAi
screening and even in experimental proteomics. Some of these
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efforts have been conducted as individual studies, while others
have been formalized into global, open and highly productive
challenges. In the latter category the CASP (structural biology)
[34] and DREAM (network biology) [35] competitions are two
bright success stories. The CASP competition has for years
powered new innovation in algorithms for structural biology.
DREAM, a younger initiative, has already led to impressive new
tools and knowledge about the effectiveness of crowd sourcing
algorithms (something also known from CASP in the so-called
meta-servers). Proteomics needs new algorithms and not just
meta-servers. New innovative solutions are essential to prevent
stagnation. While crowd sourcing can outperform existing
individual tools they can only keep doing so if new innovative
algorithms are created.

As a spinoff from DREAM an initiative called IMPROVER
[36] has been launched which aims at conducting biological
challenges based on systems biology approaches. Thus there
are now community efforts in trying to identify network based
biomarkers and assessing the cross-species utility of data
obtained in model organisms. In addition IMPROVER and
DREAM are actively exploring different types of benchmarking
approaches while annual competitions are held in modelling
of networks and other types of systems biology analysis.

7. PROTEINCHALLENGE—call for community-
wide open analysis challenges

Here we call for a global sister project to DREAM and IMPROVER
in the proteomics community, PROTEINCHALLENGE. We sug-
gest that this should be held as part of HUPO. It is critical that
we, as a community, begin to systematically test datasets,
search algorithms and platform robustness [37]. Just like
DREAM we will use community shared ‘golden data sets’ for
blinded benchmarking of search algorithms across platforms
and data types (e.g. labelled versus non-labelled). Both acade-
mia and industry will be invited to participate as is the case in
IMPROVER.

We suggest that PROTEINCHALLENGE be launched as soon
as possible and contain sub-competitions in areas such as:

Experimental challenge:

●sample enrichment
●labelling technologies
●platform comparisons

Data analysis/pipeline challenge:

●search algorithms
●localization scores
●decoy methods
●network reconstruction algorithms
●modelling of proteomics data
●protein/peptide identification algorithms
●quantification algorithms

The winning prize will receive a vendor sponsored research
prize, which will encourage both participation and further
development. It will be important to collate results across

different labs, using samples and data sets sent out specifically
for this golden test [1]. Multi-lab studies are regularly performed
with experimental samples [38] but have not yet contrasted or
defined a best-practice workflow for proteomics analysis
pipelines.

The foundation of PROTEINCHALLENGE will be robust
benchmarking and performance evaluation criteria to ensure
the fair, robust and accurate comparison of individual tools
as well as declaration of winners. This will involve rigorous
probabilistic assessments using redundancy reduced data
and round-robin schemes for cross-validation. It is essential
that tools participating in the competition release their
source-code and algorithms and provide full documentation
on their correct use. While this requirement would initially
exclude a proportion of existing tools, it will in the long term
encourage adoption of successful tools and spawn enhanced
developments. It will also provide a much speedier innova-
tion within our community. The PROTEINCHALLENGE will
ensure that tools do not disappear off the radar after
publication as they will be applied by end-users during the
challenge. As part of the challenge a WIKI will be maintained
(similar to DREAM) where an updated list of top-performing
tools in the different categories will be listed. Researchers can
then add their tools to the list and a status field will show if
the tool has been evaluated in the PROTEINCHALLENGE.
Tracking of parameters and new versions of software will
also be important to report to the end-user. This will be a
publically accessible wikipedia page rather than a restricted
mailing list.

The definition of requirements for standard data sets, in
writing, is an important first step for the challenge.We propose
this be an aim of an inaugural workshop at HUPO.

In terms of vendor specific tools and platforms, we suggest
the use of one data set and a top-five list of vendor platforms
for the challenges. This could be based on raw unbiased
market share according to official NYSE/DOW JONES num-
bers. Currently this list would be: Thermo Fisher Scientific, AB
SCIEX, Agilent Technologies, Waters and Bruker.

More and more labs are using mass spectrometers, in
particular with the advent of bench-top instruments and thus
the need for robust, community accepted and state-of-the-art
analytical tools is more pressing than ever. We propose that
there is an urgent need for proteomics software development
to mature andmove into a challenge based, community-wide,
open source and open competition powered reality. We argue
that this is essential for the future success of the field and that
a call is made for an open challenge at global and interna-
tional community meetings moving forward.
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