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Abstract 

In Hungary, many loess/palaeosol sequences have been found to be discontinuous. In 

order to allow for correlations with other Quaternary records, reliable chronologies are 

needed. We therefore apply post-IR infrared (IR) stimulated luminescence (post-IR IRSL; 

pIRIR290) dating to the uppermost 20 m of the loess sequence at Paks. The pIRIR290 ages are 

compared with blue quartz OSL ages to test for potential age overestimation due to poor 

signal re-setting, and the observed good agreement is taken to imply that the more difficult to 

bleach pIRIR290 signal was reset prior to deposition. Our pIRIR290 based chronology reveals 

that most of the Late Pleistocene loess was deposited during marine isotope stage (MIS) 3 and 

during the Last Glacial Maximum (LGM). This is in disagreement with formerly published 

ages. The discrepancy can most likely be explained by anomalous fading (resulting in an age 

underestimate); this conclusion is supported by our uncorrected ‘standard’ IRSL ages. We 

further confirm that the Basaharc Double soil complex can be correlated with MIS 7; the 

underlying loess and soils cannot be dated accurately because the pIRIR290 signal approaches 

saturation. 

Keywords: Late Pleistocene; Middle Pleistocene; loess; OSL; post-IR IRSL; Hungary 
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1 Introduction 

The importance of loess/palaeosol sequences to the reconstruction of the landscape 

evolution and the palaeoenviroment in the Carpathian Basin has been pointed out by several 

studies (e.g. Bronger, 1975, 2003; Pécsi and Richter, 1996). In regions thought to be 

dominated by continuous loess deposits such as the Chinese loess plateau (e.g. Kukla, 1987) 

and the southeast Carpathian Basin (Vojvodina region; e.g. Marković et al., 2008, 2011; 

Fitzsimmons et al., 2012) interglacial soils can, within certain limits, be identified and 

regionally correlated. In Hungary, however, correlations are more difficult due to the quasi-

continuous character of the sedimentary records. Large ambiguities exist for the ages of the 

Middle Pleistocene soils, in particular for the Basaharc Double (BD1-BD2) soil complex, the 

Basaharc Lower (BA) and the Mende Base (MB) soils. Kukla (1977) correlated the MB soil 

to marine isotope stage (MIS) 13, the BA soil to MIS 11, and the BD soil complex to MIS 9 

and 7. The first ‘absolute’ ages of the MB soil were presented by Borsy et al. (1979). At 

Mende (Fig. 1), they dated the loess above the MB soil to 105 ± 17 ka using 

thermoluminescence (TL). In Paks (Fig. 1), the loess underlying this soil was dated to 125 ± 

20 ka; they concluded that the MB soil represents the last interglacial. In contrast, Wintle and 

Packman (1988) argued, based on their TL data for the loess underlying the Mende Upper soil 

(Mende felsı; MF, also subdivided into MF1 and MF2), that the MB cannot be correlated with 

the last interglacial, but has to be much older. Singhvi et al. (1989) claimed that the BD2 soil 

(therein called F3 after Bronger (1975)) corresponds to the last interglacial. Several studies 

(Zöller et al., 1994; Oches and McCoy, 1995; Frechen et al., 1997; Novothny et al., 2002) 

have now identified the MF2 as the last interglacial palaeosol, thus placing the BD1-BD2 soil 

complex, the BA and the MB soil all in the Middle Pleistocene. Zöller et al. (1994) presented 

TL ages of 133 ± 15 ka (between BD1 and BD2) and 135 ± 12 ka (below BD2) for the 

sequence in Basaharc (Fig. 1). Similar ages were presented for BD1 and BD2 from Paks 

(Zöller and Wagner, 1990). Even though their ages were too young (possibly due to fading, 

i.e. an athermal signal loss which causes underestimation; cf. Wintle, 1973), Zöller et al. 

(1994) concluded that the BD1 and BD2 soils correspond to MIS 7. The uncertainty arising 

from the minimum ages, however, does not allow for an unambiguous assignment for BD2 to 

either MIS 7 or MIS 9. 

As a result of the lack of suitable reliable dating techniques, the ages of the BD1-BD2 

complex and the underlying soils have remained a matter of debate. Fortunately, the latest 

developments in luminescence dating techniques now allow for more accurate dating, even 
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beyond the last glacial/interglacial cycle. Thiel et al. (2011a) presented an IRSL dating 

approach which makes use of a preheat at 320°C, followed by an IR stimulation at 50°C and 

subsequent post-IR IR stimulation at 290°C, referred to as post-IR IRSL290 (or pIRIR290). 

Using these settings, a natural IRSL signal from a sample from below the Brunhes-Matuyama 

(BM) boundary was found to be in saturation, implying that there is no or negligible 

anomalous fading (an athermal loss of signal with time which results in age underestimation). 

The stability of this signal was further investigated by Thomsen et al. (2011) and the general 

applicability and accuracy of this signal was tested by Buylaert et al. (2012) using an 

independently dated set of samples (well-bleached sediments) collected from around the 

world. The focus of their study was potassium-rich feldspars, while the studies of Thiel et al. 

(2011a, b, c) made use of polymineral fine grains, for which the IRSL signals presumably 

originate from all feldspars present. Tsukamoto et al. (2012) showed by comparing IRSL and 

TL signals from potassium and sodium feldspar with those of polymineral fine grains that at 

such high preheat temperatures the signal from potassium feldspar dominates; this allows one 

to conclude that the pIRIR290 protocol is indeed equally suitable for polymineral fine grains, 

which are commonly used in dating loess (cf. Roberts, 2008). This makes a very powerful 

dating tool available for developing chronologies of Middle Pleistocene deposits. 

Here we present a pIRIR290 based chronology for the upper part of the loess/palaeosol 

sequence in Paks, conventionally referred to as the ‘Younger Loess Series’ (e.g. Pécsi and 

Richter, 1996). To detect potential age overestimates due to poor signal resetting (cf. Buylaert 

et al., 2012), five samples are also dated using quartz blue OSL. To test whether there is 

significant influence on the equivalent dose using a high preheat, standard IRSL ages were 

obtained for the uppermost six samples. The aim is not only to solve open questions regarding 

the ages of the Middle Pleistocene soils in order to allow regional - and eventually global - 

correlations but also to develop a higher resolution chronology for the Late Pleistocene; this 

can be used in the future for proxy studies and palaeoenvironmental reconstructions.   

 

2 Geological setting and logging 

Paks is located in the central Carpathian Basin close to the Danube River (Fig. 1). The 

entire sequence is about 60 m thick (Pécsi, 1979) of which about 45 m are exposed (Fig. 2). 

Classically, the ‘Paks Formation’ is subdivided into the ‘Young Loess Series’ and the ‘Old 

Loess Series’; the latter (from base to top) includes the three rubified brown forest soils Paks 

Dunakömlöd (PDK) and Paks Double soils (PD1 + PD2), a pseudogley (Mtp; sometimes 
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subdivided into Mtp1 + Mtp2), and the two brown forest soils Phe (subdivided into Phe1 + 

Phe2) and MB. According to Márton (1979), the Brunhes-Matuyama (BM) boundary lies 

below PD2, while Sartori (2000) found it to be in the uppermost part of the PD2 soil. The 

‘Young Loess Series’ is (from base to top) comprised of loess packages intercalated by the 

BA soil, the BD1-BD2 complex (Fig. 2), the MF soils as well as two humic soils (h1+h2). 

Further, the Bag Tephra, underlying the BA soil, can be traced in some parts of the outcrop. 

According to Pouclet et al. (1999), the Bag tephra originates from the middle Italian volcanic 

field (Roman region); those authors suggested the Villa Senni Tuff, dated to about 351 ka, as 

a possible source. Further investigations by Horváth (2001) supported these findings. 

However, more recently, Sági et al. (2008) questioned the correlation with the Villa Senni 

Tuff. 

Although a topographic complexity has been noted in the Paks sequence (Pécsi and 

Richter, 1996, and references therein) it has long been interpreted as a (quasi-) continuous 

record. However in many places, the MF and h1+h2 soils are eroded (or have never been 

present). We investigated such an incomplete sequence along the northeast-exposed wall (Fig. 

2b); a composite log is shown in Figure 3. The upper part (≤ 8 m) of the sequence is 

characterised by silty to sandy-silty,  homogenous loess (Fig. 4a) with the exception of two 

thin reddish horizons (possibly reworked and/or weakly developed soils) (Fig. 4b). Two 

mollusc layers were found ~1.5 m to ~1.9 m below present day surface. Another mollusc 

layer could be traced at ~4.3 m depth. The dark (chocolate) brown BD1 soil was found at 

~8.2-9.8 m, and the BD2 soil at ~10.7-11.4 m. Both soils and the intercalated loess are 

characterised by crotovinas, especially earthworm fillings (Fig. 4c). Crotovinas are also found 

in the loess up to 80 cm below BD2. The ~7 m thick loess between BD2 and BA is intercalated 

by two thin reddish layers (probably reworked soil material). The BA soil (~18.4-19.1 m) is 

reworked (Fig. 4d), but could be clearly identified due to the underlying canary-yellow Bag 

tephra (~19.4 m) (Fig. 4e) just below the BA soil.  

 

3 Luminescence dating 

3.1 Sampling, preparation, and equipment 

During a field campaign in 2009, overlapping individual profiles of 1-3 m depth were dug 

in the northeast-facing loess wall (Fig. 2b; arrow). The wall of each profile was thoroughly 

cleaned prior to hammering metal tubes (length: 25 cm; diameter: 3-6 cm) into the sediment. 

The loess was sampled at intervals of ~0.5 m in the upper part (i.e. ≤ 8 m depth) of the 
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sequence (Fig. 3). Four more samples were taken from the loess below the BD soil complex; 

two of these samples are bracketing the Bag tephra (Fig. 3). 

The sampling tubes were opened under subdued red light and the outer ends (≥ 2 cm) were 

discarded. Preparation for the polymineral fine grain fraction (4-11 µm) followed Frechen et 

al. (1996). The samples were chemically treated with hydrochloric acid, sodium oxalate, and 

hydrogen peroxide; after each treatment step the material was washed using distilled water. 

Subsequently, the fraction 4-11 µm was obtained by repeated settling and washing using a 

centrifuge. The polymineral fine grains were mounted on aluminium discs from a suspension 

in acetone (~2 mg/ml). 

Quartz coarse grains (100-150 µm) were obtained by automated dry-sieving the material 

>11 µm. Density separation (2.70 g/cm-3 > ρ > 2.62 g/cm-3) was employed in order to obtain a 

quartz-rich extract which was etched in hydrofluoric acid (40%) for 1 hour. Finally, the 

fraction was re-sieved to remove all grains <100 µm. Large aliquots (few hundreds of grains) 

of quartz grains were mounted on stainless steel discs using silicon spray as adhesive. 

Luminescence measurements were made with an automated Risø TL/OSL reader (DA-15; 

Bøtter-Jensen et al., 2003) equipped with a 90Sr/90Y beta source calibrated for both quartz fine 

and coarse grains. The polymineral fine grains were stimulated using an array of IR light 

emitting diodes (LEDs) emitting at 870 nm, and the IRSL signals were measured in the blue-

violet region through a Schott BG39/Corning 7-59 filter combination (350-415 nm). The 

quartz OSL signals were stimulated using an array of blue LEDs emitting at 470 nm, and the 

emitted luminescence measured using a UV detection window (Hoya U-340 filter; 280-380 

nm). 

 

3.2 Dose rate determination 

Sediment taken from immediately around the luminescence samples was dried, 

homogenised and packed in Marinelli-type beakers. The sealed samples were stored for at 

least one month to ensure equilibrium between radon and its daughters. Subsequently the 

concentrations of U, Th and K were determined by high-resolution gamma-spectrometry at 

the Leibniz Institute for Applied Geophysics (LIAG). The measured concentrations were 

converted using the factors tabulated in Adamiec and Aitken (1998), and calculation of the 

cosmic radiation followed Prescott and Hutton (1994). For all samples a water content of 15 ± 

5% (cf. Frechen et al., 1997) was assumed; the large error on this estimate takes into account 

variations in water content over time. For the polymineral fraction, a mean a-value of 0.08 ± 
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0.01 was incorporated in the calculation of the total dose rate to the polymineral-fine grain 

fraction; this value is the average IRSL α-efficiency given in Frechen et al. (1997) for the 

loess section in Paks. 

A summary of the dose rate data is shown in Table 1. The dose rates to the polymineral 

fraction range from 2.98 ± 0.16 Gy/ka (sample PK17) to 3.85 ± 0.20 Gy/ka (sample PK22), 

and those for the coarse grain quartz extracts from 2.33 ± 0.10 Gy/ka (samples PK2 and PK3) 

to 2.50 ± 0.10 Gy/ka (sample PK6). 

 

3.3 Post-IR IRSL measurements 

The post-IR IRSL measurements followed the protocol presented in Thiel et al. (2011a) 

(Table 2). In this single aliquot regenerative (SAR; Murray and Wintle, 2000) protocol, after a 

preheat of 320°C for 60 s, the aliquots (polymineral fine grains) were stimulated with IR 

diodes for 200 s while held at 50°C in order to recombine the near-neighbour trap/centre pairs 

which are prone to fading (Thomsen et al., 2008). This first IR stimulation is followed by an 

IR stimulation for 200 s while the aliquot is held at 290°C (referred to as pIRIR290); this 

elevated-temperature stimulation allows the more stable distant trap/centre pairs to recombine.  

The response to the test dose (~50 Gy) was measured in the same way. Prior to proceeding to 

the next measurement cycle, any remaining signal was removed by illumination at 325°C for 

100 s (Table 2). The aliquots were measured ‘one at a time’. Within each run both the 

pIRIR290 and the IR signal are recorded (these are referred to as IR50/290 in the following), and 

thus data can also be presented for this signal (Table 3). However, because of the likelihood 

of signal instability, these data are only used for discussion of methodological aspects (e.g. 

effect of thermal treatment) and not for chronological interpretations. 

The signal collected during the initial 2 s of stimulation, less a background from the last 40 

s, was used in later calculations. Representative dose response and decay curves for the 

pIRIR290 signal are shown in Figure 5. Six (samples PK11-14, and PK17, PK20, PK22-23) or 

nine (all other samples) aliquots per sample were measured and used to calculate the mean 

equivalent doses. For all samples and aliquots recycling was within 5% of unity, and 

recuperation below 2%. 

To test whether a given dose can be recovered using our protocol, a dose recovery test was 

applied to samples PK1 and PK5. In case of a successful test, the measured to given dose ratio 

should be within 10% of unity. Prior to administering a dose similar to the natural equivalent 

dose, three aliquots per sample were bleached for four hours in a Hönle SOL2 solar simulator. 
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Three additional aliquots per sample were also bleached and used to determine the residual 

dose by measuring the aliquots as above; the latter measurements gave an average of 19.5 ± 

1.2 Gy (21 ± 2 Gy for PK1, and 18 ± 1 Gy for PK5). The measured to given dose ratio is 1.39 

± 0.11 for PK1 and 1.62 ± 0.27 for PK5, respectively (without subtraction of the residual). 

When the residual is subtracted, the dose recovery tests result in marginally better measured 

to given ratios of 1.36 ± 0.10 and 1.59 ± 0.25. Poor dose recoveries and large residuals for the 

pIRIR290 have been reported previously (e.g. Buylaert et al., 2011; Stevens et al., 2011; Thiel 

et al., 2011a, c; Schatz et al., 2012), although Thiel et al. (2011a and c) showed that their ages 

agreed well with independent age control despite unsatisfactory dose recovery tests. As a 

result, we are unsure of the significance of our dose recovery results.  

It has also been shown that the residual measured after bleaching in a solar simulator is not 

the same as bleaching in sunlight (e.g. Stevens et al., 2011), and that in nature the pIRIR290 

signal can be re-set to a negligible value (e.g. Thiel et al., 2012), though the re-setting will be 

slower (Buylaert et al., 2012). It should also be noted that a thermal transfer of up to 20 Gy 

was observed in modern dust samples (Buylaert et al., 2011), which can have a significant 

influence on young (i.e. Holocene) samples. 

Even though it has been shown that the pIRIR290 signal is stable and not prone to 

anomalous fading (Thiel et al. 2011a; Thomsen et al., 2011; Buylaert et al., 2012), fading 

experiments were run of twelve of the aliquots previously used for equivalent dose 

measurements. A dose of ~60 Gy was administered and the Lx/Tx were measured after 

varying storage times ranging from as short as experimentally possible up to ~8 hours. 

Following Auclair et al. (2003), the delays were inserted after irradiation and preheat. The 

mean g2days-value is 1.1 ± 0.7% (n=12); these values are commonly found in pIRIR290 dating 

studies on loess, but are not thought to be representative for what is happening in nature (see 

discussion in Buylaert et al., 2012). For the IR50/290 signal the mean g2days-value is 2.6 ± 0.5%, 

which is in the range of previously published values of the standard IRSL signal for 

Hungarian loess (e.g. Novothny et al., 2010). The ages presented in Table 3 are not corrected 

for fading, neither has a residual been subtracted. 

 

3.4 Standard IRSL measurements  

The equivalent doses of the uppermost six samples (PK1-6; polymineral fine grain 

fraction) were also measured using a ‘standard’ SAR IRSL protocol (Table 2). After a preheat 

of 250°C for 60 s, the aliquots were stimulated with IR diodes for 100 s while held at 50°C. 
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The test dose (~50 Gy) signal was measured in the same manner. At the end of the 

measurement cycle, a high-temperature (280°C) illumination was carried out. All aliquots 

were measured ‘one at a time’. 

For each sample, six aliquots were measured, and the signal from the initial 2 s of 

stimulation, less a background from the last 20 s, was used for calculation. Recycling for all 

samples and aliquots was within 5% of unity, and recuperation was below 5%. Dose recovery 

tests were conducted on samples PK1 and PK5. Six aliquots of each sample were bleached for 

four hours in a Hönle SOL2 solar simulator. Three aliquots of each sample were given a dose 

of ~65 Gy, and then measured in the above described manner. The other three aliquots were 

measured to determine the residual dose after bleaching in the solar simulator. The mean 

measured to given dose ratio was 0.95 ± 0.01 for sample PK1, and 1.04 ± 0.06 for sample 

PK5, respectively. The residuals are smaller than 2 Gy.  

As for the post-IR IRSL measurements, twelve of the aliquots used for equivalent dose 

measurements were also used to determine IR50 fading rates. The mean g2days-value was 2.8 ± 

0.7% (n=12); this is in agreement with the mean g2days-value measured for the IR50/290 signal. 

The ages presented in Table 3 are not corrected for fading, because they are only used to be 

compared with i) the uncorrected IR50/290 ages (and also doses) in order to discuss the effect of 

a higher stimulation temperature, and ii) formerly published ages not making use of fading 

correction. 

 

3.5 Blue OSL measurements 

Five samples (PK2, PK3, PK6, PK10, and PK11) were measured using quartz blue OSL. 

Prior to measurements, the purity of the quartz extracts was checked by means of IR depletion 

ratios (Duller, 2003), and all samples except PK11 were found to be sufficiently clean. A 

preheat of 240°C (10 s) and a cut-heat of 200°C were used for dose measurements (Table 2), 

and the aliquots were stimulated with blue light at 125°C for 40 s. At the end of each SAR 

cycle a high-temperature (280°C) cleanout using blue stimulation for 40 s was used to 

minimise signal carry over from one measurement cycle to the next (Wintle and Murray, 

2003). The suitability of this protocol was tested by means of dose recovery tests on sample 

PK3. Six aliquots were bleached with blue LEDs for 1000 s, followed by a pause of 10,000 s 

and subsequent blue-light bleach for 1000 s. The aliquots were then given a dose close to the 

natural, and measured using the SAR protocol described above. The mean measured to given 

ratio for this temperature setting is 1.00 ± 0.02 (n=6); it should be noted that there was no 
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significant dependency of the measured to given dose ratio on the preheat temperature, as 

long as a preheat <300°C is used (Fig. 6). 

Because sample PK11 suffered from slight feldspar contamination a double SAR protocol 

(e.g. Banerjee et al., 2001; Roberts and Wintle, 2003) was employed. The settings were the 

same as above, but included IR stimulation at 125°C for 100 s immediately prior to blue 

stimulation (Table 2). A dose recovery experiment using the same bleaching settings as above 

resulted in a mean measured to given dose ratio of 0.97 ± 0.04 (n=6).  

For all quartz measurements, equivalent doses were calculated using the signal from the 

initial 0.2 s of the stimulation curve, less a background from the subsequent 1 s (early 

background subtraction; Cunningham and Wallinga, 2010); this is intended to reduce the 

medium component. Twelve (PK11) or 18 aliquots (all other samples) were measured to 

calculate an average equivalent dose for each sample. For all aliquots and samples, recycling 

was within 10%, and recuperation was <5%. The resulting equivalent doses are summarised 

in Table 3. An example of a dose response curve (single exponential fitting) and decay curve 

for sample PK2 is shown in Figure 7. This behaviour is representative for all samples except 

PK11, which was found to be in saturation (De >2*D0; Wintle and Murray, 2006); a minimum 

age is given for this sample (Table 3). 

 

4 Results and Discussion 

4.1 The last glacial cycle 

Previous luminescence dating studies have revealed that the majority of the last 

interglacial/glacial cycle is not preserved in most parts of Hungary (Wintle and Packmann, 

1988; Frechen et al., 1997; Novothny et al., 2002, 2009, 2010). Our data support this 

conclusion (Table 3 and Fig. 8). For the last glacial cycle, the pIRIR290 ages (on which our 

chronology is based) range from 25 ± 2 ka (PK1) to 38 ± 3 ka (PK10); all other samples are 

older than 130 ka, i.e. older than the last interglacial. Most of the ages fall into MIS 3; the four 

uppermost samples are at the transition to MIS 2, which is defined here  as the period from the 

onset of the Greenland Interstadial (GI-) 3 (27.8 ± 0.4 b2k (=before year 2000 AD)) to the 

termination of the Younger Dryas (following Svensson et al., 2006). 

Frechen et al. (1997) obtained multiple aliquot IRSL ages ranging from 14.8 ± 1.4 ka to 

19.7 ± 1.7 ka (regenerative protocol) for the upper part of the section (down until the 

discontinuity; their Fig. 5). These ages showed some inversions, while the IRSL ages using 

the additive protocol were stratigraphically consistent, ranging from 13.4 ± 1.4 ka to 19.2 ± 
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1.7 ka. They concluded that the uppermost loess was deposited after the Last Glacial 

Maximum (LGM). According to Svensson et al. (2006), the LGM is the cold period between 

GI-2 and GI-3, i.e. it ranged from ~27.5 to ~23 ka (cf. their Figs. 1 and 3). However none of 

Frechen et al’s IRSL ages were corrected for anomalous fading, and in contrast our ages for 

the uppermost samples are older; they are all consistent with the LGM, and none of our ages 

fall into the time after this cold period. 

In addition to the IRSL ages, Frechen et al. (1997) also presented TL ages, which ranged 

from 26.5 ± 8.7 ka to 55.3 ± 5.4 ka (regenerative protocol). It has to be noted that the ages 

were stratigraphically inconsistent and that errors were very large. The TL ages obtained 

using the additive method ranged from 18.5 ± 12.3 ka to 54.8 ± 6.6 ka, again with several age 

inversions; age correction for fading was not applied. Because of the stratigraphic 

inconsistencies, Frechen et al. (1997) concluded that the TL ages are not reliable; they argued 

that the cause for the unreliability is insufficient bleaching prior to deposition due to 

proximity to the loess source. 

In an aeolian setting, it is difficult to believe that incomplete re-setting of the luminescence 

signal is the origin of erroneous age estimates (unless transport and deposition took place in 

darkness). If the loess was indeed not properly bleached prior to deposition, it would affect 

the pIRIR290 signal in a similar manner because it has been shown that this signal is far more 

difficult to bleach than the conventional IRSL signal and, even to a greater extend, than the 

quartz OSL signal (Buylaert et al., 2011, 2012). In order to check whether the young loess in 

Paks is affected by poor bleaching, we compared the pIRIR290 ages with the ages obtained 

from blue OSL on coarse grain quartz (Fig. 9). The ages for the younger four samples are in 

very good agreement; the quartz signal from sample PK11 is in saturation, resulting in a 

minimum age of >80 ka. The OSL minimum age confirms the discontinuity in the sequence. 

The very good agreement for the younger samples also suggests that the pIRIR290 residual 

signal measured is probably not representative of any residual in nature; if it were to be, the 

pIRIR290 age would overestimate the OSL age (a residual of ~20 Gy translates to about ~6.5 

ka). Because the quartz OSL and polymineral pIRIR290 ages are in agreement, insufficient 

bleaching of the pIRIR290 signal can be excluded (cf. Murray et al., 2012). It is more likely 

that the IRSL ages presented in Frechen et al. (1997) underestimate due to anomalous fading; 

this is supported by our IR50/290 age estimates (Table 3), which all underestimate the pIRIR290 

(and quartz OSL) ages (Fig. 9).  
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We also measured ‘standard’ SAR IRSL for the uppermost six samples (Table 3) using 

preheat of 250°C. The ages are similar to the IR50 data obtained as part of the pIRIR290 (Fig. 

10); there is no systematic trend in these data, and the uncorrected ages based on both IR50 

data sets point to deposition mainly after the LGM, agreeing with Frechen et al. (1997). 

However, we are confident that our IR50 ages underestimate both quartz and pIRIR290 ages 

because of fading and so we deduce that the ages presented in Frechen et al. (1997) are also 

underestimated. 

We conclude that the last glacial loess preserved at this site was deposited prior to or 

during the LGM, but no MIS 4 loess or MIS 5 soil is found at this part of the outcrop. Since 

the uppermost meter was not sampled (cf. Fig. 3), we cannot draw any conclusion on whether 

there is any loess deposited after the LGM. If there is any, it must now be of limited thickness, 

most likely due to erosion and agriculture activity. 

Loess deposition during MIS 3 has been observed at other sites in Hungary (e.g. Tokaj; 

Schatz et al., 2012), although this stage is usually characterised by soil formation. In 

Albertirsa (Novothny et al., 2002) the upper soil (MF1 soil, following the ‘classical’ 

nomenclature) was IRSL (MAAD) dated to between 37.1 ± 4.2 ka and 29.1 ± 5.2 ka; a humic 

horizon in the younger part was dated to 21.7 ± 4.8 ka. None of these ages are corrected for 

fading, and thus an age underestimate is, in our view, likely. Schatz et al. (2012) found two 

MIS 3 soils; the sediment in which the lower soil formed was pIRIR290 dated to 57 ± 5 ka and 

the loess below the upper one to 39 ± 4 ka and the loess above to 30 ± 3 ka, respectively. In 

Süttı, one light brown palaeosol was found in the MIS 3 sequence (Novothny et al., 2011). 

For Süttı, the old, non-fading corrected ages presented in Novothny et al. (2009) imply thick 

(~5 m) MIS 2 loess. The new ages (Novothny et al., 2011; their Fig. 2) show that these 

formerly published age estimates have to be partly revised; considerable loess deposition took 

place during MIS 3 and/or close to the transition to MIS 2. This would be in concordance with 

our observations at Paks. Nevertheless, the absence of palaeosols in Paks during MIS 3 needs 

to be explained. One possible explanation is erosion; the reddish (reworked) layer (cf. Fig, 3) 

is a remnant of an eroded soil. An alternative explanation is that our sampling site sits in a 

topographic position which functioned as local sediment trap with higher accumulation rates 

preventing significant soil formation. The complex topography with several palaeo-

depressions along the loess wall in the brickyard has already been pointed out in early works 

(Pécsi, 1979). This interpretation would be similar to the topographically controlled sediment 

trap described in Thiel et al. (2011d); luminescence dating at Langenlois, Lower Austria 
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revealed an exceptionally thick MIS 3 sequence with only few humic horizons, and no 

significant soil formation. This shows not only the importance of topography, but also the 

general complexity of MIS 3. 

 

4.2 The Middle Pleistocene 

There clearly is a discontinuity in the loess/palaeosol sequence, separating the Middle 

from the Late Pleistocene (Fig. 8). This discontinuity has also been observed by others (e.g. 

Oches and McCoy, 1995; Frechen et al., 1997) based both on field observations and on dating 

results. Based on amino acid racemisation, Oches and McCoy (1995) concluded that most of 

the Young Loess Series formed during the Middle Pleistocene; this is in accordance with our 

dating results - sample PK10 was dated to 38 ± 3 ka, but the underlying sample PK11 gave an 

age of 199 ± 27 ka. All other loess samples above the BD1-BD2 soil complex were dated to 

between 224 ± 21 ka (sample PK12) and 259 ± 27 ka (sample PK14). Within errors, all ages 

are identical, although there is a clear trend for the ages to increase with depth. Again, the age 

estimates point to MIS 7; if the errors are taken into account, the end of MIS 6 cannot be ruled 

out. These ages suggest little loess deposition during MIS 6; this seems unlikely given that 

this period is thought to be a prolonged cold stage giving thick loess deposition (cf. Thiel et 

al., 2011b). A simple explanation for the lack of MIS 6 loess at Paks would be erosion, similar 

to the MIS 2 loess. We do not consider significant age overestimation likely, given the good 

agreement for the younger material with quartz OSL ages. If there is no overestimate for the 

younger samples, it is difficult envisage a significant age overestimate resulting from poor 

resetting prior to deposition; the larger the equivalent dose, the less likely it is that a residual 

dose at deposition is of significance.  

Nevertheless, field observations do show that parts of the loess above the BD1-BD2 soil 

complex was reworked (Figs. 4b and 8); this post-depositional process could cause a slight 

age overestimate. Further, several crotovinas were found (Figs. 4c and 8); the borrowing 

animals mix the sediment. Therefore, the MIS 7 ages for the loess above the BD soil complex 

may include a small degree of age overestimation, so that the loess was actually deposited in 

MIS 6. 

The loess below the BD1-BD2 soil complex was dated to 287 ± 36 ka (sample PK17), i.e. 

MIS 8. No signs of reworking were observed, and thus no significant age overestimate is 

anticipated. We deduce that both BD1 and BD2 developed during MIS 7, as was suggested 

previously by Zöller et al. (1994). Bronger (2003) has correlated the F3 soil (=BD) with MIS 
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5, and the F4 soil (=BA soil) with MIS 7; this correlation was based on TL ages, and can now 

be ruled out with some confidence. It also appears unlikely that BD2 corresponds to MIS 9, as 

suggested by e.g. Kukla (1977). Based on magnetic susceptibility data presented in Sartori et 

al. (1999), Marković et al. (2011) have correlated the BD1-BD2 soil complex with the two 

pronounced warm peaks during MIS 7 (their Fig. 6). They further correlated the BA soil with 

MIS 9. Our ages (Table 3 and Fig. 8) might allow for the same conclusion; however, the 

pIRIR290 signal approaches saturation and it is not clear how accurate ages close to saturation 

are. We therefore give minimum ages for the lowermost three samples (cf. Table 3). Given 

the numerous discontinuities found in Hungarian loess/palaeosol sequences from the last 

glacial period, it would be unwise to assume that the older loess represents a continuous 

record. Given the reddish layers (possibly reworked material) in the loess below the BD1-BD2 

soil complex (Fig. 8), we consider it likely that part of the Middle Pleistocene record is 

missing at the Paks site. 

 

5 Conclusions 

We made use of the latest luminescence dating technique (pIRIR290) to date the 

loess/palaeosol sequence at Paks, central Hungary. For younger samples, the pIRIR290 ages 

could be compared to quartz blue OSL ages in order to address the question of incomplete 

signal re-setting. The blue OSL and pIRIR290 ages agree well, implying that the pIRIR290 ages 

do not inherently overestimate. Any discrepancy with published data most likely originates 

from athermal signal loss (anomalous fading); this conclusion is supported by our uncorrected 

‘standard’ IRSL ages; these significantly underestimate the blue OSL and pIRIR290 ages. 

Our age estimates point to pre-LGM and LGM loess deposition at Paks, with most of the 

sedimentation taking place during MIS 3. No MIS 4 and MIS 5 loess was found. Clearly, the 

loess/palaeosol sequence at Paks is not a continuous record, a conclusion in agreement with 

field observations showing reworking and a discontinuity in the sequence. 

The Basaharc Double soil complex can be correlated with MIS 7. It remains an open 

question whether the Basaharc Lower soil corresponds to MIS 9 or an older interglacial 

because the pIRIR290 signal approaches saturation; any age estimate close to saturation may 

not be accurate. Future research will have to focus on a better understanding of the saturation 

and thus dating limit for pIRIR290. 
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 Figure Captions 

Figure 1: Map of Hungary. Paks (star) is located in southern central Hungary close to the 

Danube River. Basaharc and Mende (triangles) are type localities for Middle 

Pleistocene soils referred to in this study. 

Figure 2: Photographs of the brickyard in Paks. a) Main wall investigated by e.g. Pécsi (1979) 

b) parts of the main wall and outcrop (arrow); the Danube River can be seen in the 

background. PD1 + PD2 =Paks Double soil, B/M boundary = Brunhes/Matuyama 

boundary (~780 ka) MB = Mende Base soil; BA = Basaharc Lower soil; BD1 + BD2 = 

Basaharc Double soil complex. 

Figure 3: Composite profile of the ~20 m thick loess-palaeosol section investigated in this 

study.  

Figure 4: Photographs of some sedimentary and pedogenetic features of the loess/palaeosol 

sequence in Paks. a) Homogenous loess in the upper part of the section; 

macroscopically, no differentiation can be made, b) reddish layer at a depth of 6.4 m, c) 

chocolate brown soil (BD2); the over- and underlying loess is characterised by 

crotovina, d) BA soil at a depth of 18.5 m, e) canary-yellow Bag tephra. 

Figure 5: pIRIR290 dose response curves and decay curves (insets) for samples PK 2 (a)) and 

PK10 (b)); for the latter regenerated doses up to 1300 Gy were used to better define the 

dose response at higher doses. The triangles are the recycling points, and the squares 

show the sensitivity corrected IRSL of the natural. 

Figure 6: Results of the dose recovery tests with varying preheat temperatures. For all preheat 

temperatures (except 300°C), the measured to given dose ratio is within 10% of unity. 

Figure 7: Blue OSL dose response curve and decay curve (inset) for sample PK 2. The curve 

was fitted using a single exponential. The triangle is the recycling point, and the square 

shows the sensitivity corrected natural OSL signal. 

Figure 8: Log of the composite profile and pIRIR290 ages. The grey shaded areas show the 

MIS 3, 5, 7, and 9, respectively. The three lowermost age estimates have to be 

interpreted as minimum ages because the pIRIR290 signal is close to saturation. Note the 

break in the age axis. 

Figure 9: Uncorrected standard IRSL ages plotted against uncorrected IRSL50/290 ages. The 

dashed line is the 1:1 line, and the dotted lines are ±10%. 
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Figure 10: pIRIR290 ages plotted against uncorrected IRSL50/290 ages (dark circles) and blue 

OSL ages, respectively (light circles). The dashed line is the 1:1 line, and the dotted 

lines are ±10%. Note the logarithmic scale. 

 

Table Captions 

Table 1: Summary of the burial depths and radionuclide concentrations used to calculate the 

total quartz and polymineral fine grain (p.f.g.) dose rates. For all samples a water 

content of 15 ± 5% was used. The depths given are the sampling depths in m below 

present day surface. 

Table 2: Dating protocols used in this study: (A) SAR pIRIR290 (Thiel et al., 2011a), (B) SAR 

‘standard’ IRSL (Wallinga et al., 2000), (C) SAR blue OSL (Murray and Wintle, 2003), 

and (D) double SAR blue OSL (e.g. Roberts and Wintle, 2003). 

Table 3: Equivalent doses (Gy) and ages (ka) for the quartz OSL, IRSL and post-IR IRSL 

signals. For details see text. 
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Table 1: Summary of the burial depths and radionuclide concentrations used to calculate the total quartz and polymineral fine grain (pfg.) dose 
rates. For all samples a water content of 15±5% was used. The depths given are the sampling depths below present day surface. 

Field ID Lab ID Depth 
[cm] 

K  
[%] 

Th 
[ppm] 

U 
[ppm] 

Cosmic dose  
[Gy/ka] 

Total dose rate quartz 
[Gy/ka] 

Total dose rate pfg. 
[Gy/ka] 

PK1 1881 110 1.22 ± 0.01 10.13 ± 0.06 3.13 ± 0.03 0.185 ± 0.018 - 3.15 ± 0.16 
PK2 1882 220 1.27 ± 0.01 10.67 ± 0.07 3.24 ± 0.03 0.159 ± 0.016 2.33 ± 0.10 3.25 ± 0.17 
PK3 1883 270 1.29 ± 0.02 10.01 ± 0.09 3.41 ± 0.04 0.149 ± 0.015 2.33 ± 0.10 3.25 ± 0.17 
PK4 1884 320 1.35 ± 0.02 10.26 ± 0.10 3.37 ± 0.06 0.140 ± 0.014 - 3.30 ± 0.16 
PK5 1885 410 1.27 ± 0.02 9.32 ± 0.10 3.35 ± 0.05 0.125 ± 0.013 - 3.13 ± 0.18 
PK6 1886 460 1.45 ± 0.02 10.81 ± 0.08 3.57 ± 0.04 0.118 ± 0.012 2.50 ± 0.10 3.48 ± 0.18 
PK7 1887 510 1.38 ± 0.01 10.98 ± 0.07 3.28 ± 0.03 0.111 ± 0.011 - 3.33 ± 0.17 
PK8 1888 560 1.34 ± 0.01 11.34 ± 0.06 3.28 ± 0.03 0.104 ± 0.010 - 3.33 ± 0.17 
PK9 1889 610 1.33 ± 0.01 11.12 ± 0.06 3.29 ± 0.03 0.098 ± 0.010 2.35 ± 0.10 3.29 ± 0.17 
PK10 1890 660 1.48 ± 0.02 10.82 ± 0.11 3.45 ± 0.07 0.093 ± 0.009 2.48 ± 0.10 3.44 ± 0.17 
PK11 1891 710 1.45 ± 0.01 12.20 ± 0.06 3.18 ± 0.02 0.088 ± 0.009 - 3.45 ± 0.18 
PK12 1892 740 1.62 ± 0.01 11.41 ± 0.10 3.38 ± 0.05 0.085 ± 0.009 - 3.59 ± 0.18 
PK13 1893 770 1.51 ± 0.03 11.70 ± 0.06 3.24 ± 0.03 0.082 ± 0.008 - 3.47 ± 0.17 
PK14 1894 810 1.52 ± 0.01 12.23 ± 0.06 3.19 ± 0.02 0.079 ± 0.008 - 3.51 ± 0.18 
PK17 1898 1220 1.29 ± 0.01 10.63 ± 0.03 2.68 ± 0.01 0.052 ± 0.005 - 2.98 ± 0.16 
PK20 1901 1550 1.54 ± 0.01 12.68 ± 0.06 2.94 ± 0.03 0.035 ± 0.004 -  3.45 ±  0.17 
PK22 1903 1930 1.62 ± 0.01 14.67 ± 0.07 3.45 ± 0.03 0.027 ± 0.003 - 3.85 ± 0.20 
PK23 1904 1980 1.61 ± 0.01 13.28 ± 0.06 3.30 ± 0.03 0.026 ± 0.003 - 3.66 ± 0.18 
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Table 2: Dating protocols used in this study: (A) SAR post-IR IRSL290 (Thiel et al., 2011a), (B) ‘standard’ SAR IRSL (Wallinga et al., 2000), (C) 
SAR blue OSL (Murray and Wintle, 2003), and (D) double SAR blue OSL (e.g. Roberts and Wintle, 2003). 

 
(A) post-IR IRSL290 (B) ‘standard’ IRSL (C) blue OSL (D) double SAR  Observed 
      
Dose Dose Dose Dose   
Preheat (320°C, 60 s) Preheat (250°C, 60 s) Preheat (240°C, 10 s) Preheat (240°C, 10 s)   
      
IRSL (50°C, 200 s)     Lx(50/290) 
   IRSL (125°C, 100 s)   
IRSL (290°C, 200 s) IRSL (50°C, 100 s) OSL (125°C, 40 s) OSL (125°C, 40 s)  Lx 
      
Test dose Test dose Test dose Test dose   
Preheat (320°C, 60 s) Preheat (250°C, 60 s) Preheat (200°C, 0 s) Preheat (200°C, 0 s)   
      
IRSL (50°C, 200 s)     Tx(50/290) 
   IRSL (125°C, 100 s)   
IRSL (290°C, 200 s) IRSL (50°C, 100 s) OSL (125°C, 40 s) OSL (125°C, 40 s)  Tx 
      
IRSL (325°C, 100 s) IRSL (280°C, 100 s) OSL (280°C, 40 s) OSL (280°C, 40 s)   
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Table 3: Equivalent doses (Gy) and ages (ka) for the quartz OSL, IRSL and post-IR IRSL signals. For details see text. 

post-IR IRSL post-IR IRSL OSL IRSL 
IRSL50/290 pIRIR290 

OSL IRSL 
IRSL50/290 pIRIR290 

Field ID 

De ± s.e. 
[Gy] 

De ± s.e. 
[Gy] 

De ± s.e. 
[Gy] 

De ± s.e. 
[Gy] 

age ± s.e. 
[ka] 

age ± s.e. 
[ka] 

age ± s.e. 
[ka] 

age ± s.e. 
[ka] 

PK1 - 67 ± 4 48 ± 4 77 ± 5 - 21.2 ± 1.7 15.3 ± 1.4 25 ± 2 
PK2 65 ± 2 58.8 ± 1.1 68 ± 7 95 ± 9 27.7 ± 1.4 18.1 ± 1.0 21 ± 2 29 ± 3 
PK3 63 ± 2 59.5 ± 0.3 51 ± 2 85 ± 4 26.9 ± 1.5 18.3 ± 1.0 15.6 ± 1.1 26 ± 2 
PK4 - 54.9 ± 1.7 55 ± 3 86 ± 4 - 16.6 ± 1.0 16.6 ± 1.3 26 ± 2 
PK5 - 73 ± 5 70 ± 11 108 ± 20 - 24 ± 2 22 ± 4 35 ± 7 
PK6 75 ± 4 86 ± 6 70 ± 4 109 ± 7 30.1 ± 1.9 25 ± 2 20.1 ± 1.6 31 ± 2 
PK7 - - 80 ± 8 125 ± 9 - - 24 ± 3 37 ± 3 
PK8 - - 60 ± 9 118 ± 15 - - 18 ± 3 35 ± 5 
PK9 - - 70 ± 8 109 ± 9 - - 21 ± 3 33 ± 3 
PK10 73 ± 4 - 81 ± 9 130 ± 9 29.5 ± 1.5 - 24 ± 3 38 ± 3 
PK11 190 ± 21 - 327 ± 41 689 ± 90 >80**  - 95 ± 13 199 ± 27 
PK12 - - 312 ± 30 804 ± 67 - - 87 ± 9 224 ± 21 
PK13 - - 311 ± 36 793 ± 88 - - 90 ± 11 229 ± 25 
PK14 - - 356 ± 18 908 ± 81 - - 102 ± 7 259 ± 27 
PK17 - - 213 ± 38 853 ± 102  - - 72 ± 13 287 ± 36 
PK20 - - 656 ± 41 > 1000* - - 190 ± 15 > 290 
PK22 - - 600 ± 160 > 1000* - - 160 ± 50 > 260 
PK23 - - 518 ± 91 > 1000* 

 

- - 140 ± 30 > 270 
 
* Signal close to saturation. 
** Minimum age due to saturation of the quartz OSL signal (De >2*D0; Wintle and Murray, 2006). 
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Thiel et al., Fig. 1
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Thiel et al., Fig. 2
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Thiel et al., Fig. 3



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Thiel et al., Fig. 4
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Thiel et al., Fig. 5
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Thiel et al., Fig. 6
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Thiel et al., Fig. 7
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Thiel et al., Fig. 8
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Thiel et al., Fig. 9
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Thiel et al., Fig. 10


