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Abstract

This paper presents a method for forecasting the load for space heating in a single-family house.
The forecasting model is built using data from sixteen houses located in Sønderborg, Denmark,
combined with local climate measurements and weather forecasts. Every hour the hourly heat
load for each house the following two days is forecasted. The forecast models are adaptive linear
time-series models and the climate inputs used are: ambient temperature, global radiation and
wind speed. A computationally efficient recursive least squares scheme is used. The models are
optimized to fit the individual characteristics for each house, such as the level of adaptivity and
the thermal dynamical response of the building, which is modeled with simple transfer functions.
Identification of a model, which is suitable for all the houses, is carried out. The results show
that the one-step ahead errors are close to white noise and that practically all correlation to the
climate variables are removed. Furthermore, the results show that the forecasting errors mainly
are related to: unpredictable high frequency variations in the heat load signal (predominant only
for some houses), shifts in resident behavior patterns and uncertainty of the weather forecasts for
longer horizons, especially for solar radiation.

Keywords: Heat load, single-family house, building heat dynamics, forecasting, numerical
weather predictions, thermal, cooling

1. Introduction

The transition to an energy system based on renewables requires methods for forecasting of
power load and generation. In Denmark around 40% of the total energy consumption is related to
buildings and around 29% of the energy used for space heating is covered by individual oil or gas
fired furnaces [1], which is neither economically feasible nor environmentally friendly technologies.
The Danish Commission on Climate Change Policy recommends replacement with alternative
technologies, especially with electric heat pumps since this is one of the socio-economically cheapest
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alternatives in the transition to an energy system without fossil fuels in Denmark. Hence, new and
alternative technologies for building space heating based on renewable energy production are of
high interest, both for individual and district heating. Especially electrical heating systems since
large amounts of wind power are available, which creates a need for flexible load in order to absorb
the increasingly volatile production. As the level of electrical load increase, load-shifting in shorter
periods of time for peak-shaving of the diurnal electrical consumption is a valuable service to the
grid [2]. Flexible load can be achieved with thermal energy buffering, both in individual heating
and district heating, where huge thermal storage capacity is available. Several studies consider the
possibilities for flexible heating, for example [3] and [4] who present methods for energy storage in
the thermal mass of buildings, and [5] and [6] who consider load-shifting for cooling of buildings.
The present paper presents a method for forecasting of the power load for space heating in a
single-family house, referred to as the space heat load or simply heat load. The heat load forecasts
can be used as input to model predictive control, which can be used for optimized load-shifting,
for example for operation under energy markets where relocation of load to periods with cheap
energy is rewarded. The method can just as well be used for forecasting of cooling load and used
for load-shifting with cool thermal storage. [7] presents solar a combisystem, which is a heating
system based on a solar thermal collector and electrical heating, where a hot water tank is used
for thermal energy storage. Forecasting of the heat load is vital for optimal and effective use of
the thermal storage in such a system.

Forecasting of the heat load is carried out for sixteen houses located in Sønderborg, Denmark.
Every hour a new forecast is calculated of the hourly heat load up to 42 hours ahead. The houses
are generally built in the sixties and seventies, with a floor plan in the range of 85 to 170 m2

and constructed in bricks. Climate observations - which are measured at the local district heating
plant within 10 kilometers from the houses - together with numerical weather predictions (NWPs)
are used as input to the forecasting model. The NWPs are from the HIRLAM-S05 [15] model
and provided by the Danish Meteorological Institute. For each house only the total heat load,
including both space heating and hot water heating in a single signal, is available. The total heat
load signal is separated into two signals: one for space heating and one for hot water heating, and
then the space heating is forecasted. The splitting allows for a clear view of the effects stemming
from heat loss to the ambient and heat gains from solar radiation etc., since the noisy peaks from
hot water heating are filtered out. The indoor temperature is not available, but this is accounted
for in the models by including a diurnal curve to model nightly setback and behavioral patterns of
the residents e.g. heat from electrical appliances used for cooking.

Many approaches to load forecasting are found in the literature. A good overview of references
are given by [8], who also built load forecasting models using dynamic factor models. [9] use a
model based on the ambient temperature and a weekly pattern for forecasting of the heat load
in district heating, i.e. the total heat load for many houses. [10] use a grey-box model based on
transfer functions for building thermal load prediction and validates it on a 50 floors multi-purpose
building. The models applied in the present study are originally developed and used for forecasting
of heat load in district heating, as described in [11] and [12]. The heat load summed for many
houses have less high frequency variation, due to the averaging effects, compared to the heat load
for a single house. Emphasis in the present study is put on the variability in heat load among the
individual houses, for example some react more than others to solar radiation and especially the
diurnal pattern is very different among the studied houses.

The paper starts with a section in which the data and the NWPs are described. This is
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followed by a presentation of the modeling approach and the model identification, where a suitable
forecasting model is found together with a dynamic model for the remaining noise. Finally, the
results are presented, and the method is discussed and concluded.

2. Data

The data used in the study consists of measurements from sixteen houses located in Sønderborg,
Denmark, local climate measurements and NWPs. All times are in UTC and the time stamp for
average values are set to the end of the time interval.

2.1. Heat load measurements

The houses are typical Danish single family houses from the sixties and seventies. Only houses
with radiator heating are considered. A single signal for each house is used. It consists of the total
energy for both space heating and hot water heating. The measurements consist of 10 minutes
average values. Time series plots of the entire period, spanning nearly two and a half years, for
four of the houses are shown in Figure 1. Also shown, with red lines, is the distribution over
time as smoothing estimates of the 0%, 2%, . . . , 98%, 100% quantiles. They are estimated using
local quantile regression [13], where the weighting is local in time. They clearly show that the
distribution of the measurements is heavily skewed, as only two percent of the values are between
the two upper lines, which cover more than half of the range. The reason for this skewness is
seen from Figure 2, where the measurements from a period of 10 days for the same four houses
are plotted. The hot water heat load consists of high frequency spikes added to the more slowly
varying space heat load. The highest peaks are from showers and cause the high skewness. Since it
is wanted to study the space heating part, then each signal is separated into a space heating part
and a hot water heating part - with the method described in [14] applied causally. On the figure
the part of the signal identified as hot water heat load is marked with red, note that it is added
on top of the space heat load in the plot. After the splitting the series are re-sampled into hourly
average values. The hourly space heating for a single house is denoted by

{Qt; t = 1, . . . , N} (1)

where N = 21144 and the unit is kW. Notice that no distinction in between the houses is used in
the notation, but when the results are presented the house number, ranging from 1 to 16, is clearly
stated.

2.2. Local climate observations

The local climate observations are from a weather station at the district heating plant in
Sønderborg, which is less than 10 kilometers from the houses. The observations are re-sampled to
hourly average values and the following time series are used:

Ambient temperature:
{
T a,obs
t ; t = 1, . . . , N

}
(2)

Global radiation:
{
Gobs

t ; t = 1, . . . , N
}

Wind speed:
{
W s,obs

t ; t = 1, . . . , N
}
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Figure 1: The heat load for four selected houses over the entire period, which is nearly spanning two and a half years.
The red lines are estimates of the 0%, 2%, . . . , 98%, 100% quantiles, which indicate the distribution of the heat load
at a given time.
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Figure 2: Heat load for four selected houses for the first 10 days of March in 2010. The peaks marked with red are
the parts which are identified as hot water heating and the black line is the space heating part. Note that the hot
water heating is added on top the space heating signal.
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2.3. Numerical weather predictions

The numerical weather predictions (NWPs) used for the forecasting are provided by the Danish
Meteorological Institute. The NWP model used is DMI-HIRLAM-S05, which has a 5 kilometer grid
and 40 vertical layers [15]. The NWPs consist of time series of hourly values for climate variables,
which are updated four times per day and have a 4 hour calculation delay (e.g. the forecast starting
at 00:00 is available at 04:00). Since a new two-day heat load forecast is calculated every hour,
then - in order to use the latest available information - every hour the latest available NWP value
for the k’th horizon at time t is picked as

Ambient temperature (◦C): T a,nwp
t+k|t (3)

Global radiation (W/m2): Gnwp
t+k|t

Wind speed (m/s): W s,nwp
t+k|t

Wind direction (◦azimuth): W d,nwp
t+k|t

2.4. Combining local observations with NWPs

To include the building heat dynamics in an efficient way, the inputs are low-pass filtered as
explained in Section 3.3. Hence, for the forecast calculated at time t, past values of the inputs
are being used. In order to use the information embedded in the local measurements they are
combined with the NWPs. The combining is carried out by forming the time series for each of the
inputs at time t, for a specific horizon k, by{

T a
t+k|t

}
=
{
. . . , T a,obs

t−1 , T a,obs
t , T a,nwp

t+1|t , T
a,nwp
t+2|t , . . . , T

a,nwp
t+k|t

}
(4){

Gt+k|t
}

=
{
. . . , Gobs

t−1, G
obs
t , Gnwp

t+1|t, G
nwp
t+2|t, . . . , G

nwp
t+k|t

}
{
W s

t+k|t
}

=
{
. . . ,W s,obs

t−1 ,W s,obs
t ,W s,nwp

t+1|t ,W
s,nwp
t+2|t , . . . ,W

s,nwp
t+k|t

}
{
W d

t+k|t
}

=
{
. . . ,W d,nwp

t−1|t ,W
d,nwp
t|t ,W d,nwp

t+1|t ,W
d,nwp
t+2|t , . . . ,W

d,nwp
t+k|t

}
Notice that local observations are not available for the wind direction and that the most recent
NWP is used for past values instead.

3. Models

As mentioned earlier the applied models are similar to the models used in [12] for forecasting
of the summed total heat load for many houses. The models are based on prior physical knowledge
of the heat dynamics of buildings, which in combination with statistical time series models, forms
a grey-box modeling approach. This allows for inclusion of heat transfer effects related to the
climate variables in combination with a time adaptive estimation scheme applied to meet changing
condition. Furthermore, in order to describe of patterns in resident behavior, a diurnal curve is
included. The forecasting models are fitted, by optimizing the parameters to minimize the root
mean square error (RMSE) in an off-line setting. The fitting is carried out separately for each
house and for each horizon k, which means that the same model formulation - i.e. same inputs
and model structure - is used, only the parameter values for each house and horizon can vary.
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3.1. Time adaptive models

The models are fitted with the k-step recursive least squares scheme described in [16]. This
means that the coefficients in the model can change over time and adapt optimally, in a least
squares sense, to changing conditions. The coefficients are recursively updated, which means that
only a few matrix operations are required to compute an updated forecast, hence the scheme is
computationally very fast. It is a recursive implementation of a weighted least squares estimation,
where the weights are exponentially decaying over time. A single parameter is required, the for-
getting factor λ, which determines how fast input data is down-weighted. The weights are equal
to

w(∆t) = λ∆t (5)

where ∆t is the age of the data in hours. This implies that for λ = 0.98 the weights are halved in
34 hours, for λ = 0.995 they are halved in 138 hours (∼ 6 days) and for λ = 0.999 in 693 hours
(∼ 29 days).

3.2. Diurnal curve

A diurnal curve is included in the models for describing systematic diurnal patterns in the heat
load, which for example can be caused by a nightly setback and free heat from electrical appliances.
The curve is modeled as a harmonic function using a Fourier series

µ(ttod, nhar, αdiu) =

nhar∑
i=1

αdiu
i,1 sin

( ttodiπ

12

)
+ αdiu

i,2 cos
( ttodiπ

12

)
(6)

where ttod is the time of day in hours at time t, nhar is the number of harmonics included in the
Fourier series and αdiu is a vector consisting of the coefficients for the included harmonics. For all
the applied models a curve is fitted for working days and another curve for weekends.

3.3. Low-pass filtering for modeling of building heat dynamics

The heat dynamics of a building can be described by lumped parameter RC-models, see for
example [17], [18] and [19]. As described by [12] the response in the heat load to changes in the
climate variables can be modeled with a rational transfer function, which is a description with an
RC-model of the low-pass filtering effect through the building. In the applied models the simplest
first order low-pass filter, with a stationary gain equal to one, is used. This is a model of the
building heat dynamics formed by an RC-model with a single resistance and a single capacitor. As
an example the transfer function from the ambient temperature to the heat load is

Qt = αaHa(q)T a
t (7)

where

Ha(q) =
1− aTa

1− aTaq
−1

(8)

and where q−1 is the backward shift operator (q−1xt = xt−1) (see [20]), αa is the stationary gain
from the ambient temperature to heat load and aTa ∈ [0, 1] is a parameter, which is corresponding
to the time constant for the part of the building affected by changes in ambient temperature.
A building with a high thermal mass and good insulation will have a relatively high aTa , hence
the filter parameter needs to be tuned for each building in order to describe the heat dynamics
properly. First order low-pass filters are also applied for wind speed and global radiation, with the
filter parameter tuned to match the response of the building to each effect separately.
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3.4. Parameter optimization

As described above several parameters need to be optimized for each house and horizon. The
optimization is carried out in an off-line setting by minimizing the RMSE for each of the sixteen
houses and for each horizon k = 1, . . . , 42 separately. This does require some computational power,
for example for the low-pass filtering of the inputs. Therefore a simple bisectioning scheme is
applied for the optimization, since this allows for performing a filtering of the inputs only once for
parameter values in a given range. Then these series can be used for optimization for all the houses
and horizons. The properties of the optimization is not studied in detail in this work, however
some remarks regarding an operational implementation are given in the discussion in Section 7.

The following parameters are optimized:

• The forgetting factor: λ,

• The number of harmonics in the diurnal curve: nhar,

• The coefficients for input low-pass filters: aTa , aG and aWs .

4. Model identification

Forecasting models, which include different types of heat transfer effects related to the climate
variables, are applied in order to identify which of the inputs are important to include. Furthermore,
models in which the inputs enters differently are tried. See [12] for a description of how a physical
model can be rewritten into the identifiable models, which are applied here. The model which
include all energy contributions is

Qt+k = Q̂t+k|t + et+k (9)

where

Q̂t+k|t = Qa +Qg +Qw (10)

where the Qname variables on the right side of the equation represent the heat contributions from
the considered heat transfers as described in the following.

4.1. First step in model selection

To select a suitable forecasting model a forward selection approach is used. In the first step
the modelD

Q̂t+k|t = αia + µ(ttod, nhar, αdiu) (11)

which do not include any climate inputs, is fitted. In this model the heat load is simply modeled
as a diurnal curve with an offset. Note that the offset αia then represents a difference, which is
constant over 24 hours, between the indoor and the ambient temperature, and that the diurnal
curve will then capture diurnal patterns in both the indoor and ambient temperature in this model.
Due to the time adaptive scheme this model will be able to track the slow changes in temperatures
over the year. Finally, note also that the coefficients could have been denoted with a t to indicate
that they are changing over time, a house number to indicate that they are fitted to each house,
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and a k to indicate that the model is fitted for each horizon separately, however these have been
left out for better readability.

To find out if useful information can be gained from applying climate series as inputs to the
model, the cross-correlation function (CCF), see [21], between the one-step ahead (k = 1 hour)
prediction residuals for modelD and the available input series is calculated. Since there is a series
of residuals for each house the average over all houses

ēt+k =

nhouses∑
i=1

eHouse i
t+k (12)

where nhouses = 16 are the number of houses and eHouse i
t+k is the residual series for House i, is used.

In this way the CCF to each of the inputs can be summarized for all the houses in a single plot.
This will of course only show if an input is generally important to include and not the effects for
each individual house. The effects related to each house - which are different - are considered in
later parts of the paper.

The CCF between the average residuals from modelD to the inputs can be seen in Figure 3a.
Clearly, very significant correlations between the residuals and both the ambient temperature,

and the global radiation, but apparently none to the wind speed, are found. It is decided to add
the ambient temperature as input to the model, which leads to modelA

Q̂t+k|t = Qa (13)

where

Qa = αia + µ(ttod, nhar, αdiu) + αaHa(q)T a
t+k|t (14)

The Ha(q) is the low-pass filter describing the heat dynamics of the building envelope, i.e. the
response of in heat load to changes in ambient temperature. Notice that the intercept αia is
representing a 24 hour constant indoor temperature modified by the diurnal curve.

In order to find out if any gain in forecasting performance is achieved from modelD to modelA

the RMSE is used for evaluation as described in the following.

4.1.1. Root mean square error evaluation

To evaluate the models the root mean square error (RMSE) for the k’th horizon

RMSEk =

(
1

N

N∑
t=1

e2
t+k

) 1
2

(15)

is used together with the RMSEk improvement

IRMSE = 100 · RMSEref − RMSE

RMSEref
(%) (16)

over the currently selected model as reference. It is noted values not in the heating season - which
starts the 15’th of September and ends 15’th of May in Denmark - and values before the 15’th of
March 2009, which is used as a burn-in period, are excluded from the RMSEk calculation. For
evaluation of the inclusion of ambient temperature, the RMSEk improvement for modelA over
modelD is calculated. The average improvement for all horizons (from k = 1 to k = 42) for each
house is plotted in Figure 4a. A RMSEk improvement for the each house in the range from 5 to 25
percent and around 14 percent in average is achieved. This is clearly a significant improvement,
hence modelA is preferred over modelD.
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Figure 4: Improvements over the previously selected model for the models in each step of the selection.
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4.2. Second step in model selection

To explore the possibilities for further expansion of modelA the CCF from the average residuals
(defined in Equation (12)) to each of the climate series is calculated and plotted in Figure 3b. The
correlation to the ambient temperature is much lower than for modelD and the correlation to the
global radiation is more or less the same. The correlation to the wind speed has increased, most
likely this correlation was ”covered” by the correlation to the ambient temperature for modelD

residuals. Notice, that there is a significant correlation decaying over 12 to 24 hours to the lagged
inputs indicating that dynamics should be included by low-pass filtering.

To find the most important extension of modelA several extensions involving the global radiation
or the wind speed are fitted (i.e. the RMSEk is minimized by tuning the parameters listed in Section
3.4 for each house).

The first considered expansion is modelA.G

Q̂t+k|t = Qa + αgHg(q)Gt+k|t (17)

where the heat gain from solar radiation is included by letting the global radiation enter through
a low-pass filter, which describes the dynamic response from the global radiation to the heat load.
The second expansion is modelA.W

Q̂t+k|t = Qa + αwsHw(q)W s
t+k|t (18)

where the cooling of the building from wind is described by letting the wind speed enter through a
low-pass filter. This is a model of wind cooling not depending on the ambient temperature, however
- due to the time-adaptive modeling scheme - is does include the slow changes in temperature
difference between indoor and ambient temperature. The third expansion is modelA.V

Q̂t+k|t = Qa + αventW
s
t+k|t (19)

which includes the effect of ventilation by inputting the instant effect of wind speed to the heat
load.

The RMSEk improvements averaged over all horizons for each house for the considered expan-
sions are plotted in Figure 4b. It is seen that the increase in performance is highest for all the
houses using modelA.G, hence this model is preferred and used for expansion in the following step.
In the remaining of the paper the heat contribution from solar radiation is denoted by

Qg = αgHg(q)Gt+k|t (20)

4.3. Step three: Inclusion of wind speed in the model

In the third step of the model identification several ways of including the wind speed is consid-
ered. First the CCF between the one-step ahead residuals, from the model selected in the previous
step, modelA.G and the inputs, are studied to see if any useful information is remaining in the
climate series.

Firstly, it is noted that the correlation to the global radiation has decreased compared to the
CCF plot for modelA, but that some is still left, indicating that the dynamic effects are not entirely
described by the model. Secondly, it is noted that there is a significant cross-correlation to the
wind speed and therefore an expansion which includes the wind speed is sought. Five different
ways of letting the wind speed enter the model are tried as described in the following.
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The first expansion is formed by adding the wind speed through a low-pass filter for modeling
of cooling of the building in modelA.G.W

Q̂t+k|t = Qa +Qg + αwsHw(q)W s
t+k|t (21)

and, for modeling ventilation, the instant effect of wind speed is added in modelA.G.V

Q̂t+k|t = Qa +Qg + αwsW
s
t+k|t (22)

In the two models above the wind speed enter the model without the interaction with ambient
temperature, which means that the temperature difference between the indoor and ambient tem-
perature is modeled as constant and that changes are only tracked due to the adaptivity of the
model. In the following two expansions the interaction is also included, with a filter in modelA.G.Wa

Q̂t+k|t = Qa +Qg + αwsHw(q)W s
t+k|t + αwsaHw(q)W s

t+k|tT
a
t+k|t (23)

and as an instant effect in modelA.G.Va

Q̂t+k|t = Qa +Qg + αwsW
s
t+k|t + αwsaW

s
t+k|tT

a
t+k|t (24)

Finally, the wind speed input coefficient is conditioned on the wind direction in modelA.G.Wd

Q̂t+k|t = Qa +Qg +
4∑

i=1

αiHw(q)K(u)W s
t+k|tT

a
t+k|t (25)

where the kernel function

K(u) = (1− |u|)1{|u|≤1} (26)

with

u =
((
W d,nwp

t+k|t + 45 + (i− 1) · 90
)

mod 4
)
− 1 (27)

is used to create four input series, which are linearly interpolated as a function of the wind direction.
The center of the kernels is thus at the most prevailing wind directions in Denmark, especially
southwest in the winter period [22].

The plot in Figure 4c shows the improvements over modelA.G for the five models. The im-
provement is quite different for each house, for some it is negative, which is because the forecasting
model becomes over-parameterized. It is also seen that the pattern of the improvement among the
houses are quite similar for the five models, indicating that for some houses the wind have a more
prevalent effect than for others. Since modelA.G.W generally have the most positive improvement
and since it is the simplest extension, it is preferred over the others. In the remaining of the paper
the model part describing the effect of wind is denoted with

Qw = αwsHw(q)W s
t+k|t (28)
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4.4. Step four: Enhancement of the solar model part

In the final step the model part for solar radiation is enhanced in different ways, as described
in the following. Studying the CCFs for modelA.G.W in Figure 3d it is seen that the correlation
between the residuals and the inputs has been decreased compared to the CCFs for the smaller
models, however there is some left to the ambient temperature and solar radiation. From studying
plots of the forecasts it is found that it might be possible to improve the model part in which the
effect of solar radiation is included.

Firstly, an additional input for the solar gain is added and modelA.G2in.W

Q̂t+k|t = Qa +Qg + αg2Hg2(q)Gt+k|t +Qw (29)

is formed. This allows for an additional dynamic response of the building to solar radiation. Notice
that an additional filter coefficient for the Hg2(q) filter is fitted.

Secondly, the solar radiation part is enhanced by using a two-pole filter instead of a one-pole
filter

Q̂t+k|t = Qa + αgH2pol(q)Gt+k|t +Qw (30)

where

H2pol(q) =
1− a1 − a2

1− a1q−1 − a2q−2
(31)

and

a1 = ag1 + ag2 and a2 = −ag2 (32)

The two filter coefficients thereby relate to different dynamics: ag1 is related to the highest time
constant and ag2 is related to a faster time constant of the building.

In the third extension the solar radiation is separated into three inputs: one for the morning,
one for the noon and one for the evening. This allows for the building to have different solar gains
during the day. The modelA.Gspl.W is

Q̂t+k|t = Qa + αg1Hg(q)Gmorning
t+k|t + αg2Hg(q)Gnoon

t+k|t (33)

+ αg3Hg(q)Gevening
t+k|t +Qw

The three inputs are

Gmorning
t+k|t = Gt+k|t 1{t+k∈[trise, trise+∆t]} (34)

Gnoon
t+k|t = Gt+k|t 1{t+k∈[trise+∆t, tset−∆t]}

Gevening
t+k|t = Gt+k|t 1{t+k∈[tset−∆t, tset]}

where 1{·} is the indicator function, trise and tset is the time of sunrise and sunset, respectively and
∆t = (tset − trise)/3 is a third of the day length.

Finally, two enhancement are formed by projecting the solar radiation onto a vertical surface
tracking the solar azimuth angle. The projection to vertical is carried out by first splitting the
global radiation into a direct and a diffuse component as in [23] and onto a vertical surface with
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the Hay and Davies model [24], see also [25]. The effect of the projections is first of all an increase
in the level of solar radiation when the sun elevation is low, i.e. in the morning and in the evening
(or afternoon). In modelA.Gver.W

Q̂t+k|t = Qa + αgHg(q)Gver,tr
t+k|t +Qw (35)

the total vertical radiation is inputted and in modelA.Gbdv.W

Q̂t+k|t = Qa + αg1Hg(q)Gbeam,tr
t+k|t + αg2Hg(q)Gdiffuse,tr

t+k|t +Qw (36)

the direct (or beam) and the diffuse component is inputted separately.
The models are fitted to each house and the RMSE improvements over modelA.G.W are calcu-

lated and plotted in Figure 4d. For modelA.G2in.W and modelA.G2po.W only a little difference in per-
formance is seen, and for modelA.Gspl.W the performance has decreased. These three models become
over-parameterized, however it is noted that for short horizons the improvement for modelA.Gin2.W

is positive for all the houses. For the last two models: modelA.Gver.W and modelA.Gbdv.W, the
change in performance depends on the house. One interesting pattern is that the houses with the
highest change (both decreased and increased) are the houses, which benefited most from addition
of the solar radiation in the step second step of the model selection, as seen in the plot in Figure
4b. This indicates that increased performance can be obtained by modifying the solar gain over
the day by learning an optimal diurnal solar gain curve for each house, however this is beyond the
scope of the present study. In general no significant overall increase in performance is found for
any of the five suggested enhancements, hence the model selection is ended. The presented results
in the remaining of the paper are from modelA.G.W, together with a model of the noise, which is
described in the following section.

5. Noise model

Considering the auto-correlation function (ACF) for the one-step prediction residuals for the
houses, shown in the upper plot of Figure 5, it is found that a model is useful for describing
dynamical information embedded in the residuals. A simple auto-regressive (AR) model is fitted
to the residuals with the recursive least squares scheme [16]. The AR(1) model

et+k = aeet + enoise
t+k (37)

is fitted for the residuals from the selected model modelA.G.W for each horizon k. The ACF of the
noise residuals enoise

t+k can be seen in the lower plot of Figure 5. Compared to the upper plot the auto-
correlation for lag 1 is significantly lower indicating that the noise model improves performance.
Clearly, some of the houses still have significant auto-correlation left and for the short horizons a
noise model, which include more lags would improve performance further. However it was tried to
include one more lag (lag 2), but this did only improve the overall performance marginally, mainly
because no performance improvement is achieved on longer horizons. The houses which have the
highest ACF (in particular House 11 and 16) have some high frequency oscillations embedded in the
heat load signal, as described in the following section where the results are discussed. The average
RMSEk improvement over all horizons is in the range of 0.35% to 6.7%, hence a quite significant
improvement, especially for some of the houses. The RMSEk improvement for the one-step ahead
forecasts is in the range 1.3% to 19%, which clearly shows that the noise model is most important
for short horizons.
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Figure 5: The auto-correlation function (ACF) for each house. The upper plot is the ACF of the errors before the
AR(1) noise model is applied and the lower plot shows the ACF of the errors after.

6. Results

In this section the results from forecasting with the selected model are presented and discussed.
First the parameters, which are fitted for each house, are reported and then the performance for
individual houses is discussed.

6.1. Model parameters

The parameters, which are fitted for each house, are listed in Section 3.4. Since there is a value
for each horizon for each house and for each parameter, they are reported with the plots in Figure
6. The general patterns are discussed in the following. Starting with the upper most plot in the
figure, which is of the forgetting factor λ in the recursive least squares scheme, it can be seen that
it has a tendency to be lower for the first couple of horizons: for k = 1 the average over all the
house is 0.9755, which implies that the weighting of the input data is halved in only 28 hours.
This quick forgetting is most likely optimal, because it is profitable for the forecasting model to be
able to react fast to changes in the system, e.g. residents increase the indoor temperature or open
the windows, which can be tracked on short horizons. On longer horizons the forgetting is on a
stable level: for k = 5 the average is 0.9953 increasing to 0.9963 for k = 42, which implies that the
weighting of the input data is halved in around 8 days.

The second plot from the top in Figure 6 is of the optimized number of harmonics in the
diurnal curve: a higher number means that it is profitable to include higher frequencies in the
curve. Clearly, a huge variation among the houses is found, which is very reasonable, since the
diurnal patterns are very different, this is shown below.

The middle plot of the figure is of the optimized coefficient for the low-pass filter transfer
function from the ambient temperature to the heat load. Except for the two lower lines the
variation for each house as a function of the horizon k is quite small (in the range of ±0.01), which
leads to the conclusion that the applied low-pass filtering describes the response of heat load to
changes in ambient temperature for each house appropriately. In Table 1 the average coefficient
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Figure 6: Values of the parameters fitted for each house.

for each house is listed together with the equivalent RC time constants. The values are within a
reasonable range compared to values found in other studies [12], [5].

The fitted values of low-pass filter coefficient for global radiation aG and for wind speed aWs are
shown in the lower two plots of Figure 6. The values are all in the same range, generally between
0.8 and up to near 1, but with some lower values for a couple of the houses, which are houses where
the solar radiation and wind speed are not very important inputs.

6.2. Forecasting performance

In this section the forecasting performance is analyzed and discussed, especially the differences
in performance among the houses. For evaluation of the performance the normalized root mean
square error for each horizon

NRMSEk =
RMSEk

Q̄t
(38)

is used, where Q̄t is the average heat load for the house, which is calculated with the same values
as used for calculation of the RMSEk (see the text below Equation (15)).

The plot in Figure 7 shows the NRMSEk as a function of the horizon k for each house using
the selected modelA.G.W and the noise model. Clearly, the poorest forecasting performance is for
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House 1 2 3 4 5 6 7 8
aTa

0.96 0.91 0.91 0.96 0.94 0.96 0.95 0.96
τTa

(hours) 27 11 10 25 16 27 21 26

House 9 10 11 12 13 14 15 16
aTa

0.94 0.97 0.95 0.96 0.95 0.94 0.96 0.92
τTa (hours) 17 32 18 24 19 15 25 13

Table 1: Values of optimized low-pass filter coefficient for the response from ambient temperature to heat load and
corresponding RC time constant τTa in hours.
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Figure 7: The NRMSEk as a function of the horizon k for modelA.G.W for each house.

House 8. The explanation is found by considering the plot for House 8 in Figure 8, which shows the
heat load together with the 1 hour and 24 hour forecasts. The main reason for the poor forecasts is
a very irregular diurnal curve. A nightly setback results in a high difference between day and night
and the time of day at which the heat is switched to a high level again is not following a regular
pattern. It is probably controlled manually by the residents. This is opposed to the nightly setback
for House 10, which have a much more regular pattern which can be much better forecasted.

Another source for high errors is seen in the plots for House 2 and 16, where noisy fluctuations
occur on the higher frequencies in the signals. The smaller fluctuations are probably partly from
hot water heating, which was not well separated from the space heating, but clearly higher peaks
which are not related to hot water heating are seen. For House 11 a more steady, but still quite
unpredictable, pattern is seen, which is likely to come from some oscillation in the thermostatic
control of the heat system.

The heat load signals for House 1, 9 and 15 are much less volatile. These houses are also the
ones with a lower NRMSEk, as seen from the plot in Figure 7. The most obvious point to notice
is the deviation between the 1 and the 24 hour forecasts. Starting with the drop on the 21’st of
February, which is followed well by the 1 hour forecast, but not by the 24 hour forecast. This drop
is clearly caused by solar radiation. It is a clear-sky day, as seen by the high level of observed
global radiation (the second uppermost plot of Figure 8), which is also predicted well by the 24
hour NWP. However the drop is not followed by the 24 hour load forecast, since the previous day
was also forecasted as a clear-sky day by the 24 hour NWP, but it was not a clear-sky day as seen
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by the low observed level. Hence, there is a much higher uncertainty on the global radiation input
to the 24 hour forecast model compared to the 1 hour forecast, which use mostly observations as
input, and therefore the global radiation input is not given much weight in the 24 hour forecasting
model. From the 1’st of March a sunny period begins and it can be seen how the 24 hour forecasts
starts to track the mid-day drops in heat load, as more weight is put on the global radiation input
due to the time adaptivity of the modeling scheme. Finally, it is noted that the drop the 23’th
of February and the peak the 27’th of February in the heat load for House 15 are not seen in the
other heat loads. It is attributed to residents behavior, which cannot be predicted. However, it is
tracked with a delay in the 1 hour forecast.
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Figure 8: Plots of inputs and forecasts for sixteen days starting at the 19’th February 2010. The upper two plots
are observations and the 24 hour NWP forecasts of the two most significant inputs: the ambient temperature and
the global radiation. The plots below are for eight the houses of: observed heat load, 1 hour forecasts, and 24 hour
forecasts.
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7. Discussion

The presented heat load forecasts can be used to form the input for optimization of the heat
supply to buildings in smart grid applications. Such optimization can be based on model predictive
control. It is especially useful for optimization of heating systems with a thermal storage medium,
for example a hot water tank. For the data used in the study the indoor temperature was not
available and it is therefore modeled as constant offset modified by a diurnal curve. If the indoor
temperature is available it will allow for advancements of the method by including it as an input
to the model. Thereby the estimation of a time constant for the building can be carried out with
higher accuracy, which will allow the method to be used for optimization, where the thermal mass
of the building is used for thermal storage. It is also noted that the type of linear time-adaptive
models applied for the forecasting furthermore can be used for characterization and monitoring of
the thermal performance of buildings [26]. Especially, the inclusion of user behavior is an important
issue and should be further elaborated in studies focusing on such applications.

The forecasting method is found feasible to implement operationally and can be automatized
to a high degree. Certainly, flawed data can cause problems, however schemes for identifying issues
which needs manual handling can be implemented. Alarms could for example be triggered by
unusual changes in coefficient estimates or unusually highly auto-correlated residuals. It is noted
that the current implementation in R 1 is not compiled code and can be further optimized. However,
a test shows that around 1000 forecast updates (including the recursive parameter estimation)
of the 42 hours forecasts using the selected modelA.G.W can be calculated in approximately 10
seconds on a 2.4 GHz single CPU computer. This is due to the computationally light recursive
least squares scheme. If an update is needed every hour the time in-between updating can be used
for data handling and off-line parameter optimization of the parameters listed in Section 3.4. The
off-line optimization can be implemented with a recursive scheme and do not require updating
very often, perhaps once a week. Based on this very coarse assessment it is found that operational
implementation for a very large number of houses can be carried out with feasible amounts of
computational power.

Regarding the model part in which the solar radiation is entering, is should be possible to achieve
improvements in forecasting performance. For example more information about the individual
buildings, such as the azimuth angle of the walls, would provide the possibility for projection
of the radiation from horizontal to the vertical wall surfaces. However, it will be favorable for
operation if no specific information about the buildings is needed. The non-linear functions, which
could be applied with piecewise linear or regime switching functions depending on the level of solar
radiation, or a non-parametric approach, could also taken with an off-line method for learning how
the building respond to solar radiation over the day. Furthermore, it might be that performance
can be increased by using different models depending on the horizon, especially it is more relevant
to increase the model complexity for shorter horizons.

Finally, further work could be focused on modeling the uncertainties of the heat load forecasts.
As found in the analysis of the results the two most important effects related to the uncertainties
seems to be user behavior and solar radiation. Modeling the uncertainties is no trivial task since
the uncertainties of the inputs propagates through the model and the relations change over time.
One approach would be to characterize the uncertainties of the forecasted inputs and use this to
build a model of the heat load forecast uncertainties. For example the uncertainties related to the

1www.r-project.org
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user behavior will most likely have diurnal and regime shifting patterns which could be modeled
with hidden Markov models.

8. Conclusion

A method for forecasting the load for space heating in a single-family house is presented. It is
formed by adaptive linear time-series modeling techniques, using local observations and weather
forecasts as input. Based on measurements from sixteen houses, a model, which is suitable for all
the houses, is identified by using a forward selection approach. It is shown how the forecasting
performance increases when the ambient temperature, global radiation and wind speed are added
as inputs to the model. For inclusion of the heat dynamics of the building in the model a simple
low-pass filter transfer function is used. In the last step of the model selection several enhancements
of the model are tested, resulting in over-parameterization and decreased forecasting performance.
In a second stage a noise model formed by an auto-regressive model is applied for modeling of the
remaining dynamic information in the residuals. After applying the noise model, it is shown that
almost no auto-correlation remains. The model parameters, which have been fitted individually for
each house, are analyzed and it is found that they provide reliable information about the dynamic
response of the buildings. The forecasting results are then analyzed thoroughly to give insight
into the error sources, for example unpredictable behavior of the residents and uncertainty in the
inputs, especially from the solar radiation weather forecasts. Finally, a discussion is given with
ideas for applications and further advancements of the method.

Acknowledgement

Acknowledgements are given to the The Danish Council for Strategic Research, which have
provided the financial support for the project ”Solar/electric heating systems in the future energy
system” (2104-07-0021) under which the work was carried out. The heat load and climate data
was very kindly provided by Sønderborg Fjernvarme and the Danish Meteorological Institute is
thanked for making their numerical weather predictions available.

[1] Danish Commission on Climate Change Policy, Grøn energi - vejen mod et dansk energisystem uden fossile
brændsler, Tech. rep., Danish Energy Agency, dokumentationsdelen til Klimakommissionens samlede rapport
(September 2010).

[2] Danish Commission on Climate Change Policy, Green energy – the road to a danish energy system without
fossil fuels (September 2010).

[3] T. Pedersen, P. Andersen, K. Nielsen, H. Starmose, P. Pedersen, Using heat pump energy storages in the
power grid, in: Control Applications (CCA), 2011 IEEE International Conference on, 2011, pp. 1106 –1111.
doi:10.1109/CCA.2011.6044504.

[4] T. Chen, Real-time predictive supervisory operation of building thermal systems with thermal mass, ENERGY
AND BUILDINGS 33 (2) (2001) 141–150.

[5] T. Reddy, L. Norford, W. Kempton, Shaving residential air-conditioner electricity peaks by intelligent use of
the building thermal mass, Energy 16 (7) (1991) 1001 – 1010. doi:10.1016/0360-5442(91)90060-Y.

[6] G. P. Henze, C. Felsmann, G. Knabe, Evaluation of optimal control for active and passive building thermal
storage, International Journal of Thermal Sciences 43 (2) (2004) 173 – 183. doi:10.1016/j.ijthermalsci.

2003.06.001.
[7] B. Perers, S. Furbo, J. Fan, E. Andersen, Z. Chen, Solar combisystems with forecast control to increase the

solar fraction and lower the auxiliary energy cost, in: ISES Solar World Congress 2011 Proceedings, 2011, p. ,
presented at: ISES Solar World Congress, SWC ; 30 : Kassel, Germany, 2011.

[8] T. Mestekemper, Energy demand forecasting and dynamic water temperature management, Ph.D. thesis, Biele-
feld University (2011).

22

http://dx.doi.org/10.1109/CCA.2011.6044504
http://dx.doi.org/10.1016/0360-5442(91)90060-Y
http://dx.doi.org/10.1016/j.ijthermalsci.2003.06.001
http://dx.doi.org/10.1016/j.ijthermalsci.2003.06.001


[9] E. Dotzauer, Simple model for prediction of loads in district-heating systems, Applied Energy 73 (3–4) (2002)
277 – 284. doi:10.1016/S0306-2619(02)00078-8.

[10] Q. Zhou, S. Wang, X. Xu, F. Xiao, A grey-box model of next-day building thermal load prediction for energy-
efficient control, International Journal of Energy Research 32 (15) (2008) 1418–1431. doi:10.1002/er.1458.

[11] H. Nielsen, H. Madsen, D. E. F. P. og Fordeling af El og Varme, Predicting the heat consumption in district
heating systems using meteorological forecasts, Tech. rep., DTU IMM (2000).

[12] H. A. Nielsen, H. Madsen, Modelling the heat consumption in district heating systems using a grey-box approach,
Energy & Buildings 38 (1) (2006) 63–71. doi:10.1016/j.enbuild.2005.05.002.

[13] R. Koenker, Quantile Regression, Cambridge University Press, 2005.
[14] P. d. Saint-Aubain, Adaptive load forecasting, Master’s thesis, Technical University of Denmark (2011).
[15] D. M. I. DMI, DMI-HIRLAM-S05 (2011).

URL http://www.dmi.dk/eng/index/research_and_development/dmi-hirlam-2009.htm

[16] P. Bacher, H. Madsen, H. A. Nielsen, Online short-term solar power forecasting, Solar Energy 83 (10) (2009)
1772–1783.

[17] H. Madsen, J. Holst, Estimation of continuous-time models for the heat dynamics of a building, Energy and
Buildings 22 (1) (1995) 67–79.

[18] J. E. Braun, N. Chaturvedi, An inverse gray-box model for transient building load prediction, HVAC&R Research
8 (1) (2002) 73–99. arXiv:http://www.tandfonline.com/doi/pdf/10.1080/10789669.2002.10391290, doi:

10.1080/10789669.2002.10391290.
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