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We demonstrate the use of a hole-free phase plate (HFPP) for magnetic imaging in transmission

electron microscopy by mapping the domain structure in PrDyFeB samples. The HFPP, a Zernike-

like imaging method, allows for detecting magnetic signals in-focus to correlate the sample crystal

structure and defects with the local magnetization topography, and to evidence stray fields

protruding from the sample. Experimental and simulated results are shown and are compared with

conventional Fresnel (out-of-focus) images without a phase plate. A key advantage of HFPP

imaging is that the technique is free from the reference wave distortion from long-range fields

affecting electron holography. [http://dx.doi.org/10.1063/1.4803908]

Relating the electrostatic and magnetic potentials and

fields with morphology, structure, defects, and orientation of

individual nanoscale objects is a key prerequisite to under-

stand the physics driving their utility in practical applica-

tions. A transmission electron microscope (TEM) allows

detailed investigation of structure and composition at atomic

resolution, but imaging slowly varying electrostatic and

magnetic fields is notoriously difficult. Here, we describe the

application of a “hole-free phase plate” (HFPP) in a TEM1–3

to image local ordering in a magnetic sample, as well as the

external stray field generated at the edges of magnetic mate-

rials. The method can be equally well applied to imaging of

electrostatic fields.

Phase objects such as long-range electrostatic and mag-

netic fields in vacuum are very difficult to detect with stand-

ard TEM imaging modes.4 While electron holography allows

the quantification of slowly varying fields surrounding sam-

ples, problems arise from the disturbance of the reference

wave by the investigated field itself5 and the method is

experimentally challenging.6 On the other hand, Fresnel

imaging is fairly straightforward, but uses high defocus, is

only sensitive to large magnetization gradients (such as at

domain boundaries) and results in loss of structural details at

the nanoscale.7,8 The use of a HFPP8 reported here gives us

the opportunity to study slowly varying magnetic fields at

<5 nm resolution, including the fields in vacuum surround-

ing the sample. Electrostatic and magnetic fields in vacuum

are of great importance in fundamental research involving

the interactions of various systems, such as arrays of nano-

magnets,9 artificially induced domain wall pinning sites in

nanowires,10–14 or ferroelectric nanoparticles.15 Similar to

Foucault imaging, a HFPP can be used to visualize simulta-

neously the electromagnetic fields and the structure/defects

of the sample at the nanoscale.

In order to compare images obtained using a HFPP with

Fresnel images, data were acquired using a JEOL 2100 FM-

LM, which is equipped with an objective pole piece opti-

mized for magnetic imaging of materials16 operated at

200 kV. The HFPP, a 10 nm thick amorphous carbon thin

film,8 was placed at the back focal plane of the objective

lens. The HFPP images were collected near Gaussian focus

and, for comparison, Fresnel images were acquired from the

same sample area. We used (Pr,Dy)2Fe14B, a hard magnet

with l0MS¼ 1.4 T, exhibiting a magnetic stripe domain con-

figuration. Simulations were performed and compared with

the experimental images, giving insight into the contrast

mechanism and functionality of the HFPP.

Figure 1(a) shows a Fresnel image taken 120 lm under-

focus, revealing magnetic domain walls in a typical stripe

domain configuration. The same area, imaged near Gaussian

focus, is shown in Fig. 1(b) with the HFPP inserted. If the

HFPP is removed while other imaging conditions are kept,

the same area reveals no domain-wall contrast, as shown in

the inset in Fig. 1(b). All domain walls can be identified at

the same locations in both Fresnel and HFPP images, but are

not present in the inset. Line profiles across the domain walls

and in vacuum are shown in Figs. 1(c)–1(e). The HFPP

image shows intensity variations in vacuum near the sample

edge that are not present in Fig. 1(a), a result of stray mag-

netic field in vacuum. Additionally, it is apparent that the

contrast varies depending on the distance from vacuum

within the sample. This is explored later in this work in com-

bination with simulations. Finally, the HFPP allows for clear

determination of the sample edge location without the pres-

ence of contrast oscillations and delocalization typical in

Fresnel images.

The inset of Fig. 1(b), showing a bright field image of

the same area of the sample, allowed us to estimate the local

thickness of the sample from the image intensity and the

known collection angle of the microscope.17 The sample

appears to be a wedge with about 11� apex angle. Thea)Electronic mail: mmalac@ualberta.ca
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nominal magnetization is about 1.4 T for this material allow-

ing us to compare the acquired images with simulations. To

calibrate the collection semiangle,17 a 40 nm thick permalloy

sample was imaged using the same conditions as in the inset

of Figure 1(a).

Figure 2 allows us to evaluate the contrast transfer

function (CTF) of the microscope in the HFPP mode.

Figure 2(a) shows a logarithmic plot of the radially aver-

aged intensity of the Fourier transform of an amorphous

carbon sample. The red solid line is for standard imaging

conditions of the TEM while the blue dashed-dotted curve

is for HFPP imaging mode. The intensity shows improve-

ment over the standard imaging at low spatial frequencies

by several orders of magnitude. Figure 2(b) shows the

phase shift obtained by locating the extrema in (a) and

assigning a p/2 phase shift to each interval between the

extrema.8 The curves in Figures 2(a) and 2(b) indicate that

the HFPP transfers information at much lower spatial fre-

quencies than standard TEM imaging mode. The transfer of

low spatial frequencies is responsible for visualization of

the slowly varying magnetic field in vacuum near the edge

of the specimen in Figure 1(b). The experimental data for

HFPP and standard imaging mode were collected under the

same imaging conditions. First, HFPP data were acquired.

Then the HFPP was retracted from the beam path and

standard TEM images of the same sample area under identi-

cal conditions were acquired.

The practical outcomes demonstrated by this work show

that HFPP imaging can be used to visualize the magnetiza-

tion topography of a magnetic sample as well as the stray

fields in vacuum near the sample edge. Additionally, the

lower degree of blurring in HFPP than in Fresnel imaging

allows for simultaneous observations of sample morphology

and microstructure (in this case exemplified by locating the

sample edge without loss of detail). However, quantitative

interpretation of the results can be difficult: complications

arise from the dependence of the signal on a variety of

different parameters, including in particular sample thickness

and charge distribution on the phase plate.8

Aiming at achieving a semi-quantitative analysis, we

perform image simulations by describing the effect of the

phase plate with the transmission function,

f ðqÞ ¼ / Re
2

p
E

q2

q2
c

� �
� 1

� �
; (1)

where Re denotes the real part, E(x) is the complete elliptic

integral of the second kind, / is the phase shift established

between the center and the edge of the illuminated area on

the HFPP8 (the parameter / is the HFPP analogue of the

Zernike phase shift in conventional phase plates), and qck, k
being the wavelength of incident electrons, is the angular

size of the transmitted beam impinging on the HFPP.

Equation (1) is added to the standard terms (DZ, CS, CC, etc.)

in the aberration function of the microscope,4,8 and repre-

sents the phase shift induced by the charged HFPP at posi-

tion r ¼ qkL, where L is the camera length. Simulations

were carried out using a Mathematica code developed by

one of the authors (M.B.).

Profiles for both Fresnel (Fig. 3(a)) and HFPP (Fig.

3(b)) simulations and experimental images taken 800 nm

from the sample edge (corresponding to p3 in Figure 1) are

shown. To calculate the profiles, we modeled the phase shift

due to the stripe domain pattern as a triangular wave with

half periodicity equal to the average domain size d and an

amplitude of p/0l0Mstd where /0 is the flux quantum and t
is the local thickness of the sample. Finally, we show a

tableau of intensity profiles calculated as a function of sam-

ple thickness while maintaining a fixed HFPP potential (Fig.

3(c)). There are significant contrast changes in the HFPP

image depending on the thickness, an important effect to

consider when comparing simulations and experiments. Fig.

3(d) shows a sample experimental area near the edge of the

specimen with increasing thickness away from vacuum,

FIG. 1. Phase contrast images of the

(Pr,Dy)2Fe14B magnetic stripe domain

sample: (a) Fresnel (out-of-focus) image

taken at 120 lm underfocus. (b) HFPP

image acquired infocus of the same area

as in (a). The inset is an in focus image,

also of the same area, without the HFPP.

(c)-(e) Image intensity profiles taken

along the lines p1-p3, respectively. The X

in p2 marks a bright fringe used for align-

ment of HFPP p2 relative to Fresnel p2.

Other profiles were aligned similarly.

They were normalized to 1 and the HFPP

profiles were offset by þ0.25 for clarity.
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revealing a good qualitative agreement between simulations

(Fig. 3(c)) and experiments (Fig. 3(d)). The apparent varia-

tions in the domain wall contrast with distance from vacuum

(both intensity and the spread of the signal) are consistent

with the thickness wedge measured earlier. However, the

bright fringe along the domain wall close to the vacuum

appears to broaden more in the experimental image than in

the simulation. This is most likely due to the enlargement of

the domain wall caused by demagnetizing fields near the

edge, a factor that was not taken into account in the simula-

tions. A better agreement could be obtained with the knowl-

edge of the potential profile on the HFPP, and is one avenue

for future work aimed at improving the HFPP technique

towards quantitative interpretation.8

In summary, we have demonstrated the usefulness of a

hole-free phase plate to image the domain structure and stray

magnetic fields in vacuum in a (Pr,Dy)2Fe14B magnetic thin

film. The simplicity of the HFPP method8 compared to

others currently available shows great promise for use in a

variety of problems involving nanomagnetism and nanofer-

roelectricity, particularly where characterizing the stray field

or simultaneously determining microstructure is important.

For instance, it is well known that magnetic domain walls

can pin at grain boundaries or other defects.18,19 However,

determining the characteristics of the potential well gener-

ated by defects has proven difficult without being able to

simultaneously image microstructure as well as the local

magnetization. The HFPP represents a promising tool in

answering questions related to the role of defects in magnet-

ization processes since the sample features of interests are

imaged with less distortion and contrast delocalization than

the conventional phase contrast methods in Lorentz micros-

copy.8 While more work needs to be carried out in order to

achieve quantitative capabilities of the HFPP method, the

FIG. 2. (a) Intensity profile of the diffractogram from amorphous carbon

sample, taken under the same imaging conditions as used in Figure 1, with

the bright-field transmission electron microscopy (BFTEM) (Fresnel) and

HFPP shown in red solid and blue dashed lines, respectively. The profiles

are plotted with no vertical offset applied. (b) Phase shift (aberration func-

tion) X(q) determined from the position of minima and maxima in (a). The

HFPP transfer function (blue dashed line) exhibits more efficient transfer at

the low frequencies, at q from 4� 10�3 to 5� 10�2 nm�1, than the BFTEM

(Fresnel) mode.

FIG. 3. Top: comparison between experimental (upper) and simulated

(lower) intensity profiles taken at a distance 800 nm from the sample edge

(where the thickness of the sample is approximately 200 nm) for Fresnel (a)

and HFPP (b) images. The intensity gradient visible in the experimental

images is a result of the thickness slope of the sample. Bottom: (c) HFPP

image intensity profile tableau computed with variable thickness and fixed

HFPP shift ¼ p=10; (d) experimental image of a sample area with increasing

thickness, showing both types of domain walls as in (c). The spread of the

intensity near vacuum is seen in both images.
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sensitivity to stray fields could potentially allow for magnetic

information to be extracted from samples that are typically

ill-suited for magnetic imaging, such as spin-valves that are

too thick for direct probing with an electron beam.
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