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The aim of this study was to investigate the possibility of predicting the

type and concentration level of astaxanthin coating of aquaculture feed

pellets using multispectral image analysis. We used both natural and

synthetic astaxanthin, and we used several different concentration levels

of synthetic astaxanthin in combination with four different recipes of feed

pellets. We used a VideometerLab with 20 spectral bands in the range of

385–1050 nm. We used linear discriminant analysis and sparse linear

discriminant analysis for classification and variable selection. We used

partial least squares regression (PLSR) for prediction of the concentration

level. The results show that it is possible to predict the level of synthetic

astaxanthin coating using PLSR on either the same recipe, or when

calibrating on all recipes. The concentration prediction is adequate for

screening for all recipes. Moreover, it shows that it is possible to predict

the type of astaxanthin used in the coating using only ten spectral bands.

Finally, the most selected spectral bands for astaxanthin prediction are in

the visible range of the spectrum.

Index Headings: Multispectral; Image analysis; Spectral imaging; NIR;

Astaxanthin; Fish feed; Coating.

INTRODUCTION

Astaxanthin is a naturally occurring carotenoid with a high
antioxidant activity essential for growth and survival, and it is
important for the development of color in salmonid fishes.1 The
primary use of astaxanthin in aquaculture is as a feed additive
to ensure that farmed salmon and trout have a similar
appearance to their wild counterparts.2 Astaxanthin is very
expensive,3 and therefore optimization and quality control of
its use in fish feed production is important.

Synthetic astaxanthin is more easily available and costs
slightly less than natural astaxanthin, and it is therefore used
more often in industry. However, there is a demand for natural
astaxanthin for the organic salmonid fish market, where natural
astaxanthin is mandatory.

An automatic vision system for at-line pigment quality
control of concentration level and type would be of great
benefit to the industry both in relation to process control and
process optimization. Furthermore, the astaxanthin coating type
can be verified by the customers in the organic salmonid fish
market.

Multispectral imaging of astaxanthin coating has previously
been done in an earlier study by Ljungqvist et al.,4 which
showed that it is possible to predict the presence of astaxanthin
in fish feed pellet coating. However, this research did not use

different types of astaxanthin (synthetic vs. natural), nor were
different concentration levels of astaxanthin coating used.

Besides this, to the authors’ knowledge, no further work has
previously been done on analyzing the coating of fish feed
using image analysis. A study by Zhu et al.5 used a
spectroradiometer (325–1075 nm) for classification of four
different fish feed pellet recipes; however, they did not use
image analysis.

Multispectral image analysis has shown good results in
previous biological applications where it is of interest to detect
subtle differences in color and surface chemistry.6–17

The aim of this study is to investigate the possibility of
predicting the type and concentration level of astaxanthin
coating of aquaculture feed pellets using multispectral image
analysis. Furthermore, the aim is to make this coating
prediction robust for different underlying pellet recipes in
order to make a model that can predict astaxanthin coating
irrespective of the composition of the underlying pellet
recipe.

Hypotheses: Using multispectral image analyses it is
possible to do the following:

1. Discriminate between synthetic astaxanthin coating and
natural astaxanthin coating

2. Predict the concentration level of synthetic astaxanthin
coating using regression analysis

3. Predict the concentration level of synthetic astaxanthin
coating using regression analysis irrespective of the
composition of the pellet recipe

MATERIALS AND METHODS

Pellets. Four different feed recipes with the same amount of
protein (but of different origin) were investigated, and all but
one contained the same amount of oil (see Table I). The four
recipes were all based on normal commercial fish feed for
salmonid fish. The recipes were named after their dominant
ingredient; the standard recipe was called control (CON), then
there was maize gluten (MG), soya protein concentrate (60%)
(SPC), and a control recipe with a different amount of oil
(CON31). All pellets had an approximate production diameter
of 4.5 mm.

The feed material was extruded through a die plate with
holes of a certain diameter, which determined the diameter of
the pellets. On the other side of the disk a set of rotating knives
cut the material into shorter cylinder-shaped pellets. After
extrusion the pellets were vacuum coated. All pellets were
stored dark and dry in sealed plastic bags for about 12 months
between production and image acquisition.
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Coating. The pellets included in this study consist of several
classes: pellets coated with fish oil using different amounts of
added synthetic astaxanthin (20, 40, 60, 80 parts per million
(ppm)), as well as pellets coated with fish oil with 20 ppm of
added natural astaxanthin. Moreover, a coating of only fish oil
without additional astaxanthin was used. Fish oil in itself
typically contains a small amount of natural astaxanthin;
however, this was assumed to be less than 1 ppm and here was
referred to as a coating of 0 ppm concentration. Astaxanthin is
commonly measured in parts per million, and it is measured in
mass, so here parts per million corresponds to milligrams per
kilogram.

The pellets of recipe CON and CON31 had five coating
concentration levels in total (0, 20, 40, 60, 80 ppm) of synthetic
astaxanthin. The pellets of recipe MG and SPC had three
concentration levels in total (0, 20, 60 ppm) of synthetic
astaxanthin (see Table II).

The synthetic astaxanthin used was a cold water dispersible
(BASF SE, Germany). It was dissolved in water.

The natural astaxanthin used consists of (a 50/50 mix of)
monoesters and diesters of fatty acids. It was extracted from
shrimp and was dissolved in oil.18

The distribution of the surface coating was unknown, and
some amount of variation was likely to have occurred.

The common pellet compound for each recipe gives a
spectral response that will be present for all concentration
levels and astaxanthin types. Each pixel is thus a combination
of the reflectance of a set of constituents. This mix was
assumed to be of equal amount for each pellet recipe except for
the difference of the astaxanthin coating concentration and
astaxanthin type that we want to isolate in our model.

Equipment. The equipment used for image acquisition was
a camera and lighting system called VideometerLab (Video-
meter A/S, Hørsholm, Denmark), which supports a multispec-

tral resolution of up to 20 spectral bands.19 These are
distributed over the ultraviolet A, visible, and first near
infrared (NIR) region. The spectral range is from 385 to
1050 nm (see Table III). In comparison with spectroscopy,
multispectral imaging includes both spectral information and
spatial information simultaneously.

This system uses a Point Gray Scorpion SCOR-20SOM
grayscale camera. The objects of interest are placed inside an
integrating sphere (Ulbricht sphere) with uniform diffuse
lighting from light sources placed around the rim of the
sphere. All light sources are light-emitting diodes except for
1050 nm, which is a diffused laser diode. The curvature of the
sphere and its matte-white coating ensure a uniform diffuse
light so that specular effects are avoided and the amount of
shadow is minimized. The device is calibrated radiometrically
with a following light and exposure calibration. The system is
also geometrically calibrated to ensure pixel correspondence
for all spectral bands.20

The image resolution is 1280 3 960 pixels. Each file
contains 20 images, one for each spectral band. In this situation
one pixel represents approximately 0.072 3 0.072 mm. The
Scorpion camera has a 12 bit analog-to-digital converter, and
the system uses 8 bit data output from the camera. The
correction for calibration gives reflectance intensity output of
32 bit precision.

Spectroscopy. In order to explore the spectral properties of
astaxanthin further, a spectrometer was used. Absorption
spectra of synthetic astaxanthin in a solution of fish oil along
with plain fish oil were recorded in the visible and NIR range
using a NIRSystems 6500 absorption spectrometer (Foss
NIRSystems Inc., USA). The absorption spectra were trans-
formed to reflection values using the standard relation A =
�log (R), where A is the absorption values and R is the
reflection values. Every second nanometer was recorded in the
visible and NIR range.

Image Acquisition. A Petri dish filled with pellets arranged
randomly resembles the at-line inspection that industry would
desire for this application. The situation represents the
disordered way in which the pellets lie on the conveyor belt
and in the final bin at the end of the production line. In

TABLE I. Recipes of the pellets, with ingredient amounts shown as
percentages. The recipe names are Control (CON), Maize gluten (MG),
Soya protein concentrate (SPC), and Control 31 (CON31). All recipes
have the same total amount of protein. CON, MG, and SPC have the same
total amount of oil.

Ingredients CON MG SPC CON31

Fish oil 17 18 21 24
Wheat flour 23 13 11 14
Fish meal 60 29 28 62
Maize gluten 0 40 0 0
Soya (60%) 0 0 40 0
Total 100 100 100 100
Total content

Protein 45 45 45 45
Oil 24 24 24 31

TABLE II. All 18 available pellet types. Coating concentration of
astaxanthin dissolved in fish oil for the different pellet recipes. Amount of
astaxanthin added to the fish oil coating in ppm. Fish oil coating is
represented by 0 ppm.

Recipe Astaxanthin Concentration (ppm)

CON Synthetic 0 20 40 60 80
CON Natural — 20 — — —
MG Synthetic 0 20 — 60 —
SPC Synthetic 0 20 — 60 —
CON31 Synthetic 0 20 40 60 80

TABLE III. The wavelength of light sources in the VideometerLab
device and their spectral representation.

Band Wavelength (nm) Color

1 385 Ultraviolet A
2 430 Violet
3 450 Violet, blue
4 470 Blue
5 505 Green
6 565 Green
7 590 Yellow, orange
8 630 Red
9 645 Red
10 660 Red
11 700 Red
12 850 NIR
13 870 NIR
14 890 NIR
15 910 NIR
16 920 NIR
17 940 NIR
18 950 NIR
19 970 NIR
20 1050 NIR
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comparison with spectroscopy that measures a point, multi-
spectral imaging also includes spatial information, which
covers many pellets simultaneously and arguably gives a more
robust result.

For each of the total 18 pellet types (recipe, concentration
level, and astaxanthin type) a total of four images of filled
plastic Petri dishes (diameter 9 cm) of pellets were taken.
Furthermore, a total of 60 images of CON pellets with 20 ppm
synthetic astaxanthin (30 images) and 20 ppm natural
astaxanthin (30 images) coating were captured. The pellets
were at normal room temperature during image acquisition.

The pellets were segmented from the light gray background
using a grayscale threshold in combination with morphological
methods.21 Optimally, the pellets should be segmented
individually. However, since that was not feasible for this
type of image, the segmented pellet cluster was divided into
subregions of maximally 100 3 100 pixels, and the mean of
each region was used as a sample. One full subregion
represented approximately the area of three pellets. A
subregion rather than the individual pellet was therefore
considered a sample. This was done in order to increase the
number of samples to avoid an ill-posed problem so we could
complete the statistical analysis described in the section below.
On average one image consisted of about 120 subregions
(samples).

Adjacent subregions tend to be positively correlated (spatial
autocorrelation), since one pellet can be divided and can fall
into several subregions. Yet since we had a large number of
subregions, the proportion of autocorrelated subregions was
reduced, and this was assumed not to affect the results.

Standard red-green-blue (sRGB) color image representations
of the multispectral images for this paper were done using
multispectral color mapping using penalized least-square
regression described in Dissing et al.22

Data Analysis. The analyses of the images of the pellets
were done in order to investigate hypotheses 1–3 presented
above.

The reference values (ground truth) were that the pellets
were coated with a specific amount of synthetic or natural
astaxanthin: the nominal values. However, since the surface
distribution was unknown, the coating variation from pixel to
pixel was unknown. A way to solve this was to represent each
image subregion using the pixel mean values as samples. In
this manner the variance of all pixels in each pellet were
evened out, and a distinct sample was achieved; each pellet
became an observation.

The number of samples is denoted n, and the number of
variables (the 20 spectral bands) is denoted p. The stored data
of n samples and p variables is denoted as matrix X. The
ground truth reference values (the known concentration levels
of astaxanthin) are stored in vector y with length n. The
predicted (estimated) value of y is denoted ŷ.

All image analyses and statistics were carried out using
Matlab 7.9 (Mathworks Inc., Natick, MA, USA).

Discriminant Analysis. Statistical discriminant analysis of
the images was made for testing hypothesis 1. This analysis
performed discrimination tests with only two groups of
samples. Hotelling’s T2 test was used in order to see if the
two group means were significantly different.23,24

The classification methods used were linear discriminant
analysis (LDA)23 and sparse linear discriminant analysis
(SLDA).25

The LDA method is based on the Mahalanobis distance and
assumes that the observations in each group are normally
distributed. LDA is based on a distance to the group mean
weighted by the variance. Discrimination using LDA was
trained and tested using multiple splits of the data.

In order to identify which wavelengths were of most interest
for classification of coating types, the SLDA method was used.
The SLDA method is designed for ill-posed problems where
the number of variables is larger than the number of
observations: a so-called large p small n problem (p . n).
That was not the case in this study, but since SLDA performs
both variable selection and classification, it suits our purposes
well on those aspects. SLDA uses the elastic net (EN) for
variable selection.26 The EN tends to select variables that are
correlated with each other.

Two model parameters are needed for EN: k1 for the L1

norm for determining the number of nonzero coefficients and
k2 for the Euclidean L2 norm for regularization. The
regularization was less important here, since we did not have
ill-posed problems. The model consists of the variable weights
(coefficients) in ben, see Eq. 1.

ben
j ¼ arg min

bj

ðjjy� Xbjjj22 þ k2jjbjjj22 þ k1jjbjjj1Þ ð1Þ

The estimated coefficients are then multiplied by (1þ k2) to
get the final EN solution.

The two parameters were selected using cross-validation
(CV) on the calibration set. The k1 parameter steers the
selection of variables and was calculated so that the number of
selected variables was varied from 1 to 10. The k2 parameter
was varied with 12 logarithmic steps from 10�7 to 10. The data
X were normalized before each calculation of the SLDA so that
each variable got unit length.

For two groups, the SLDA algorithm calculates one sparse
discriminant component that gives the best classification of the
groups. The calibration of SLDA was done using CV and then
validated on the validation set, and this was wrapped in
multiple splits of the data for calibration and validation. This
means that a discriminant model was calibrated using CV on
100 different randomized calibration sets of the data using 70%
of the samples and likewise validated on the corresponding 100
validation sets.

Regression. The concentration level was analyzed using the
partial least squares regression (PLSR) method.27,28 The
number of samples in the calibration set was nc, and the
number of components (factors) nf tested in the calibration step
was varied from 1 to 20 (p). The data were mean centered, and
the number of components to be used in the PLSR model was
decided using CV on the calibration set, while minimizing the
residual sum of squares (RSS). The ‘‘one standard error rule’’27

for selection was used: The least number of components with
RSS value inside the range of one standard error of the lowest
value of RSS was selected. This method tends to select a more
parsimonious model with fewer components than just using the
lowest value of RSS.

Then this model, using nf components, was validated on the
validation samples.

The coefficient of determination (R2) is a measure of how
much variation is explained using the model and was calculated
for the prediction of the validation set. R2 is basically the ratio
of the RSS and the total sum of squares.
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Furthermore, the ratio of the standard error of prediction
(RPD) was calculated as a measure of how well the model
predicts. The RPD is the ratio between the standard error of
prediction (SEP) and the standard deviation (SD) of the
reference values y: RPD = SD/SEP.

The SEP is equal to the root mean square error of prediction
(RMSEP). An RPD value of 1.0 means that the model cannot
predict accurately, since this means that the mean error is equal
to the standard deviation of the reference values. An RPD value
higher than 2.5 is considered satisfactory for screening, and
values of 5–10 are adequate for quality control, according to
Williams and Sobering.29

Model Selection and Validation. For parameter calibration
of PLSR and SLDA methods a ten-fold cross-validation (CV)
was used, where all samples were randomly partitioned into ten
approximately equally sized parts. Then nine parts were used
for training and one for testing, and this was repeated ten
times.27

In order to calibrate the PLS regression model parameters, a
ten-fold CV was done on a calibration set of 70% of the
samples. Then the chosen model was validated on the
remaining 30% of the validation samples. The calibration and
validation set was chosen randomly, with all concentration
levels present in both.

For discriminant analysis using SLDA and LDA, multiple
splits of the data were used with 100 different randomized
training (calibration) sets with 70% of the samples, and test
(validation) sets using 30% of the samples. The multiple split
method is a variant of CV and is also known as repeated
random subsampling validation. The mean classification results
of these multiple splits are reported.

Recipes. How the underlying pellet composition affects the
image-based prediction of synthetic astaxanthin was also tested
in order to make a robust model that can predict astaxanthin
coating irrespective of the composition of the underlying pellet
recipe.

Combinations of three recipes were used to calibrate the
prediction model, and the remaining recipe was used for
validation (prediction). Finally, all four recipes were used both

for calibration and for validation in the same manner as
described above.

RESULTS

The spectrometer results show a large spectral difference
between fish oil with added (synthetic/natural) astaxanthin and
plain fish oil in the range of 450–600 nm, as well as a spectral
difference between fish oil with natural astaxanthin and fish oil
with synthetic astaxanthin in the approximate range of 600–
700 nm (see Fig. 1). The spectrometer results show similar
characteristics and separation as the spectra from the Video-
meterLab images of astaxanthin in fish oil (see Fig. 2).

An image of a Petri dish filled with CON pellets is shown in
Fig. 3, with subregions shown in Fig. 4. Pellets with the natural
astaxanthin coating can be seen in Fig. 5. All concentration
levels of the CON pellets are shown in Fig. 6, and the four
different pellet recipes with plain fish oil coating can be seen in
Fig. 7.

FIG. 1. Spectrometer spectra of synthetic astaxanthin in fish oil, natural
astaxanthin in fish oil, and plain fish oil. The values are converted to
reflectance. The wavelengths of the VideometerLab are marked using vertical
lines.

FIG. 2. VideometerLab reflectance spectra of synthetic astaxanthin in fish oil,
natural astaxanthin in fish oil, and plain fish oil.

FIG. 3. Standard RGB version of an image of a Petri dish filled with CON
pellets with coating using synthetic astaxanthin level of 20 ppm.
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Astaxanthin Type. The investigation of hypothesis 1 is
presented here: Is it possible to discriminate between synthetic
astaxanthin coating and natural astaxanthin coating?

The spectral data of the two different astaxantin coating
types have group means that are significantly different at a

0.1% significance level using Hotelling’s T2 test. This indicates
that the spectral reflectance of the two groups is separable.

The discriminant analysis shows that LDA performs a 98%
classification of synthetic astaxanthin coating and natural
astaxanthin coating (see Table IV). The mean spectra of the
two groups with one standard deviation marked can be seen in
Fig. 8, where it shows that the two groups’ mean spectra have a
large overlap, while the standard deviations differs somewhat.

Using SLDA for classification of synthetic astaxanthin
coating and natural astaxanthin coating gives a 98% classifi-
cation using ten bands (see Table IV). The two groups
projected on the sparse discriminant component can be seen in
Fig. 9. The bands chosen cover the full range of the total 20
spectral bands used, with the majority of the most often
selected bands in the visible range, and some bands in the NIR
range. The bands that were selected in all validation sets were
385, 450, 505, 590, 660, 850 nm (see Fig. 10).

In order to investigate whether it is reasonable to use the
image subregions as subsamples, the 60 images of CON pellets
were analyzed in order to discriminate between synthetic and
natural astaxanthin coating. The mean of the whole segmented
pellet cluster in each image was used as samples (n = 60), and
this was compared with subregions on four images of each
group (n = 1034). The results of this show that, for the mean
values of the full pellet clusters, LDA with multiple splits give
100% classification. For the subregions, the classification is
about 98% for LDA (see Table IV). This shows that it is
possible to get approximately the same result with subregions
as without subregions for this classification problem, so
therefore it is sound to use subregions in this study.

Also, with these 60 images, we tested whether one, two,
three, or four subregions per image might be enough to
discriminate between these two groups. These subregions
were in the center of the segmented pellet cluster, and the
four subregions were not adjacent to each other. Using LDA
with multiple splits, we can see that using one subregion per
image is enough to get a 100% correct classification of the
type of astaxanthin coating used on the pellets. The same
result was also achieved with two, three, and four subregions
per image.

Astaxanthin Concentration Level. The investigation of
hypothesis 2, concerning whether it is possible to predict the
concentration level of synthetic astaxanthin coating, is
presented here.

When calibrating the PLSR model, the RSS value drops
significantly, until ten components approximately, and then
flattens out for all tests. The PLSR results show good results for
all recipes with R2 values above 0.89 and RPD values above 3,
which is considered good enough for screening29 (see Table V
and Fig. 11).

FIG. 5. Standard RGB version of an image of CON pellets with coating using
added natural astaxanthin level of 20 ppm.

FIG. 4. The image in Fig. 3 (CON pellets with coating using synthetic
astaxanthin level of 20 ppm), with the background segmented and subregions
visualized.

FIG. 6. Standard RGB version of images of CON pellets. The concentration level of synthetic astaxanthin is from left to right 0, 20, 40, 60, 80 ppm.
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The PLSR components’ weights show the contribution of
different spectral regions to the model, and thus their significance.
Looking at the seven first components from the PLSR model of
the CON pellets, we see that there are large weights between 400
and 600 nm, as well as at 700 nm (see Fig. 12).

Recipe Tests. The investigation of hypothesis 3 is presented
here, namely, to see if it is possible to find a common
component for astaxanthin prediction, independent of the
underlying compounds in the recipes. It is of interest to see
whether the spectral characteristic of synthetic astaxanthin is
clearly identifiable, independent of the base spectra from the
pellet recipe in order to make a robust model.

The mean spectral reflection of each recipe, with a coating of
20 ppm synthetic astaxanthin in fish oil, can be seen in Fig. 13.

When predicting astaxanthin coating using PLSR with three
recipes for calibration and the remaining recipe as validation,
the results are somewhat robust, with R2 between 0.76 and
0.87. However, when using all four recipes for calibration and
validation, we get even better results, with an R2 value of 0.89
and an RPD above 3 (see Table VI).

DISCUSSION

The spectrometer results and the reflection spectra from the
VideometerLab images partly corresponds to previous studies
of astaxanthin,30–32 where they found absorbance peaks of
astaxanthin around 450–505 nm and also secondary peaks
around 500–600 nm for various solvents, as well as at 870
nm.

TABLE IV. Discriminant analysis of pellets with synthetic astaxanthin and natural astaxanthin coating. Classification test accuracy of pellet coating type
using LDA and SLDA with multiple splits for training and test set. Also the standard deviation of the accuracy of the multiple splits is shown. The true
group rates of classification are also presented (sensitivity and specificity). The total number of samples was 1034. All pellets were of CON recipe, and the
amount of astaxanthin added to the fish oil coating was 20 ppm.

Method Bands (p) Accuracy Accuracy (SD) Natural rate Synthetic rate

LDA 20 0.9874 0.0049 0.9825 0.9923
SLDA 10 0.9814 0.0077 0.9718 0.9911

FIG. 8. VideometerLab reflectance spectra of CON image subregions. Images
of pellets with added synthetic astaxanthin and added natural astaxanthin, with
one standard deviation visualized.

FIG. 9. Estimated density of CON pellets with synthetic astaxanthin and
natural astaxanthin, projected on the sparse discriminant component (SD)
(consisting of ten selected spectral bands) calculated using SLDA.

FIG. 7. Standard RGB version of images of pellets with plain fish oil as coating (0 ppm). The pellet recipe from left to right is CON, MG, SPC, CON31.

APPLIED SPECTROSCOPY 743



Hotelling’s T2 calculates the statistical significance of the
difference between group means. However, since we have a
large number of correlated samples, this affects the significance
value in an optimistic way, and the difference might not
necessarily be significant in practice.

The classification between synthetic astaxanthin and natural
astaxanthin coating works well using ten bands, while the
regression problem for concentration level of synthetic
astaxanthin needs ten or more components. Creating a model
for the concentration level seems more complex, probably
because the coating layer is relatively thin and the reflection of
the astaxanthin coating is mixed with the background (the
pellet compound). Also, a PLSR component is a linear
combination of all 20 spectral bands, so it is not exactly
comparable with selected bands of the SLDA classification
method.

Looking at the PLSR components, we see that components 1
and 2 include a small amount of all spectral bands. PLSR
component 4 onward show considerable characteristics for
synthetic astaxanthin coating concentration prediction using
the CON pellets, as can be seen in Fig. 12. We also see that
there are large weights in the visible region of the spectrum,
which well corresponds to the spectrometer results and with the
band selection results using SLDA shown in Table IV and Fig.
10.

The storage time of the pellets between production and
imaging in this study will affect the astaxanthin concentration
in the coating, since astaxanthin oxidizes with time. This might
affect the spectral response of astaxanthin coating; however, it
could not be found in the literature how much astaxanthin

oxidizes with time. There might be a difference in the

astaxanthin coating spectra characteristics in comparison with

a real-time production situation. The results presented here

indicate that there are still detectable amounts of astaxanthin

after storage.

The results are satisfactory for screening the astaxanthin

concentration level, but they are not good enough for quality

FIG. 10. Frequency of spectral bands selected using SLDA with 100 multiple
splits for discrimination between CON pellets with synthetic astaxanthin and
natural astaxanthin.

TABLE V. PLS regression for synthetic astaxanthin concentration level prediction. For CON and CON31 using synthetic astaxanthin with the
concentration levels: 0, 20, 40, 60, 80 ppm, and for MG and SPC the levels are 0, 20, 60 ppm.

Recipe Comp. R2 calibr. R2 pred. SE calibr. SE pred. RPD

CON 13 0.9119 0.9151 8.4469 8.2519 3.4346
CON31 13 0.9148 0.9117 8.2980 8.4137 3.3675
MG 14 0.9330 0.9239 6.5283 6.9120 3.6283
SPC 10 0.9340 0.8959 6.7168 8.3997 3.1035

FIG. 11. PLSR prediction of synthetic astaxanthin concentration level (ppm)
on the validation set, using images of CON pellets and 13 PLSR components.

FIG. 12. PLSR components from the prediction of synthetic astaxanthin
concentration level on the validation set, using images of CON pellets. Here
showing the first seven of the 13 total PLSR components.
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control. The high prediction error (SEP) in most tests is also
indicated by the RPD values (see Table V). The concentration
level predictions have an error in the approximate range of 7–9
ppm, which is considered high for the industry. It would be of
interest to see whether more spectral bands in the critical
regions produce better results. Since the visual inspection
system is intended to be at-line, there would be time to capture
more wavelengths if necessary. Also it would be of interest to
investigate the astaxanthin coating in the production, without
having been stored for a time, which likely would improve the
inspection results.

It seems as though the best regression results for different
recipes are achieved when calibrating and validating on the
same pellet recipe or when calibrating on all recipes
simultaneously (see Tables V and VI). Since this procedure
could also be valuable when using the same recipe but with
varying ingredient batches, the raw material ingredients of any
one recipe may well vary depending on availability and price.

CONCLUSIONS

The results show that it is possible to discriminate between
synthetic astaxanthin coating and natural astaxanthin coating
with 98% accuracy using spectral imaging. Similar results were
achieved using SLDA with only ten spectral bands and using
LDA with all 20 spectral bands.

The most frequent spectral bands selected using SLDA for
classification are in the visual range of the spectrum, with some
bands in the NIR regime. Corresponding spectral weights can

be seen in the PLS regression components for synthetic
astaxanthin concentration prediction.

Moreover, we have shown that it is possible to predict the
synthetic astaxanthin concentration in the coating using
multispectral image analysis. The best regression results for
different recipes are achieved when calibrating and validating
on the same pellet recipe or when calibrating on all recipes
simultaneously. So in order to make a prediction model that is
robust for the underlying pellet compound, all relevant recipes
should be included in the calibration step. In this way it is
possible to predict the astaxanthin coating concentration level
irrespective of the composition of the pellet recipe. The results
are adequate for screening the synthetic astaxanthin coating
concentration level.
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