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Abstract

Numerical simulations of L-mode turbulence in the Scrape-Off Layer (SOL) are used to construct

power scaling laws for the characteristic decay lengths of the temperature, density and heat flux at

the outer midplane. Most of the results obtained are in qualitative agreement with the experimental

observations despite the known limitation of the model. Quantitative agreement is also obtained

for some exponents. In particular, an almost linear inverse dependence of the heat flux decay

length with the plasma current is recovered. The relative simplicity of the theoretical model used

allows to gain insight into the mechanisms determining the width of the Scrape-Off Layer.
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I. INTRODUCTION

One of the major concerns for the next generation tokamaks and for the future fusion

reactors is the exhaust of heat and particles [1]. This process controls the plasma flow from

the core towards the first walls and the divertor, and determines not only the longevity of

the plasma facing components, but also the overall performance of the machine. The physics

of the exhaust is regulated by the narrow region of plasma surrounding the well confined

core known as the Scrape-Off Layer (SOL). The defining feature of this part of the machine

is the fact that here the field lines do not close on themselves, but impinge on solid surfaces.

In this context, it is particularly important to be able to predict how the heat and

the particles are deposited on the plasma facing components. Often, these processes are

quantitatively described by so called decay lengths, which represent how the relevant profiles

fall off beyond the last closed flux surface in cross-field direction. A formal definition of the

decay length for the generic quantity f(x), function of the radial coordinate x, is λf ≡

f(x)/(df(x)/dx). Obviously, λf is a scalar number only if the profile of f is exponential

while, more generally, λf is a function of x.

In addition, the characteristic width of the SOL (which is related to the decay lengths),

changes as one moves along the field lines, so that it is narrower at the outer midplane (where

the turbulent structures erupt from the core) than in the proximity of the divertor. The

former width is relevant, for example, to determine whether the gap between the last closed

flux surface and the first wall is sufficient to avoid a strong interaction between the plasma

and the solid materials. The latter can be used to calculate the deposition pattern of the

heat at the target. Clearly, these widths are related to each other and often the midplane

width is chosen as a reference. This is also our choice, since in the remaining of the paper

the decay length will always refer to the midplane region.

From an experimental point of view, the upstream width can be measured with recip-

rocating Langmuir probes while, at the divertor, infra-red thermography can be used to

evaluate the deposition of the heat fluxes. Under the assumption that the SOL can be

identified with a flux tube, the mid-plane and target decay lengths can be mapped to each

other by the flux expansion, which takes into account the magnetic geometry of the machine.

Therefore, the mid-plane decay length provides a more amenable quantity for extrapolations

as its projection at the target can be generalized to different divertor configurations.
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Due to the presence of open field lines, the width of the SOL is determined by the bal-

ance between the parallel and the perpendicular transport. In L-mode, the latter is mainly

caused by turbulence, and in particular by coherent structures (called filaments or blobs)

generated inside the last closed flux surface and expelled into the SOL. Several experimental

observations describe the SOL turbulence as strongly intermittent, non Gaussian and with

large fluctuations with respect to the background [2–4]. All these features can be captured

by a theoretical framework based on the dynamics of the filaments [5–7]. Numerical simu-

lations based on this approach proved successful in reproducing experimental data in both

conventional [8, 9] and spherical [10] tokamaks.

In this work, we apply regression analysis in order to extract scaling laws for the decay

lengths from a large database of SOL L-mode turbulence simulations. In other words, we

apply an experimental method to extract relevant information from the results obtained

with our theoretical model. This approach has the benefit of identifying trends with the

dimensionless parameters that govern the system. This allows to associate the behaviour of

the decay lengths to specific physical mechanisms described in our equations.

In the next Section, we discuss the theoretical model that we used and how the simulations

were set up to solve it. In Section III we introduce the results of the regression analysis and

we construct the scaling laws. Finally, in Section IV we summarize the work and draw our

conclusions.

II. PHYSICAL MODEL AND ITS NUMERICAL SOLUTION

A. Equations and definitions

The model that we use is designed to capture the dynamics of the plasma filaments in

the SOL [7, 9, 11]. It consists of three drift-fluid equations which describe the evolution of

the normalized density, n, electron temperature, T , and plasma vorticity, Ω. The equations
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are:

∂n

∂t
+

1

B
[ϕ, n] = nC(ϕ)− C(nTe) +D∇2

⊥n− Σnn, (1)

∂T

∂t
+

1

B
[ϕ, T ] =

2

3
TC(ϕ)− 7

3
TC(T )− 2

3

T 2

n
C(n) + χ∇2

⊥T − ΣTT, (2)

∂Ω

∂t
+

1

B
[ϕ,Ω] = −C(nTe) + µ∇2

⊥Ω− ΣΩΩ, (3)

Ω = ∇2
⊥ϕ. (4)

Note that Eq.4 relates the vorticity to the electrostatic potential, ϕ, as the former is cal-

culated using only the E × B velocity. All the equations are dimensionless since use was

made of the Bohm normalization, which scales all the lengths with respect to the ion Lar-

mor radius calculated with the electron temperature, ρs, and the time with respect to the

inverse of the ion gyro-frequency, Ωi. We remind that ρs ≡ cs/Ωi where cs ≡
√

T0/mi and

Ωi ≡ ZeB0/mi (mi and Z are the ion mass and charge state, e the electron charge, T0

a characteristic electron temperature and B0 the modulus of the confining magnetic field).

Note also that the E×B advection in all the equations is represented with a Poisson bracket

notation: B−1[ϕ, f ] ≡ B−1b × ∇ϕ · ∇f (f here is a generic scalar field). In addition, the

magnetic field B−1 ≈ 1 + ϵ + (ρs/R)x, where ϵ is the inverse aspect ratio, R is the major

radius and x is the ”radial” coordinate

The collisional dissipation is modelled with terms that represent the normalized particle

diffusivity, D, thermal diffusivity, χ, and viscosity, µ. Their definition, which relies on

neoclassical transport, is:

D = (1 + 1.3q2)(1 + θ)
ρ2eνei
ρ2sΩi

(5)

χ = (1 + 1.6q2)

[
4.66

ρ2eνee
ρ2sΩi

+Θie2
ρ2i νii
ρ2sΩi

]
(6)

µ = (1 + 1.6q2)
3

4

ρ2i νii
ρ2sΩi

, (7)

where q is the safety factor, ρe and ρi are the electron and ion Larmor radius, νss′ is the

collision frequency between the species s and the species s′ (with ”i” for the ions and ”e”

for the electrons), θ = T0,i/T0,e, Θie ≡ [1 + (ν∗
e,ϵ/ν

∗
e )

2]−1 with the equipartition collisionality

ν∗
e,ϵ ≈ 63 for a deuterium plasma and the collisionality ν∗

e ≡ L/λe (L is the characteristic

parallel length scale of the filament, which is related to the mid-plane to target connection

length, and λe the electron collisional mean free path).
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The turbulence dynamics is investigated in a drift plane (i.e. perpendicular to the mag-

netic field lines) located at the outer mid-plane of the machine. The parallel evolution is not

described self-consistently and it is partially recovered by introducing ad hoc terms which

represent the losses towards the divertor. In the case of the density and of the vorticity,

such losses are assumed to have an advective nature, as the filament expands at a fraction

of the sound speed in the parallel direction, while the temperature losses are modelled with

a conductive approximation. The terms associated with these effects are multiplied by the

following factors:

Σn = ΣΩ =
M∥ξcs
LΩi

(8)

ΣT =
2

3

χ∥,e

L2Ωi

, (9)

where M∥ is the Mach number of the parallel flows, ξ ≡
√
Z + θ and χ∥,e = 3.2(v2te/νee)(1 +

4/ν∗
e )

−1 is the parallel electron heat conduction, which includes a flux limiter correction for

low collisionalities (vte is the electron thermal velocity). Note also that the lack of parallel

dynamics prevents a proper treatment of the drift-wave, which might play a role in the

filament evolution [12].

On the other hand, the model properly captures the interchange mechanism that is

thought to be at the base of the perpendicular motion of the filaments in the SOL [6]. In

particular, a local slab approximation is used to simplify the curvature terms, which appear

in the equations through the operator C(f) ≡ (ρs/R)∂f/∂y, where f is a generic scalar field,

ρs is the ion Larmor radius calculated with the electron temperature, y is the ”poloidal”

coordinate in the drift plane.

The problem is closed by the definition of the boundary conditions. In the ”poloidal”

direction, it is natural to assume periodicity. In the ”radial” direction, we impose an inner

boundary which connects the edge region with the core plasma. Here we fix the temperature

and the density so that, in their normalized version, they are T = 1 and n = 1 (i.e.

Tdimensional = T0). Similarly, we fix Ω = ϕ = 0. The outer boundary condition is at the far

end of the SOL, where we assume Ω = vy = 0 and no heat and particle fluxes, ∂T/∂x =

∂n/∂x = 0 (here vy = ∂ϕ/∂x is the ”poloidal” plasma velocity). Both the dissipative and

parallel loss terms are kept constant in space and time throughout each simulations and

their values are calculated using experimental quantities (i.e. edge temperature, density,...)

measured at a position corresponding to the inner boundary of the numerical domain.
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Note that once the boundary conditions are fixed, the behaviour of the system 1-4 depends

only on the seven dimensionless parameters that appear in the equations, which are: ρs/R,

ϵ, D, χ, µ, Σn and ΣT . It is therefore clear that also derived quantities, such as the

normalized decay lengths, are uniquely determined by these parameters. This suggests that

it is possible to identify power law scalings relating the SOL width to the dimensionless

parameters [13–16].

B. Numerical set up

Equations 1-4 are numerically solved with the ESEL code [7], which has a history of

successful applications to filament dynamics studies [7, 17] as well as to experimental data

interpretation [8–10]. In normalized units, the numerical domain goes from −50 to 100 in

the ”radial” direction and from 0 to 75 in the ”poloidal” direction. The region −50 ≤ x ≤ 0

corresponds to the edge, i.e. the the part of the plasma inside the Last Closed Flux Surface

(LCFS). In this region, the loss terms (Σn and ΣT ), are set to zero in order to simulate

the closure of the field lines on themselves. The LCFS is located at x = 0 and beyond it,

for 0 < x ≤ 50, we have the SOL where the loss terms take their nominal values, Eqs.8-9.

The last part of the numerical domain, 50 < x ≤ 100, represents the wall shadow where

the connection length is significantly reduced. In order to simulate this effect, in this region

we increased the loss terms by a factor 20 (this is equivalent to decreasing the connection

length to the solid surfaces by a realistic geometrical factor). The total domain in real space

covers roughly 25cm in the ”radial” direction and 12.5cm in the ”poloidal”.

All the simulations are performed with a grid of 512 points in x and 256 in y, which

assures a sufficient resolution for the turbulent structures. Furthermore, our results are not

sensitive to changes in the size of the numerical box. The data we analyse are collected

after the simulations enter a statistically steady state, so that spurious initial transients are

not taken into account. In addition, the simulations last several thousands of turbulence

correlation times (which are of the order of the tens of microseconds), so that our signals

are sufficiently long to be amenable to be treated with statistical tools.
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TABLE I. Dimensional and dimensionless parameters for the reference case.

n0[10
19m−3] T0,i[eV ] T0,e[eV ] B0[T ] q L[m] a[m] R[m]

0.8 40 40 0.5 7 10 0.59 0.85

ρs/R ϵ D µ χ Σn ΣT

2.15E-3 0.694 1.97E-3 3.88E-2 4.61E-3 1.29E-4 3.75E-3

III. NUMERICAL RESULTS

Our database contains 29 simulations characterised by different values of the dimension-

less parameters. The region of the parameter space that we explored is representative of the

operating regime of the Mega Ampere Spherical Tokamak (MAST). In this context, we can

identify a reference simulation (see Tab.I) which represents the ”typical” L-mode MAST

regime [16, 18], around which all the other simulations were constructed by changing one or

more parameters.

Figure 1 shows in logarithmic scale the the range in which each dimensionless parameter

was varied, together with the combinations relevant for our reference case (see Table I) and

for ITER (for comparison). Note that all the simulations were performed with an inverse

aspect ratio relevant for MAST (ϵ = 0.69), so that this parameter does not appear in the

figure. Apart from the aspect ratio, all the other dimensionless parameters span at least one

order of magnitude, so that parameter space investigated is relevant also for other small and

medium size machines (including conventional ones).

Although the output of the code is the full time dependent variation of all the scalar field

evolved in Eqs.1-4, we focus here only on the decay length of the density, λn, temperature,

λT and heat flux, λq. These are obtained in the following way. We started by averaging

the density and temperature fields, n(x, y, t) and T (x, y, t), first over the poloidal direction

and then over time (during the period of statistically steady turbulence). This allowed us

to find a single time independent radial profile of each field, < n > and < T >. We then

constructed λn = ρs < n > /(d < n > /dx) and λT = ρs < T > /(d < T > /dx), which are

again functions of x. Note that the factor ρs is used to make the decay lengths dimensional

(we express them in cm). The result of this procedure for the reference case is shown in

Fig.2.

Clearly, the density and temperature profiles are not exponentially decaying since λn
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FIG. 1. The boxes represent the variation range of the dimensionless parameters in our simulation

database. The upper (blue) curve tracks the parameter combination for the reference case, while

the lower (red) curve representative of ITER.

and λT have a complex radial dependence. This result is robust and appears in all our

simulations. It is interesting to note that similar profiles with a local minimum after the

LCFS followed by a maximum were observed experimentally in Alcator C-MOD, as reported

in [19]. We interpret this peculiar shape as the result of the filament dynamics in the SOL.

In particular, the maximum might be correlated with the region in which the filaments

propagate ballisticaly, which leads to a relatively flat density profile.

A possible way to characterise the width of the SOL with a scalar number, is to associate

it with the local minimum of the decay lengths profiles after the LCFS. This is a good (but

conservative) estimate as it represents the steepest gradient in a position where the SOL

is dense and hot (and hence more likely to cause problems to the divertor). In Fig.2, we

marked with a circle the local minimum of the density and of the temperature. As similar

minima appear in all our simulations, we identify the decay lengths with them, so that in

the remaining of the paper λn and λT are simply scalar objects.

It is now possible to identify the relation between the decay lengths and the dimensionless

parameters using statistical techniques. In particular, the data can be treated with regression
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FIG. 2. Radial profiles of λn and λT as a function of the radial variable. Both the decay lengths

and the radial variable are expressed in dimensional form (in cm). The vertical thin dashed and

the dash-dot lines indicate the position of the LCFS and of the wall shadow, respectively. The red

circles show the position of the local minimum used to characterise the profile. The inner and outer

boundaries of the computation domain of this simulation are ouside the figure at r−rsep = −9.13cm

and r − rsep = 18.27cm.

analysis by assuming the following form for a generic decay length:

λf

R
= α

(ρs
R

)β1

Dβ2χβ3µβ4Σβ5
n Σβ6

T (10)

In the calculation, we removed the statistically irrelevant dimensionless parameter using the

Student’s t-test and repeated the regression without them [20] (for this reason the viscosity

dependence is not present in the following expressions). The resulting scaling laws for the

decay length are:

λn

R
= 1.04 exp(±0.29)

(ρs
R

)1.09±0.07

D0.71±0.04Σ−0.73±0.04
n Σ−0.19±0.03

T (11)

λT

R
= 1.91 exp(±0.51)

(ρs
R

)1.07±0.12

D0.31±0.18χ0.14±0.12Σ−0.10±0.07
n Σ−0.52±0.07

T . (12)

Both regressions give a good coefficient of determination, R2 (not to be confused with the

major radius). For both the density and temperature decay lengths, R2 is 0.98. This is

further confirmed by Fig.3, which shows the actual data (obtained from the simulations)

against the value computed from Eqs.11 and 12.
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FIG. 3. The decay lengths λn and λT , obtained from the simulations, plotted against the value

computed from Eqs.11 and 12. A 45 degree dashed line is added to guide the eye.

We can now evaluate also the decay length of the parallel heat flux, λq, which is the

relevant quantity to determine the target heat loads. Combining Eqs.1 and 2, we can find

an expression for the evolution of the thermal power density (identified with the pressure),

from which we find that ∇∥q∥ = 3
2
(ΣT + Σn)nT , where q∥ is the heat flux flowing in the

parallel direction. We now take λq ≡ ρs
∫
∇∥q∥dx/[3/2(ΣT + Σn)psep], where the overline

represents poloidal average and psep is the normalized pressure at the separatrix (note that

in the above expression λq is dimensional since it is multiplied by the Larmor radius). This

integral definition is well suited to capture the power deposition and it is therefore preferred

to the one we used for λT and λn. Applying regression analysis, we obtain:

λq

R
= 2.08 exp(±0.16)

(ρs
R

)1.18±0.03

D0.28±0.02Σ−0.16±0.03
n Σ−0.48±0.02

T , (13)

which gives again R2 = 0.98 (see Fig.4).

The previous expressions for the decay lengths provide useful insight in the physics that

determines the width of the SOL. In particular, we see that the interchange drive of the

turbulence, i.e. ρs/R, broadens the SOL as all the λs show an almost linear dependence

on it. A positive, albeit weaker, dependence is also found in the dissipative parameters

which contribute to spread the turbulent structures as they propagate. Conversely, the loss

terms provide a mechanism that narrows the SOL. Naturally, the density decay length is
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FIG. 4. The decay length λq, obtained from the simulations, plotted against the value computed

from Eq.13. A 45 degree dashed line is added to guide the eye.

reduced more effectively by the density loss term, but also the temperature loss term gives

a contribution (the temperature decay length shows the opposite trend).

A. Scalings with measurable parameters

While Eq.11-13 are the natural way to express how the decay lengths behave as a function

of the parameters of the model, they still remain relatively obscure. In particular, it is useful

to explicitly relate the λs to measurable quantities such as the magnetic field or the edge

density. This can be straightforwardly done by replacing in the scalings, Eqs.11-13, the

definition of the dimensionless parameters, Eqs.5-9. Unfortunately, this procedure relies on

the fact that the parallel loss terms and the dissipative parameters are properly described

by 5-9, a fact that is not beyond dispute (for example, no rigorous theory of collisional

transport exists in toroidal open field line configurations). For this reason, the results of

this subsection might be subject to revision if more suitable expressions for the dimensionless

parameters will become available.

In the current model, the dependence of the dimensionless parameter on the measurable

parameters is often non-trivial (see e.g. Eq.6 or Eq.9) so that the decay length cannot be
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and that the other quantities (magnetic field, safety factor,...) are the same as those in Table I.

The three vertical dashed lines show the values of the temperature for which the collisionality is

ν∗ = 63, ν∗ = 12 and ν∗ = 4 (from left to right) corresponding to the limits of the asymptotic

extrapolations.

described by a simple power law. To illustrate this complication, in Fig.5 we plotted the

dimensionless parameters as a function of the temperature for the reference case (assuming

that Ti = Te). On the other hand, we observe that approximate scalings can be obtained if

we restrict ourselves to certain regimes of collisionality. For arbitrary ν∗, we have:

ρs
R

∼ T
1/2
0

BR
, (14)

D ∼ µ ∼ q2n0

BT
3/2
0

, (15)

Σn ∼ T
1/2
0

LB
. (16)

Here we have dropped the subscripts, considered a deuterium plasma, assumed that (1 +

1.6q2) ∼ q2 and that the ion and electron temperature are comparable. The expression

of the thermal diffusivity that we have chosen scales in a significantly different way as the
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collisionality changes. In particular, we can write:

χ ∼ q2n0

BT
3/2
0

if ν∗ ≪ 12 or ν∗ ≫ 63, (17)

χ ∼ q2n2
0L

BT
7/2
0

if 12 < ν∗ < 63. (18)

In order to derive Eq.18 we approximated 2.33+63/[1+(63/ν∗)
2] with ν∗/2. This procedure

in not rigorous but it allows to bridge the asymptotic regimes and obtain a rough scaling

for the intermediate collisionalities. Also the parallel loss term ΣT has a different behaviour

depending on ν∗:

ΣT ∼ T
1/2
0

BL
if ν∗ ≪ 4, (19)

ΣT ∼ T
5/2
0

n0BL2
if ν∗ ≫ 4. (20)

Note that the previous expressions together with the definition of q∥ above Eq.13 allow for

a smooth passage from sheath to conduction limited regime as the collisionality changes.

B. Heat flux decay length

We can now derive the scalings of λq with the measurable parameters (we are assuming

L ∼ qR):

λq ∼ q1.18n0.28
0 T−0.14

0 B−0.83R0.44 if ν∗ ≪ 4, (21)

λq ∼ q1.65n0.75
0 T−1.08

0 B−0.84R0.91 if ν∗ ≪ 4. (22)

It is well known that the standard approximate expression for the connection length,

L∥ ≈ πqR, is not accurate for spherical tokamaks. However, what counts in our expressions

is the typical parallel length of the filaments, which reasonably scales like the pitch angle of

the magnetic field (represented by q) and with the machine size (i.e. R) for every machine

configuration. Hence, the approximation L ∼ qR is valid for both conventional and spherical

tokamaks.

Unfortunately, a direct comparison with experimental scaling laws is rather difficult,

since the latter are usually expressed in terms of engineering parameters such as the line

averaged density and the power crossing the separatrix. As these are not control parameters

for ESEL, the only possible approach is to try to relate them to the edge quantities that
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appear in Eqs.21-22 with simple models. As a working hypothesis, we assume that the edge

density can be replaced with its line averaged value. This implies that the density peaking

is assumed to be independent from the other parameters contained in the numerical scaling

laws. With a procedure similar to the one described in [21], we relate the edge temperature

with the power crossing the separatrix, which can be obtained self-consistently from our

model:

PSOL ≈ 2πR
ϵ

q

∫
Q∥dr, (23)

where Q∥ is the total energy flux in the parallel direction (in the following we will approxi-

mate Q∥ with the heat flux, since the kinetic energy flux is negligible compared to it). We

therefore have that: ∫
Q∥dr ≈

3

2
(Σn + ΣT )

(
psep
n0T0

)
n0T0ΩiLλq, (24)

where psep/(n0T0) ∼ χ0.39Σ−0.29
n is obtained from regression analysis applied to our database.

Using 23 and 24, we can express the temperature as a function of the power and consequently

λq as a function of the power:

λq ∼ q1.52n0.7
0 P−0.25

SOL B−1.03R0.91, (25)

in the ν∗ ≪ 4 limit and:

λq ∼ q2.24n2.28
0 P−1

SOLB
−1.78R2.46, (26)

when ν∗ ≫ 12.

An interesting feature of the scaling laws that we obtained is that they are able to

reproduce qualitatively and in some cases quantitatively experimental results obtained at

low collisionality [22, 23]. In particular, we find a positive dependence on the safety factor

and a negative on the magnetic field (thus indicating an inverse dependence on the plasma

current). If we compare the L-mode experimental scaling in Ref.[23] with Eq.25, we find

agreement between the exponents the magnetic field (−0.8 versus −1.03), and for the safety

factor (1.14 versus 1.52). It is worth noting the lack of machine size dependence claimed in

the experimental scaling laws is not retrieved. The numerical density dependence is relatively

weak and it would be difficult to capture it in the regression analysis of Ref.[23] since the

experimental density was varied roughly a factor 2. Note that recent scaling laws obtained

with MAST data [24] and using the technique discussed in Refs.[22, 23] show an edge density
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dependence similar to ours (0.65 versus 0.7). Finally, the decay length depends weakly on

the power both in experimental and in the numerical scaling. However, the dependence is

inverse in the two cases (i.e. positive for the experimental scaling).

It is worth noticing that similar numerical calculations performed for NSTX with the

code SOLT [21] found that λq increases with power, in apparent contradiction with our

results. However, differently from our approach, the dissipative parameters in [21] are con-

stants which do not depend on any edge quantity (also the parallel loss terms are differ-

ent, but we do not discuss this difference here). If use the same assumption and repeat

the calculations that led to Eq.25 and 26, we find λq ∼ q0.65B−0.5P 0.16
SOLn

−0.16
0 R0.14 and

λq ∼ q0.875B−0.61P−0.25
SOL n0.58

0 R1.2 for the low and high collisionality cases respectively. In-

terestingly, the low collisionality scaling shows a positive power dependence, consistent with

the results in [21]. In addition, these alternative expressions can be used to comment the

effect of different dissipative models on our results. It is clear that the inverse dependence

on the plasma current is a rather robust feature of the ESEL simulations, together with a

weak power dependence (the sign of which can, however, change). On the other hand, the

machine size scaling seems to depend on the particular form of the dissipative parameters

(note that the low collisionality expression for λq with constant D, µ and χ has a close

resemblance to the scaling in [23], even for the R dependence).

C. Density and temperature decay lengths

Moving to the density and temperature decay lengths, we find:

λn ∼ q2.34n0.71
0 T−0.98

0 B−0.88R0.83 if ν∗ ≪ 4, (27)

λn ∼ q2.53n0.9
0 T−1.36

0 B−0.88R1.02 if ν∗ ≫ 4, (28)

and

λT ∼ q1.52n0.45
0 T−0.55

0 B−0.9R0.55 if ν∗ ≪ 4, (29)

λT ∼ q1.63n0.59
0 T−0.73

0 B−0.9R0.69 if 4 ≪ ν∗ ≪ 12, (30)

λT ∼ q2.18n1.11
0 T−1.77

0 B−0.9R1.21 if 12 < ν∗ < 63. (31)

Note that the range of validity of Eq.30 is very narrow (or even non existent), but we report

its expression in order to clarify how the dependence on the measured parameters changes

15



with the collisionality. In typical conditions, not much above ν∗ = 63 diverted plasmas enter

the detached regime, for which our calculation is likely to lose validity, and hence no scaling

is provided (the model might be questionable also for very low collisionalities [25]).Also in

this case, we have an acceptable agreement with the experimental scalings, the overall trends

of which are properly captured by our expressions. In particular, the results obtained at

JET with the MkIIA divertor [26] give an exponent for q equal to 1.3 and for B equal to

−0.8 for both λn and λT . In this case, the regression was made also on the edge density and

temperature. For the density decay length, the experimental exponent of n0 is 0.5 and for

T0 is −1.2. For the temperature decay length, the values are 0.8 and −1.4 respectively.

Finally, these result are consistent with the qualitative investigation performed in [18], in

which it was observed a weak dependence of the decay length on the density and a strong

dependence on the temperature and on the plasma current (modelled by increasing q and L

at the same time).

IV. SUMMARY AND CONCLUSIONS

In this work, we presented numerically derived power law scalings for the density, tem-

perature and heat flux decay lengths. Our results are obtained from a regression analysis

of a database of 29 simulations of plasma turbulence in the SOL performed with the code

ESEL. We expressed the SOL width in terms of the dimensionless parameters that govern

the problem and in terms of experimentally measurable parameters.

The parameter space investigated is directly relevant for MAST plasmas, although it is

not exclusive to this machine. In other words, also other small or medium size conventional

tokamaks are characterized by dimensionless parameters in the range we investigated. Our

simulation database, however, included only tight aspect ratio cases, so that we could not

derive a scaling with ϵ. Fortunately, this does not affect the validity of our results since

ϵ does not depend on the measurable parameters used in Eqs.21-31 (the R dependence is

cancelled by a). In particular, machines with a conventional aspect ratio would still follow

Eq.11-13 (and the expressions derived from them) but they would have a different constant

factor in front of them [α in Eq.10]. Future work will be devoted to the extension of the

present analysis to a wider parameter space which could include larger machines.

It is worth noting that while the regression with respect to the dimensionless parameters
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presented in Sec.III is a rigorous procedure, the results shown in Sec.IIIA rely on the exact

form of the dissipative and loss terms. As these are modelled with neoclassical theory and

ad hoc assumptions for the parallel dynamics (both of which are reasonable, but certainly

improvable), the scaling laws with respect to the upstream density and temperature are

subject to a certain margin of error.

Nevertheless, some of the exponents of our power laws for the decay lengths are in agree-

ment with experimental results. Although the values are not always identical (but very

similar for q and for B), most of the trends are properly captured. In particular, an inverse

dependence of λq on the plasma current and a weak scaling with the power crossing the

separatrix are robust features of the interchange paradigm employed in our study. This

suggests that the theoretical model used can reproduce the dominating mechanisms that

determine the outboard midplane SOL width. At first sight this is surprising since Eq.1-4

are derived under several simplifying assumptions, among which the absence of neutrals or

impurities. In addition, the model neglects the effect of the drift waves, of hot ions and it

simulates the parallel dynamics with ad hoc terms. Our results suggest that these effects

play only a secondary role in the determination of the upstream SOL width, although they

are known to be relevant for other exhaust problems. For example, the strong magnetic

shear in the proximity of the X-point might tear the filaments apart, thus changing the

dominant perpendicular transport mechanism. Furthermore, neutral particles and atomic

physics have a major role in the divertor region.

To partially mitigate the concerns regarding the appropriateness of this simplified 2D

approach, it is worth noting that it was able to reproduce the features of midplane transport

in several comparisons with experimental data. The ESEL code was positively tested on

TCV [8], JET [9] and MAST [10] discharges. In addition, a similar code (SOLT) employing

the same philosophy showed good agreement with NSTX [21] and Alcator C-MOD [27].

Finally, at low collisionality our expressions describe a certain machine size dependence

and a (small) negative exponent for the power crossing the separatrix. These results are

in contradiction with the most recent experimental scaling laws. Possible reasons for this

discrepancy, beyond those listed above, are the fact that the dissipative and parallel loss

terms used in the simulations do not change in space and time and that the simulations were

not performed in a regime that was relevant for large machines. New numerical campaigns

will be needed to verify these hypotheses.
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