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Abstract: The study of weak scattering from inhomogeneous media or interface roughness 
has long been of interest in sonar applications. In an acoustic backscattering model of a 
stationary field of volume inhomogeneities, a stochastic description of the field is more 
useful than a deterministic description due to the complex nature of the field. A method 
based on linear inversion is employed to infer information about the statistical properties 
of the scattering field from the obtained cross-spectral matrix. A synthetic example based 
on an active high-frequency sonar demonstrates that the proposed method provides a 
quantitative description of a weak scattering field in terms of its second-order statistics. 
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1. INTRODUCTION  

The challenge of a deep-water oil leak is that a significant quantity of oil remains in the 
water column and possibly changes properties. It is of interest to determine the physical 
properties of the new forms of oil in order to monitor the degradation process. The weak 
scattering approach is applied to model monostatic backscattering from submerged oil, 
which is modelled as a fluid medium with spatial heterogeneity. A high-frequency active 
sonar is selected to collect the backscattered returns, which can both overcome the optical 
opacity of the water and resolve small scale structure of the new forms of oil. The 
parameters of the spatial covariance of the contaminated region can be inferred by relating 
the statistical properties of the scattered field to the statistical properties of the scattering 
medium. 

 
 
2.  FORWARD PROBLEM 

 
The scattered sound pressure, ps , observed at a remote position r0  due to scattering 

from spatial fluctuations of the compressibility, εκ , and density, ερ , of the medium within 
a scattering region R  is given by the integral equation [1], 

 
 
ps(r0 ) = (k2εκ (r)p(r)− div(ερ (r)∇p(r)))g(r0 | r)dr

R
∫ ,                                                  (1) 

 
where k  is the wavenumber, p  is the wave insonifying the scatterer located at r  and 

g(r0 | r) =
1

4π r0 − r
e−ik r0−r  is the free-space Green’s function relating the field observed 

at r0  due to a point source at r . The harmonic dependence eiωt  is implied and neglected 
for simplicity and the mean sound speed is assumed constant throughout the medium. The 
compressibility and density fluctuations are normalized to their mean values, 
εκ r( ) = δκ r( ) κ , ερ r( ) = δρ r( ) ρ , thus are dimensionless quantities. 
 
   For far field radiation, the Fraunhofer approximation for the range term is valid, 
r0 − r ≈ r − r̂ ⋅ r0 , where r = r  and r̂ = r r , and the Green’s function takes the simpler 

form [2], 
 

  g(r0 | r) =
1
4πr

e−ik(r−r̂⋅r0 ) .                                                                                                   (2) 

 
   The incident wave which insonifies the region R  emanates from a monopole located at 
the origin of the coordinate system out of the scattering region R , 
 

   pi(r) = A
e−ikr

r
,                                                                                                                 (3) 

 



 

where A  is the pressure amplitude at a distance 1 m from the source and r  denotes the 
range of the insonified point. 
 
   Assuming weak scattering, the Born approximation applies, p ≈ pi . Thus, inserting Eqs. 
(2) and (3) in Eq. (1) the pressure scattered from inhomogeneities in the acoustic 
parameters of the medium is, 
 

   ps(r0 ) ≈
k2A
4π

(εκ (r)−ερ (r))
R
∫ e−ik(2r−r̂⋅r0 )

r2
dr .                                                                    (4) 

 
   Owing to the Born approximation, Eq. (4) relates linearly the backscattered pressure and 
the fluctuations in the acoustic parameters thus can be discretized and rearranged in a 
matrix-vector formulation, 
 
    d =Gm+n                                                                                                                      (5) 
 
where d  is the vector comprising the acquired data (the scattered returns possibly 
contaminated with additive noise n ), G  is the linear forward operator and m  is the 
vector of model parameters, namely the compressibility fluctuations. The density 
fluctuations are neglected henceforth since they are proportional to the compressibility 
fluctuations and are less significant in fluid media [3]. 
    
 
3. INVERSE PROBLEM 
 
   Assuming that the random field of model parameters is stationary, the model covariance 
matrix, Cm , has a Toeplitz structure determined by the covariance function. Due to the 
fact that model parameters, which are more than a correlation length apart, are 
uncorrelated the dimensions of the problem can be significantly reduced [4] when the 
interest is in inferring the model covariance function and not the model parameters per se.  
 
   The forward linear problem yields,  
 
   Cd =GCmG

H +Cn ,                                                                                                         (6) 
 
where Cd = ddH  is the data covariance matrix,  Cm = mmT  is the model covariance 

matrix and Cn = nnH  is the noise covariance matrix, T denotes transpose, H denotes 

conjugate transpose of a vector or matrix and  is the ensemble average. The noise is 
assumed uncorrelated with the model parameters.  
 
   Inversion of Eq. (6) with the least-squares approach yields, 
 
   Ĉm =G

+Cd G
+( )

H
                                                                                                           (7) 

 
where + denotes generalized inverse.  



 

 
 
4.  SIMULATION RESULTS 
 
   A monostatic configuration is assumed. The receiver is a uniform linear array (ULA) 
centered at the origin of the coordinate system such that the sensors locations are 
x = q− (nm −1) / 2[ ] , q = 1,2,…,nm[ ] , nm  is the number of sensors with interelement 
spacing dm . Time varying gain is applied to compensate for spreading loss and absorption 
due to propagation in the medium. Autofocusing is used to relate the focusing distance to 
the arrival time. Thus, the forward matrix has a depth dependent structure, 
 

   G(ri )nm×nθ ∝ e
−ik2ri

eikx1sin(θ1) eikx1sin(θ2 )  eikx1sin(θnθ )

eikx2 sin(θ1) eikx2 sin(θ2 )  eikx2 sin(θnθ )

   

eikxnm sin(θ1) eikxnm sin(θ2 )  eikxnm sin(θnθ )

$

%

&
&
&
&
&

'

(

)
)
)
)
)

                                     (8) 

 
   The total GN×M matrix, where N = nmnr  and M = nθnr  (nr is the number of focusing 
ranges and nθ  is the number of broadside angles to the scatterers positions), is a block 
matrix which is constructed by the direct sum of G ri( )  for i =1,2,…,nr . Its eigenvalues 
are the combined eigenvalues of the G ri( )  matrices. 

GN×M =⊕
i=1

nr
G(ri )nm×nθ                                                                                                       (9) 

 
   In the overdetermined case (nm > nθ ) and assuming equidistant spacing in sin θ( ) , such 
that sin θ( )i − sin θ( ) j = dsin i− j( ) , it is easily deduced that asymptotically the matrix 

GHG!
"

#
$ij
→ sinc nmdm

λ
dsin (i− j)

'

(
)

*

+
,  is a Toeplitz sinc matrix. The eigenvalues of a Toeplitz 

matrix are connected to the Fourier transform of the series [5]. And by choosing 
dsin ≥ λ nmdm( )  the matrix GHG is full rank, thus invertible [6]. The higher the frequency 
and/or the longer the receiving array, the finer the resolution that can be achieved.  
 
   Naturally, the field of model parameters exhibits stationarity in the Cartesian coordinate 
system. However confining the insonified area within an opening angle [-15o, 15o] the 
curvature is negligible and dsin ≈ dx r . 
 
   A synthetic example is implemented to demonstrate the method. A high-frequency 
active sonar is considered [7]. The receiver is a ULA with nm = 256 , dm =1.6  mm. The 
field is insonified by a narrowband 200 kHz source. The duration of the pulse is 120 µs 
corresponding to a range resolution of 0.1 m (c=1500 m/s). The transmitter is assumed to 
have a narrow directivity pattern in the along-track plane, thus only the 2D across-track 



 

plane is modelled. The data covariance matrix is calculated by an ensemble average from 
500 pings and additive Gaussian noise is assumed n ~ CN(0, 0.01) . 
   Figure 1 shows the measurement setup and a realization of the 2D field of 
compressibility fluctuations confined to the area considered for the inference. The field is 
described by an anisotropic spherical covariance function with characteristic length (the 
lag where the covariance function has decayed by at least 95% ) 2 m in the x-direction and 
0.5 m in the z-direction [8]. Figure 2 shows the actual and reconstructed covariance 
function with respect to the lag distance in x-direction and z-direction respectively. The 
characteristic lengths are denoted by vertical dotted lines and the variance corresponds to 
the values at zero lag distance. 
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Fig.1: Measurement setup. 
 
 

5.  CONCLUSION 
 
   For stationary scattering fields the method of covariance inference basically allows 
significant reduction of the dimensions of the problem. Generally, in a medium where 
there is flow as in the water column, the scattering field will not be static so a 
deterministic description has less to offer. Localization of the contaminated region can be 
provided by beamforming and identification by inference of the covariance characteristics 
of the model covariance. 
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Fig.2: True, Cm , and reconstructed, Ĉm , covariance function as a function of lag-distance 
in x and z-direction respectively. The characteristic lengths are denoted by dashed lines in 

each case. 
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