Metadata, citation and similar papers at core.ac.uk

Provided by Online Research Database In Technology

Technical University of Denmark

)
q
c

i

Multibody motion in implicitly constrained director format with links via explicit
constraints

Nielsen, Martin Bjerre; Krenk, Steen

Published in:
Proceedings - ECCOMAS Multibody Dynamics 2013

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Nielsen, M. B., & Krenk, S. (2013). Multibody motion in implicitly constrained director format with links via explicit
constraints. In Proceedings - ECCOMAS Multibody Dynamics 2013 (pp. 231-240)

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.


https://core.ac.uk/display/13804502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/multibody-motion-in-implicitly-constrained-director-format-with-links-via-explicit-constraints(177d788c-8a27-4f75-b85c-d12133ee6158).html

ECCOMAS Multibody Dynamics 2013
1-4 July, 2013, University of Zagreb, Croatia

Multibody motion in implicitly constrained director format with links
via explicit constraints
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Abstract

A conservative time integration algorithm is developeddonstrained mechanical systems of kinematically linkgatlri
bodies based on convected base vectors. The base vectoepsrsented in terms of their absolute coordinates, hence
the formulation makes use of three translation compongiis,nine base vector components for each rigid body. Both
internal and external constraints are considered. Inteorestraints are used to enforce orthonormality of thedahrase
vectors by constraining the equivalent Green strain corapts while the external constraints are associated wéh th
presence of kinematic joints for linking bodies togethdre BEquations of motion are derived from Hamilton’s equation
with an augmented Hamiltonian in which internal and extecoastraints initially are included via Lagrange multgs.
Subsequently the Lagrange multipliers associated withriiat constraints are eliminated by use of a set of displaoém
momentum orthogonality conditions, leaving a set of défgral equations in which additional algebraic constiaare
needed only forimposing external constraints. The eqnatidmotion are recast into a conservative mean-value aitel fin
difference format based on the finite increment of the Hamién. Examples dealing with a hanging chain represented
by a four body linkage serve to demonstrate the efficiencyaaedracy of the algorithm.

Keywor ds: multibody dynamics, implicit constraints, conservative time integration

1 Introduction

Integration of finite rotations plays a major role in dynamitalysis of multibody systems. In particular, consenesitiv
tegration schemes have been the scope of extensive resieging the last two decades. These are based on an integrated
form of the equations of motion, and thus they can be desigm@&they major conservation laws such as conservation
of energy and momentum by a proper discretization, ofterlims$ of a combination of mean values and increments.
The basic idea is illustrated in [1] for rigid body dynamicwleextended to non-linear elastic models by introducing the
concept of finite derivatives in [2]. Furthermore applicatto constrained multibody systems is presented in [3].

While numerical procedures for translations are fairlylvestablished, special parameterizations accountinghfor t
fact that finite rotations do not combine in the form of incestal vector addition have to be used. A common way
is to represent rotations in terms of four quaternion patamsesupplemented by a normalization constraint. In [4] the
constraintis enforced via a Lagrange multiplier, whilsilemonstrated in [5] that the constraints are embeddedtithpl
in the evolution equations, when a projection operator iduced on the external potential gradient. Alternaivel
the kinematics can be formulated directly in terms of theetiderivatives of the director components with holonomic
constraints, [6]. This leads to a very simple formulatioat, &t the expense of a considerable increase of the original
translation and rotation variables t@ translations3 x 3 director components, plusor evenl12 Lagrange multipliers
for enforcing the constraints.

In the present paper the kinematics of the rigid body is fdated in terms of the instantaneous angular velocity,
which takes a particularly simple form when expressed imgeof directors, [7]. This approach has the advantage that
the incremental form of the internal director constrairets be embedded in the equations of motion by generalizing the
concept of implicit constraints introduced in connectioithwguaternion parameters in [5], and thus the explicit use o
Lagrange multipliers is limited to the external constraiassociated with connecting multiple bodies.

The equations of motion are derived from an augmented Hammédh where internal and external constraints initially
are included via Lagrange multipliers. However, the sgdoian of the inertial tensor based on director components
serves to identify six orthogonality conditions betweea tlirector components and their conjugate momentum vector,
which can be used to eliminate the Lagrange multipliers@atzd with the internal constraints. This leads to a maoatific
tion of the dynamic equation where the effect of internalstaaints is represented by a projection operator actingpen t
unconstrained potential and external constraint graslient
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232 M.B Nielsen, S. Krenk

The equivalent discretized system of equations follow byniag a finite increment of the Hamiltonian. This pro-
cedure defines a proper choice of increments and mean valadiag to an algorithm with energy and momentum con-
serving properties. In particular, constraints are infitl in incremental form, whereby the Lagrange multipléenses
the role as effective reaction forces needed to uphold thetcaints over the interval. The accuracy and conservative
properties of the presented algorithm are illustratedrimssof a hanging chain formed by four kinematically linkegidi
bodies.

2 Convected base vector representation

Let the orientation of a rigid body be expressed in terms ajréimonormal director frame, , q,, g5 centered at a poir@®
defined by the position vectay,. The global componenisof a point located inside the rigid body with local coordiesat
Xo can then be expressed as

X(t) = qo(t) + Q(t)Xo, 1
in terms of the deformation gradient ten€prdefined by
OX
Q = [d;,02,03] = B ()

The global components of the vecmr= [ql’, g7, g2, gZ]7 constitute the independent variables of the present formu-
lation. The base vector components are conveniently detiein the vectoy = [q7, g2, q2]”. In order to represent

a proper rigid body rotation, the base vectgfsmust remain as an orthonormal triple, as expressed by theridtic
constraints

[ogig;—1 ]
959, — 1
95q; — 1

—o. 3)

DO | =

03 ds + a3 dy
a¥q, +aTq,
L afa, +aia; |

In principle, this quadratic set of constraints is equinal® vanishing of all Green strain components. In the presen
formulation the kinematic constraints appear via theietiterivatives in the form

e=C(a)q=C(Ga=0, (4)

whereC(q) is the gradient matrix associated with the constraintsgi@gn by

0 g/ 0o 0]
0 0 g o
_oe |0 0 0 qg¥
@W=%% |0 o af dof ®
0 gi 0 af
| 0 g7 af O |

By selecting the origirD of the convected base vectors such that it coincides witleéhéer of mass, the kinetic energy
takes a particularly simple form where the contributiomsrirtranslational and rotational motion decouple. The kinet
energy of rigid body can then be expressed in terms of thadinelocityv and global components of local angular
velocity €2, as

T = iMv'v + 1Q"JQ, (6)

whereM andJ are the mass and the constant inertia tensor, respectively.

The translational velocitieg follow directly by time differentiation of the position vesr components,, while the
local components of the angular velocities in terms of bas#ors can be obtained by projection of the derivadiyen
the vectorsy;. This can be expressed in the compact matrix form

[é]:“ —%g(q)H%)]:G(Q)q, (7)
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in terms of the3 x 9 matrix

0 —af af
G(q) = g 0 —af |. (8)
-q7 daf O

The G-matrix has the same structure in terms of the base vegtasthe skew symmetric matrix associated with the
vector product, hence the very structure implies orthotiiynaith respect toq. It is an important property that the
columns of the matrixG(q) spans the null-space of the constraint ma@ix|) wheng constitutes an orthonormal base.
This can be expressed by the orthogonality condition

C(@)G(a)" = 0. (9)
In the particular case when the vectgrsare orthonormal, the matrix furthermore satisfies the igiat
T [
sae@” = | |. (10)
2
which serves to identify a generalized inverse of the madig).

Upon substitution of the velocity, expressed in terms ofitickependent coordinates via (7) into (6), the kinetic eperg
for a rigid body takes the form

T =

N

voal| M| - se@nis@a, a1)

where the inertia tensdris introduced as a block diagonal form of the magsind the local components of the moment
of inertia tensorJ. The relation (11) thereby represents the kinetic energyifiid body motion when the base vector
componentg; satisfy the constraints (3).

3 Constrained rigid body motion

The equations describing constrained motion of a rigid berdyderived via Hamilton’s equations based on a set of gen-
eralized displacements, here expressed in terms of then@minponents|, and their conjugate momentum variabfes
This leads to a set of first order evolution equationgjfandp, see e.g. [8].

3.1 Hamilton'sequations

The generalized momentum vector= [p, p?, pI, pl]7 associated with the generalized coordinajegollow by
differentiation of the kinetic energy (11) with respecthe igeneralized velocity, as

p= 2~ c@I6@)a. 12)
efe
Since Hamilton’s equations are based on the generalizedic@besy and their conjugate momentum compongnitsis
convenient to use this relation to eliminate the velogifyom the kinetic energy (11). This task can be performed l&y us
of the inverse relation of (12), which is easily obtained bg-multiplication withG(q). For a rigid body the base vectors
g; are orthonormal, hence use of the orthogonality relati@) igads to the following relation for the kinetic energy

-1
T(a,p) = 3p"G(a)" { MO | qu }G(qm = 3p"G(q)"J'G(a)p. (13)

Here, the effect of the facto} in the lower block matrix of (10) has been embedded in therse@ertia tensaf ~* by
multiplication of the lowe by 3 block matrix representing the inertia tensbr! by a factor4.

The present formulation for constrained rigid body moticakes use of an augmented form of Hamiltonian’s energy
functional where the sum of the kinetic eneffjiq, p) from (13) and potential energy functidn(q) is supplemented by
a set of internal constrains in the form (3), and externastamts®(q) associated with the presence of kinematic joints.
The augmented Hamiltonian hereby takes the form

H(q,p,7,A) = T(a,p) + V(q) + ®(q)" A — eq)"~. (14)
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The external constraints enter via a vector of Lagrangeiptieits A. Similarly, the zero strain constraing$g) from
(3) are initially introduced via the six component vectoiLafyrange multipliersy. However, a particular feature of the
present formulation is these can be eliminated by using@atisment-momentum orthogonality relation.

The equations of motion now follow by differentiation of tkegtended Hamiltonian (14) with the kinetic energy
expressed by (13) in terms qfandp, whereby

. OH .

4 = 7= G T 'Gap, (15)
p

. oH - oV 0BT T

b = —5gr = G I'GRIa ~ g - (—8qT) A+ C@)y. (16)

Here, the matri>d]51 = diag0, 4J7'] is introduced in the dynamic equation (16) since the traiosial kinetic energy
only depends on the momentum compon@gts=urthermore, the matrig(q)? is the derivative of the internal constraint
relation with respect t@ as expressed by (4). For a constrained mechanical systekind@matic equation (15) and
dynamic equation (16) must be supplemented by additiogabahic constraint equations. For the external consgaint
these follow by differentiation with respect &g as

OH
T = 2()=0. 17)

Similarly the constraint equations associated with irdeéconstraint could be obtained by differentiation withpest to
~. However, as illustrated in the following section the Lagye multipliersy associated with internal constraints can be
eliminated, hence no additional equations are required.

3.2 Elimination of internal constraints

A key point in the present formulation is the elimination leét_agrange multipliers, which can be performed by using
a set of orthogonality relations betwegrandp, [7]. These can be established by pre-multiplication ofrilation (12)
defining the momentum componeptsvith the constraint matri(q). This leads to the following relation

Cl@p =0, (18)

when the relation (9), valid for orthogonal base vectpris accounted for. It is important to notice that the displaent-
momentum orthogonality condition (18) constitutes an petelent complement to the kinematic relation (4), rathan th
a simple reformulation, and serves the basis for elimiiggtire Lagrange multipliers. The actual elimination prodess
performed via the time derivative of (18), given by

C(P)gq + C(q)p = 0. (19)

By substitution of the derivatives from (15) and (16) an &ipéquation for the Lagrange multipliefscan be established.
The structure ofc(q) eliminates contributions from translational componesrthermore, the contributions from the
first terms in (15) and (16) cancel since the roleg@ndp can be interchanged due to the structure of the lower block
G(q) in (8) associated with rotational components, whereby tngrange multipliersy can be determined as

. oV oP \T
= [Cc@Cc@T] 'c@)| = + (=) A|. 20
v = le@e@) " c@| g + (56) 3] (20)
It is noticed that the Lagrange multipliers associated witarnal constraints vanish in the absence of externaklead
external constraints, which implies that the homogenousigons could be solved directly without explicit imposing
internal constraints. When the Lagrange multiplier veet@xpressed by (20) is inserted back into (16), the modified
dynamic equation takes the form,

p=-G{P'I'Gpa
(1 - c@T -1 oV (92T
(1 - c@Tle@e?] "ca@) |5 + (5e) A
It is seen that the effect of eliminating the Lagrange mili#ig via the orthogonality relation (18) is equivalent to i

troduction of a projection operator in front of the grad&nf the external potential and the external constraintsghwh
eliminates their projection on the deformation modes froeunconstrained gradients.

(21)
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4 Conservativetimeintegration

In essence, conservative integration amounts to ensunatgthie discrete form of the equations of motion reproduces
the correct incremental change of energy and momentum digteatime increment. This is different from collocation
based methods where the typical procedure is to solve thaiegs of motion at discrete points in time via truncatedeser
expansions. Similarly, when it comes to enforcements oftraimts in conservative schemes via Lagrange multipliers
the role of the multipliers is to ensure that the work perfedby constraints over the interval vanishes. Hence ratiaer t
enforcing constraints explicitly at the interval bounéarithe Lagrange multipliers can be interpreted as intboahded
quantities ensuring that the incremental change vanidBgsnitiating a numerical integration from a state that syt
constraints, the correct representation of the increnhfarta over each interval, will ensure satisfaction of thestaints
at any later stages within the iteration tolerance.

A conservative discretization of the equations of motids) @nd (16) follows directly by equating the finite increment
of the Hamiltonian (14) to zero. This can be expressed indha f

i rOH. |\ rOH.

AH(g,p,A) = Aq opT INT

+ Ap

=0, (22)

where the asterisk denotes discrete derivativd$ ofvhich combined with the incrementsy andAp, lead to the correct
finite increment of the Hamiltonian. The individual termdidav by taking the increment of (14). The kinetic energy
(13) is a hi-quadratic form il andp, hence its increment can be expressed as twice the prodthot difst factor and
the mean of the second factor. The external poteiii@) and the external constraind(q) are introduced via their
finite derivatives, [2], while the discrete form of the imal constraints (3) can be expressed explicitly by a continina
of increments and mean values due to its homogeneous gigaftrait. The Lagrange multipliers are represented by
constants over each interval and serves the role as theieffeeaction forces needed for upholding the constraims o
the considered interval. The discrete equations of motiengby follow as

Ad = o = hG@TIG@P, (23)
_ OH. ANT =17y oV 9%, ! q)”

along with incremental form of constraint condition

0P,

AP = o

Aq = 0. (25)

The equations (23), (24) and (25) constitute the discretévalgnt to the continuous equations (15), (16) and (17, an
satisfy conservation of energy by construction when derixia the finite increment of the Hamiltonian.

Similar to the continuous case, the Lagrange multiplerassociated with the internal constraints in the discrete
dynamic equation (24) can be eliminated via the increméatai of (3), yielding

C(p) Aq + C(q) Ap = 0. (26)

Substitution of the increments gfandp from (23) and (24) then leads to an explicit equation for tagilange multipliers
~, which can be used to eliminatein (24). Hereby the dynamic equation takes the form

_ T (27)
—n(1 - c@”[c@c@’] c@) {% + <88%*> A},
where the term
v = [c@c@’] ™ [c@e®)” + cPG@’ |1 Gra. (28)

follows from the direct discretization and is needed foruimgy the conservative properties.
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Table 1. Conservative time integration algorithm for multibody t&ya.

1) Initial conditions:
us = [a”,p", 0"
2) Prediction step:
U = Up,
3) Residual calculation:
r =r(qg,p,A) from (30).

4) Update incremental rotation parameters:
du = —K'r, with K from (33).
u=u-+du,

If |Ir]| > er repeat from 3).

5) Return to 2) for new time step, or stop.

5 Multibody systems

The above derived equations of motion for a single rigid beoaly easily be generalized to account for multiple bodies
connected by kinematic joints. Consider a system congigtfm bodies linked together by, external constraints via
Lagrange multipliers. For each bodythe 12 generalized coordinates are collected in the vegtomwnhile the conjugate
momentum components are stored in the vepto? = 1..., n. The phase-space vector for each body is then introduced
asu! = [(g")7T, (p!)T]T, while m Lagrange multipliers associated with external constsaae collected in vector
A=D1, AT

For each body, the equations of motion are given by (23) and (28). The kat@requation (23) only depend on the
variablesy’ andp’, while the coupling between the motion of different bodiesws in the dynamic equation (28) trough
constraint relations of the form (25). It is therefore cameat to arrange all the independent variables of the nudiyb
system in the system vector

ut = [ WhHT, W), oowmT, AT . (29)

The full system is solved by means of Newton-Raphson itematiwhere the elements of the residual vectare defined
as the difference between the left and the righthand sid23)f (28) and (25). These are conveniently organized in the
system residual vector given by

O (5 S () KU (L E & S I (30)

where the last elemenj holds the residuals associated with theconstraint equations of the form (25). The residual is
reduced iteratively to zero via the linearized incremantwhich is obtained by solving the equation

K.ou=—r. (31)
The system tangential matrix can be obtained by partiatidfitiation as

Kij (8@/8UI)T

Ki = ’ (32)
0% /ou’ 0
where the matriX; is a block-diagonal form of the contributions from each @& Hodies in the system given by
or!
Kij = L. 33
’ 21: out (33)

It is noted that a symmetric structure in (32) has been obthirty embedding the time stégn the system vector (29) on
A

The implementation of the algorithm is illustrated in psewdde format in Table 1 with a convergence criterion
specified in terms of the parametgr In particular, the Lagrange multipliers are constant imittach interval and may
be discontinuous over the intervals, hence the initial @yt = 0 included in the initial conditions is merely a formal
construct to establish the full vectog needed for initiating the iteration process.
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Figure 1. Lower-pair joints: (a) Spherical joint, (b) Revolute jaint

5.1 Kinematic constraints

In the present context only lower-pair kinematic jointseegsed by holonomic constraints of the form (17) are consile
Often these are used to describe a distance or an angle lipmsjawhich are at most quadratic in the generalized
displacements, hence explicit expressions for the finitesaléve with respect tay can be obtained. In particular two
commonly used joints are presented: Spherical joints aralute joints.

A spherical joint between bodland body.J prevents relative motion of the bodies with respect to a compwoint
S, but allows the bodies to rotate freely relative to each otfiis is illustrated in Fig. 1(a), and can be expressed in
terms of the three algebraic equations

@) (q) = qf +277q] — (af +27"a)) =0, (34)

wherez>"" andz>*/ denote the local coordinates of the pathin the bodiesl and.J, respectively. The corresponding
constraint Jacobian follow from differentiation as the 24 constraint matrix

0P ()
aq

This is constant with respect tp hence (35) constitute an explicit expression for the fidé@evativeo®../0q needed for
ensuring the conservative properties of the discretize@tons of motion.

A revolute joint between bodiesandJ as illustrated in Fig. 1(b) only permits relative rotatidmoat a fixed axis,
hence the three constraints imposing equal position atmgpwint R equivalent to (34) are supplemented by two orthog-
onality conditions restraining relative rotation of thedies about two orthogonal axis. This is conveniently déscdiby
means of an unit vectar fixed in bodyI with constant components; with respect to the base vectays, as

=[ -1 =20 =2 =20 2PN e 2P (35)

n=n;ql. (36)
The five constraint equations can then be expressed in the for
qf +2577al — (o + 27" "al)
2 (q) = n’)’qf =0, (37)
(n")"ag
with the5 x 24 gradient matrix, given by
[ R,II R,II R’Il [ R,JI R,JI R,JI
9P (R) —Z ) —Zy Ty Lo T
5 = | O m@)T ma@)” ms(@)” o o )T 0" . (38)
| 0" m(a)” ma(a)” me@)” O oF  of (a7

It is seen that contrary to (35), the gradient matrix for ahete joint depends on the current configuration.

6 Numerical examples

The accuracy and conservative properties of the preseatitiign for multibody systems are illustrated in terms of a
hanging chain represented byigid bodies connected by revolute joints and sphericaltfirespectively.
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6.1 Hanging chain with revolutejoints

First the case where the bodies are linked together by re/mlins is considered. Each body is represented as a box with
side length$l, 0.5, 3] and mass// = 12. The principal moment of inertia tensor with respect to theter of mass is then
given byJ = diag9.25,10.0, 1.25]. The motion of the chain is initiated by releasing it from thiéial position illustrated

in Fig. 2(a) where the bodigsand? are inclined by an anglé; = /4 with respect to vertical. The bodi8sand4 are
rotated by37 /4, thereby forming a right angle with the bodieand2.

t=1 t=2 t=3
X3 X3 X3

Figure 2. Motion of chain with revolute joints at selected points iméi.

The chain is located in a uniform gravitational field with elerationg = 9.81 in the negativers-direction acting at
the center of masg, for each bodyl. This corresponds to the potential energy

V(g =Y M'g"qf, (39)

I

with the gravitational acceleration vec@t = [0, 0, —g]. The considered constrained system is indeed conseryatide
thus the total mechanical energy as well astftmmponent of the angular momentum vedtoare conserved quantities.
The angular momentum with respect to the origin of the glabats, X3 coordinate system can be evaluated as

=) af x MV + Q3" Q"), (40)
I

where the first term accounts for translational motion oftieter of mass, while the second term represents the nogtio
motion.

The external constraint equations associated with thduvjpints can be expressed by (37) with= [1,0,0]%. It
is important to notice that since the gradient (38) depentthelirector components its algorithmic form is represented
by its finite derivative. The constraint equations (37) aradratic ing, hence their incremental form can be expressed as
twice the product of the mean of one factor plus the increroétite other as

AP R N D 7 41

(@) 4 5T o g7 (41)
whereby the algorithmic form of the constraints gradiefibfes as
(R)(g

oD, _ 0P (q). (42)

aq aq

In the present rigid body formulation each body is represeibly 12 redundant coordinates along withinternal con-
straints of the type (3). However, these are included inthtievthen the modified dynamic equation (28) is used. Further
more, each revolute joint yields a setioéxternal constraint equations of the form (37). Since tlaesémposed explicitly
via Lagrange multipliers, the constrained mechanicaksysinder consideration yield@n + m = 68 unknowns.

The motion of the chain after initial release is illustraiadFig. 2(a)-(d) at consecutive instances in time. The
development of the total mechanical energy is illustrateeig. 3(a) for atime step éf = 0.01. Algorithmic conservation
is obtained within an accuracy ®6~'2, which is well below the convergence tolerance pf= 10~8. Furthermore, the
components of the angular momentum vettare shown in Fig. 3(b) with; as the only non-zero component as motion
is limited to thexsxs-plane.
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Figure 3. Chain with revolute joints: (a) Total mechanical enetgy-), T’ (--), V' (---), (b) Angular momentuml,; (=), l2 (--), I3 (---).

210 10

\g/ p—

- 10 & 107

G -

L 2 4 6 8 10 0 2 4 6 8 10
t t

Figure4. Satisfaction of constraints: (a) Internal constraiets) (e), C(q)p (<), (b) External constraints.

The algorithmic satisfaction of the internal constrainis, the zero strain constraints (3) and the displacement-
momentum orthogonality relation (18) is illustrated in Fig(a). Similarly the violation of the external constraints
associated with the spherical joints, (34) is shown in F{@) 4and it is seen that the errors in all three cases are kbkw
iteration tolerance.

6.2 Hanging chain with spherical joints

In this example the hanging chain illustrated in Fig. 5(agassidered. The properties of the chain are equivalent to
the ones described above. However, now the revolute joigitwden the rigid bodies are replaced by spherical joints
allowing free relative rotation between adjacent bodietheir common points. Theses are expressed in the form (34),
hence problem hakn + m = 60 unknowns. The finite derivative®../0dq is given directly by (35).

The motion of the chain is initiated from an initial state 8anto the previous example as illustrated in Fig. 5(a).
However, the chain is now rotated an an@e= 7/4 about thex, axis, thereby introducing out-of-plane motion.

t=0 t=1 t=2 t=3

X3 ) X3 X3 X3
X2 Xo Xo Xo
| X1 X1 X1
7 X1
/\\:
Oy
I

Figure5. Motion of chain with spherical joints at selected pointsiine.

The motion at selected points in time is illustrated in Figwhile the development of energy an angular momentum
are presented in Fig. 6(a) and 6(b) for a time stepp 6 0.1. The total mechanical energy and thecomponent of
the angular momentum are conserved within an accurat9of?> and10~1°, respectively, for an iteration tolerance of
e, = 1078, Similarly internal as well as external constraints arésfiatl to well below the iteration tolerance as shown
in Fig. 7(a) and (b).
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Figure 6. Chain with spherical joints: (a) Total mechanical enegy(-), T' (--), V' (---), (b) Angular momentuml, (=), l> (--),
I3 (--).
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Figure7. Satisfaction of constraints: (a) Internal constraiets) (e), C(q)p (x), (b) External constraints.

7 Conclusions

A momentum and energy conserving time integration algorittas been presented for constrained mechanical systems
consisting of multiple rigid bodies. The independent Valda are the three translation components and a convedted se
of 3 x 3 orthonormal base vectors components for each rigid body.€fjuations of motion are derived from Hamilton’s
equations where internal constraints enforcing orthomditynof the base vectors and external constraints assatwith

the presence of kinematic joints are included initially Mégrange multipliers. Subsequently the Lagrange muétiplas-
sociated with the internal constraints are eliminated bgtatdisplacement-momentum orthogonality relationsyiteg

only a projection on the potential gradient and externabt@it gradient. A consistent discretization satisfycogser-
vation of energy and momentum is identified by equating thiefincrement of the Hamiltonian to zero. In particular,
constraints are enforced in incremental form, whereby tlieesponding Lagrange multipliers can be representedras co
stant effective mean values associated with the intervlails @pproach is illustrated for systems including bothrimaé

and external constraints.
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