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Abstract. Parametric amplification is realized by adding parametric excitation to externally
driven near-resonant oscillations. The effect of specific cubic nonlinearities on the paramet-
rically amplified steady-state vibrations and gain is investigated theoretically. Here, gain is
defined as the ratio of steady-state vibration amplitude of the directly and parametrically ex-
cited system, to vibration amplitude of the directly excited only system. The nonlinear effect of
midplane stretching is compared to the effects of nonlinear inertia and curvature. An approx-
imate analytical expression for the vibration amplitude is derived. For a given small level of
transverse displacement for both the cantilever and doubly clamped beam, the effect of mid-
plane stretching is dominant compared to those caused by nonlinear inertia and curvature. It
was found that the beam slenderness ratio can be used as an effective design parameter for
parametric amplifiers.
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1 INTRODUCTION

Parametric excitation appears as time-dependent coefficients in the governing equations.
These coefficients are related to terms associated with stiffness and/or mass [1, 2]. Paramet-
ric pumping, in this context adding parametric excitation to externally driven near-resonant
oscillations, gives parametric amplification as long as the parametric excitation is below the
instability threshold above which parametric resonance occurs. Parametric pumping can occur
for a cantilever beam at twice the resonant frequency [3]. This 2:1 relationship between para-
metric and direct excitation is the simplest parametric amplification scheme [4], referred to as
perfectly tuned or degenerate.

Many linear parametric amplifiers exhibit a narrow bandwidth [5–8]. Recent studies [9–13]
have focused on increasing the gain bandwidth. Here gain is defined as the ratio between the
steady-state vibration amplitudes of the pumped and unpumped system. Common approaches
for increasing the operating bandwidth include techniques such as frequency up-conversion, res-
onance tuning and utilizing nonlinearities: In [9], the nonlinear stiffness of a doubly clamped
beam was considered, showing that the bandwidth of an energy harvester broadened, thus mak-
ing the vibration amplitude less sensitive to a mismatch between the excitation and resonant
frequency. This is advantageous for e.g. energy harvesters, because the ambient motion and
vibration may vary with environment. However [14] reports that nonlinear effects may reduce
the steady-state vibration amplitude for perfectly tuned parametric amplifiers. Realization of
parametric amplification in a macroscale mechanical context was demonstrated in [15], with
subsequent consideration to nonlinear effects on the gain in [16].

This work examines the effect of commonly occurring cubic nonlinearities on the paramet-
rically amplified steady-state vibration amplitude response and gain. Specifically, we consider
the effects of midplane stretching and nonlinear inertia and curvature, relevant with doubly
clamped beams and cantilever beams, respectively. These nonlinearities can yield qualitative
and quantitative different results, depending on e.g. the beam slenderness ratio. In particu-
lar, for similar transverse displacements, the nonlinearity of a doubly clamped beam is much
stronger than for a cantilever beam. Thus, nonlinear effects might be easier utilized (or give
more challenges) for doubly clamped beams. The findings indicate that common nonlinearities
might find application for parametric amplification purposes in mechanics.

2 MODEL SYSTEM

A base-excited doubly clamped beam is considered as a representative model system. We as-
sume that nonlinearities are weak, the beam is slender and elastic, shear deformations, longitu-
dinal and rotatory inertia and gravity can be neglected, and cross section rotations and damping
are small. Parametric amplification is obtained by tilting the doubly clamped beam with respect
to the line of excitation x as shown in Figure 1(b); this arrangement was recently realized in
experimental laboratory setups for investigating macromechanical parametric amplification for
cantilever beams (Figure 1(a), [15, 17, 18]). The imposed base motion xb, with axial and trans-
verse components ub and vb, is provided by a vibration exciter, and the tilt angle α relates the
beam axis to the line of excitation. Using Hamiltons extended principle one obtains a nonlinear
partial differential equation which governs the longitudinal u(s, t) and transverse v(s, t) beam
displacements (with respect to the moving base):

v̈ +
c

ρA
v̇ +

EI

ρA
v′′′′ −

(
1

2l

E

ρ

∫ l

0

(v′)
2 ds+ (s− l) üb

)
v′′ − (ü+ üb) v

′ = −v̈b, (1)
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Figure 1: Base-excited tilted: (a) cantilever beam; (b) doubly clamped beam. Inertial reference coordinates x
and y. Imposed base motion with displacement components ûb and v̂b, at tilt angle α. Longitudinal û(s, t) and
transverse v̂(s, t) beam displacements.

where s ∈ [0; l] is the axial coordinate, l the beam length, t is time, ˙(i) and (i)′ denote tem-
poral and spatial derivatives, c is the damping coefficient, ρ the density of the beam, A the
cross-sectional area, E the elastic modulus, and I the area moment of inertia. The axial iner-
tia is considered negligible compared to the transverse inertia, and therefore omitted in sub-
sequent analyses. Introducing nondimensional variables t̂ = t/T , ŝ = s/l, ĉ = cT/ρA,
T =

√
ρAl4/EI , r =

√
I/A, λ = l/r, where T is a characteristic time, r the radius of

gyration of the cross-section, and λ the beam slenderness ratio, into (1), yields corresponding
nondimensional system:

¨̂v + ĉ ˙̂v + v̂′′′′ −
(

1

2
λ2
∫ 1

0

(v̂′)
2 dŝ+ (ŝ− 1) ¨̂ub

)
v̂′′ + ¨̂ubv̂

′ = −¨̂vb, (2)

where v̂ = v̂(ŝ, t̂). The base displacement x̂b is assumed to be two-frequency time-harmonic:

x̂b = Â cos(ω̂t̂+ φ) + B̂ cos(2ω̂t̂), (3)

with the components:

ûb = x̂b sinα, v̂b = x̂b cosα. (4)

Thus, the direct amplitude Â quantifies the part of the shaker input supposed to excite the
lowest beam resonance directly, while the pumping amplitude B̂ quantifies the shaker input
exciting the beam at primary parametric resonance, i.e. at twice a natural frequency, and φ is
the phase between the parametric and direct excitation. A tilt angle α = 0 refers to a positioning
of the doubly clamped beam where pure external excitation occurs, while for α = ±π/2, the
excitation is purely parametric. Assuming a single-mode approximation v̂(ŝ, t̂) = w(t̂)Φ(ŝ),
where Φ(ŝ) is the fundamental mode shape, one obtains a ordinary differential equation for the
case of perfect external and parametric tuning:

ẅ + 2εζẇ +
(
1 + εβ1Ω

2 cos (Ωτ + φ) + εβ2Ω
2 cos (2Ωτ)

)
w + εκ4w

3

= εη1Ω
2 cos (Ωτ + φ) + εη2Ω

2 cos (2Ωτ) , (5)

where β1, β2, κ4, η1 and η2 are defined in Table 1. Here ε bookmark terms assumed to be small,
ζ is the damping ratio, Ω the normalized excitation frequency, and τ the time.
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εη1 = Â cos (α)
∫ 1

0
Φdŝ, εη2 = 4B̂ cos (α)

∫ 1

0
Φdŝ

εβ1 = Â sin (α)
∫ 1

0
Φ′′Φ (ŝ− 1) dŝ, εβ2 = 4B̂ sin (α)

∫ 1

0
Φ′′Φ (ŝ− 1) dŝ

εω2κ4 = −1
2
λ2
∫ 1

0
Φ′′Φdŝ

∫ 1

0
(Φ′)2 dŝ, ω2 =

∫ 1

0
Φ′′′′Φdŝ,

∫ 1

0
Φ2dŝ = 1

Ω = ω̂/ω, εζ = ĉ/2ω, τ = ωt̂, ˙(i) = d(i)/dτ
Φ = cosh (χŝ)− cos (χŝ)− coshχ−cosχ

sinhχ−sinχ (sinh (χŝ)− sin (χŝ))

cosχn coshχn = 1, χ1 ≈ 4.73

Table 1: Nondimensional parameters.

3 THEORETICAL PREDICTIONS

3.1 Steady-state model response

Using the method of multiple scales [1], we introduce a uniformly valid expansion w(t) =
w0(T0, T1) + εw1(T0, T1) + O(ε2), where the fast time T0 ≡ t and the slow time T1 ≡ εt are
considered independent, and ε � 1. Considering the case of combined direct and parametric
primary resonance, i.e. Ω = 1 + εσ, where σ quantifies the detuning from the fundamental
unperturbed natural frequency, and following the standard procedure, the perturbation solution
becomes, to first order:

w(t) = a cos (Ωt− ψ) + ε

[
1

6
Ω2β1a cos (2Ωt+ φ− ψ) +

1

16
Ω2β2a cos (3Ωt− ψ)

−1

3
Ω2η2 cos (2Ωt) +

1

32
κ4a

3 cos (3Ωt− ψ)

]
+O(ε2), (6)

where the steady-state values of the modal amplitude a and phase ψ are solutions of nonlinear
algebraic equations:

a =
1

2

Ω2η1

√(
ζ − 1

4
Ω2β2 sin (2φ)

)2
+
(
Ω− 1 + 1

4
Ω2β2 cos (2φ)− 3

8
κ4a2

)2∣∣∣ζ2 − (14Ω2β2
)2

+
(
Ω− 1− 3

8
κ4a2

)2∣∣∣ , (7)

ψ = arctan

( 1
4
Ω2β2 sin (2φ)− ζ

1
4
Ω2β2 cos (2φ) + Ω− 1− 3

8
κ4a2

)
− φ. (8)

Similar expressions for the amplitude and phase has been derived for a cantilever beam [18],
using the lumped-mass model derived by Kumar et al. in [16]. The only difference, as com-
pared to the doubly clamped beam, is in the mode shape functions and the definition on cubic
nonlinearities.

For the linearized system (κ4 = 0) the steady-state vibration amplitude a is given explicitly
by (7), while with nonlinear midplane stretching (7) is a cubic polynomial in a2 to be solved
for a. The resulting steady-state vibration amplitudes for the cantilever beam and the doubly
clamped beam are not directly comparable, since the frequency content differ, and the responses
of the beams need to be compared at different positions due to their respective mode shapes.
To facilitate comparison, we choose to calculate the maximum transverse displacement of both
beams, occuring at ŝ = 1 and ŝ = 1/2 for the cantilever and doubly clamped beam, respec-
tively. With similar parameters, the transverse displacement will be largest for the cantilever
beam; thus, the maximum displacement of the fundamental harmonic (ε = 0 in (6)) for the
doubly clamped beam was chosen for reference, and the direct excitation amplitude for the can-
tilever beam was adjusted accordingly. These results were divided by

√
2 in order to compare
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with results obtained by direct numerical integration, for which the RMS values were computed.
Computing the RMS values was done to compensate for the possibly asymmetrical steady-state
vibration amplitudes and multi-frequency content. It is not required for the present analysis
since B̂ = 0, but nevertheless chosen so to ease comparison with subsequent analyses where
the pumping amplitude B̂ > 0.

Results were multiplied with the beams respective mode shape functions, in turn yielding the
frequency responses for displacements as shown in Figures 2(a,b). Approximate analytical and
numerical results are seen to agree well for both the cantilever beam and doubly clamped beam.
Results for the cantilever and doubly clamped beam are plotted separately, to emphasize that
their responses are for different resonant frequencies, and still not directly comparable. How-
ever, some qualitative conclusions can be made: The nonlinear effects of the cantilever beam
are negligible at small displacements (here below 5% of the beam length), i.e. the backbone is
practically vertical (Figure 2(a)), whereas midplane stretching effectively reduces the vibration
amplitude, and significantly increases the resonant bandwidth, including overhang, of the dou-
bly clamped beam (Figure 2(b)). The effect of nonlinearity on the cantilever beam response,
for larger displacements, is shown in the insert in Figure 2(a). For these small displacements,
the cantilever beam response is unaffected by a change in slenderness ratio, but for the doubly
clamped beam, the vibration amplitude and the resonant bandwidth changes. The beam slen-
derness ratio is thereby an effective way of adapting the response of parametric amplifiers for
different resonant characteristics.

In the perfectly tuned case, i.e. a 2:1 relationship between the parametric and direct ex-
citation, an excitation phase dependency exists, as illustrated in Figures 3(a,b). From Figure
3(a) it appears that the nonlinear and linearized cases are almost identical. This is expected
since the cantilever beam operates in its linear range as noted above. A minimum and maxi-
mum is observed at π/4 and −π/4, respectively, repeating with period π. For the linearized
case, these predictions have been identified previously [15]. A symmetrical relationship is ob-
served between the displacement and phase, centered at the maximum or minimum. For the
doubly clamped beam, however, Figure 3(b) indicates that an asymmetrical relationship exists
between the displacement and phase, and that it is adjustable through the beam slenderness ra-
tio. Increasing the slenderness ratio appears to reduce the transverse displacement at the beams
midpoint; reflecting that more slender doubly clamped beams have their resonance frequency
shifted further away from Ω = 1, cf. Figure 3(b).

3.2 Gain

For calculating gain, it is not needed to consider varying frequency content and beam posi-
tions as done previously; these effects cancel each other out. We use the definition of the gain:
G ≡ apumped/aunpumped, as proposed in [3], i.e. gain is the ratio of steady-state vibration am-
plitude of the directly and parametrically excited system, to vibration amplitude of the directly
excited only system. Increasing the direct excitation only has no effect on the gain, and zero
pumping yields a gain of unity. For a cantilever beam it means that the gain can only be adjusted
through the parametric excitation, see Figure 4(a). For a doubly clamped beam, however, the
gain can be adjusted via the beam slenderness ratio — not only with respect to the magnitude
of the gain, but also in terms of sensitivity towards changes in phase, as seen in Figure 4(b).
This may be advantageous for e.g. sensors, since one can easily adjust response curves. The
authors are currently investigating the relationship between the gain and input phase for increas-
ing pumping amplitudes, and for beam slenderness ratios considerably higher than used in this
work; preliminary results indicate qualitatively different behaviour. The theoretical predictions
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Figure 2: Steady-state vibration displacement v̂rms
max(ŝ) as a function of excitation frequency Ω, obtained by per-

turbation analysis (lines) and by direct numerical integration (×) (of (5) for (b) and the similar equation in [18]
for (a)): (a) cantilever beam, ŝ = 1; (b) doubly clamped beam, direct numerical integration (×) of , ŝ = 1/2.
Beam slenderness ratio: λ = 22 ( ), λ = 31 ( ), and λ = 37 ( ). For (a) and (b): backbone ( ),
Â = 0.0058, B̂ = 0, ζ = 0.05, φ = −π/4, α = π/4.
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Figure 3: Steady-state vibration displacement v̂rms
max(ŝ) as a function of phase φ, obtained by perturbation analysis

for: (a) cantilever beam. Nonlinear ( ) and linearized ( ); (b) doubly clamped beam. For (a) and (b):
B̂ = 0.004, Ω = 1; other parameters as for Figure 2.

are also tested experimentally.

4 CONCLUSIONS

We compared theoretically the effect of specific cubic nonlinearities on the parametrically
amplified vibration amplitude and gain. An analytical expression for the vibration amplitude
was derived. For a given small level of transverse displacement for both the cantilever and
doubly clamped beam, the effect of midplane stretching is dominant, compared to those caused
by nonlinear inertia and curvature. For this level of transverse displacement, the cantilever
beam effectively operates in its linear regime. For a doubly clamped beam, it was found that
the slenderness ratio can sensitively change the output amplitude and gain, and thus be used as
an effective design parameter for parametric amplifiers.
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Figure 4: Gain as a function of phase φ, obtained by perturbation analysis for: (a) cantilever beam; (b) doubly
clamped beam. For (a) and (b): Ω = 1, B̂ = 0.004 except B̂ = 0 ( ); other parameters as for Figure 2.
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