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Summary 
 

Thioredoxins (Trx) are small ubiquitous disulfide oxidoreductases involved in thiol redox control in 
all kingdoms of life and provides reducing equivalents to various enzymes (e.g. ribonucleotide reductase, 
methionine sulfoxide reductase and peroxiredoxins). Oxidized Trx is recycled by NADPH-dependent 
thioredoxin reductase (NTR) in order to complete its catalytic cycle. Glutathione-dependent glutaredoxin 
complements Trx in many organisms. This thesis focuses on disulfide reduction pathways in Lactococcus 
lactis, an important industrial microorganism used traditionally for cheese and buttermilk production. L. 
lactis lacks glutathione and glutaredoxin, but it a contains Trx system consisting of an NTR (LlTrxB), a 
classical Trx (LlTrxA) containing the conserved WCGPC active site motif, a Trx-like protein (LlTrxD) 
containing a WCGDC active site motif and a redoxin (LlNrdH) providing electrons to class Ib ribonucleotide 
reductase (NrdEF).  

Physiological functions of LlTrxA and LlTrxD were studied using ∆trxA, ∆trxD and ∆trxA∆trxD mutant 
strains of L. lactis ssp. cremoris MG1363 exposed to various stress conditions and comparing them to the 
wild type (wt) strain. These experiments revealed that the ∆trxA genotype caused about 30% growth 
inhibition at non-stressed conditions and significantly increased sensitivity to oxidants (e.g. H2O2, diamide), 
while deletion of trxD displayed an effect predominantly in the ∆trxA∆trxD mutant. The ∆trxD mutant 
exhibited a significantly higher sensitivity only in case of exposure to sodium arsenate and potassium 
tellurite. Arsenate detoxicification involves arsenate reductase (ArsC), an established Trx target in Bacillus 
subtilis. The sensitivity of the ∆trxD mutant may indicate that ArsC is reduced by TrxD in L. lactis. 
Comparison of protein profiles of the wt, ∆trxA and ∆trxD mutants by difference gel electrophoresis (DIGE) 
revealed significant changes between ∆trxA and wt. Higher levels of several oxidative stress-related 
proteins (e.g. glutathione peroxidase) were observed in the ∆trxA mutant. Proteomic analysis (pulse 
labeling by [35S]-L-methionine) of the ∆trxD mutant vs. wt upon exposure to sodium arsenate showed 
down-regulation of several ATPases (DnaK and GroEL) and GTPases (Ef-G, Ef-Ts) concomitantly with up-
regulation of enzymes involved in aerobiosis and nucleotide metabolism in the ∆trxD mutant. The 
∆trxA∆trxD deletion mutant is viable, in agreement with a previous study showing that NTR in L. lactis is not 
essential. Therefore, the presence of an additional thiol redox system is hypothesized. 

Biochemical studies demonstrated that recombinant LlTrxA, LlTrxD and LlNrdH are substrates for 
LlNTR, while only LlTrxA and LlNrdH are efficiently reduced by E. coli NTR. LlTrxA appears to have a higher 
redox potential (-259 mV) compared to E. coli EcTrx1 (-270 mV) but similar reactivity as EcTrx1 towards 
insulin disulfides and the alkylation reagent iodoacetamide (IAM). LlTrxD exhibited a high redox potential (-
243 mV) and about 100-fold higher reactivity towards IAM than LlTrxA and EcTrx1, but no activity towards 
insulin was observed. LlNrdH showed a higher redox potential (-238 mV) compared to E. coli NrdH (-248 
mV) and a lower reactivity towards insulin compared to LlTrxA.  
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Dansk resumé 
 

Thioredoxiner (Trx) er allestedsnærværende små disulfid-oxidoreduktaser, som er involveret i thiol-
redox kontrol og aktiviteten af en række enzymer (f.eks. ribonukleotidreduktaser og peroxiredoxiner) fra 
alle taksonomiske former af liv. Trx reducerer disulfider, og skal selv derefter reduceres, dette sker af en 
NADPH-afhængig thioredoxin reduktase (NTR), for at gennemføre sin katalytiske cyklus. Trx og NTR udgør 
således Trx systemet. Glutathion-afhængigt glutaredoxin systemet komplementerer Trx i mange 
organismer. I  Dette projekt omhandler Lactococcus lactis, som er en vigtig industriel mikroorganisme, der 
bruges i produktionen af ost og kærnemælk. L. lactis mangler glutathion og glutaredoxin, men koder for et 
Trx system bestående af: NTR (TrxB), en Trx (TrxA) med et WCGPC active site motiv samt en ny type 
bakteriel Trx, der indeholder active site motivet WCGDC (TrxD) og endelig en specifik redoxin (NrdH), som 
bidrager med elektroner til en klasse Ib ribonukleotidreduktase (NrdEF). 

De fysiologiske funktioner af LlTrxA og LlTrxD blev undersøgt med vækststudier af ∆trxA, ∆trxD og 
∆trxA∆trxD mutanter af L. lactis ssp. cremoris MG1363 ved forskellige stress forhold og sammenlignet med 
vildtype (wt) stammen. Disse eksperimenter viste, at ∆trxA genotypen bevirkede omkring 30% 
vækstinhibeæmning under ikke-stress vækstforhold og signifikant forøget følsomhed overfor oxidation 
(f.eks. H2O2, diamide), hvorimod gen-deletionen af trxD førte til en fenotype svarende til ∆trxA∆trxD 
mutanten. ∆trxD mutanten udviste en signifikant højere følsomhed overfor tilstedeværelsen af 
natriumarsenat og telluritfosfat. Arsenat omdannes af et kendt Trx-afhængigt enzym, arsenatreduktase 
(ArsC). Derfor kan den øgede følsomhed af ∆trxD mutanten betyde, at ArsC har specificitet for TrxD i L. 
lactis. Sammenligning af udtrykte proteinprofiler af wt, ∆trxA and ∆trxD mutanterne, ved hjælp af 
differentiel gel elektroforese (DIGE), viste signifikante forskelle imellem ∆trxA og wt, hvorimod ∆trxD var 
næsten identisk med wt. Navnlig opregulering af flere proteiner relateret til oxidativ stress (f.eks. glutahion 
peroxidase) blev observeret i ∆trxA mutanten. Proteomanalyse (pulse labeling med [35S]-L-methionin) af 
∆trxD mutanten og wt efter påvirkning med natriumarsenat viste en nedregulering af flere ATPaser (DnaK 
og GroEL) og GTPaser (Ef-G, Ef-Ts) samt en opregulering af få enzymer involveret i aerobiose og 
nukleotidmetabolisme i ∆trxD mutanten. Ingen af gendeletionerne var dødelige for L. lactis, hvilket 
bekræfter en tidligere undersøgelse, der viste, at L. lactis NTR ikke er essentielt for overlevelse. På grundlag 
af resultaterne kan der opstilles hypotese om tilstedeværelse af andre redox systemer.  

Biokemiske undersøgelse viste, at alle LlTrxA, LlTrxD og LlNrdH kan effektivt reduceres af LlNTR, 
men at kun LlTrxA og LlNrdH er mulige substrater for Escherichia coli NTR. LlTrxA udviste et tilsyneladende 
højere redoxpotentiale (-259 mV) sammenlignet med E. coli Trx1 (-270 mV), men havde lignende reaktivitet 
for insulin disulfider og alkyleringsreagenset jodacetamid (IAM). LlTrxD udviste et højt redoxpotentiale (-
243 mV) og cirka 100 gange højere reaktivitet for IAM i forhold til LlTrxA og E. coli Trx1, men ingen aktivitet 
overfor insulin. LlNrdH udviste også et højere redoxpotentiale (-238 mV) sammenlignet med E. coli NrdH (-
248 mV) og udviste kun lav reaktivitet overfor insulin. 
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1 Chapter 1 – Introduction 

1.1 Oxidative stress 

1.1.1 What is oxidative stress? 
The story begins 4 billion years ago when life evolved in the anaerobic environment on planet Earth. 

The first organisms were fermenting heterotrophs living on abiotic sources of organic compounds or 
chemotrophs using hydrogen, hydrogen sulfide and methane as energy source. In the absence of oxygen 
there was no ozone layer shielding these organisms from harmful UV radiation and some organisms 
evolved protective light-absorbing pigments. These pigments were further developed and integrated in the 
photosynthetic machinery, a membrane-bound protein complex emerging among cyanobacteria-like 
organisms approximately 3.2 to 2.4 billion years ago. In this complex the energy of the light absorbed by 
photosynthetic pigments is captured into biosynthesis coupled to extraction of electrons from water (Eq. 
1.1).1 

2H2O → O2 + 4H+ + 4e-                                                                      (1.1) 

However, the byproduct of the reaction, oxygen, became a threat for the sensitive anaerobic 
organisms. Oxygen has a strong oxidative character and sequential one-electron reduction generates 
superoxide (O2

-), hydrogen peroxide (H2O2) and hydroxyl radicals (HO∙), respectively (Fig. 1). In addition, 
singlet oxygen (1O2; Fig. 1) is formed by excitation of standard triplet oxygen for example at photosynthetic 
reaction centers. These so-called reactive oxygen species (ROS) are very potent and often cause irreversible 
oxidative damage to DNA, proteins and lipids,1, 2 as described more in detail below. 

1.1.2 Reactive oxygen species (ROS) 
The reactivity of oxygen and ROS is determined by redox potentials and structures of molecular 

orbitals. Molecular oxygen is a stable biradical with unpaired electrons in the πx* and πy* antibonding 
orbitals and does not oxidize amino acid side-chains or nucleic acids at a significant rate. However, oxygen 
can readily accept free electrons from transition metals or organic radicals (e.g. semiquinones).2 ROS have 
higher redox potentials and are thus stronger oxidants compared to oxygen (Fig. 1B). However, the 
reactivity of ROS is also influenced by electrostatic forces, i.e. the negative charge of O2

- causes repulsion 
from e--rich oxidizable regions and makes it less reactive.2 
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Fig. 1 Reactivity of ROS. (A) Molecular orbital structure of 
selected species. (B) Formation and redox potentials of ROS. 1 M 
oxygen was used as the standard state in the first step. Source: 
Imlay, 2003.2 

 
 
 

1.1.2.1 Sources of ROS and general scavenging mechanisms 
Organisms are exposed to exogenous ROS formed by abiotic chemical processes (e.g. reactions with 

UV light or ionizing radiation),3 or endogenous ROS generated in various biological processes.2 Typical 
examples of the latter ones are membrane-bound redox systems (e.g. the respiratory chain or 
photosystems). Molecular oxygen can diffuse through the cell membrane, and is converted to a mixture of 
O2

- and H2O2 by autoxidation of various redox enzymes (Fig. 3A).4–6 O2
- is further reduced to H2O2 by 

transfer of e- from redox centers or by the scavenging enzyme superoxide dismutase (SOD; Eq. 1.2).7 The 
latter reaction takes place also non-enzymatically but it is about twice as  slow as by SOD.8 Therefore the 
function of SOD is to lower the steady state concentration of O2

-.8 

2O2
- + 2e- + 2H+ → H2O2 + O2                                                                      (1.2) 

H2O2 can undergo a reaction (1.5) to produce OH∙ in the presence of iron salts as discovered in 1890s 
by H.J.H. Fenton.9 A reaction between O2

- and H2O2 catalyzed by transition metals and generating HO∙ was 
proposed by Haber and Weiss in the 1930s (Eq. 1.3).10 The intermediate steps based on in vitro experiments 
are described by equations (1.4) and (1.5).10 However, it was shown later that reduction of Fe3+ by O2

- does 
not occur in significant amounts in vivo due to a low reaction rate and a low O2

- concentration.11, 12 It was 
demonstrated that other compounds than O2

- (e.g. FADH2 cofactor and cysteine) are potent e- donors in 
the reaction (Eq. 1.4).13, 14 Therefore it is more correct to modify equation 1.4 to a generally applicable form 

A

B
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(Eq. 1.6). Evidence for gas-phase non-metal-catalyzed Haber-Weiss reaction (Eq. 1.3) has been presented 
and it was suggested that similar mechanism could occur in hydrophobic environment such as cell 
membranes or hydrophobic domains of proteins.15 

O2
- + H2O2 → O2 + HO∙ + OH-                                                                                                  (1.3) 

O2
- + Fe3+ (Cu2+) → O2 + Fe2+ (Cu+)                                                               (1.4) 

H2O2 + Fe2+ (Cu+) → Fe3+(Cu2+) + OH− + HO·                                                 (1.5) 

donorRED + Fe3+ → donorOX + Fe2+                                                                                                   (1.6) 

HO∙ is the most reactive ROS, therefore H2O2 is effectively scavenged by peroxidases (Eq. 1.7) and 
catalases (Eq. 1.8) and Fe2+ is sequestered (see below).2  

RH2 + H2O2 → R + 2H2O                                                                         (1.7) 

2H2O2 → O2 + 2H2O                                                                       (1.8) 

Formation of O2
- and consequently other ROS is also increased by redox-cycling compounds like for 

example paraquat, menadione or phenazine methosulfate (Fig.2).5, 16 

 

 

The bacterium Escherichia coli has been used as a model system to study ROS metabolism. 
Intracellular O2

- and H2O2 in this organism has been presumed to be generated mainly by the respiratory 
chain and high-abundant flavoenzymes (e.g. fumarate dehydrogenase or succinate dehydrogenase).6, 17, 18 
The respiratory chain was shown to be the major site of formation of periplasmic O2

-, in particular due to e- 
leakage through menaquinones.19 However, not more than 10% of the total H2O2 was formed in this 
manner.20 Recently, it was shown that autoxidation of NadB (L-aspartate oxidase, a desaturating 
dehydrogenase in the NAD biosynthesis pathway) contributes to the formation of H2O2 by 25 – 30% in a 
strain of E. coli lacking scavenging systems.20 It was hypothesized that NadB as a low-abundant enzyme in a 
tightly controlled pathway can be allowed to produce H2O2. On the other hand, several enzymes 
performing an analogous reaction in pathways with a higher metabolic flux (dehydroorotate 
dehydrogenase, proline dehydrogenase, fumarate reductase) were shown to be connected to the 

N
+

N
+

CH3CH3

Cl
- Cl

-

O

O

CH3

N

N
+

CH3
S

-

O
O O

O

CH3

paraquat menadione phenazine methosulfate

Fig. 2 Examples of redox-cycling compounds.  
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respiratory chain cytochrome d oxidase through the quinone pool thus avoiding high H2O2 formation upon 
aeration. The sources of about two thirds of H2O2 formed in E. coli remain to be discovered.20  

1.1.2.2 Damage caused by ROS 
ROS can effectively oxidize DNA, lipids and proteins.2 HO∙ reacts with bases or sugar moieties in DNA 

resulting in formation of damaged nucleotides (e.g. 8-oxoguanine, thymine glycol). Sometimes the products 
are unstable, resulting in formation of apurinic/apyrimidinic sites or strand breaks.21 These types of DNA 
damages have been associated with Fenton’s reaction involving DNA bound Fe2+ (Eq.(1.5)) and often lead to 
mutations that eventually may have devastating effects on cellular metabolism. On the basis of H2O2 dose 
dependent kinetics of DNA damage, it was proposed that other products of Fenton’s reaction are formed 
but they have not yet been identified.21–23 Studies on sequence dependence of DNA oxidation revealed 
increased iron binding to specific repetitive sequences present for example at the ends of chromosomes, in 
telomeres. This finding may represent a connection between oxidative stress and aging.23–25 Oxidized DNA 
is repaired by recombinational (e.g. recA) and base-excission systems (e.g. DNA glycosidases).1, 5 

Peroxidation of lipids by ROS causes destabilization of membranes. This type of damage is prevalent in 
mammalian cells containing high amounts of membrane-associated polyunsaturated fatty acids that 
promote efficient propagation of the radical chain reaction.2, 26 Polyunsaturated fatty acids are also found in 
thylakoid membranes in cyanobacteria and chloroplasts of higher plants.2 Monounsaturated fatty acids, 
e.g. in bacterial cell membranes are less susceptible to ROS-induced oxidation. However, an E. coli strain 
with a lowered content of monounsaturated fatty acids exhibits an elevated resistance to ROS.27  

Proteins are also targets for ROS-induced oxidation. Radicals associated with ROS may abstract a 
hydrogen from the Cα atom in the peptide backbone resulting in formation of a peroxyl radical in the 
presence of oxygen. The peroxyl radical may react further to generate fragmentation of the main chain.28, 29 
The chemical properties of amino acid side-chains and cofactors of enzymes also allow a broad range of 
modifications, most of which are irreversible. Aliphatic amino acids can undergo hydrogen atom 
abstraction and peroxyl radical formation in the side-chain and subsequent radical-radical termination 
reactions often lead to carbonyl and alcohol formation.30 Amino groups present on side-chains of Lys, Arg, 
Asn and Gln can form halogenamine/halogenamide derivatives in the presence of HOX (X=Cl, Br).29, 31, 32 
These products are often unstable and form nitrogen-centred radicals and carbonyls.32 Aromatic amino 
acids possess electron-rich side chains and are particularly susceptible to oxidation. For example a phenoxyl 
radical of tyrosine is formed either by deprotonation of the hydroxyl group or by addition-eliminaton 
reaction with HO∙. Dimerization of the phenoxyl radical can result in protein cross-linking, or alternatively it 
can be repaired for example by reaction with suitable hydrogen donors (e.g. thiols, ascorbate). ROS react 
with His, Trp and Phe to form hydroxylated derivatives.29, 30 O2

- and H2O2 damage [4Fe-4S]2+ clusters of 
dehydratases (e.g. aconitase33). The cluster is oxidized concomitantly with release of Fe2+ or Fe3+, while 
[3Fe-4S]+ remains attached to the enzyme (Eq. 1.7 and 1.8; Fig. 3BD).34–36 In addition, Fe2+ or Fe3+ also 
contribute to further oxidative damage by Fenton’s reaction (Fig. 3CE; see above).2, 37 If only one iron atom 
is released, the cluster can be repaired by a so far unknown mechanism. Otherwise it has to be assembled 
de novo.38 

Enz-[4Fe-4S]2+ + ∙O2
- + 2H+ → Enz-[3Fe-4S]+ + H2O2 + Fe2+                                    (1.7) 
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Fig. 3 Damage of [4Fe-4S] clusters by ROS. (A) Flavin cofactors can transfer e- to oxygen, thus generating a 
mixture of O2

- and H2O2. Both species can damage iron-sulfur clusters. O2
- performs univalent oxidation (B) 

which can be followed by Fenton’s reaction (C). H2O2 reacts divalently with [Fe-S] clusters (D). Fe3+ 
generated in this reaction can be reduced by available cellular reductants, e.g. FADH2 (E). Dashed arrow 
represents the suggested repair mechanism of the iron-sulfur cluster (F). Based on Imlay (2003).2 

Enz-[4Fe-4S]2+ + H2O2 → Enz-[3Fe-4S]+ + 2OH- + Fe3+                                    (1.8) 

 

 

Sulfur-containing amino acids (cysteine, methionine) are exceptionally reactive and susceptible to 
reversible and irreversible oxidative modifications.29 The oxidation product of methionine is in most cases 
(R)- and (S)-methionine sulfoxide (MetSO). The ratio of the two stereoisomers depends both on the oxidant 
and the structure of the particular protein.39 Further oxidation leads to the methionine sulfone (Fig. 4).29 
MetSO can be enzymatically repaired by methionine sulfoxide reductases but oxidation to methionine 
sulfone appears to be irreversible. Most organisms contain one isoform of MetSO reductase for each 
enantiomer (MsrA for (S)- and MsrB for (R)-).5, 40, 41 MsrA can reduce both protein-bound and free Met-(S)-
SO while MsrB is specific for protein-bound Met-(R)-SO. Enzymes specific for free MetSO have been 
discovered in E. coli.42, 43 
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Fig. 4 Oxidation of methionine. Assymetric incorporation of oxygen leads to the mixture of  
(R)- and (S)- stereoisomers of methionine sulfoxide which can be reduced again by methionine 
sulfoxide reductases. Further oxidation to sulfone is irreversible. The figure demonstrates 
oxidation of free methinonine, but this occurs frequently on protein level. For more details see 
text. 

 

                     

By action of ROS, a cysteine thiol group can be oxidized to sulfenic, sulfinic and sulfonic acid, or react 
with a second thiol to form a disulfide (Fig. 5ABCDE). Based on binding partners, disulfides can be 
intramolecular or intermolecular. The latter ones are formed either between two proteins or between a 
protein and a low molecular weight (LMW) thiol (e.g. glutathione; GSH). Only sulfenic acid and disulfides 
are generally formed reversibly while sulfinic and sulfonic acids are usually irreversible.2 However, in case 
of several eukaryotic peroxidases, active site over-oxidized cysteine as sulfinic acid can be reduced by 
sulfiredoxins.44–46 Cysteine sulfonic acid can also be formed by hydrolysis of halogenated derivatives 
resulting from reactions with HOCl (Fig. 5F).29, 32, 47 Apart from ROS, cysteine can react with reactive 
nitrogen species (RNS; Fig. 5GH) and reactive electrophilic species (RES; Fig. 5I).48–51  

Oxidation of free thiols or [Fe-S] clusters of various cytoplasmic proteins by ROS may lead to 
inactivation. For instance, enzymes involved in glycolysis (e.g. glyceraldehyde-3-phosphate dehydrogenase, 
pyruvate kinase and enolase), pyruvate dehydrogenase complex, tricarboxylic acid cycle (e.g. citrate 
synthase, aconitase, α-ketoglutarate dehydrogenase) and also in translation (e.g. elongation factors) are 
inactivated by ROS.52 On the other hand, proteins functioning as redox sensors (e.g. OxyR in E. coli) are 
activated upon oxidation, which leads to transcription of genes involved in ROS scavenging, thiol protection 
or repair processes (see 1.3.2 below).49  
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Fig. 5 Oxidative protein thiol modifications. Proteins containing free thiols can form intra- or 
intermolecular disulfides (A, B). Oxidation by ROS leads to sulfenic acid (C) and this intermediate can either 
form intra- or intermolecular disulfides (A, B), or undergo further oxidization to sulfinic acid (D) and 
sulfonic acid (E). Sulfenyl chloride (F) formed by a reaction with sodium hypochlorite, can be hydrolyzed to 
sulfonic acid. Oxidation by RNS (NO, ONOO-) forms nitroso- or nitrothiols, respectively (G, H). RES (e.g. 
formaldehyde) also readily attack free thiols by their electrodeficient carbon centers, which results in a 
corresponding alkylthiol (e.g. hydroxymethylthiol; I).  

 

 

1.2 Thiol-redox control 

1.2.1 General overview 
As outlined above, reduced protein thiol groups are highly reactive and susceptible to ROS-induced 

oxidation. The reactivity of protein thiol groups is also captured in a wide range of metabolic pathways 
where active site cysteine residues in enzymes undergo reversible redox reactions such as disulfide bond 
formation.52–54 Regulation of thiol redox status is essential and catalysed by thiol-disulfide oxidoreductases 
of the thioredoxin superfamily which share structural features and a redox-active CXX[C/S] active site motif 
(see section 1.2.3.2). In the cytoplasm thiol groups are in general maintained in a reduced state by LMW 
thiols (e.g. the tripeptide glutathione) and/or small protein disulfide reductases such as thioredoxins (Trx ) 
and glutaredoxins (Grx) at the expense of NADPH. On the other hand, structural disulfides are typically 
formed in secreted proteins and extracellular domains of membrane proteins by protein disulfide 
isomerase (PDI) in the oxidizing endoplasmic reticulum of eukaryotes (Fig. 6) or Dsb proteins in the 
periplasm of Gram-negative bacteria such as E. coli (see 1.3).55–57 In addition, under certain conditions (e.g. 
oxidative stress), thiol groups in intracellular target proteins are glutathionylated by glutathione-S-
transferase. 
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Fig. 6 Oxidative protein folding. Secreted proteins in eukaryotes are translocated into ER where they 
are folded into their native conformation. PDI catalyzes both formation and isomerisation of disulfide 
bonds. When reduced, PDI is re-oxidized by a trans-membrane flavoprotein Ero1 concomitantly 
reducing molecular oxygen. Based on Schwaller (2003) and Tu (2004).56, 57 

 

 

 

1.2.2 Disulfide reduction pathways 
Trx and Grx reduce inter- and intramolecular protein disulfides and mixed protein-GSH disulfides.58, 59 

Trx is in general reduced by NADPH-dependent thioredoxin reductase (NTR), but photosynthetic organisms 
also contain ferredoxin-dependent Trx reductase coupled to photosynthesis (FTR). Grx is reduced non-
enzymatically by GSH, which in turn is reduced by NADPH-dependent glutathione reductase (GR). 
Physiological studies in yeast and bacteria lacking either Trx or Grx systems suggest significant cross-talk 
between these two thiol redox pathways.60, 61 A schematic depiction of the Trx and Grx systems is shown in 
Fig. 7. 
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Fig. 7 General overview of Trx and Grx systems. Intramolecular-, intermolecular- and mixed protein 
disulfides are reduced by NADPH-NTR-Trx and NADPH-GR-GSH-Grx, although particular target proteins do 
not always overlap. (See text) 

 

 

 

Trx is a ubiquitous protein-disulfide oxidoreductase of approximately 10‒12 kDa. It was first 
discovered in the 1960s as a source of reducing power for aerobic (class I) ribonucleotide reductase (RNR) 
in E. coli.62, 63 The GSH/Grx system was discovered shortly after as an alternative e- source for class I RNR in 
a trx mutant.64 Subsequently, many other functions of Trx and Grx have been reported in different 
biological systems. Validated target proteins (i.e. confirmed by biochemical studies) include for example 
antioxidant enzymes like glutathione peroxidases (Gpx) and peroxiredoxins,65–68 sulfate assimilation enzyme 
3'-phosphoadenosine-5'-phosphosulfate (PAPS) reductase,69, 70 arsenate reductase,71–73 and methionine 
sulfoxide reductase.74, 75 Other target proteins regulated by Trx/Grx include e.g. barley α-amylase/subtilisin 
inhibitor (BASI)76, limit dextrinase inhibitor,77 transcription factors OxyR, NF-κB and Ref-1,78–80 and 
elongation factor EF-G.81 In addition to disulfide reductase activity, the reduced form of E. coli Trx1 is a 
component of the processive bacteriophage T7 DNA polymerase82 and displays chaperone activity in vitro.83 
A scheme (Fig. 8) displays examples of known Trx and/or Grx targets with emphasis on bacterial systems.  
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Fig. 8 Functions of Trx. This scheme shows a list of several “well-known” Trx target proteins with emphasis 
on bacteria; RNR1 – class I ribonucleotide reductase; PAPS-R – 3'-phosphoadenosine-5'-phosphosulfate 
reductase; Msr – methionine sulfoxide reductase; Prx – peroxiredoxin; ArsC – arsenate reductase; 
DsbD/CcdA – transmembrane disulfide reductases in Gram-negative (DsbD) or Gram-positive bacteria 
(CcdA), see Fig.16; PAP - adenosine 3',5'-bisphosphate; MetSO – methionine sulfoxide; R-OOH – alkyl 
peroxide (or H2O2); R-OH – alcohol (or H2O); EF-G – translation elongation factor G; OxyR – H2O2 sensor in 
E. coli and other bacteria (see 1.3.2); GAPDH – glyceraldehyde-3-phosphate dehydrogenase. 

 

Various potential Trx or Grx targets were identified by proteomics methods involving affinity 
chromatography and/or thiol-specific labeling.52 Methods based on affinity chromatography involve the use 
of immobilized active site mutants to trap intermolecular disulfide complexes (Fig.9B; see section 1.2.3.1.) 
of target proteins from various protein extracts.52 Many target proteins were identified using this approach, 
including some established targets (e.g. peroxiredoxins and elongation factors). Studies in plants showed 
that all enzymes associated with TCA cycle were found to be redox-regulated (see above) and most of them 
to be targets of Trx (aconitase, PDH E1, PDH E2, PDH E3, isocitrate dehydrogenase, malate dehydrogenase, 
succinate dehydrogenase, succinyl-CoA ligase) and/or Grx (acetyl-CoA ligase, succinate dehydrogenase, 
malate dehydrogenase, isocitrate dehydrogenase).52, 84–86 The situation was similar in chloroplasts where 
almost all involved enzymes were found to be Trx and/or Grx targets.52, 84, 85  
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Fig. 9 Identification of Trx targets by proteomics. (A) Reactions of two common thiol-specific alkylating 
agents N-ethylmaleimide (NEM) and iodoacetamide (IAM) and the reducing agent dithiothreitol (DTT); (B) 
Trx affinity chromatography is based on trapping Trx-target complexes on a column with immobilized Trx. 
Reducing agent (e.g. DTT) elutes the target proteins, which can be separated and identified by mass 
spectrometry (MS). (C) A protein extract can be treated by Trx and released thiols labeled by a thiol-
specific fluorescent dye. The remaining disulfides are reduced, alkylated and proteins are separated by e.g. 
2D-gel electrophoresis followed by visualization of the fluorescence and further identification by MS. (D) 
Two identical protein samples are either treated by Trx or not and the thiols released by Trx are alkylated. 
Then reduction of remaining disulfides is performed, followed by differential labeling of the samples ± Trx 
by light (L) or heavy (H) ICAT reagent. Samples are then mixed 1:1, digested by trypsin and LC/MS follows. 
Then labeled peptides are identified, quantified and samples with ratio H/L > 1 are Trx targets. Based on 
Lindahl (2011)52 and Hägglund (2010).91 

 

 

Methods based on thiol-specific labeling include 2D-gel electrophoresis or LC-MS based proteomics. 
Gel-based approaches often involve thiol-specific fluorescent labels like e.g. monobromobimane, thiol-
specific versions of Cy3 and Cy5 dyes, or BODIPY FL C1-IA. Generally, protein thiols in extracts treated by Trx 
are labeled, separated by 2D PAGE, visualized and compared to a control without Trx (Fig.9C).52, 87, 88 An 
example of an LC-MS based method involves labeling with thiol specific isotope-coded affinity tag (ICAT) 

N

O

OCH3

S R

O

NH2SR

N

O

OCH3

+ RSH

O

I NH2 + RSH

NEM

IAM

A

OH SH

target

Trx affinity column

no 
target

HS

HS
target

no 
target

no 
target

no 
targetHS

HS target

wash

DTT

protein extract
separation and 
identification

B

C

S

S
target

S

S no 
target

Trx HS

HS
target

S

S no 
target S

S no 
target

S

S
target

labeling

reduction
+

alkylation (X) S

S
target

XS

XS no 
target

S

S
target

S

S
target

Trx

no Trx

HS

HS
target

S

S
target

alkylation (x)

alkylation (x)

XS

XS
target

S

S
target

reduction

reduction

HS

HS
target

HS

HS
target

labeling H

labeling L

S

S
target

S

S
target

L

L

H

H

D

mix 1 : 1

trypsin digestion

SH
SH

OH

OH
S

S
OH

OHRSSR

2 RSH

DTT



20 
 

 

reagents containing nine isotopically labeled (13C (heavy) or 12C (light)) carbon atoms. Trx treated samples 
and controls (-Trx) are subjected to differential labeling with heavy and light ICAT followed by trypsin 
digestion and LC-MS analysis. Peptides containing cysteines from targets can thus be identified and the 
extent of disulfide reduction quantified by from ICAT heavy/light labeling ratios (Fig.9D).52, 89 Studies 
conducted in barley and wheat seeds confirmed several previously identified glycolytic (e.g. GAPDH) and 
TCA cycle enzymes (e.g. malate dehydrogenase) and stress proteins (e.g. 1-Cys peroxiredoxins, 
dehydroascorbate reductase). Identified targets also include several storage proteins and proteinaceous 
inhibitors of enzymes responsible for nutrients mobilization (e.g. BASI).52, 89–91 A proteomics approach based 
on so-called tandem affinity purification was applied to identify proteins interacting with E. coli Trx 
independent of the redox active site, including glycolytic proteins (e.g. glyceraldehyde-3-phosphate 
dehydrogenase and enolase) as well as some transcription factors not containing cysteine (e.g. RcsB and 
NusG).52, 92 

1.2.3 Thioredoxin system 

1.2.3.1 The catalytic mechanism of Trx 
Trx is more thermodynamically stable in its oxidized form than its reduced form. For example the 

differences between the energies needed for unfolding (∆∆G°H2O = 15 kJ/mol) and  between melting 
temperatures (ΔTm = 13 °C) in favor of the oxidized protein were determined for EcTrx1.93 This stability 
difference provides the necessary driving force for the disulfide reduction reaction and determines the 
strong redox potential of Trx (E’0= -270 mV for E. coli Trx1).94 Generally, Trx reduces target protein 
disulfides by a thiol-disulfide exchange reaction as depicted in Fig.10. In the first step the thiolate form of 
the more N-terminal active site Cys (CN; CGPC) makes a nucleophilic attack on the target disulfide, which 
results in formation of an intermolecular disulfide intermediate. This intermediate is attacked by the more 
C-terminal Cys (CC; CGPC) in Trx and the complex is resolved into reduced target protein and oxidized Trx. 
The pKa of the surface-exposed CN of Trx (approximately 7) is a key feature enabling the first step of the 
reaction at physiological conditions. The thiolate anion is stabilized by hydrogen bonds with the backone 
amide of the active site glycine and CC, and probably also K57EcTrx and D26EcTrx1.95, 96 The pKa of the buried 
CC is around 9 and it is expected to be protonated in this first half of the thiol-disulfide exchange 
reaction.97–100 The second, resolving step demands deprotonation of CC in order to attack the 
intermolecular disulfide bond and dissociate the Trx-target complex. Mutation of the conserved D26Ectrx1 to 
uncharged residues significantly slowed down the cleavage of the complex. Acid/base catalysis involving 
the β-carboxyl group of D26EcTrx1 was proposed to facilitate deprotonation of Cc.101 This hypothesis was 
challenged recently, and it was suggested that a transient interaction with the backbone amide of W 
preceding the active site (WCGPC) is responsible for this deprotonation.72, 95, 102, 103 
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Fig.10 Trx mechanism. The thiolate anion of the CN in the active site CNGPCC motif of the reduced Trx 
attacks the target protein disulfide and an intermolecular disulfide is formed. This disulfide is attacked by 
the thiolate of the CC in the active site of Trx, which results in release of the reduced target protein and 
oxidized Trx. The latter is reduced by NTR in order to fulfill a catalytic cycle. 

 

 

1.2.3.2 Structure of Trx 
The structure of Trx consists of a five-stranded β-sheet surrounded by four α-helices (βαβαβαββα) and 

contains a conserved CXXC redox-active motif.104 The central pattern of a four-stranded β-sheet and three 
α-helices (βαβαββα) thus lacking the N-terminal βα, represents the whole structure of Grx, and is 
conserved in many other thiol-disulfide oxidoreductases including for example DsbA (has also a homolog in 
Gram-positive bacteria called BdbD), PDI, and in various Trx-like proteins; e.g. human TRP14; bacterial 
proteins StoA; ResA; Ccmg; and many others. The fold was first observed in the Trx structure, therefore it is 
called the Trx fold, and the proteins sharing it constitute the Trx superfamily.105–114 

The following section describes important residues in Trx with reference to the well-characterized Trx1 
from E. coli (Fig. 11, Fig. 12). When starting from the N-terminus, F12EcTrx1 is conserved and was suggested 
to be a part of a hydrophobic pocket together with F27EcTrx1.115 The latter residue is located right behind 
D26EcTrx1, which was suggested to be involved in catalysis by stabilizing the thiolate anion of the C-terminal 
active-site cysteine residue (CC) facilitating its attack on inter-molecular disulfide intermediates (see section 
1.2.3.1.).101, 116 D26EcTrx1 together with K57EcTrx1 forms a charged region between the β-sheet and α2-helix, 
which was also suggested to stabilize the low pKa of the N-terminal active site cysteine (CN; Fig. 11E).96, 117 
W31EcTrx1, which is important for the thermodynamic stability of Trx, interacts with other conserved 
residues, namely A29EcTrx1 and D61EcTrx1 (Fig. 11E).104, 115, 118, 119 W31EcTrx1 is followed by the CGPC active site 
motif. In reduced Trx, CN is solvent-exposed and more nucleophilic than CC, which is buried. The disulfide 
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formation in Trx does not introduce major conformational changes. However, a few local changes in 
dihedral angles and hydrogen bonding occur around the active site.120, 121 Mutations of G or P in the active 
site motif influence redox properties and stability of Trx.95, 99, 122 The active site is followed by the conserved 
P41EcTrx1, which forms a kink in the α2-helix and stabilizes Trx structure.123, 124 P76EcTrx1 is in a cis-
conformation, and is conserved in all Trx-like proteins. It interacts with the active site and influences the 
redox potential.95, 124, 125 Together with the two preceding residues, P76EcTrx1 forms a loop contributing to 
recognition of target proteins.76, 126 P76EcTrx1 is followed by T77EcTrx1 forming a hydrogen bond with its own 
and the following residue’s main chain oxygens.95, 115 Conserved G84EcTrx1 and G92EcTrx1 surround the β5-
strand and are important for Trx activity. In particular G92EcTrx1, which is a part of the VGA motif seems to 
be important for the interaction with target proteins.76, 126 Some other positions containing hydrophobic 
residues (I72EcTrx1, I75EcTrx1, L78EcTrx1) form a hydrophobic pocket next to the active site, which was 
suggested to be important for the interaction with NTR in bacteria.106 
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Fig.11 Structure of Trx. (A) Sequence logo based on ClustalW multiple alignment of classical thioredoxins 
(Fig. 12) with secondary structure marked above the sequence; (B) Scheme of the secondary structure of 
Trx showing positions of important residues and highlighting the parts belonging to Trx fold shared by 
other proteins (see the text); (C, D) Structure of oxidized Trx from two different angles showing the 
positions of the conserved residues marked as follows: active site disulfide (gold), hydrophobic residues 
(green), positively charged (red), negatively charged (dark blue), proline (purple), glycine (cyan), tryptophan 
(orange), alanine (pink); (E) Close-up look at the active site (EcTrx1 numbering); for more details see the 
text. 3D-structure images were made in PyMOL v1.3 (Schrödinger LLC) from PDB file 2O7K representing 
oxidized TrxA of S. aureus. The secondary structure scheme is based on the same data. The logo is made by 
use of Weblogo (http://weblogo.berkeley.edu/). Based on Collet & Messens, 2010.95 
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Fig.12 Multiple alignment of selected classical Trx homologs. UniProt accession numbers: S. coelicolor 
TrxA (P52230), E. coli TrxA (P0AA25), Nostoc TrxA (P0A4L1), M. tuberculosis Trx (P0A616), S. aureus TrxA 
(A6QG47), B. subtilis TrxA (P14949), L. lactis TrxA (A2RJC9), L. casei TrxA1 (G1U9U9), H. pylori TrxA 
(P66928), H. vulgare TrxH1 (Q7XZK3), O. sativa TrxH1 (Q0D840), A. thaliana TrxH1 (P29448), H. sapiens 
Trx1 (P10599), M. musculus Trx (P10639),  C. reinhardtii TrxH (P80028), S. cerevisiae Trx1 (P22217); 
residues identical or similar to the consensus sequence based on present alignment are marked black or 
gray, respectively; the alignment was made by using ClustalW2 algorithm and BoxShade 3.21 online 
editing tool (http://www.ch.embnet.org/software/BOX_form.html); secondary structure was marked 
according to the Figure 11. 

 

 

1.2.3.3 The Trx reductase 
Oxidized Trx needs to be recycled and gain two electrons in order to complete a catalytic cycle. The 

electron source is in most cases a homodimeric flavoenzyme called NADPH-dependent thioredoxin 
reductase (NTR; see above). Bacteria, archea and some lower eukaryotes (e.g. plants, yeast) possess low-
molecular-weight NTR (35 kDa per monomer) containing one CXXC redox center. Higher eukaryotes (e.g. 
mammals) possess high-molecular-weight NTR (55 kDa per monomer) containing an additional C-terminal 
redox center employing a nucleophilic selenocysteine. This difference is also reflected in functionality, as 

Streptomyces_coelicolor_TrxA      1 MAG----TLKHVTDDSFEQDVLKNDK---PVLVDFWAAWCGPCRQIAPSLEAIAAEYGD-KIEIVKLNID 
Escherichia_coli_TrxA             1 MSD----KIIHLTDDSFDTDVLKADG---AILVDFWAEWCGPCKMIAPILDEIADEYQG-KLTVAKLNID 
Nostoc_TrxA                       1 MS-----AAAQVTDSTFKQEVLDSDV---PVLVDFWAPWCGPCRMVAPVVDEIAQQYEG-KIKVVKVNTD 
Mycobacterium_tuberculosis_Trx    1 MTDSEKSATIKVTDASFATDVLSSNK---PVLVDFWATWCGPCKMVAPVLEEIATERAT-DLTVAKLDVD 
Staphylococcus_aureus_TrxA        1 MAI------VKVTDADFDSKVESG-----VQLVDFWATWCGPCKMIAPVLEELAADYEG-KADILKLDVD 
Bacillus_subtilis_TrxA            1 MAI------VKATDQSFSAETSEG-----VVLADFWAPWCGPCKMIAPVLEELDQEMGD-KLKIVKIDVD 
Lactococcus_lactis_TrxA           1 MEY-------NITDATFDKETKEG-----LVLIDFWATWCGPCRMQAPILEQLSEELDESELKICKMDVD 
Lactobacillus_casei_TrxA1         1 MVQ-------AVTDSNYKTETDTG-----VTLTDFWATWCGPCRMQSPVIDKLAESRD--DVKFVKMDVD 
Helicobacter_pylori_TrxA          1 MSHY-----IELTEENFESTIKKG-----VALVDFWAPWCGPCKMLSPVIDELASEYEG-KAKICKVNTD 
Hordeum_vulgare_TrxH1             1 MAAEEGAVIACHTKQEFDTHMANGKDTGKLVIIDFTASWCGPCRVIAPVFAEYAKKFP--GAIFLKVDVD 
Oryza_sativa_TrxH1                1 MAAEEGVVIACHNKDEFDAQMTKAKEAGKVVIIDFTASWCGPCRFIAPVFAEYAKKFP--GAVFLKVDVD 
Arabidopsis_thaliana_TrxH1        1 MASEEGQVIACHTVETWNEQLQKANESKTLVVVDFTASWCGPCRFIAPFFADLAKKLP--NVLFLKVDTD 
Homo_sapiens_Trx1                 1 ------MVKQIESKTAFQEALDAAGD--KLVVVDFSATWCGPCKMIKPFFHSLSEKYS--NVIFLEVDVD 
Mus_musculus_Trx                  1 ------MVKLIESKEAFQEALAAAGD--KLVVVDFSATWCGPCKMIKPFFHSLCDKYS--NVVFLEVDVD 
Chlamydomonas_reinhardtii_TrxH    1 ---MGGSVIVIDSKAAWDAQLAKGKEEHKPIVVDFTATWCGPCKMIAPLFETLSNDYAG-KVIFLKVDVD 
Saccharomyces_cerevisiae_Trx1     1 ------MVTQFKTASEFDSAIA--QD--KLVVVDFYATWCGPCKMIAPMIEKFSEQYP--QADFYKLDVD 
consensus                         1 .          ...  ..  .  .     ....**.*.*****....*...... ..    . ......* 
 
 
Streptomyces_coelicolor_TrxA     63 ENPGTAAKYGVMSIPTLNVYQGGEVAKTIVGAKPKAAIVRDLEDFIAD------- 
Escherichia_coli_TrxA            63 QNPGTAPKYGIRGIPTLLLFKNGEVAATKVGALSKGQLKEFLDANLA-------- 
Nostoc_TrxA                      62 ENPQVASQYGIRSIPTLMIFKGGQKVDMVVGAVPKTTLSQTLEKHL--------- 
Mycobacterium_tuberculosis_Trx   67 TNPETARNFQVVSIPTLILFKDGQPVKRIVGAKGKAALLRELSDVVPNLN----- 
Staphylococcus_aureus_TrxA       59 ENPSTAAKYEVMSIPTLIVFKDGQPVDKVVGFQPKENLAEVLDKHL--------- 
Bacillus_subtilis_TrxA           59 ENQETAGKYGVMSIPTLLVLKDGEVVETSVGFKPKEALQELVNKHL--------- 
Lactococcus_lactis_TrxA          59 ENPATAQGFGIMSIPTLMFKKDGEEVKRIVGVQTKAQLKAVIAELS--------- 
Lactobacillus_casei_TrxA1        57 ANPETPKSFGIMAIPTLVIKKDGEVVEKLVGYQTKDQLESTLNKYTA-------- 
Helicobacter_pylori_TrxA         60 EQEELSAKFGIRSIPTLLFTKDGEVVHQLVGVQTKVALKEQLNKLLG-------- 
Hordeum_vulgare_TrxH1            69 ELKDVAEAYNVEAMPTFLFIKDGEKVDSVVGGR-KDDIHTKIVALMG----SAST 
Oryza_sativa_TrxH1               69 ELKEVAEKYNVEAMPTFLFIKDGAEADKVVGAR-KDDLQNTIVKHVGATAASASA 
Arabidopsis_thaliana_TrxH1       69 ELKSVASDWAIQAMPTFMFLKEGKILDKVVGAK-KDELQSTIAKHLA-------- 
Homo_sapiens_Trx1                61 DCQDVASECEVKCMPTFQFFKKGQKVGEFSGAN-KEKLEATINELV--------- 
Mus_musculus_Trx                 61 DCQDVAADCEVKCMPTFQFYKKGQKVGEFSGAN-KEKLEASITEYA--------- 
Chlamydomonas_reinhardtii_TrxH   67 AVAAVAEAAGITAMPTFHVYKDGVKADDLVGAS-QDKLKALVAKHAAA------- 
Saccharomyces_cerevisiae_Trx1    59 ELGDVAQKNEVSAMPTLLLFKNGKEVAKVVGAN-PAAIKQAIAANA--------- 
consensus                        71 .. ...  ...  .**......*  .. ..*.  .. .   . . ..         

N

C

http://www.ch.embnet.org/software/BOX_form.html
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Fig.13 NTR mechanism. (A) Schematic representation: In the FO conformation FADH2 reduces the buried 
disulfide in NTR. In the FR conformation the active site CXXC motif in NTR can react with Trx while NADPH 
regenerates the flavin cofactor. Red arrows mark the direction of the electron flow. Based on Kirkensgaard 
et al. (2009).139 (B) Structure of an NTR monomer in the FO conformation showing FAD in vicinity of the 
active site dithiol. Structure of the stable complex of dimeric NTR with Trx demonstrates the FR 
conformation where the NADPH-domain is rotated and the active site is accessible to Trx and FAD is 
reduced by NADPH. NADPH-domain – pink, FAD-domain – green, Cys – orange, FAD – yellow, NADPH – 
blue, Trx – red; Images were made in PyMOL v1.3 (Schrödinger LLC) based on structures of E. coli enzymes; 
PDB files: 1CL0 (NTR monomer), 1F6M (NTR-Trx complex). 

mammalian NTRs exhibit a relatively wide substrate specificity.127–130 There are also other forms of NTRs 
like e.g. NTR-C, which is a fusion protein in plants and cyanobacteria, containing NTR and Trx within the 
same polypeptide.131, 132 A similar fusion protein was also observed in Mycobacterium leprae.133 

A low-molecular-weight NTR polypeptide consists of an NADPH-binding domain harboring the CXXC 
active site motif and an FAD-binding domain. The catalytic mechanism of NTR includes a 67⁰ rotation 
between two conformations called flavin-oxidizing (FO) and flaving-reducing (FR; Fig. 13). This event was 
suggested to be a rate-limiting step of the NTR reaction mechanism.134–138 In the FO conformation, FADH2 
reduces the active site disulfide, which is buried in its vicinity. Then the NADPH-binding domain rotates 67⁰ 
resulting in exposure of CXXC, making it available for interactions with Trx. Concomitantly, the bound 
NADPH molecule is displaced 17 Å and positioned in close vicinity of FAD. A recent study of barley NTR2 
proposed a hypothesis that an initial surface interaction between Trx and NTR in the FO conformation can 
be a trigger for the conformational change to FR. Only at this stage, NADPH binding followed by FAD 
reduction can occur, concomitantly with reduction of Trx (Fig. 13).139 
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1.3 Bacterial thiol redox systems 

1.3.1 General overview 
Thiol oxidoreduction in bacteria is catalyzed by the ubiquitous types of thioredoxin family proteins 

described above. The Trx system of E. coli, B. subtilis and S. aureus has been thoroughly investigated.140–144 
E. coli is viable when either the Trx or Grx system is active. However, it demands an exogenously added 
disulfide reductant for growth when both disulfide reductants are impaired.61, 145, 146 Deletion of trxA in B. 
subtilis introduced deoxyribonucleoside, Cys/Met auxothrophy and impaired extracellular redox processes 
like e.g. spore formation.147 A transcriptomic study examining gene expression at different levels of TrxA 
showed overexpression of genes involved in oxidative stress and sulfur metabolism upon TrxA depletion.148  

In addition several atypical Trx-like or Grx-like proteins have been identified among bacterial species. 
E. coli Trx2 is a Trx-like protein containing two additional N-terminal CXXC motives (CTHC, CGRC) 
complexing Zn2+ ions. Oxidation by H2O2 releases Zn2+ and induces conformational changes.149 A similar 
concept of oxidation-related zinc release from a complex with thiols commonly exists in thiol-based redox 
sensors (e.g. Spx in B. subtilis, RsrA in Streptomyces coelicolor or human KEAP1/Nrf2).49, 150–152 Such a 
function was suggested also for Zn2+-binding in EcTrx2.149 Bound Zn2+ was shown to increase 
thermodynamic stability and influence redox properties of EcTrx2. Particularly, disruption of Zn2+-binding by 
C to S mutation decreased the redox potential from -221 mV to -254 mV and pKa shifted from 5.1 to 7.1.93 
Unlike EcTrx1, which is under control of the stringent response factor ppGpp and is highly induced in 
stationary phase, EcTrx2 is under control of OxyR (see below), which suggests a role in oxidative stress 
response.153, 154 EcTrx2 can reduce ribonucleotide reductase, PAPS reductase and DsbD, but not methionine 
sulfoxide reductase.149, 155 Trx2 from Deinococcus radiodurans has been partially characterized and potential 
homologs were found in various other bacteria.149, 156  

Several putative thioredoxins containing WC[G/P]DC sites have been reported, e.g. H. pylori Trx2 
(WCPDC), L. lactis TrxD (chapter 2 and 3), B. subtilis YtpP and YdpP (WCPDC), B. anthracis Trx2 (WCPDC). 
HpTrx2 was shown to contribute in oxidative and nitrosative stresses, especially cumene hydroperoxide.157 
Protein disulfide reductase activity of HpTrx2 was confirmed by insulin assay.158 However, it was shown not 
to interact with the ubiquitous bacterial NADH-peroxidase AhpC, which is dependent on a WCGPC-type Trx 
in this organism. The genes ytpP and ydpP in B. subtilis are non-essential and were observed to be induced 
by Spx in the presence of diamide.148, 159–161 The latter one is also induced by the stress factor σB and its up-
regulation in correlation with TrxA (WCGPC-type) depletion was observed.148, 162 BaTrx2 was shown to be 
less abundant than BaTrx1 (WCGPC-type), did not exhibit disulfide reductase activity toward ribonucleotide 
reductase class Ib (see below), but was active on the model disulfide substrate 5,5’-dithiobis-(2-
nitrobenzoic acid); DTNB; Ellman’s reagent.  

A glutaredoxin-like protein NrdH provides reducing equivalents to NrdEF, an aerobic RNR (class Ib).163–

167 RNR constitutes of two subunits: a large (NrdE) and a small (NrdF). The mechanism includes formation of 
a tyrosyl radical on the metalloprotein NrdF (Y105 in E. coli NrdF) by the action of oxygen.168  A thiyl radical 
on a catalytic cysteine of NrdE (C439 in E. coli NrdE) is generated by the action of the mentioned tyrosine 
radical on NrdF.169 Oxidized NrdF is regenerated by a flavodoxin NrdI.168 The formed thiyl radical on NrdE 
attacks the sugar moiety of the ribonucleotide substrate, resulting in deoxyribonucleotide generation and 
formation of an intramolecular disulfide in the active site of NrdE (C225-C462 in E. coli). This disulfide is 
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reduced by a C-terminal CXXC motif, in turn reduced by NrdH.167, 169 The mechanism is analogous in class Ia 
RNR (NrdAB) where Trx1 or Grx1 (in E. coli) are the corresponding disulfide reductases.167, 170 NrdH displays 
sequence similarity to Grx but is reduced by NTR.165 The structures of NrdH from E. coli and C. 
ammoniagenes revealed the minimalistic version of Trx-fold similar to Grx (see 1.2.3.2; Fig. 11). However, 
GSH binding site appeared to be replaced by a hydrophobic pocket, which was suggested to be important 
for the interaction with NTR.106, 171 Generally, all NrdH contain an N-terminal CXXC motif, and most of the 
homologs contain a specific C-terminal motif stabilizing the structure. These were used in NrdH 
classification: class 1 (CVQC; WSGFRP[ED]; e.g. E. coli), class 2 (C[MVI]QC; FSGF[RQ]P; e.g. L. lactis), class 3 
(C[MI]QC; GPXP; e.g. Lb. plantarum) and class 4 (CPPC; no C-terminal motif; e.g. B. anthracis).171, 172 A partial 
correlation of this classification with nrdH and nrdIEF gene organization is also interesting, as classes 1-3 
NrdH form either nrdHIEF or nrdHEF operons (nrdI is separate in the latter case). Only class 4 NrdH is 
encoded by a gene separated from nrdIEF.171, 172 E. coli NrdH cannot be replaced by Trx1. Grx1 showed 
activity towards NrdEF in vitro, but only NrdH seems to be the electron donor in vivo. 165, 167 B. anthracis and 
S. aureus NrdH (both class 4) can be replaced by Trx1 both in vitro and in vivo.172, 173  

Several bacterial species including E. coli produce GSH (Fig.14A) as a major cellular antioxidant. S. 
agalactiae, L. monocytogenes, and Pasteurella multocida possess a non-classical bifunctional GSH 
biosynthesis enzyme GshF fulfilling the action, which is commonly distributed between GshA and GshB.174–

176 Some lactic acid bacteria lack GSH synthesis genes but are able to import and utilize GSH.177–179 
Coenzyme A (CoA-SH; Fig.14B) is also a highly abundant LMW thiol in e.g. Bacilli and Staphylococci and it 
has been suggested to function in thiol redox control.177, 180–182 Many other Gram-positive bacteria lacking 
GSH produce alternative LMW thiols. Mycothiol (MSH; Fig.14C) is a major disulfide reductant among 
actinomycetes and donates electrons to the Grx-like mycoredoxin.47, 107, 177, 183–185 Bacillithiol (BSH; Fig.14D) 
was discovered recently as the major LMW thiol rather than CoA-SH in Bacillus sp., S. aureus and 
Deinococcus radiodurans, and putative bacilliredoxins (Brx) have been suggested as BSH substrates.47, 144, 177, 

184, 186 The mechanism of action of these LMW thiol redox pathways is not known in detail. However they 
were hypothesized to act as functional analogues of the GSH/Grx system (Fig. 7).47, 107, 144 
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Fig.14 Examples of LMW thiols present in bacteria. (A) Apart from eukaryotes, GSH is often present in 
Gram-negative bacteria e.g. E. coli. (B) CoA-SH was suggested to function in thiol redox control in several 
Gram-positive bacteria e.g. B. megaterium. (C) MSH was found to be the major LMW thiol in 
actinomycetes e.g. C. glutamicum. (D) BSH was recently discovered in Bacilli.  

 

 

Disulfide bond formation in E. coli is catalyzed by the so-called Dsb (Dsb comes from “disulfide bond”) 
system.187 Oxidized DsbA (E’0 = -122 mV and pKa around 3.5) accepts electrons from disulfide bonds in 
target proteins.188 Electrons are then transferred from the reduced DsbA to the respiratory chain via a 
transmembrane protein DsbB and the quinone pool (Fig.15).189  
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Fig.15 DsbA and DsbB periplasmic redox system in E. coli. Oxidized DsbA forms disulfide bonds in target 
proteins by accepting electrons from reduced thiol groups. The reducing equivalents are transferred to 
either aerobic (Cyd) or anaerobic (FR) respiration chain through the quinone pool via DsbB. The electron 
flow is indicated by red dashed arrows. MQ – menaquinone; UQ – ubiquinone; FR – fumarate reductase; 
Cyd – cytochrome C oxidase. Based on Messens & Collet (2006).187 

 

Disulfide bond isomerization is catalyzed by two isomerases DsbC and DsbG. These proteins gain 
electrons from the cytosol via a transmembrane protein DsbD.190, 191 DsbD is a target of Trx and electrons 
are transferred over the membrane through a single target disulfide buried in its transmembrane subunit. 
DsbD provides reducing equivalents to various periplasmic proteins involved in e.g. cytochrome maturation 
and oxidative stress defense (Fig. 16).112, 190, 192, 193 In B. subtilis CcdA, a protein homologous to the β subunit 
of DsbD, transfers electrons to Trx-like proteins ResA and StoA in a Trx-dependent manner (Fig. 16). ResA 
reduces cytochrome C (similar function has CcmG in E. coli),113 and StoA is involved in spore formation. 
Impaired spore formation in a trxA deletion strain was suppressed by deficiency of BdbC and BdbD, which 
are a homologs of DsbA and DsbB.194, 195 
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Fig.16 DsbD and CcdA systems. (right) Some Gram-negative bacteria like E. coli contain the 
transmembrane protein DsbD. Electrons originating from the cytosolic Trx system are transferred by a 
sequence of thiol-disulfide exchanges. First, Trx reduces a disulfide in the transmembrane β-subunit and 
then a Trx-like γ-subunit transfers the electrons to an immunoglobulin-like α-subunit. Finally, the latter 
reduces target proteins, e.g. CcmG and the periplasmic protein-disulfide isomerases DsbC or DsbG. CcmG 
keeps apo-cytochrome C in a reduced form in order to be correctly processed. (left) CcdA is a single-
subunit DsbD-like transmembrane protein in B. subtilis. CcdA donates electrons to cytochrome C via ResA. 
In addition CcdA reduces StoA, one of the key enzymes of endospore cortex synthesis. Red dashed arrows 
mark the flow of e-. Based on Messens & Collet (2006) 187, Möller & Hederstedt (2008)147 and Stirnimann et 
al. (2005).113 

 

 

1.3.2 Thiol-redox sensors and transcriptional control of stress resistance 
Various pathways of oxidative stress responses involving redox sensors, which upon oxidation directly 

or indirectly modulate transcription of involved genes have been described in bacteria.1, 2 Such pathways 
often involve thiol-disulfide exchange reactions which provide high sensitivity towards oxidants and 
reversibility. A well characterized example of a bacterial thiol-based redox sensor is OxyR, which mediates 
response to H2O2 in e.g. E. coli, Salmonella typhimurium, Deinococcus radiodurans, Shigella flexneri.5, 196–202 
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OxyR in E. coli is a tetrameric protein with two cysteines (Cys199 and Cys208) per monomer. In the 
presence of H2O2, Cys199 is oxidized to sulfenic acid (Fig. 5C) followed by formation of an intramolecular 
disulfide with Cys208 (Fig. 5A), which leads to a conformational change enabling DNA-binding and 
interaction with RNA polymerase.203 The OxyR-mediated response in E. coli includes induction of e.g. 
catalase (katG), peroxiredoxin (AhpCF), glutaredoxin (grxA), glutathione reductase (gorA), thioredoxin 2 
(trxC), ferritin involved in DNA protection (dps), iron homeostasis regulator (fur), manganese importer 
(mntH), and iron-sulfur clusters assembly (sufABC).5, 204–208  

FLP, which stands for FNR-like protein, represents a sensor involved in oxidative stress resistance in 
Gram-positive bacteria.209, 210 FLP forms a homodimer containing non-stoichiometric amounts of Cu and Zn. 
FLP has two cysteines forming an intramolecular disulfide which is necessary for DNA binding. 210 Two FLP 
homologs (FlpA, FlpB) were found in L. lactis ssp. cremoris MG1363 and a strain lacking both flpA and flpB 
exhibited hypersensitivity to H2O2 and depleted the intracellular Zn pool.211 Two paralogous operons 
(orfXAorfYAflpA and orfXBorfYBflpB) controlled by FlpA anf FlpB in L. lactis encode the sensors themselves as 
well as putative metallochaperones (orfXA/B) and Dps proteins (orfYA/B).211, 212 

A different thiol-based strategy is employed by the pleiotropic disulfide sensor Spx, which was first 
discovered in B. subtilis.213 This protein contains an N-terminal C10XXC13 motif and is structurally similar to 
the Grx-dependent arsenate reductase (ArsC) in E. coli.214, 215 Reduced Spx is inactivated by formation of a 
complex with the protein YjbH and degraded by ClpXP protease. Upon oxidation, Spx forms an 
intramolecular disulfide between Cys10-Cys13, is released from YjbH and thus avoids proteolytic 
degradation.150 Oxidized Spx binds to the α-C-terminal domain of RNA polymerase and thus regulates 
transcription.161, 213, 214, 216 In B. subtilis transcription of 275 genes were induced by Spx/RNAP upon oxidative 
stress induced by diamide including e.g. Trx (trxA), NTR (trxB), ferritin (mrgA), PerR (perR) and catalase 
(katA).160, 161, 216, 217 L. lactis ssp. cremoris MG1363 possesses seven putative Spx homologs.218 One of these 
(TrmA) was connected with heat and oxidative stress and another one (SpxB) was suggested to play a role 
in response to cell envelope stress induced by lysozyme.219–222 

Genes trxA and trxB (NTR) in B. subtilis are under control of a vegetative σA factor as well as under control 
by the general stress factor σB.140, 159, 161, 223 Oppositely, trxB in S. aureus was shown to be unaffected in the 
σB

- strain, while being severely decreased in the growth impaired spx- strain.224 The trxB gene in this 
organism is also negatively regulated by transcription factor SarA, which controls various genes connected 
with pathogenesis.225, 226 Corynebacterium glutamicum, showed downregulation of NTR in strains with 
inactivated potential redox sensors, but the strains were significantly more viable than B. subtilis or S. 
aureus trx mutants.  

1.4 Lactic acid bacteria (LAB) 

1.4.1 General features 
Various foods and beverages based on lactic acid fermentation have been accompanying our 

civilization for thousands of years. These processes involve lactic acid bacteria (LAB), a relatively wide group 
of (facultative) anaerobic Gram-positive bacteria converting sugars in raw materials (e.g. fruits, vegetables, 
cereals, milk or meat) predominantly into lactic acid.227 Production of lactic acid prolongs shelf-life of food 
and beverages as the increased acidity inhibits microbial growth. The shelf-life is also increased by various 
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compounds e.g. H2O2, acetic acid and antimicrobial peptides (bacteriocins) produced by LAB.228, 229 
Acidification leads to protein precipitation, which is essential for cheese production. Furthermore, 
acidification influence flavor and texture development together with proteolysis and lipolysis.230, 231 

The group of LAB comprises mainly genera belonging to Firmicutes (order Lactobacillales), e.g. 
Lactococcus, Lactobacillus, Pediococcus, Leuconostoc, Oenococcus, Streptococcus and Enterococcus.232 
However, some LAB e.g. Bifidobacterium spp. belong to the Actinobacteria.233 Genera like for example 
Streptococcus and Enterococcus include known pathogens e.g. S. pneumoniae and E. faecalis, while the 
non-pathogenic strains are often “generally recognized as safe” (GRAS). Many LAB colonize mucosal 
surfaces of animals, and some strains of Bifidobacteria and Lactobacilli exhibit probiotic effects.234–237 
Lactococcus lactis is one of the most important industrial LAB, since it forms the main component of starter 
cultures for various cheeses and buttermilk.230, 231, 238 Moreover, its relatively small genome (2.5 Mb) and 
simple metabolism makes it an optimal model organism for studying LAB.218, 239, 240 Development of tools for 
heterologous protein expression in L. lactis along with its GRAS status allow it to be used as an efficient 
delivery system for therapeutic proteins.241–243 The fermentative metabolism of L. lactis is depicted (Fig. 17). 
When grown exponentially under anaerobic conditions with no nutrient limitations conversion of one 
glucose equivalent to pyruvate in the glycolysis pathway results in production of two molecules of NADH by 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and two ATP by pyruvate kinase (Pyk). In so-called 
homolactic fermentation pyruvate is converted to lactate by lactate dehydrogenase (LDH), which results in 
NAD+ regeneration.227, 244 Alternatively pyruvate is metabolized to acetyl-CoA and formate by pyruvate-
formate lyase (PFL). Acetyl-CoA is then transformed to acetate and ethanol by acetate kinase (AK) and 
alcohol dehydrogenase (ADH), respectively. AK produces ATP while ADH contributes to NAD+ regeneration 
(Fig. 17).245 However, PFL is inhibited by triosephosphates, which are present at high levels during high 
glycolytic flux. Therefore most (up to 90%) of the pyruvate is readily converted to lactate by LDH (Fig. 17). 
Large-scale industrial productions can expose LAB to different stress conditions such as nutrient starvation, 
low pH, high temperature and, last but not least, oxidative stress. For example carbon-source starvation 
decreases the glycolytic flux, therefore the NADH/NAD+ ratio decreases, which inhibits LDH. This results in a 
shift from lactate formation towards formate, acetate and ethanol production. This metabolic phenotype is 
called mixed-acid fermentation.246, 247 A slightly different shift occurs in presence of oxygen, which will be 
described in the following section. 
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Fig.17 Fermentation in L. lactis. Under anaerobic conditions, pyruvate is almost completely converted to 
lactate by LDH. The rest goes to formate, acetate and ethanol. Adding oxygen into the system shifts the 
metabolism more towards acetate, acetoin and CO2. LOX and POX can both utilize lactate and drive the 
flux towards acetate in aerobic conditions. Only LOX activity was observed in L. lactis ssp. lactis, but both 
enzymes are known in other LAB. See details in the text. TPI – triosephosphate isomerase; GADPH – 
glyceraldehyde-3-phosphate dehydrogenase; PYK – pyruvate kinase; LDH – lactate dehydrogenase; PDH – 
pyruvate dehydronegase complex; PFL – pyruvate-formate lyase; ADH – alcohol dehydrogenase; PTA – 
phosphotransacetylase; AK – acetate kinase; POX – pyruvate oxidase; LOX – lactate oxidase; α-ALS – α-
acetolactate synthase; BUTA – acetoin reductase; BUTB – 2,3-butanediol dehydrogenase; color code: green 
– enzymes; red and blue mark the high- or low-energetic compound, respectively in the pairs of ATP/ADP 
and NADH/NAD+. 
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1.4.2 NADH oxidase and metabolism under aerobic conditions 
LAB are sensitive to oxidative damage of various cellular components and under aerobic conditions 

oxygen is removed by NADH oxidases. The flavoprotein AhpF (Nox-1) exhibits H2O2-forming NADH oxidase 
activity coupled to the peroxidase AhpC. When AhpC is in excess NADH consumption doubles and 
practically all oxygen is converted to H2O without H2O2 leakage.248 This excess had to be at least 200-fold in 
order to avoid H2O2 formation in L. lactis while 50-fold was sufficient in B. cereus.249, 250 Even though 
transcriptomic studies of aerated cultures of L. lactis showed both AhpC and AhpF induced to similar extent 
by the presence of oxygen, LAB often exhibit low AhpC activity and therefore H2O2-formation by AhpF is 
predominant. 249, 251, 252 LAB also contain an H2O-forming NADH-oxidase (Nox-2; sometimes referred to as 
NoxE in L. lactis). This enzyme not only converts oxygen predominantly to water (about 1% H2O2 leakage 
was observed in vitro), it also has more than six times higher activity than AhpCF in L. lactis, while AhpCF is 
about 17% more active than Nox-2 in B. cereus. 249, 250 Physiological studies in S. mutans and L. lactis 
showed that AhpCF contributes very little to the total NADH-oxidase activity while Nox-2 seems to be the 
key enzyme in this respect.253, 254 On the other hand, S. mutans ahpCF was able to complement E. coli 
∆ahpCF strain, showing clearly that it is functional. Even ahpC alone could complement probably because 
AhpF can be substituted by the Trx system when it is absent.158, 253, 255 The function of Nox-2 is not primarily 
in oxygen removal but in NAD+ regeneration since nox-2 knockout strains of neither S. mutans nor L. lactis 
ssp. cremoris were significantly more sensitive to oxidative stress. Moreover they exhibited a shift towards 
production of lactate compared to wild type. Strains overexpressing Nox-2 showed a shift towards mixed 
acid fermentation.253, 256 A recent study in S. mutans showed an increased oxidative stress resistance of 
∆nox-2 strain. This was probably caused by a general induction of defense mechanisms by elevated 
intracellular concentration of oxygen.257 

Aerobic growth introduces important changes in the carbon metabolism of LAB. In the presence of a 
small amount of oxygen PFL is inhibited and ADH is down-regulated at the protein level. Concomitantly, 
NADH oxidases, PDH and α-acetolactate synthase (α-ALS) are induced. NADH oxidases take over NAD+ 
regeneration instead of ADH, therefore the flux shift from PFL-ADH towards PDH-AK results in less ethanol 
but more acetate and ATP (Fig. 17). At these “micro-aerophilic” conditions, biomass increases by 10% while 
activities of GAPDH and LDH are still unaffected.245 When the amount of oxygen is high, the activity of 
NADH oxidases increases. Consequently the NADH/NAD+ ratio falls, which leads to inhibition of LDH.247 
Therefore acetate, acetoin, diacetyl and ethanol are the major metabolites under these conditions.252 

The effects of aerobic non-respirative growth were also studied in Streptococci and Lactobacilli. These 
bacteria can use oxygen for conversion of pyruvate to acetylphosphate by an H2O2-producing enzyme 
pyruvate oxidase (POX), followed by formation of acetate and ATP (Fig. 17).244, 258 Another H2O2-producing 
enzyme lactate oxidase (LOX) converts lactate to pyruvate in LAB (Fig. 17). Genes homologous to POX were 
found in several common strains of L. lactis, but POX activity was not detected. 218, 244, 259–261 LOX was up-
regulated in L. lactis ssp. lactis upon exposure to copper and its activity was confirmed.260, 262, 263  

1.4.3 LAB and respiration 
Some LAB (e.g. L. lactis) are capable of aerobic respiration when exogenous heme is supplemented.264–

266 Other species (e.g. S. agalactiae) need heme and menaquinone.266–268 The minimum requirement for 
respiration is a functional electron transport chain (ETC): (1) a membrane NADH dehydrogenase as an 
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Fig.18 Oxidative stress in L. lactis. Fermentation (black) vs. respiration (blue); During respiration, ETC 
effectively removes oxygen, produces the proton gradient and consequently ATP. ETC can also produce 
ROS. Fermentation in the presence of oxygen increases risk of ROS formation, since Nox-2 is probably not 
as effective as respiration (decrease in intracellular oxidative damage was observed upon respiration vs. 
aerobic fermentation),277 and AhpF can contribute to ROS by H2O2 formation which is removed by AhpC 
with only a low efficiency. ROS can be also produced by e.g. autoxidation of flavoenzymes and Fenton’s 
reaction (1.1.2.1; Fig. 3).  

 

electron donor, (2) a quinone carrier (menaquinone in Gram-positive bacteria) delivering electrons from 
the dehydrogenase to (3) cytochrome oxidase, which reduces O2 to H2O and requires heme as a cofactor. 
Lb. plantarum and E. faecalis also possess anaerobic ETC with terminal electron acceptors nitrate or 
fumarate, respectively.269, 270 The proton motive force (PMF) generated by the ETC is utilized for ATP 
synthesis  by FoF1 H+-ATP-synthase.271  

 

 

The ETC in L. lactis contains membrane-bound NADH dehydrogenases NoxA and NoxB,254, 272 and a 
menaquinone biosynthesis pathway encoded by men genes.273, 274 Cytochrome bd oxidase CydAB is 
common to all respiring LAB studied so far.266 Interestingly, the genes involved in respiration are 
constitutively expressed in L. lactis and S. agalactiae.251, 265, 268 Therefore, respiration can start rapidly once 
the nutritional requirements are met. The ETC also provides PMF for maintaining membrane transport. This 
process saves ATP, which would be used for pumping protons over the membrane in order to achieve PMF 
at non-respiring conditions. It was suggested that H+-ATPase fulfilling this function synthesizes ATP during 
respiration.266, 275 Changes in metabolite profiles are similar to what was described above for non-
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respiratory aerobic growth. Briefly, NADH is rapidly oxidized by ETC, therefore the NADH/NAD+ ratio falls. 
This leads to a significant decrease of lactate in favor of acetate and acetoin and up-regulation of PDH and 
α-ALS.265, 276 

The major advantages of respiration are: (1) long-term survival due to an effective oxygen removal by 
ETC combined with decreased acidification,277 (2) a higher biomass yield achieved by increased ATP 
synthesis and more efficient ATP consumption,275 and (3) improved survival of co-cultured non-respiring 
strains.277 These features make respiratory growth attractive in industrial applications and have been 
applied for preparation of starter cultures.266 

1.4.4 Redox regulation and oxidative stress resistance in LAB 

As described above, Gram-positive bacteria in general do not contain GSH/Grx disulfide reductase 
systems while Trx appears to be ubiquitous. Alternative LMW thiols such as BSH and MSH (see 1.3.1) have 
not been identified in any LAB so far. The Trx system was hypothesized to play a key role in redox 
regulations in LAB. However, a strain of L. lactis lacking trxB1 (NTR) is viable, and survives mild oxidative 
conditions.278 Proteomic analysis of this mutant revealed induction of proteins involved in aerobic carbon 
metabolism (see previous sections) and several stress proteins.275, 278 Surprisingly, a pI-shift of 
glyceraldehyde-3-phosphate dehydrogenase (GapB) in the alkaline direction occurred in the oxygen-
sensitive trxB1 mutant. The difference was caused by a higher level of the protein containing the active site 
cysteine in a reduced form, which was an unexpectable effect in the NTR-deficient strain.278 A study of 
various trx mutants of Lactobacillus casei including an NTR deficient strain showed the Trx system to be 
non-essential, although the mutant missing NTR was unable to grow aerobically in a chemically defined 
medium. Addition of chemical reductants restored the growth of all these mutants almost to wild type 
level.279  

Most LAB contain superoxide dismutase (SOD).252 Mn-SOD (sodA) was identified in L. lactis where it 
was up-regulated during acid stress.280, 281 It was also observed highly up-regulated during aerobic growth 
or in a strain lacking Trx reductase (trxB1), which exhibited an increased sensitivity towards oxygen.251, 278 
The H2O2 scavenging enzyme catalase which is present in most organisms is absent in most LAB. Some LAB 
(e.g. E. faecalis and some Lactobacilli) express the apo-enzyme, which is activated in the presence of 
heme.282–285 Moreover, some Lactobacilli and Pediococci possess a non-heme Mn-catalase.286–288 
Nitroreductase (CinD) with non-heme catalase activity was found in L. lactis. However, expression of cinD is 
not induced by the presence of H2O2 and it seems to respond only to copper, silver and cadmium.289, 290 In 
addition to AhpC LAB contain several thiol-based peroxidases including Gpx, Tpx, and OsmC. These enzymes 
have not been thoroughly studied in LAB but their homologs in e.g. E. coli exhibited peroxidatic activity in 
vitro (Tpx) and in vivo (OsmC and Gpx). Tpx was induced upon hydrogen peroxide stress in Bacillus 
licheniformis and was suggested to be under control of Spx in B. subtilis.159, 291 Up-regulation of Tpx along 
with e.g. AhpCF, Trx and NTR in presence of oxygen was observed in Porphyromonas gingivalis, a Gram-
negative pathogen living in the oral cavity.292 OsmC was also shown to contribute significantly to 
peroxidatic activity in Mycobacteria.293  

Gene disruption studies revealed that mutations in e.g. purine metabolism (deoB, guaA, tktA),219, 294 
high-affinity phosphate uptake (pstABCDEF, pstS),219, 221, 294 Fe2+ uptake (mntH)221 and an Spx homolog 
(trmA; see 1.3.2)219–221 increased stress resistance. On the other hand, mutations impairing DNA repair and 
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homologous recombination (recA)295 and a universal stress protein (uspA)296 induced a decrease in stress 
resistance. Mutations in the pst locus was suggested to have an influence on metal homeostasis, 
particularly the amounts of bound vs. unbound Cu and Zn, therefore increasing resistance towards oxygen. 
This hypothesis was based on different effects of Cu and Zn in wild type vs. pst mutants without any 
changes in total Cu and Zn pools.297 Disruption of Fe2+ uptake decreased tellurite and oxygen sensitivity by 
lowering the possibility of ROS generation through Fenton’s reaction (see 1.1.2.1; Eq 1.5).221 Apart from the 
redox sensors FlpA/B and Spx (see 1.3.2), six putative two-component systems each consisting of a histidine 
protein kinase receptor and a response regulator are present in L. lactis, and one of these was involved in 
H2O2 response.298 Guanine and phosphate starvation was suggested to trigger the stringent response 
through the alarmone guanosine pentaphosphate ((p)ppGpp).294 Transcriptomic and proteomic studies of 
aerobically grown L. lactis revealed increased levels of e.g. NADH oxidases (AhpF, AhpC, NoxE) and SodA, as 
well as methionine sulfoxide reductases (MsrA, MsrB), two homologs of organic hydroperoxide reductase 
OsmC and a putative glutathione reductase (GshR).251, 276 

1.5 Objectives of the present investigation 
Reversible thiol redox control is an extremely versatile biochemical mechanism, and is employed in 

many important aspects of cellular metabolism (e.g. DNA synthesis, central carbon metabolism, oxidative 
stress defense) in all forms of life. Thioredoxin is an important component of thiol redox control systems 
and regulates a variety of enzymes and transcription factors (Section 1.2). L. lactis is a very important 
industrial microorganism in food production. This model organism for lactic acid bacteria also has a strong 
potential as host for production of high-value recombinant proteins and as a carrier for delivery of 
therapeutic proteins. The physiology of L. lactis has been studied for decades, however, the knowledge of 
the thiol redox control system in this organism is limited (Section 1.4). The hypothesis of the present 
investigation is that the thioredoxin system is important for stress resistance in L. lactis and the main goal is 
to gain insight the physiological roles and biochemical mechanism of the two L. lactis thioredoxins TrxA and 
TrxD. This was accomplished by two approaches: (1) construction of L. lactis strains lacking the genes 
encoding trxA and trxD and studying their phenotypes in various stress conditions followed by proteomic 
analysis to identify proteins that are up- or down-regulated (Chapter 2), and (2) cloning, production and 
biochemical characterization of the proteins constituting the L. lactis Trx system (LlTrxA, LlTrxD, LlNrdH and 
LlNTR; Chapter 3).  
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2.1 Abstract (MAX 250 WORDS) 21 

Thioredoxin (Trx) is a small universal disulfide reductase involved in a wide range of cellular 22 

processes including ribonucleotide reduction, sulphur assimilation, oxidative stress responses and 23 

arsenate detoxification. The industrially important lactic acid bacterium Lactococcus lactis 24 

contains two Trx paralogues (TrxA and TrxD). TrxA is similar to well characterized Trx 25 

homologues and contains a common WCGPC active site motif, while TrxD is atypical and 26 

contains an aspartate residue in the active site motif (WCGDC). In the present work Trx deletion 27 

mutants, ∆trxA, ∆trxD and ∆trxA∆trxD, were investigated to elucidate the physiological roles of 28 

the two Trx paralogues in stress resistance. In general, the ∆trxA∆trxD mutant was significantly 29 

more sensitive than either of the the ∆trxA and ∆trxD mutants suggesting partially overlapping 30 

functions of TrxA and TrxD. Upon exposure to oxidative stress the growth of the ∆trxA mutant 31 

was diminished while the ∆trxD mutant behaved similar to wild type. The lack of TrxA also 32 

appears to impair methionine sulfoxide reduction. Both ∆trxA and ∆trxD strains displayed growth 33 

inhibition after treatment with sodium arsenate and tellurite as compared to the wild type. 34 

Overall, the phenotype of the ∆trxA mutant match established functions of WCGPC-type Trx 35 

while TrxD appears to play a more restricted role in stress resistance of L. lactis. Proteome 36 

analysis of the ∆trxD mutant exposed to arsenate stress demonstrated a decrease in translation 37 

elongation factors and an increase in enzymes involved in nucleotide biosynthesis.  38 

  39 
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2.2 Introduction 40 

Protein disulfide reductases such as thioredoxin (Trx) maintain the intracellular thiol redox 41 

environment and provide reducing equivalents to enzymes such as ribonucleotide reductase, 42 

peroxiredoxin, methionine sulfoxide reductase and arsenate reductase (Collet & Messens, 2010). 43 

Trx is a small protein (10‒12 kDa) with a conserved redox-active WCGPC motif that reduces 44 

target protein disulfides in a so-called thiol-disulfide exchange reaction (Jensen et al., 2009). The 45 

target disulfide is attacked by the thiolate anion of the cysteine at the N-terminal end of the 46 

active-site and forms an intermolecular disulfide, which is then attacked by the cysteine at the C-47 

terminal end of the active-site. Consequently, the reduced target protein and oxidized Trx are 48 

formed. Trx is subsequently recycled by NADPH-dependent Trx reductase (NTR). In addition to 49 

Trx, disulfide bonds are reduced by glutaredoxin coupled to the tripeptide glutathione (GSH) and 50 

glutathione reductase (Lillig et al., 2008). Most Gram-positive bacteria, however, lack GSH and 51 

some species produce alternative low molecular weight thiols such as mycothiol in Actinomycetes 52 

or bacillithiol in various Bacilli, Staphylococcus aureus and Deinococcus radiodurans (Fahey et 53 

al., 1978; Newton et al., 1996, 2009).  54 

 55 

The industrially important Gram-positive lactic acid bacterium L. lactis also lacks the 56 

biosynthetic pathway for GSH but some strains can utilize exogenously supplied GSH 57 

(Fernándes & Steele, 1993; Li et al., 2003; Newton et al., 1996). L. lactis contains two Trx 58 

paralogues (TrxA, TrxD) and a glutaredoxin-like protein (NrdH), which functions as electron 59 

donor for the ribonucleotide reductase class Ib (NrdEF) in microbial cells (Jordan et al., 1996). 60 

TrxA contains a common WCGPC active site motif and conserved residues important for Trx 61 

function. In contrast, TrxD displays low similarity to TrxA and contains an unconventional 62 
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WCGDC active site motif. L. lactis also produces an NTR (TrxB) that recycles TrxA, TrxD and 63 

NrdH in vitro (Efler, P., Björnberg, O., Ebong, E.D., Svensson, B. and Hägglund, P.; unpublished 64 

results). TrxB is important for oxidative stress resistance but not essential for viability under mild 65 

oxidative conditions (Vido et al., 2005).  66 

 67 

Here the physiological roles of TrxA and TrxD in L. lactis were investigated using strains lacking 68 

either one or both Trx (∆trxA, ∆trxD and ∆trxA∆trxD). Comparison of growth rates of these 69 

mutant strains and wild type after exposure to various stress conditions suggests a partial overlap 70 

in function between TrxA and TrxD. TrxA, however, appears to be of major importance for 71 

oxidative stress resistance whereas TrxD seems to play a role in arsenate detoxification. 72 

 73 

2.3 Materials and methods 74 

2.3.1 Strains and growth conditions 75 

Unless stated otherwise Lactococcus lactis subsp. cremoris MG1363 (Gasson, 1983) wild type 76 

(wt), ∆trxA, ∆trxD and ∆trxA∆trxD were maintained on agar plates containing M17 medium 77 

(Difco) with 1% (w/v) glucose (GM17), and grown in chemically defined SA medium (Jensen & 78 

Hammer, 1993) containing 1% (w/v) glucose and 4 µg/ml lipoic acid (GSAL medium). In order 79 

to obtain synchronized balanced cultures, colonies from fresh GM17 plates were inoculated into 80 

liquid GSAL medium, serially diluted (102, 103, 104, 105, 106) and grown under static conditions 81 

at 30°C overnight. The dilution with exponentially growing cells (optical density at 450 nm 82 

between 0.3 – 0.6) was used for further experiments. When performing phenotype screening on 83 

solid GSAL media, synchronized exponentially growing overnight cultures were used for making 84 
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serial dilutions (102, 103, 104, 105) in pre-warmed GSAL medium in a 96-well plate. From each 85 

well 10 µL was spotted to pre-warmed GSAL agar plates containing the particular stress 86 

compound (500 mM Na2HAsO4 or 300 mM K2TeO4) and incubated at 30°C for 24 h. 87 

Escherichia coli MC1061 was grown in Luria-Broth medium (LB) at 28°C, 30°C or 37°C. When 88 

relevant, LB was supplemented by erythromycin (150 µg/mL) and GM17 by erythromycin (5 89 

µg/ml) + 1% NaCl.  90 

 91 

2.3.2 Bioscreen assays  92 

A Bioscreen C instrument (Oy Growth Curves Ab Ltd.) was used to monitor growth of L. lactis 93 

wt and trx mutants exposed to a range of different stress conditions. Synchronized exponentially 94 

growing cultures were diluted in preheated GSAL medium to an OD450 = 0.01, then 360 µL was 95 

mixed with 40 µL of a stress compound solution (listed in Table S2) or H20 in a well of a pre-96 

warmed honeycomb plate To monitor methionine sulfoxide (MetSO) assimilation a freshly 97 

grown single colony from a GM17 plate was resuspended in 5 mL GSAL medium without 98 

methionine and diluted ten times in the same medium. From this culture 360 µL aliquots were 99 

pipetted into wells of a pre-warmed honeycomb plate containing 40 µL of either methionine or 100 

MetSO at 1 mg/mL. The plates were incubated at 30ºC without shaking. OD450 was monitored at 101 

40 min intervals with 10 s medium intense shaking prior to the measurement. 102 

  103 
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2.3.3 Construction of L. lactis ∆trxA, ∆trxD and ∆trxA∆trxD  104 

DNA isolation, amplification and cloning were performed according to standard procedures 105 

(Sambrook & Russel, 2000) or the manufacturers’ instructions. Upstream and downstream 106 

regions flanking the trxA and trxD genes were amplified from genomic DNA of L. lactis subsp. 107 

cremoris MG1363 by PCR (deletion by overlap extension) using primers listed in Table S1 and 108 

HotStar HiFidelity PCR kit (Qiagen). The PCR products of the upstream and downstream regions 109 

were fused and used as template for PCR using the forward primers for the upstream regions 110 

together with the reverse primers for the downstream regions (Table S1). The PCR products were 111 

digested with BamHI and XhoI and ligated into pGHost4 (Appligene). The resulting plasmids 112 

were used to transform E. coli MC1061, and the correct sequences were confirmed by DNA 113 

sequencing (Eurofins). Plasmids were electroporated into L. lactis and the transformants were 114 

selected on GM17 plates containing erythromycin at 28˚C. After homologous recombination into 115 

the chromosome, and clearing of the plasmid as previously described (Biswas et al., 1993), the 116 

deletions were confirmed by colony PCR amplification using the flanking primers binding to the 117 

chromosome outside the targeted region (Table S1). The ∆trxA∆trxD double mutant was prepared 118 

using the ∆trxA strain as the template for homologous recombination of ∆trxD as described 119 

above.  120 

 121 

2.3.4 Preparation of polyclonal primary antibodies against TrxA and TrxD 122 

Purified recombinant L. lactis TrxA or TrxD produced in E. coli (Efler, P, Björnberg, O., Ebong, 123 

E.D., Svensson, B. and Hägglund, P.; unpublished results) were used for raising primary anti-124 

TrxA or anti-TrxD antibodies. Prior to immunization the N-terminal His6 tags of recombinant 125 
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TrxA and TrxD were removed by proteolytic digestion incubation overnight with immobilized 126 

thrombin (Calbiochem) as confirmed by matrix-assisted laser desorption ionization time-of-flight 127 

mass spectrometry (MALDI-TOF MS) and SDS-PAGE (data not shown). Cleaved His6-tags and 128 

uncleaved His6-Trx were subsequently removed on a HisTrap™ column (GE Healthcare) Non-129 

His-tagged TrxA and TrxD were equilibrated in PBS using PD10 desalting columns (GE 130 

Healthcare) and 1.5 mL containing 120 µM TrxA or 65 µM TrxD was used for immunization of 131 

New Zealand white rabbits (3 – 3.5 kg). In the first immunization 500 µL of the antigen was 132 

mixed with 500 µL of the complete Freund’s adjuvant and the solution was injected 133 

subcutaneously on five different spots on the back (0.2 mL/spot). The second and third boosters 134 

(given in two-week intervals) were performed similarly but using the incomplete Freund’s 135 

adjuvant instead. Blood sera containing anti-TrxA or anti-TrxD primary antibodies were collected 136 

one week after the third booster and stored at -80⁰C.  137 

 138 

2.3.5 Western blot analysis 139 

Synchronized cultures of L. lactis wt, ∆trxA and ∆trxD strains were grown under static conditions 140 

in liquid GSAL medium at 30°C. From a total culture volume of 100 mL, 40 mL was harvested 141 

in the middle exponential phase (EP; OD450 = 0.4) and in the stationary phase (SP; OD450 ≈ 2), 142 

respectively. The cell metabolism was quenched by pouring culture samples into pre-chilled 143 

flasks on ice and incubating for 15 min. Cultures were then centrifuged 10 min at 5000 g at 4˚C, 144 

and supernatants were removed. Pellets were washed by 1 mL of an ice-cold sterile 0.9% (w/v) 145 

NaCl solution, transferred into Eppendorf tubes and centrifuged again. Supernatants were 146 

discarded and pellets were stored at -20˚C until extraction. Frozen pellets were dried in SpeedVac 147 
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SPD1010 (Thermo Scientific) for 1‒2 hours. Then 100 µL and 300 µL of glass beads ≤ 106 µm 148 

(Sigma) was added to the dry pellets from EP and SP cultures, respectively, followed by 149 

homogenization by aid of a micropestle (Eppendorf). Extraction buffer (0.2 M Tris/HCl, 0.2 M 150 

NaCl, 5% glycerol, 1 mM EDTA, pH 7.6) was added to obtain a final volume of 200 and 900 µL 151 

for the EP and SP samples, respectively. Following centrifugation (15 min at 14000 rpm, 4˚C) 152 

supernatants were collected and protein concentration was determined (Coomassie® plus protein 153 

assay reagent kit; Pierce Biotechnology) with BSA as standard. SDS-PAGE was performed with 154 

25 µg of total protein from each cell extract and positive controls with 200 ng and 100 ng of 155 

His6-tagged TrxA and TrxD, respectively. Western blotting was performed using a X-Cell II™ 156 

Blot Module (Invitrogen) and Amersham Hybond™ ECL™ nitrocellulose membrane (GE 157 

Healthcare). Membranes were incubated with non-purified rabbit sera containing primary anti-158 

TrxA and anti-TrxD antibodies (see above) diluted 1:2000 in TBS buffer (100 mM Tris/HCl pH 159 

= 7.5, 150 mM NaCl) containing 0.1% Tween-20 for 1 h at RT. After several washes in TBS + 160 

Tween-20, buffer alkaline phosphatase conjugated polyclonal goat anti-rabbit IgG (c = 0.64 161 

mg/ml; Dako) diluted 1:2000 in TBS was added and incubated 30 min. The membrane was again 162 

washed in the same buffer as previously followed by incubation for 10 min in 0.015 % (w/v) 5-163 

bromo-4-chloro-3-indolyl phosphate and 0.030% (w/v) nitro blue tetrazolium chloride in 100 164 

mM NaCl, 5 mM MgCl2, 100 mM Tris/HCl pH 9.5 at RT. Reactions were stopped by 165 

transferring the membrane into 20 mM EDTA.  166 

 167 

2.3.6 Tetrazolium salt reduction assay 168 

L. lactis wt, ∆trxA and ∆trxD strains were examined for their ability to reduce tetrazolium salts in 169 

mid-EP and SP. Samples of synchronized cultures (0.9 mL) grown under static conditions at 170 
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30°C were collected in the middle EP (OD450 = 0.4) and in SP (OD450 ≈ 2), mixed with 100 µL 171 

of 5 mM tetrazolium violet (TV) or iodonitrotetrazolium chloride (INT) and incubated 15 min at 172 

RT in the dark. Samples were centrifuged (20000 g, 15 min, RT) and supernatants discarded. 173 

Pellets were resuspended in 1 mL DMSO and centrifuged again (20000 g, 15 min, RT). The 174 

absorbances at 510 nm (reduced TV) and 468 nm (reduced INT) in the supernatants were 175 

determined and divided by the OD450 values of the cultures at the harvesting points. 176 

 177 

2.3.7 Difference gel electrophoresis (DIGE) 178 

Synchronized cultures of L. lactis wt, ∆trxA and ∆trxD strains were grown in GSAL medium 179 

under static conditions at 30°C and samples were harvested in the middle EP (OD450 = 0.4). Cell 180 

pellets from 80 mL cultures washed in 0.9% NaCl were freeze-dried (Scanvac CoolSafe™ 181 

instrument; LaboGene) for 2 h. Thereafter 500 µL extraction buffer (0.2 M Tris/HCl, 0.2 M 182 

NaCl, 5% glycerol, 1 mM EDTA, pH 7.6) and 500 µL of glass beads ≤ 106 µm were added and 183 

cells were disrupted by 3 cycles in FastPrep® FP120 homogenizer (Qbiogene) set up at speed 4 184 

and time 45 s (samples were kept for 2 min on ice between the cycles). The extracts were 185 

centrifuged (15 min at 14000 rpm at 4˚C), supernatants were collected, treated by Benzonase® 186 

(0.25 U/µL of extract) and proteins concentrations were determined (Coomassie® plus protein 187 

assay reagent kit; Pierce Biotechnology) with BSA as standard. The experiment was designed to 188 

compare four biological replicates each of L. lactis wt, ∆trxA and ∆trxD (see Table 1). For each 189 

replicate of these strains, 30 µg protein was precipitated by chloroform/methanol extraction 190 

(Wessel & Flügge, 1984). Pellets were dissolved in 105 µL rehydration buffer (7 M urea, 2 M 191 

thiourea, 10 mM Tris pH 8.5, 4% CHAPS) and 70 µL of each sample was labeled with 100 pmol 192 

(1 µL of 100 µM ) of either the fluorescent dye Cy3 or Cy5 (CyDye DIGE Fluor; GE Healthcare) 193 



70 
 

in N,N-dimethylformamide. In addition, an internal standard containing 35 µL from each sample 194 

was labelled with 600 pmol (6 µL of 100 µM) Cy2 dye (CyDye DIGE Fluor; GE Healthcare) in 195 

N,N-dimethylformamide. Fluorophore labeling was carried out on ice in the dark for 30 min 196 

followed by addition of 2 µL lysine (100 mg/mL) and incubation 10 min on ice in the dark. 197 

Samples were mixed according to Table 1, 6 µL of 100 mg/mL DTT and 1 µL IPG buffer pH 4‒7 198 

(GE Healthcare) was added and isoelectric focusing with Immobiline™ DryStrip pH 4‒7 11 cm 199 

strips (GE Healthcare) was performed according to the following program: 6 h 30 V, 6 h 60 V, 1 200 

h 200 V, 1 h 500 V, 1 h 1000 V, 1 h gradient from 1000 V to 8000 V followed by constant 8000 201 

V until 20000 Vhrs. Prior to the second dimension, strips were incubated 15 min with 202 

equilibration buffer (6 M urea, 30% v/v glycerol, 0.01% bromophenol blue, 2% w/v SDS, 100 203 

mg/mL DTT, 50 mM Tris/HCl pH 8.8) and additional 15 min with the same buffer containing 204 

iodoacetamide (250 mg/mL) instead of DTT. The second dimension was performed using 205 

Criterion™ Precast 12.5% polyacrylamide gels (BioRad). Gels were fixed 30 min in 30% v/v 206 

ethanol, 2% v/v phosphoric acid), scanned by Typhoon™ Trio (GE Healthcare) and stained by 207 

Coomassie brilliant blue G-250 (Merck) as described previously (Candiano et al., 2004). 208 

Fluorescent images were analyzed by Progenesis SameSpots software (Nonlinear Dynamics). 209 

Only spots displaying volume fold change > 1.5 and ANOVA p-value < 0.05 were selected for 210 

identification by mass spectrometry.  211 

 212 

2.3.8 2D gel electrophoresis of [35S]-L-methionine labeled proteins  213 

Serial dilutions (102, 103, 104, 105, 106) of L. lactis wt and ∆trxD strains were grown in GSAL 214 

medium with reduced methionine concentration at 30°C overnight (20 µg/mL). The dilution with 215 

exponentially growing cells was equilibrated in GSAL medium with further reduced methionine 216 
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concentration (5 µg/mL) and incubated under static conditions at 30°C until the middle EP 217 

(OD450 = 0.4) when sodium arsenate was added to a final concentration of 100 µM. Samples 218 

were labeled 60 min after arsenate exposure (As) and non-arsenate treated controls (Ctrl) were 219 

labeled at the same OD450 as the As sample. [35S]-L-methionine labeling was performed 220 

essentially as previously described (Kilstrup et al., 1997). Briefly, 150 µL of culture was mixed 221 

with 1.5 µL [35S]-L-methionine (Hartmann Analytic GmbH) corresponding to radioactivity of 15 222 

µCi (1000 Ci/mmol) and incubated 10 min in an Eppendorf tube equilibrated at 30⁰C. Then 13 223 

µL of non-radioactive methionine was added and incubation continued 2 min, after which 10 µL 224 

chloramphenicol (20 mg/mL) was added. The sample was transferred to an ice-bath and 225 

centrifuged for 5 min at 20000 g and 4⁰C. The supernatant was discarded and the pellet was 226 

washed twice in 100 µL 0.9% NaCl, 30% ethanol and stored at -80⁰C until analysis. Cell pellets 227 

were freeze-dried by Scanvac CoolSafe™ instrument for 1 h. A small amount of glass beads 228 

≤106 µm (10‒20 µL) was added to each frozen pellet. The samples were ground by a melted 229 

Pasteur pipette for 5 min and added 20 µL extraction buffer (50 mM Tris/HCl 7.6, 50 mM NaCl, 230 

0.25 mM EDTA, 1.25% glycerol, 0.3% DTT, 0.25U/µl benzonase, 15 mM MgCl2) followed by 231 

incubation for 15 min at 37°C, and added 80 µL rehydration buffer containing 0.3% DTT and 232 

centrifuged (15 min at 20000 g at 4°C). Supernatants (85‒90 µL) were mixed with an appropriate 233 

volume of rehydration buffer containing 0.3% DTT to a final volume of 200 µL, 1 µL IPG buffer 234 

pH = 4‒7 was added and 2D gel electrophoresis was performed as described for DIGE above. 235 

Gels were fixed 30 min, incubated 30 min in a preservation solution (25% v/v ethanol, 10% v/v 236 

glycerol) and dried at RT for three days between Porous Cellophane sheets fixed in Gel Frames 237 

(GE Healthcare). Dried gels were cut out of the frames, exposed to Storage Phosphor Screens 238 

(GE Healthcare) for 18 days and scanned by Typhoon Trio scanner (GE Healthcare) at 50 µm 239 
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resolution. In parallel, 5 mL samples harvested at the same time points at the [35S]-L-methionine 240 

labeled samples were processed as described above except labeling was omitted and protein 241 

concentrations were determined by 2DQuant kit (GE Healthcare) prior to 2D gel electrophoresis. 242 

The 2D gels for the ∆trxD mutant (161 µg of total protein) and the wt strain (68 µg of total 243 

protein) exposed to arsenate, and the non-stressed wt strain (86 µg of total protein) were stained 244 

by Coomassie as described above, scanned by ScanMaker 9800XL in a transparent mode in 16-245 

bit greyscale and 300 dpi resolution and kept in MilliQ water at 4°C. Two to four biological 246 

replicates per condition were used in the final image analysis. The radioactive images of 2D gels 247 

were processed by Progenesis SameSpots. The spot measurements were exported to MS Excel 248 

and normalization was performed manually. Normalized volume was defined as percentage of a 249 

given spot volume relative to the sum of all spot volumes within the gel. These values were used 250 

for calculation of means and variances, which were used as input for Welch’s t-test, an adaptation 251 

of student’s t-test for samples showing different variances and different number of replicates 252 

(Welch, 1947). Differences in spot volumes that corresponded to fold change > 1.5 and passed 253 

Welch’s t-test (p-value under 0.05) were considered as significant. 254 

 255 

2.3.9 In-gel trypsin digestion and MALDI-TOF MS analysis  256 

Spot gel-plugs were manually picked from Coomassie stained gels and subjected to in-gel trypsin 257 

digestion as described previously (Majumder et al., 2011). Briefly, the gel-plugs were washed by 258 

40% ethanol, dried by 100% acetonitrile (ACN) and digested by 25 ng/µL porcine trypsin 259 

(Promega) in 10 µL 10 mM NH4HCO3 overnight at 37°C. 1 or 2 µL samples were loaded on an 260 

AnchorChip target plate (Bruker Daltonics) together with 1 µL of 0.5 µg/µL matrix solution (α-261 

cyano-4-hydroxycinnamic acid (CHCA) in 70% ACN, 0.1% trifluoroacetic acid (TFA)). In some 262 
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cases, samples were desalted and concentrated by using a POROS R2 (Applied Biosystems) 263 

microcolumn prior to analysis. Samples were analyzed using an Ultraflex II MALDI-TOF/TOF 264 

MS instrument (Bruker Daltonics), spectra were processed by FlexAnalysis (v3.3) and BioTools 265 

(v3.2) software provided by the instrument manufacturer. Combination of MS and MS/MS data 266 

were used as input for databases searching for the spectra from MALDI-TOF-TOF using Mascot 267 

(www.matrixscience.com) with following setup: NCBInr database, trypsin digestion (1 partial 268 

cleavage), carbamidomethylation of Cys (global modification), oxidation of Met (variable 269 

modification), MS and MS/MS mass tolerance 80 ppm and 0.6 Da, respectively. Alternatively, 270 

the trypsin digests were analyzed on an LC-MS system composed to an EASY nLC 1000 271 

chromatograph coupled on-line to a Q-Exactive MS (Thermo Scientific) and spectra were 272 

processed using Proteome Discoverer (Thermo Scientific).  The setup of the Mascot database 273 

searching for LC/MS data was following: SwissProt database, trypsin digestion (1 partial 274 

cleavage), carbamidomethylation of Cys (global modification), oxidation of Met (variable 275 

modification), peptide and fragment mass tolerance 10 and 20 ppm, respectively. The 276 

significance threshold for protein identifications was p < 0.05. 277 

 278 

2.4 Results and Discussion 279 

2.4.1 Detection of TrxA and TrxD in L. lactis and construction of ∆trxA, ∆trxD and 280 

∆trxA∆trxD mutants  281 

L. lactis MG1363 contains two putative thioredoxins, encoded by trxA and trxD (annotated as 282 

trxH). Expression of the genes was confirmed by western blot analysis, which further 283 

demonstrated that TrxA and TrxD were present in mid EP as well as in SP (Fig. 1, lanes 1 and 2). 284 

Deletions of trxA and trxD by overlap extension were constructed by PCR, followed by 285 
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homologous recombination into the chromosome, as verified by colony PCR (data not shown). 286 

The identities of TrxA and TrxD detected in the Western blots were confirmed by the absence of 287 

signal in protein extracts from ∆trxA and ∆trxD mutants, respectively using the appropriate 288 

antibodies (Fig. 1). The growth of the wt strain and the trx mutants in chemically defined GSAL 289 

medium under microaerophilic conditions was compared in the Bioscreen assay (Fig.2A; Tables 290 

2 and 3). The ∆trxA mutant showed clear growth defects while the ∆trxD mutant was unaffected. 291 

The trxAtrxD double mutant grew slower than the ∆trxA mutants. These results suggest that TrxA 292 

can compensate for the loss of TrxD, but not vice versa. 293 

 294 

2.4.2 TrxA is important for oxidative stress resistance 295 

The L. lactis wt strain and the trx mutants were exposed to the oxidizing reagents hydrogen 296 

peroxide, diamide and paraquat. In the presences of hydrogen peroxide (313 µM) the growth 297 

rates of the strains were nearly the same as for the non-stressed cultures, but the lag phases before 298 

reaching maximal growth rate were prolonged by 5 h for the wild type and ∆trxD mutant, and 30 299 

h for the ∆trxA mutant (Fig. 2B). The ∆trxA∆trxD mutant did not recover within 24 h after 300 

addition of hydrogen peroxide. A similar pattern was observed upon exposure to the thiol specific 301 

oxidant diamide. Thus wt and the ∆trxD mutant were affected almost identically by 1.25 mM 302 

diamide while the ∆trxA mutant was more sensitive and the ∆trxA∆trxD mutant did not recover 303 

within 24 h (Tables 2 and 3). Surprisingly, concentrations of the superoxide producing reagent 304 

paraquat < 1 mM exhibited no effect on the growth of wt, and the ∆trxA and ∆trxD mutants, but 305 

had a positive effect on the growth of the ∆trxA∆trxD mutant. At higher concentrations of 306 

paraquat (5‒20 mM), the ∆trxA mutant was affected to a higher extent than the wt and ∆trxD 307 

cultures, and the ∆trxA∆trxD mutant was the most severely affected (Tables 2 and 3). Thus, 308 
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overall TrxA appears to be the major thioredoxin involved in oxidative stress resistance in L. 309 

lactis. 310 

 311 

2.4.3 Arsenate and tellurite-stress resistance is dependent upon TrxD 312 

Exposure to sodium arsenate and potassium tellurite were the only stress conditions where the 313 

∆trxD mutant had a phenotype that was clearly distinguishable from the wt. Arsenate-stressed 314 

(1.25 mM) and unstressed wt, ∆trxA, and ∆trxD cultures had similar growth rates but the lag 315 

phases of arsenate-treated cultures were prolonged by 3 h, 5 h and 9 h, respectively (Fig. 2AC). 316 

The ∆trxA∆trxD mutant did not recover from arsenate-stress suggesting that at least one Trx is 317 

required for survival under arsenate-stress. Sensitivity to arsenate stress was also probed by 318 

aliquoting serially diluted cultures on GSAL agar plates containing arsenate and incubating at 319 

30°C for 24h. (Fig. 2D). Whereas growth could be detected in a spot of 103-fold diluted cultures 320 

of both wt and the ∆trxA mutant in the presence of arsenate, no growth could be detected for the 321 

trxD mutant in spots of 102-fold diluted cultures. Arsenate is a toxic analog of phosphate and is 322 

reduced to arsenite(III) by arsenate reductase (ArsC) and exported out of the cell (Turner et al., 323 

1992). ArsC is grouped into four classes that are dependent on Trx, glutaredoxin, trypanothione 324 

and mycothiol, respectively, as electron donor. The amino-acid sequence of L. lactis ArsC is very 325 

similar to the Trx-dependent ArsC of B. subtilis (Li et al., 2007) and S. aureus (Ji et al., 1994). 326 

Although no direct evidence was obtained, the increased sensitivity to arsenate induced by the trx 327 

deletion mutants suggests that ArsC in L. lactis may be dependent on TrxD and TrxA as electron 328 

donors.  329 

 330 
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Addition of potassium tellurite prolonged the lag phase of the ∆trxA mutant more than the wt 331 

(Table 2). The ∆trxD mutant never recovered to reach its unstressed exponential growth rate 332 

following tellurite-stress, showing that TrxD is important for fast growth under these conditions 333 

(Table 3). Tests with agar plates containing tellurite indicated similar sensitivity of the ∆trxD and 334 

∆trxA mutants (Fig. 2D). Tellurite causes intracellular production of superoxide (Pérez et al., 335 

2007), and is correlated with arsenate detoxification in E. coli, where the presence of a plasmid 336 

conferring arsenate resistance concomitantly increased the survival when exposed to tellurite 337 

(Turner et al., 1992). Tellurite-resistant L. lactis strains were found to contain mutations in e.g. 338 

high-affinity phosphate (particularly pstA and pstD) and iron transporters (mntH), and in trmA, a 339 

homolog of the disulfide stress sensor spx (Turner et al., 2007).  340 

 341 

2.4.4 The influence of metal ions and formaldehyde on the growth of the trx mutants 342 

A number of metal ions were added to probe their influence on the growth of the trx mutants. 343 

Cadmium was found to be extremely toxic even at 5 µM. (Table S2). The wt and the ∆trxD 344 

mutant were barely able to grow exponentially under these conditions. The ∆trxA mutant 345 

apparently remained in the lag phase while no apparent growth of the ∆trxA∆trxD mutant was 346 

observed. When exposed to 313 µM zinc all strains were significantly inhibited and no growth 347 

was observed at 1.25 mM (Table S2). As observed for paraquat, sub-lethal concentrations (5 µM) 348 

of zinc had a slightly positive effect on the growth rate of ∆trxA∆trxD double mutant. Zinc (Zn2+) 349 

has been suggested to have a thiol-protective function since strains with impaired Zn-uptake were 350 

hypersensitive to oxidative stress (Scott et al., 2000). Addition of iron in the range of 351 

concentrations tested (5‒1250 µM) had only minor effects on the growth of ∆trxA, ∆trxD, 352 

∆trxA∆trxD mutants and wt (Table S2). Copper was found to be more toxic than iron causing 353 
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complete growth inhibition at 313 µM for ∆trxA, ∆trxD strains and wt, and at 78 µM for the 354 

∆trxA∆trxD mutant.  355 

 356 

No significant difference between the effects on growth of ∆trxA, ∆trxD, and wt strains was 357 

observed upon exposure to formaldehyde (80‒5000 µM). The ∆trxA∆trxD mutant however was 358 

severely inhibited compared to the wt and the ∆trxA and ∆trxD mutants under these conditions. 359 

Formaldehyde is a reactive electrophilic species and has been shown to interact with thiol-based 360 

redox sensors and induce a disulfide stress response including up-regulation of e.g. Trx and NTR 361 

(Antelmann & Helmann, 2011; Nguyen et al., 2009).  362 

 363 

2.4.5 Methionine sulfoxide reduction is dependent on TrxA 364 

The capacity of the L. lactis trx mutants to reduce oxidized methionine was tested in the 365 

Bioscreen assay using a medium where methionine was replaced by methionine sulfoxide 366 

(MetSO). L. lactis is auxotrophic for methionine (Jensen & Hammer, 1993; Seefeldt & Weimer, 367 

2000), and the utilization of MetSO is therefore dependent upon disulfide reductase-coupled 368 

MetSO reductase (Msr) activity. When MetSO was supplied as the sole source of methionine, no 369 

significant difference was observed for the growth of the wt and ∆trxD mutant (Tables 2 and 3). 370 

However, both the ∆trxA and ∆trxA∆trxD mutants exhibited significantly prolonged lag phases 371 

and reduced growth rates (reduced by 70±6% and 57±12%, respectively; Tables 2 and 3). Thus it 372 

is proposed that TrxA functions as an electron donor for Msr in L. lactis. However, since all the 373 

trx mutants were viable it may be suggested that L. lactis also can utilize an alternative Trx-374 

independent MetSO reduction pathway. Oxidation of methionine to MetSO results in a racemic 375 
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mixture of (S)- and (R)-enantiomers that are reduced by two separate methionine sulfoxide 376 

reductases, MsrA and MsrB, respectively (Boschi-Muller et al., 2008). However, certain bacteria 377 

such as Neisseria gonorrhoeae have a bifunctional protein PilB containing both MsrA and MsrB 378 

domains (Brot et al., 2006). In E. coli, MsrA effectively reduces both bound and free Me-(S)-SO 379 

while MsrB reduce only peptide- or protein-bound Met-(R)-SO (Grimaud et al., 2001). A novel 380 

Trx-dependent Met-(R)-SO reductase was discovered in E. coli when a strain lacking the msrB 381 

gene was found to utilize free Met-(R)-SO (Lin et al., 2007). MsrA-independent reduction of free 382 

Met-(S)-SO is catalyzed in a Trx-independent manner by BisC in E. coli (Ezraty et al., 2005). 383 

The genome of L. lactis contains genes encoding putative MsrA, MsrB and free methionine -(R)-384 

sulfoxide reductase (llmg_2480) enzymes, but no BisC homologues.  385 

 386 

2.4.6 Influence of trx mutants on reduction of tetrazolium salts 387 

The ability of the L. lactis ∆trxA and ∆trxD mutants to reduce tetrazolium violet (TV) and p-388 

iodonitrotetrazolium chloride (INT) were investigated (Fig. 3). These tetrazolium salts are 389 

colourless and water soluble compounds, that turn into coloured water-insoluble formazans upon 390 

reduction and can be monitored spectrophotometrically (Tachon et al., 2009). Overall, the extent 391 

of INT and TV reduction was similar in wt and the ∆trxD mutant. On the other hand the ∆trxA 392 

mutant exhibited significantly increased reduction of INT in mid-EP compared to the wt. Both 393 

TV and INT were reduced significantly more efficiently by the ∆trxA mutant in SP, but TV 394 

reduction during exponential growth was similar for wt and the ∆trxA mutant. It is noteworthy 395 

that the tetrazolium reduction was 5 to 10-fold higher in mid-exponential phase than in stationary 396 

phase for the three strains. The increased INT and TV reduction by the ∆trxA mutant suggests 397 

that the overall cellular redox state in this strain is altered compared to the wt. From studies in E. 398 
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coli INT was suggested to be reduced by intracellular redox reactions (Smith & McFeters, 1996). 399 

Reduction of TV is proposed to involve components in the electron transport chain of L. lactis, 400 

particularly the membrane bound NADH dehydrogenases NoxAB and membrane embedded 401 

menaquinones (Tachon et al., 2009).  402 

 403 

2.4.7 Proteome profiles of thioredoxin null mutants during normal growth 404 

Protein profiles of wt, ∆trxA and ∆trxD mutants were analyzed in mid-EP phase under standard 405 

(non-stressed) conditions. When the proteomes of the three strains were compared using 406 

difference gel electrophoresis (DIGE), most differences were observed between the ∆trxA mutant 407 

and wt (Fig. 4; Table 4). Several proteins involved in the oxidative stress response were up-408 

regulated in the ∆trxA mutant compared to the wt, including thioredoxin reductase (TrxB) and a 409 

homolog of glutathione peroxidase (Gpo) (Table 4). TrxB has previously been observed to be 410 

slightly up-regulated under respiratory conditions in L. lactis (Vido et al., 2004). Gpo is most 411 

probably Trx-dependent as demonstrated for homologous proteins from plants, fungi and bacteria 412 

(Lee et al., 2008). The pyruvate dehydrogenase E1 (PdhB) was likewise up-regulated in the 413 

∆trxA mutant. This protein has been observed to be up-regulated under respiratory conditions as 414 

well as in a trxB1 mutant of L. lactis (Vido et al., 2004, 2005). Two hypothetical proteins 415 

(Llmg_1475 and Llmg_2273) were also up-regulated in the ∆trxA mutant. Llmg_1475 was the 416 

most up-regulated protein in ∆trxA vs wt (3.7-fold; Table 4). Llmg_1475 has not been linked to 417 

stress responses in L. lactis, but a homologous protein in B. subtilis called YnzC (41% identity, 418 

57.5% similarity) was previously suggested to be involved in the SOS DNA damage response 419 

and was up-regulated upon H2O2 treatment in Bacillus licheniformis (Kawai et al., 2003; 420 

Schroeter et al., 2011). The hypothetical protein llmg_2273 contains a histidine triad morif and 421 
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was annotated as a diadenosine tetraphosphate hydrolase. No bacterial homologue of Llmg_2273 422 

has been characterized, but eukaryotic proteins containing histidine triad motifs influence the cell 423 

cycle through interactions with regulatory proteins such as MDM2 (Huebner et al., 2011; 424 

Nishizaki et al., 2004), and is associated with oxidative stress defence and DNA repair. 425 

Interestingly, Llmg_2273 was found to be down-regulated in both wt and ∆trxD mutant exposed 426 

to sodium arsenate (see below). The proteins in some spots displaying increased intensity in the 427 

∆trxA mutant could not be unambiguously identified. For example 30S ribosomal protein S4 was 428 

identified in the same spot as nitroreductase and dihydrolipoamide dehydrogenase (PdhD) was 429 

identified in the same spot as pyruvate kinase (Pyk).  430 

 431 

Down-regulated proteins in the ∆trxA mutant compared to the wt include pyruvate kinase (Pyk), 432 

formate-tetrahydrofolate ligase (Fhs), tyrosyl-tRNA synthetase (TyrS), as well as a putative 433 

tellurium resistance protein TelB, and a hypothetical protein llmg_0304 annotated as a potential 434 

RNA-binding protein (DUF1447 superfamily). It is noteworthy, that Fhs was overexpressed in L. 435 

lactis when growing under respiratory conditions, and highly overexpressed in Porphyromonas 436 

gingivalis, a Gram-negative bacterium living in the mouth cavity, at microaerophilic vs. 437 

anaerobic conditions (Lewis et al., 2009; Vido et al., 2004). Pyk was also observed in a spot 438 

together with aspartyl/glutamyl-tRNA amidotransferase (GatB), significantly down-regulated 439 

only when the ∆trxA mutant was compared to the ∆trxD mutant. The most down-regulated 440 

protein (2-fold) was a putative tellurium resistance protein (telB). Comparison to a partially 441 

characterized E. coli tellurium resistance determinant TelB (Walter et al., 1991) showed only 9% 442 

sequence identity. However, L. lactis TelB exhibits around 50‒55% identity with TerD homologs 443 

in E. coli, Klebsiella pneumoniae, Yersinia pestis and Streptomyces coelicolor.  444 
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 445 

2.4.8 Proteomic analysis of arsenate stress in L. lactis 446 

Response to sodium arsenate was further analyzed by proteome analysis since this compound 447 

provided the most significant growth retardation phenotype of ∆trxD compared to wt. [35S]-L-448 

methionine was applied to exponentially growing cells after addition of arsenate (100 µM) to 449 

label de novo synthesized proteins and determine individual proteins synthesis rates. Samples 450 

were collected after 60 min of arsenate exposure. At the same time point samples were taken 451 

from non-stressed cultures growing at comparable OD450 as a control for growth phase effects 452 

(Fig. 5). Proteins were extracted, separated by 2D gel electrophoresis and radioactivity in the gel 453 

spots was quantified to compare protein synthesis rates in wt and the ∆trxD mutants. The relative 454 

signal intensity in four and six protein spots were significantly changed in the wt strain and the 455 

∆trxD mutant, respectively upon arsenate stress (Table 5). The hypothetical protein Llmg_2273 456 

was down-regulated in both wild type and ∆trxD mutant. As stated above this protein shows 457 

similarity to proteins involved in diadenosine tetraphosphate hydrolysis or RNA processing. In 458 

the wt, down-regulation was observed for ribonucleotide reductase (NrdEF) and a cell division 459 

initiation protein (DivIVA; Llmg_0769), while RNA polymerase (RpoA) was up-regulated 460 

during arsenate stress. NrdEF functions under aerobic conditions and accepts electrons from NTR 461 

via the specialized NrdH redox mediator protein (Jordan et al., 1996). DivIVA is suggested to 462 

have various functions related to cell division in Gram-positive bacteria and was shown to be a 463 

substrate of the protein kinase StkP that controls growth and cell division in Streptococcus 464 

pneumoniae (Beilharz et al., 2012; Kaval & Halbedel, 2012). Down-regulated proteins in the 465 

∆trxD mutant upon arsenate stress include translation elongation factor (Ef-G) and glucose-1-466 

phosphate thymidylyltransferase (RmlA). Lower signal intensities were also observed in two 467 
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spots that each contained AtpD protein, β subunit of the proton pumping ATP synthase, and 468 

either enolase or dipeptidase PepV. Only serine hydroxymethyltransferase (GlyA) was found to 469 

be up-regulated in ∆trxD.  470 

 471 

Eight spots were up-regulated and seven spots down-regulated in the ∆trxD mutant when the 472 

protein synthesis rates of the arsenate stressed cultures were compared to the wt subjected to the 473 

same conditions (Table 5). Three of the up-regulated proteins are involved in nucleotide 474 

biosynthesis; GuaB (IMP dehydrogenase), Fhs (formate-tetrahydrofolate ligase), and GlyA 475 

(serine hydroxymethyltransferase). Among the up-regulated proteins in in the ∆trxD mutant were 476 

also PfkA (phosphofructokinase), MenB (naphthoate synthase), and a hypothetical protein 477 

(Llmg_1773). PfkA is a key glycolytic enzyme and has been shown to be involved in mRNA 478 

processing (Commichau et al., 2009; Roux et al., 2011). MenB is an enzyme involved in 479 

biosynthesis of menaquinone and was shown previously to be upregulated in L. lactis trxB1 480 

mutant (Vido et al., 2005). Llmg_1773 is a CsbD-like bacterial stress protein and the gene was 481 

previously observed to be 3-fold and 11-fold up-regulated under aerobic conditions with and 482 

without heme in L. lactis respectively compared to static conditions (Pedersen et al., 2008). CsbD 483 

of B. subtilis interacts with the alternative stress sigma factor, σB, and has been observed to be 484 

up-regulated during phosphate starvation (Prágai & Harwood, 2002). Down-regulated proteins in 485 

the ∆trxD mutant included Ef-G, Ef-Ts, RpoA, GroEL, and DnaK. Elongation factors in various 486 

organisms are often multifunctional and exhibit redox properties that are important for their 487 

regulation. Ef-G in E. coli is inactivated by oxidative stress and can be reactivated by Trx 488 

(Nagano et al., 2012). The pattern of up-regulated proteins in nucleotide metabolism and down-489 
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regulation of translation elongation factors is reminiscent of the pattern observed during purine 490 

starvation in L. lactis (Beyer et al., 2003).  491 

 492 

2.5 Conclusions 493 

The observed phenotypes of the trx mutants suggest that the two thioredoxins have different 494 

functions in stress resistance in L. lactis. TrxA seems to be involved in responses to oxidative 495 

stress while TrxD appears to be important for resistance towards arsenate and tellurite. The role 496 

of TrxD in these processes is unknown but it is speculated that TrxD may act as an alternative 497 

electron donor for arsenate reductase, an established Trx-target in B. subtilis. Even though both 498 

TrxA and TrxD appear to be important for stress resistance, the strain lacking both Trx is viable, 499 

suggesting the presence of an alternative thiol redox system in L. lactis.  500 

 501 
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 508 

2.7 Tables 509 

Table 1. DIGE experimental setup 
 Cy3 Cy5 Cy2 
gel 1 wt ∆trxD IS 
gel 2 ∆trxA wt IS 
gel 3 ∆trxD ∆trxA IS 
gel 4 wt ∆trxD IS 
gel 5 ∆trxA wt IS 
gel 6 ∆trxD ∆trxA IS 
 510 

  511 
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Table 2. Selected results of the Bioscreen assay with wt and the ∆trxA strains exposed to a range of stress 
compounds. Standard deviations are calculated based on three biological replicates. 

 
wild type ∆trxA 
relative µ* lag phase relative µ* lag phase 

Compound c [µM] % ctrl† [h] % ctrl† % WT‡ [h] 
Control NA 100   ± 3.9 3        ± 1 100 ± 2.8 72 4 ± 1 
Methionine sulfoxide NA 96     ± 3.3 4  ± 1 30 ± 5.6 22 12 ± 3 
Hydrogen peroxide 313 95     ± 9.8 8 ± 2 94 ± 10.4 71 >24 
Sodium arsenate 1250 92     ± 1.6 6 ± 1 94 ± 3.7 73 9 ± 2 
Potassium tellurite 1250 49     ± 2.5 4 ± 2 53 ± 4.2 78 7 ± 2 
Diamide 1250 81     ± 11.0 8 ± 4 61 ± 55.1 54 18 ± 2 

Paraquat 20000 61     ± 10.1 8 ± 3 29 ± 30.9 35 11 ± 1 
* Relative growth rates (µ) of strains exposed to stress conditions were calculated as a percentage of the growth rate for the 
non-stressed control of the same strain (†) or a percentage of the growth rate for the wt exposed to the same stress condition 
(‡); 100% (wt) µ = 0.506 h-1 and 100% (∆trxA) µ = 0.365 h-1.  
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Table 3. Selected results of the Bioscreen assay with ∆trxD and ∆trxA∆trxD strains. Standard deviations are based on 
three biological replicates. 

 
∆trxD ∆trxA∆trxD 
relative µ* lag phase relative µ* lag phase 

Compound c [µM] % ctrl† % WT‡ [h] % ctrl† % WT‡ [h] 
Control NA 100 ± 2.9 95 3 ± 1 100 ± 30.5 33 8 ± 1 
Methionine sulfoxide NA 95 ± 8.5 97 4 ± 1 57 ± 12.0 18 24 ± 5 
Hydrogen peroxide 313 94 ± 7.9 94 9 ± 1 <10 NA >24 
Sodium arsenate 1250 90 ± 6.4 93 12 ± 1 <10 NA >24 
Potassium tellurite 1250 33 ± 1.4 64 4 ± 1 14 ± 0.9 10 >24 
Diamide 1250 78 ± 11.9 91 9 ± 4 <10 NA >24 

Paraquat 20000 62 ± 6.1 96 10 ± 2 12 ± 2.1 7 >24 
* Relative growth rates (µ) of strains exposed to stress conditions were calculated as a percentage of the growth rate for the non-
stressed control of the same strain (†) or a percentage of the growth rate for the wt exposed to the same stress condition (‡); 100% 
(∆trxD) µ = 0.479 h-1 and 100% (∆trxA∆trxD)  µ = 0.167 h-1.  
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Table 4. Up- and down regulated proteins identified by DIGE of non-stressed trx mutants vs. wt in mid-exponential phase.  
 Protein name Fold* pI/Mr [kDa]¤ Gene Accession p-value† Score SC¶  M# F‡ Peptide sequences identifed by MS/MS G$ 

hypothetical protein +3.7 5.6/9.2 llmg_1475 gi|125624282 0.0002 87 21% 2 1 KAEGLSEAELEEQALLRR 5 
dihydrolipoamide dehydrogenase (spot 915) +2.6 4.9/49.9 pdhD gi|125622950 0.0030 263 58% 19 1 MVVGAQATEVDLVVIGSGPGGYVAAIRA X 
pyruvate kinase (spot 915) +2.6 5.21/54.3 pyk gi|125623950 0.0030 95 39% 13 1 RFNFSHGDHPEQGARM X 
30S ribosomal protein S4 (spot 558) +2.3 10.0/23.2 rpsD gi|125623168 0.0002 174 57% 13 2 RNYVPGQHGPNNRS  

RVQPGQVISVRE 
X 

putative nitroreductase (spot 558) +2.3 4.7/22.5 llmg_2172 gi|125624942 0.0002 153 50% 11 1 KAAMEAQGVPESAWDNTRA X 
gluthatione peroxidase +2.1 5.2/18.1 gpo gi|125623919 0.0002 84 28% 6 1 KFLIDRDGQVIERF 1 
30S ribosomal protein S5  +1.7 10.2/17.6 rpsE gi|125625124 0.0030 204 56% 11 3 RFAALVVVGDRN  

KAQEVPEAIRKA  
KSLGSNTPINVVRA 

3 

pyruvate dehydrogenase E1 component beta 
subunit  

+1.6 4.8/35.1 pdhB gi|125622952 0.0003 292 63% 19 2 KDKDALIFGEDVGQNGGVFRA  
RVVVVQEAQRT 

2 

TrxB1 protein +1.5 4.8/34 trxB1 gi|125624390 0.0008 156 18% 4 1 RNQEILVIGGGDSAVEEALYLTRF 1 
hypothetical protein +1.5 5.4/14.9 llmg_2273 gi|125625038 0.0030 114 49% 5 1 KFTAHDYDLAEIAKQ 5 
formate-tetrahydrofolate ligase  −1.6 5.7/59.7 fhs gi|125623054 0.0050 615 53% 34 3 KSTVTVGLADAFARQ ; RIVIAQNYDRK; 

KTQYSFSDQANLLAAPEGFEVTVRE 
4 

pyruvate kinase −1.6 5.2/54.3 pyk gi|125623950 0.0050 465 53% 26 3 KIVSTLGPAVEIRG 
RTELFTDGADSISVVTGDKFRV 
KLIVALTESGNTARL 

2 

tyrosyl-tRNA synthetase −1.6 5.38/47.3 tyrS gi|125624396 0.0090 323 37% 16 2 KTSEILFGGGDLRQ 
RVQELDYVLTDSDKIENRL 

3 

pyruvate kinase  −1.6 5.2/54.3 pyk gi|125623950 0.0060 335 57% 31 2 KLIVALTESGNTARL  
KIPFPALAERDDADIRF 

2 

hypothetical protein −1.7 4.5/8.8 llmg_0304 gi|125623269 0.0110 236 88% 8 1 RETTDALYLDLDVATKEEGVILARE 5 
formate-tetrahydrofolate ligase −1.7 5.7/59.7 fhs gi|125623950 0.0010 169 28% 15 2 K.STVTVGLADAFARQ  

RIVIAQNYDRK  
4 

aspartyl/glutamyl-tRNA amidotransferase 
subunit B (spot 895) 

−1.7" 5.2/53.4 gatB gi|125623950 0.0030 238 53% 26 1 RAHLEEDAGKNTHGTDGYSYVDLNRQ X 

pyruvate kinase (spot 895) −1.7" 5.2/54.3 pyk gi|125624396 0.0070 214 53% 22 2 RFNFSHGDHPEQGARM  
KLIVALTESGNTARL 

X 

putative tellurium resistance protein −1.9 4.38/21.1 telB gi|125624170 0.0310 241 48% 9 2 KVRNDDDFIFYNHKI  
RNDDDFIFYNHKI 

1 

* Ratio ∆trxA vs. wt unless marked differently; ± mark up- and down-regulation, respectively 
" Ratio ∆trxA vs. ∆trxD 
¤ Calculated values 
† ANOVA p-value from the image analysis 
¶ Sequence coverage in peptide mass fingerprinting (PMF) 
# Number of matched peptides in PMF 
‡ Number of peptides fragmented and analyzed by MS/MS 
$ Groups: 1 - stress; 2 - carbon metabolism; 3 - translation; 4 - other; X - two proteins in a spot 
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Table 5. Differential protein expression in wt and the ∆trxD mutant upon treatment by 100 µM sodium arsenate   
∆trxD versus wild type; both exposed to arsenate (As vs As)           
Protein name RTR* pI/Mr [kDa]¤ Gene Accession p-value† Score SC¶  M# F‡ Peptide sequences identifed by MS/MS" G$ 
phosphopyruvate hydratase (spot 3013) −3.4 4.7/46.9 enoA gi|125623478 0.0080 708 54% 20 5 SIITDIYAR  

GNPTLEVEVYTEDGAFGR 
GMVPSGASTGEHEAVELR 
AVDNVNNIIAEAIIGYEVTDQQAIDR 
EAGFTAIVSHR 

X 

ATP synthase F0F1 subunit beta  (spot 3013) −3.4 5.0/52.7 atpD gi|125624725 0.0080 157 53% 21 0  X 
elongation factor G −2.6 4.8/77.9 fusA gi|125625309 0.0349 424 46% 28 2 EFKVEANVGAPQVAYR  

VTITVPEENLGDIMGHVTAR 
4 

dipeptidase PepV  (spot 3039) −2.2 4.7/51.9 pepV gi|116511662 0.0271 110 34% 16 0  X 
ATP synthase F0F1 subunit beta  (spot 3039) −2.2 5.0/52.7 atpD gi|125624725 0.0271 107 39% 18 0  X 
hypothetical protein llmg_1773 +2.0 5.9/8.6 llmg_1773 gi|125624563 0.0128 128 49% 3 1 ASDLAEDVAEKFNDTVDSVK 5 
Inosine-5'-monophosphate dehydrogenase +1.9 52.8 guaB gi|125623107 0.0188 184  9% 10§ 10§ KVGIGPGSICTTRV; RKLVGIITNRD; 

KLVPEGIEGRV; KTIIADGGIKY;  LVGIITNRD; 
RGMGSIAAMKK;  GMGSIAAMKK (M) 

2 

formate-tetrahydrofolate ligase +1.8 5.7/59.7 fhs gi|125624396 0.0113 270 21% 9 3 STVTVGLADAFAR 
IVIAQNYDR TQYSFSDQANLLAAPEGFEVTVR 

2 

DNA-directed RNA polymerase subunit alpha −1.8 4.9/34.2 rpoA gi|125625115 0.0229 315 26% 14 5 FDESENYGKFVVEPLER  
GYGTTLGNSLR 
VNYQVEPAR 
VLDKIIEEMDFSVR 
VLDKIIEEMDFSVR (M) 

6 

elongation factor Ts −1.7 5.0/36.1 tsf gi|125625187 0.0198 504 50% 17 3 ALVETDGNMEAAAELLR 
VLVNKPELPHHEYGSK 
FEVGEGIEKAETDFAAEVEAAK 

4 

molecular chaperone GroEL −1.6 4.8/51.2 groEL gi|125623278 0.0398 415 21% 27 2 TNDIAGDGTTTATVLTQAIVR 
TNRPLLIVADDVDGEALPTLVLNK 

3 

molecular chaperone DnaK −1.6 4.6/64.9 dnaK gi|125624376 0.0410 256 37% 16 1 QALSDAGLSTSDIDEVLLVGGSTR 3 
naphthoate synthase +1.6 5.7/31.1 menB gi|116511535 0.0155 205 35% 8 2 ITINRPEVR 

GNGGYVGEDQIPR 
5 

serine hydroxymethyltransferase +1.6 5.6/44.8 glyA gi|125623428 0.0295 486 50% 21 3 YAEGYPGKR 
YYGGTEAVDVVENLAIDR 
ALVNHDNQEKLEEVR 

2 

phosphofructokinase +1.5 35.8 pfkA gi|125623949 0.0155 123  35% 32§ 32§ RYPEFAQVEGQLAGIEQLKKF; 
RIAVLTSGGDAPGMNAAIRA; 
RAVELLRDGIGGVAVGIRN; 
KFENVVNNINKGYEKG; RLNSALNNLNLN; 
KFENVVNNINKG; RTFVVEVMGRN; 
RDGIGGVAVGIRN; RVSVLGHIQRG; 
KEAGYKGDLRV; RGGTFLYSARY; 
KAGLELYRL; RAVELLRD 

1, 6 
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Table 5. (continued) 
∆trxD; arsenate stressed samples vs. control (As vs C) 
  
Protein name RTR* pI/Mr [kDa]¤ Gene Accession p-value† Score SC¶  M# F‡ Peptide sequences identifed by MS/MS" G$ 

phosphopyruvate hydratase (spot 3013) −2.1 4.7/46.9 enoA gi|125623478 0.0262 708 54% 20 5 SIITDIYAR 
GNPTLEVEVYTEDGAFGR 
GMVPSGASTGEHEAVELR 
AVDNVNNIIAEAIIGYEVTDQQAIDR 
EAGFTAIVSHR 

X 

ATP synthase F0F1 subunit beta  (spot 3013) −2.1 5.0/52.7 atpD gi|125624725 0.0262 157 53% 21 0  X 
elongation factor G −1.8 4.8/77.9 fusA gi|125625309 0.0484 424 46% 28 2 EFKVEANVGAPQVAYR  

VTITVPEENLGDIMGHVTAR 
4 

serine hydroxymethyltransferase +1.7 5.6/44.8 glyA gi|125623428 0.0007 486 50% 21 3 YAEGYPGKR 
YYGGTEAVDVVENLAIDR 
ALVNHDNQEKLEEVR 

2 

hypothetical protein −1.7 5.4/14.9 llmg_2273 gi|125625038 0.0176 251 51% 6 2 VYEDDDVVAFLDITQTTK 
FTAHDYDLAEIAK 

6 

dipeptidase PepV  (spot 3039) −1.6 4.7/51.9 pepV gi|116511662 0.0075 110 34% 16 0  X 
ATP synthase F0F1 subunit beta  (spot 3039) −1.6 5.0/52.7 atpD gi|125624725 0.0075 107 39% 18 0  X 
glucose-1-phosphate thymidylyltransferase −1.5 4.7/32.2 rmlA gi|125623083 0.0384 394 47% 17 4 GATVFGYHVPDPER 

GELEITDVNKAYLER 
MGYITEEDVR 
NEYGQYLLR 

7 
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Table 5. (continued) 
wild type; arsenate stressed samples vs. control (As vs C) 
  
Protein name RTR* pI/Mr [kDa]¤ Gene Accession p-value† Score SC¶  M# F‡ Peptide sequences identifed by MS/MS" G$ 

DivIVA cell division initiation protein −1.8 4.7/14.9 llmg_0769 gi|125623623 0.0242 93 74% 8 0  6 
DNA-directed RNA polymerase subunit alpha +1.8 4.9/34.2 rpoA gi|125625115 0.0337 315 26% 14 5 FDESENYGKFVVEPLER 

GYGTTLGNSLR 
VNYQVEPAR 
VLDKIIEEMDFSVR 
VLDKIIEEMDFSVR (M) 

6 

ribonucleotide-diphosphate reductase subunit 
alpha 

−1.5 5.2/81.8 nrdE gi|125624346 0.0252 88 2% 1 1 ALTFISETSNLDTVPTVR 2 

hypothetical protein −1.5 5.4/14.9 llmg_2273 gi|125625038 0.0124 251 51% 6 2 VYEDDDVVAFLDITQTTK 
FTAHDYDLAEIAK 

6 

* Relative translation rate; ± mark up- and down-regulation, respectively                   
¤ Calculated values 

           † Result of the Welch's t-test (see Materials and Methods) 
          ¶ Sequence coverage in peptide mass fingerprinting (PMF) 
          # Number of matched peptides in PMF 

           ‡ Number of peptides fragmented and analyzed by MS/MS; "0" means that the protein was identified based on PMF only 
     § Spot identified by LC/MS      

" (M) - oxidation of methionine 
          $ Group: 1 - carbon metabolism; 2 - nucleotide metabolism; 3 - ATPases; 4 - GTPases; 5 - stress/aerobiosis; 6 - other; X - two proteins in a spot 
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2.8 Figure legends 

Fig. 1 Detection of TrxA and TrxD. Protein extracts from wt, ∆trxA and ∆trxD strains 

harvested in mid-exponential phase (EP) or stationary phase (SP) were subjected to western 

blot analysis. Recombinant TrxA and TrxD were used as positive controls. Slower migration 

of the recombinant proteins are due to the presence of N-terminal His6-tags. 1 – wt EP; 2 – wt 

SP; 3 -  ∆trxA EP; 4 - ∆trxA SP; 5 - ∆trxD EP; 6 - ∆trxD SP; 7 – 200 ng TrxA; 8 – 100 ng 

TrxD. Proteins were transferred from identically prepared SDS-PAGE gels. Primary 

antibodies used in each experiment are on the left side. No apparent cross-reaction between 

the antibodies and the two His6-tagged recombinant thioredoxins or the native proteins was 

observed. 

Fig. 2 Trx mutant phenotypes. Growth curves display wt (♦), ∆trxA (▲), ∆trxD (○) and 

∆trxA∆trxD (×) strains without stress (A) or when exposed to hydrogen peroxide (B) and 

sodium arsenate (C). For more details see text. (D) Plate assays showing three biological 

replicates of wt, ∆trxA and ∆trxD strains exposed to sodium arsenate and potassium tellurite. 

Each section contains four dilutions of exponentially growing cultures (See materials and 

methods). The ∆trxA and ∆trxD mutants are more affected by sodium arsenate and potassium 

tellurite than wt. White background was chosen for the tellurite experiment, because formed 

Te0 made the colonies black. 

Fig. 3 Reduction of tetrazolium salts. Reduction of tetrazolium violet (TV) and p-

iodonitrotetrazolium chloride (INT) added to wild type, ∆trxA and ∆trxD strains in mid-

exponential phase (A) and stationary phase (B) was monitored spectrophotometrically at 510 

nm (TV) and 468 nm (INT). Error bars represent standard deviation of at least three biological 

replicates. 
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Fig. 4 Proteome profile of ∆trxA vs. wt. Representative DIGE gel of soluble cytosolic 

proteins in the acidic range (pI=4‒7) of wild type and ∆trxA strains. Proteins up- or down-

regulated in ∆trxA mutant vs. wt are marked red or purple, respectively. For details see Table 

4. 

Fig. 5 [35S]-L-methionine labeling of ∆trxD and wt exposed to arsenate. Representative 

radioactive images of control (Ctrl) (A, B) and arsenate (As) treated (C, D) samples are 

shown. Up- and down-regulated proteins upon arsenate exposure in each strain (As vs. Ctrl ) 

are marked red or purple, respectively. Up- and down-regulated proteins in stressed ∆trxD 

mutant vs. wt (As vs. As) are marked green or orange, respectively. 
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2.9 Figures 

 

Fig.1 
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Fig.2 
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Fig.3 
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Fig.4 
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Fig.5 
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2.10 Supplementary material 

Table S1. PCR primers 
trxA upstream region Product size [bp] 
Fw - 5-CCGGATCCATTGATTCGTTTAGAAAAAGATGG -3 494 
Rev - 5-GTAAATTTTATTATGATAATTCAGATTCCATTATATCTCCTTCATTGAA-3 
trxA downstream region 
Fw - 5-CTGAATTATCATAATAAAATTTACTGACAG-3 447 
Rev - 5-AAAACTCGAGCAAGAAATATTTTACCAAAAACCCTC-3 
trxA outside primers 
Fw - 5-CCTTTAAAGTTTTTTTACTGG-3 1433 / 1121* 
Rev - 5-CTCAAGAAGTAGTTAAAAAAG-3 
trxD upstream region 
Fw - 5-CCGGATCCGTCAAATTCTGGTTGATAGCCTAG-3 564 
Rev - 5-GAAATCAGTCTTATTTTGCACGAATAATCATTCTGTATTTCCTTTCG-3 
trxD downstream region 
Fw - 5-GTGCAAAATAAGACTGATTTCTTG-3 510 
Rev - 5-AAAACTCGAGCACCACAAACAATTTGTACTGG-3 
trxD outside primers 
Fw - 5-GACTTTTGAAGCTTTTGTC-3 1477/1162* 
Rev - 5-CCATTAGGCATCATTGC-3 
Other primers 
T3 - 5-ATTAACCCTCACTAAAG-3 - 
T7 - 5-AATACGACTCACTATAG-3 
* product size in case of the presence or absence of the particular gene on the chrosome 
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Table S2. Bioscreen assay with wt, ∆trxA, ∆trxD and ∆trxA∆trxD strains. Standard deviations (SD) are based on three 
biological replicates. 

Stress conditions \ strains 
wild type ∆trxA 
relative µ* lag phase relative µ* lag phase 

compound c [µM] % ctrl† SD [%] [h] SD [h] % ctrl† SD [%] % WT‡ [h] SD [h] 
Control NA 100 3.9 3 1 100 2.8 72 4 1 
Methionine sulfoxide NA 96 3.3 4 1 30 5.6 22 12 3 
Formaldehyde 78 90 4.9 3 1 79 2.4 63 5 1 
  313 54 3.2 6 2 47 7.0 62 9 2 
  1250 <10 NA >24 NA <10 NA NA >24 NA 
  5000 <10 NA >24 NA <10 NA NA >24 NA 
Hydrogen peroxide 78 100 9.2 4 1 102 10.0 73 7 2 
  313 95 9.8 8 2 94 10.4 71 >24 NA 
  1250 <10 NA >24 NA <10 NA NA >24 NA 
  5000 <10 NA >24 NA <10 NA NA >24 NA 
Sodium arsenate 78 100 2.1 3 1 102 5.7 74 4 1 
  313 100 2.2 4 1 100 7.9 72 5 1 
  1250 92 1.6 6 1 94 3.7 73 9 2 
  5000 64 9.4 19 1 21 34.6 24 >24 NA 
Potassium tellurite 78 101 6.4 3 1 103 10.2 74 4 1 
  313 86 3.8 3 1 90 2.9 75 5 1 
  1250 49 2.5 4 2 53 4.2 78 7 2 
  5000 <10 NA >24 NA <10 NA NA >24 NA 
Diamide 20 101 6.1 3 1 100 4.4 71 4 1 
  78 102 4.9 3 1 97 5.0 68 5 1 
  313 105 1.5 4 2 104 6.1 72 11 5 
  1250 81 11.0 8 4 61 55.1 54 18 2 
  5000 <10 NA >24 NA <10 NA NA >24 NA 
* Relative growth rates (µ) were calculated by dividing µ of a strain at a stress condition by µ of non-stressed control (†) or µ of wt at 
the same stress condition (‡); 100% (wt) = 0.506 h-1 and 100% (∆trxA) = 0.365 h-1. 
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 Table S2 (continued)           
Stress conditions \ strains 

wild type ∆trxA 
relative µ* lag phase relative µ* lag phase 

compound c [µM] % ctrl† SD [%] [h] SD [h] % ctrl† SD [%] % WT‡ [h] SD [h] 
Paraquat 20 101 2.3 3 1 96 5.5 69 4 1 

 78 102 9.8 3 1 99 4.5 70 4 1 

 313 97 3.5 3 1 99 14.0 74 4 1 

 1250 91 5.8 4 2 103 2.4 82 5 2 

 5000 81 5.9 6 2 82 3.8 73 8 2 

 20000 61 10.1 8 3 29 30.9 35 11 1 
Cadmium(II)chloride 5 13 6.5 5 1 10 7.6 54 >24 NA 

 20 <10 NA >24 NA <10 NA NA >24 NA 

 78 <10 NA >24 NA <10 NA NA >24 NA 

 313 <10 NA >24 NA <10 NA NA >24 NA 

 1250 <10 NA >24 NA <10 NA NA >24 NA 
Zinc(II)chloride 5 108 7.2 3 1 98 5.6 66 4 1 

 20 110 9.3 3 1 96 10.4 63 4 1 

 78 95 6.5 3 1 88 3.0 66 4 1 

 313 46 34.7 4 2 44 33.8 68 6 2 

 1250 <10 NA >24 NA <10 NA NA >24 NA 
Iron(II)sulfate 5 102 2.1 3 1 91 3.6 64 4 1 

 20 98 3.5 3 1 86 2.0 63 4 1 

 78 97 5.2 3 1 81 1.2 60 4 1 

 313 91 13.3 3 1 77 3.7 61 5 1 

 1250 77 16.9 4 1 61 2.8 57 5 1 
Copper(II)sulfate 5 103 3.0 3 1 90 1.4 63 4 1 

 20 100 12.4 3 1 88 2.9 64 4 1 

 78 61 15.7 4 2 53 20.0 63 5 1 

 313 <10 NA >24 NA <10 NA NA >24 NA 

 1250 <10 NA >24 NA <10 NA NA >24 NA 
* Relative growth rates (µ) were calculated by dividing µ of a strain at a stress condition by µ of non-stressed control (†) or µ of wt at the 
same stress condition (‡); 100% (wt) = 0.506 h-1 and 100% (∆trxA) = 0.365 h-1. 
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Table S2 (continued)            
Stress conditions \ strains ∆trxD ∆trxA∆trxD 

relative µ* lag phase relative µ* lag phase 
compound c [µM] % ctrl† SD [%] % WT‡ [h] SD [h] % ctrl† SD [%] % WT‡ [h] SD [h] 
Control NA 100 2.9 95 3 1 100 30.5 33 8 1 
Methionine sulfoxide NA 95 8.5 97 4 1 57 12.0 18 24 5 
Formaldehyde 78 86 7.9 91 4 1 55 21.6 20 12 1 
  313 48 5.2 84 >24 3 11 1.1 7 >24 NA 
  1250 <10 NA NA >24 NA <10 NA NA >24 NA 
  5000 <10 NA NA >24 NA <10 NA NA >24 NA 
Hydrogen peroxide 78 102 10.2 96 5 1 75 15.8 25 16 1 
  313 94 7.9 94 >24 1 <10 NA NA >24 NA 
  1250 <10 NA NA >24 NA <10 NA NA >24 NA 
  5000 <10 NA NA >24 NA <10 NA NA >24 NA 
Sodium arsenate 78 101 3.3 96 4 1 111 13.4 37 11 1 
  313 103 2.1 98 5 1 75 9.3 25 16 2 
  1250 90 6.4 93 >24 1 <10 NA NA >24 NA 
  5000 <10 NA NA >24 NA <10 NA NA >24 NA 
Potassium tellurite 78 98 0.7 92 4 1 124 5.5 41 12 1 
  313 79 4.1 87 4 1 81 21.5 31 16 1 
  1250 33 1.4 64 >24 1 14 0.9 10 >24 NA 
  5000 <10 NA NA >24 NA <10 NA NA >24 NA 
Diamide 20 102 3.4 96 3 1 116 6.0 38 11 2 
  78 102 5.2 94 4 1 151 55.7 49 17 2 
  313 103 1.4 92 >24 1 <10 NA NA >24 NA 
  1250 78 11.9 91 >24 4 <10 NA NA >24 NA 
  5000 <10 NA NA >24 NA <10 NA NA >24 NA 
* Relative growth rates (µ) were calculated by dividing µ of a strain at a stress condition by µ of non-stressed control (†) or µ of wt at the same stress 
condition (‡); 100% (∆trxD) = 0.479 h-1 and 100% (∆trxA∆trxD) = 0.167 h-1. 
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Table S2 (continued)            
Stress conditions \ strains ∆trxD ∆trxA∆trxD 

relative µ* lag phase relative µ* lag phase 
compound c [µM] % ctrl† SD [%] % WT‡ [h] SD [h] % ctrl† SD [%] % WT‡ [h] SD [h] 
Paraquat 20 105 3.2 98 4 1 133 8.9 43 9 1 
  78 103 6.0 96 4 1 127 15.2 41 10 2 
  313 99 7.6 96 4 1 128 11.2 44 10 1 
  1250 93 10.4 96 4 0 120 5.7 44 11 1 
  5000 80 2.0 93 6 1 33 20.9 13 >24 NA 
  20000 62 6.1 96 10 2 <10 NA NA >24 NA 
Cadmium(II)chloride 5 29 4.7 206 10 2 <10 NA NA >24 NA 
  20 <10 NA NA >24 NA <10 NA NA >24 NA 
  78 <10 NA NA >24 NA <10 NA NA >24 NA 
  313 <10 NA NA >24 NA <10 NA NA >24 NA 
  1250 <10 NA NA >24 NA <10 NA NA >24 NA 
Zinc(II)chloride 5 106 9.6 93 4 1 127 8.7 39 9 1 
  20 107 7.5 92 4 1 120 13.6 36 9 1 
  78 97 5.9 96 4 1 99 19.4 34 10 1 
  313 46 34.3 94 4 1 28 19.8 20 11 3 
  1250 <10 0.4 400 >24 NA <10 NA NA >24 NA 
Iron(II)sulfate 5 105 4.9 98 4 1 99 4.2 32 9 1 
  20 101 2.8 97 4 1 101 10.9 34 9 1 
  78 97 5.8 95 4 1 105 16.4 36 10 2 
  313 90 5.7 93 4 1 101 14.6 37 11 1 
  1250 64 8.8 79 4 1 85 10.5 37 12 1 
Copper(II)sulfate 5 103 4.9 94 3 1 100 11.2 32 8 1 
  20 91 5.7 87 3 1 63 11.0 21 8 1 
  78 66 9.1 102 4 0 <10 NA NA >24 NA 
  313 <10 NA NA >24 NA <10 NA NA >24 NA 
  1250 <10 NA NA >24 NA <10 NA NA >24 NA 
* Relative growth rates (µ) were calculated by dividing µ of a strain at a stress condition by µ of non-stressed control (†) or µ of wt at the same stress 
condition (‡); 100% (∆trxD) = 0.479 h-1 and 100% (∆trxA∆trxD) = 0.167 h-1. 
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3.1 Abstract 

Thioredoxins are protein disulfide reductants found in all domains of life. Here we investigate three 

thioredoxin superfamily proteins with active site CXXC motifs (LlTrxA, LlTrxD and LlNrdH) from 

the industrially important microorganism Lactococcus lactis and compare these to the well 

characterized thioredoxin from Escherichia coli (EcTrx1) with respect to thiol-disulfide exchange 

reactivity and redox potential. LlTrxA resembles EcTrx1 and contains a WCGPC active site and 

other key residues conserved among classical thioredoxins. By contrast LlTrxD has the atypical 

WCGDC active site sequence apparently overrepresented in a group of Trx-like proteins from 

Gram-positive bacteria. The LlNrdH is established as electron donor for ribonucleotide reductase 

class Ib, has sequence similiarity to glutaredoxin and contains a CMQC active site motif. Both 

LlTrxA and EcTrx1 have high capacity to reduce insulin disulfides and their exposed active site 

thiol is alkylated at similar rate at pH 7.0. LlTrxA, however, has significantly higher redox potential 

(E°´=-259 mV) than EcTrx1 (E°´=-270 mV). LlTrxD on the other hand, is alkylated (at pH 7.0) by 

iodoacetamide almost 100 fold more rapidly than TrxA and EcTrx1, shows no insulin disulfide 

reduction and has a high redox potential (E°´=-243 mV). Finally, LlNrdH has only weak activity 

towards insulin and a higher redox potential (E°´=-238 mV) than E. coli NrdH (E°´=-248 mV). 

LlTrxA, LlTrxD and LlNrdH are all efficiently reduced by the NADPH dependent thioredoxin 

reductase (LlNTR). With LlTrxD as notable exception a high level of cross-reactivity towards E. 

coli NTR was observed.  
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3.2 Introduction 

Cysteine sulfhydryl groups are highly reactive and prone to oxidative damage. Thiols in the 

intracellular environment are thus maintained in reduced state by low molecular weight antioxidants 

such as the tripeptide glutathione (GSH) and redoxins, i.e. protein disulfide reductases such as 

thioredoxin (Trx) and glutaredoxin (Grx) containing redox active CNXXCC motifs [1]. In addition 

to their role as general disulfide reductants these redoxins act as hydrogen donors to enzymes such 

as methionine sulfoxide reductase, peroxiredoxins and ribonucleotide reductase [2]. In deprotonated 

thiolate form the exposed CN of Trx attacks target disulfides and forms an intermolecular disulfide 

in turn reduced by Trx CC. In the cytosol, the reducing power for Trx and Grx is provided in an 

NADPH-dependent manner by thioredoxin reductase (NTR) and glutathione reductase (GR), 

respectively. Trx and Grx belong to the Trx superfamily of proteins with similar overall fold and a 

core motif of a four-stranded β-sheet flanked by three α-helices [3], which includes proteins 

catalyzing formation and isomerization of disulfide bonds, e.g. Dsb proteins in the periplasm of 

bacteria. The Trx superfamily covers a wide range of thiol-disulfide exchange equilibria spanning 

from reductants such as Escherchia coli Trx1 (WCGPC, -270 mV) and Grx1 (WCPYC, -233 mV) 

to oxidants like DsbA (WCPHC, -120 mV) [4-6]. The amino acid sequence of the CXXC motif is 

an important determinant for the reactivity of Trx family proteins, but target specificity also appears 

to be guided by specific intermolecular interactions involving key residues in the vicinity of the 

active site [7, 8].  

 

The industrially important microaerophilic bacterium Lactococcus lactis contains two Trx-like 

proteins (LlTrxA, LlTrxD), a smaller redoxin (LlNrdH), and an NTR (LlNTR). LlTrxA has a 

WCGPC active site motif and resembles the well characterized thioredoxin from E. coli (EcTrx1), 

whereas the atypical active site WCGDC is found in LlTrxD. Phenotype screening of Lactococcus 
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lactis knock-out strains suggests different but partially overlapping roles for these Trx-like proteins; 

LlTrxA seems to be involved in oxidative stress resistance whereas LlTrxD appears to be important 

for arsenate detoxification (Efler, P, Kilstrup, M, Johnsen, S; Svensson, B & Hägglund, P, 

unpublished work). LlNrdH (CMQC) represents a group of Grx-like proteins providing reducing 

equivalents to ribonucleotide reductase Ib (NrdEF) as first demonstrated in L. lactis [9, 10]. Despite 

being related to Grx, NrdH from E. coli is recycled by NTR and not by GSH and GR [9]. Similarly 

to many other Gram-positive bacteria L. lactis cannot synthesise GSH, and production of alternative 

low-molecular weight thiols such as bacillithiol [11] has not yet been reported in this species [12, 

13]. It can therefore be expected that LlNTR is essential but a mutant lacking NTR was 

demonstrated to be viable and tolerant to oxygen [13]. In contrast deletion of NTR in 

Staphylococcus aureus is lethal suggesting fundamental differences in the disulfide reduction 

pathways among Gram-positive bacteria [12]. To further the understanding of thiol reduction in L. 

lactis we characterized and compared the biophysical and catalytic properties of three potentials 

targets of LlNTR with those of EcTrx1. 

 

3.3 Results and discussion 

 

3.3.1 Sequence analysis of two L. lactis thioredoxins 

The genome of L. lactis MG1363 contains two open reading frames, trxA and trxH, annotated as 

thioredoxins, and a smaller Grx-like nrdH; the corresponding encoded redoxins are here referred to 

as LlTrxA, LlTrxD and LlNrdH, respectively. The sequence of LlNrdH has been described 

elsewhere [9, 10] and will not be analyzed in detail here. The amino acid sequence of LlTrxA is 

similar to other reported thioredoxins containing the canonical WCGPC motif and shows 42% 
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identity to the well characterized EcTrx1 (Fig. S1). Conserved residues include D26, F27, A29, 

P40, D61, P76, T77, G84, G92 (EcTrx1 numbering). LlTrxD on the other hand has a WCGDC 

motif, is more distantly related to EcTrx1 and LlTrxA (25% and 28% sequence identity, 

respectively) and lacks D26, T77 and G92 conserved among the “WCGPC”-thioredoxins (Fig. S1). 

D26EcTrx1 has been studied extensively and is proposed to play an important role as acid/base in the 

catalytic mechanism of thioredoxin [14, 15]. G92 as well as the cis-proline (P76) preceeding T77 

are both conserved among a wide range of Trx-fold proteins including Trx and Grx [3, 7, 16]. In an 

attempt to define and place LlTrxD in an evolutionary context, the amino acid sequence was 

subjected to BLAST analysis yielding 294 NCBI accessions with >50% sequence identity (e<1*10-

16; BLAST score>76.6 bits) originating mainly from the phylum Firmicutes. Most of these 

sequences display a WC[G/P]DC active site motif (Fig. S2). As observed for LlTrxD, residues 

corresponding to EcTrx1 D26 and G92 are not conserved and T77EcTrx1 is apparently replaced by an 

invariant serine residue. Other conserved residues include P40, E43, F51, R56, R91, F100 and L101 

(LlTrxD numbering) (Fig. S2). 

 

Thioredoxin-like proteins with atypical active site motifs is not a rare phenomenon; 5330 out of a 

total of 10856 sequences with WCXXC motifs in the pfam thioredoxin (PF00085) do not match 

WCGPC and 823 sequences contain WC[G/P]DC motifs (Table 1). 745 of these 823 sequences 

derive from bacterial species in the phylum Firmicutes, suggesting overrepresentation in this 

phylogenetic group which includes a wide range of Gram positive bacteria including L. lactis. 

Characterized thioredoxin-like proteins with WC[G/P]DC active sites include Trx2 from 

Helicobacter pylori (WCPDC, 39% identity to LlTrxD) and Trx2 from Bacillus anthracis 

(WCPDC, 58% identity to LlTrxD) [17, 18]. WCPDC active site motifs are also present in more 

distantly related redoxins including Saccharomyces cerevisae glutaredoxin 8 (30% identity to 
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LlTrxD) and the well characterized, structure-determined human Trx-like protein HsTRP14 (21% 

identity to LlTrxD) [19-21]. 

 

3.3.2 Insulin disulfide reduction  

Protein disulfide reductase activity was tested using a qualitative turbidity assay with insulin as 

model substrate and DTT as electron donor [22]. Whereas LlTrxA reduces insulin with similar 

apparent efficiency as EcTrx1, LlNrdH reduces insulin comparatively inefficiently (Fig. 1A). A 

similar trend was previously observed when comparing the relative insulin disulfide reduction 

efficiency of EcTrx1 and E. coli NrdH [9]. With LlTrxD, no insulin reduction was detected even at 

elevated Trx concentration (10 µM), and with LlNTR and NADPH as reductants instead of DTT 

(data not shown). In order to probe the influence of the active site aspartate conserved among 

proteins related to LlTrxD (Fig. S2), site-directed mutagenesis was employed to exchange this 

residue by proline or asparagine. For LlTrxD D31N no apparent insulin reduction was detected but 

with D31P (10 µM), however, a low but significant rate of disulfide reduction was found (Fig. 1B). 

Among Trx-like proteins with WC[G/P]DC motifs insulin disulfide reduction activity was observed 

in Trx2 of H. pylori, but not in Trx2 of B. anthracis [17, 18]. Low activity towards insulin was 

determined for the distantly related HsTRP14 and ScGrx8 [19, 20]. 

 

3.3.3 Recycling by NTRs from L. lactis and E. coli 

LlTrxA, LlTrxD, LlNrdH and EcTrx1 were assayed as substrates for NTR from L. lactis and E. coli 

using Ellmans reagent (5,5'-dithiobis-(2-nitrobenzoic acid); DTNB) as final electron acceptor. This 

assay is a good tool to obtain kinetic parameters of NTR, since DTNB is very reactive towards the 

EcTrx1 dithiol [14], but not with the dithiol in bacterial NTR. The EcTrx1/EcNTR redox couple 
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serve as a reference and cross-reactivity was studied between the components of the two Trx 

systems. Importantly, the L. lactis and E. coli NTRs displayed similar kcat values (~25 s-1) and the 

parameters for EcTrx1/EcNTR (Table 2 and Fig. 2A, Km 2.2 µM and kcat 26 s-1) agree with 

literature values [15, 23, 24]. LlTrxA and LlNrdH were quite reasonably reduced by EcNTR, with 

loss of efficiency of less than one order of magnitude compared to EcTrx1. By contrast, EcNTR 

hardly accepted LlTrxD as substrate and a 1000 fold reduction in kcat/Km relative to EcTrx1 was 

observed (Fig. 2A). The LlTrxD D31N and D31P mutants showed unchanged parameters with 

LlNTR and improved marginally with EcNTR compared to LlTrxD wild type (wt). E. coli has no 

LlTrxD homologue but the strikingly low reactivity for the LlTrxD/EcNTR couple is surprising and 

suggests substantial differences in substrate recognition between the two NTRs. In all cases a 

hyperbolic function was used to fit the kinetic data (Fig. 2 and Table 2) although for 

LlNrdH/LlNTR, a better fit is obtained by including a term of substrate inhibition. Nevertheless, 

LlNrdH displayed the highest catalytic efficiency as substrate of LlNTR (6.1 x 10-7 M-1s-1) with a 

seven fold lower Km compared to LlTrxA (Table 2). This stands in sharp contrast to B. anthracis 

where a WCGPC Trx (BaTrx1) was recycled 10 times more efficiently than BaNrdH [18]. In the 

E.coli, system, the EcNrdH/EcNTR couple was significantly more efficient (1.5 fold) than the 

EcTrx1/EcNTR couple [9].  

 

3.3.4 Reduction of low molecular weight disulfide substrates 

Four low molecular weight thiol compounds forming intermolecular disulfides (cystine, oxidized 

GSH (GSSG), hydroxyethyl disulfide (HED) and cystamine) and two homologues peptide 

hormones (vasopressin and oxytocin) resembling protein disulfide targets were tested as model 

substrates. Activity was monitored spectrophotometrically at 340 nm as NADPH oxidation rates in 

an NTR coupled assay and the results are given as turnover (min-1) at a fixed substrate 
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concentration (Table 3). Considering the low concentration (0.1 mM), vasopressin and oxytocin in 

general appears among the most efficiently reduced low molecular weight substrate compounds. 

Interestingly, despite its inability to reduce insulin disulfides, LlTrxD displayed the highest turnover 

rates with four out of the six substrates examined (Table 3) and most strikingly, the rate of reduction 

of cystamine (10 min-1) was six-fold higher than for the second best redoxin (i.e. LlTrxA). If 

converted to second order rate constant (170 M-1s-1), it is clearly above the rates of some non-

cognate disulfide exchange reactions (0.1 - 10 M-1s-1) [25, 26]. It can be speculated that the 

positively charged cystamine may be attracted through electrostatic interactions with the active site 

aspartate in LlTrxD. LlNrdH is restricted compared to EcTrx1, LlTrxA and LlTrxD, and displays 

the lowest rates of disulfide reduction (Table 3). The composition of the low molecular weight thiol 

pool in L. lactis has not been established. Although L. lactis does not synthesise glutathione, it has a 

putative GSSG reductase and uptake of glutathione has been demonstrated [27]. Reduction of 

GSSG by Trx has been shown to be physiologically relevant in Saccharomyces cerevisae [28]. 

 

3.3.5 Determination of redox potential (E°’) by direct protein-protein equilibrium 

Redox potentials were determined according to Åslund et al [4] by HPLC-quantification of reduced 

and oxidized protein species at equilibrium using EcTrx1 (E°´= -270 mV) as reference [5]. From 

eight reactions between either reduced LlTrxA and oxidized EcTrx1 or vice versa, an equilibrium 

constant (K) of 0.428 +/- 0.034 was obtained, which corresponds to E°’ = -259.2 +/-0.98 mV for 

LlTrxA. Considering the high degree of sequence homology, the approximate difference of 10 mV 

from the well characterized EcTrx1 is noteworthy. A representative chromatogram of the separation 

of reduced and oxidised proteins is shown in Fig. 3A.  
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Reactions between EcTrx1 and LlTrxD suggested slow and insufficient equilibration. Although 

duplicate samples were consistent, different K values were obtained depending on starting 

conditions (reduced reference or oxidized reference) and the time of incubation. Some consistency 

was obtained, however, at a prolonged incubation time (69 hrs). Four samples at the two 

concentrations of 25 and 50 µM, respectively, starting with reduced reference (EcTrx1) and 

oxidized LlTrxD indicated a K value of 0.1184 +/- 0.0014 (Fig. 3B). As expected for a longer 

incubation time, control samples of reduced EcTrx1 and LlTrxD, incubated in parallel, showed a 

substantially higher level of oxidation (10 and 18%, respectively). If the above mentioned K value 

represents an equilibrium, it gives E°’ = -243 mV for LlTrxD. Noticeably, failure to reach 

equilibrium by this approach has been reported previously, e.g. no transfer of redox equivalents was 

observed between human Grx1 and EcGrx1 after 24 hrs of incubation [29]. When reference samples 

of oxidized and reduced LlTrxD were analyzed, it was noticed that the oxidized form eluted earlier 

than the reduced form. Among the redoxins investigated here, this was only observed for LlTrxD 

and it is contradictory to the expectation that the disulfide bond makes the protein appear more 

hydrophobic during chromatography (Fig. 3B). However, a mutant form of EcTrx1, Trx”PDI” also 

displayed this property [4].  

 

With 91 amino acid residues, including the pentahistidine tag, LlNrdH is the smallest protein in the 

present study. Less acetonitrile was required to elute it from the C18 column and the separation 

between reduced and oxidized forms was unsatisfactory. To avoid overlapping peaks EcTrx1 was 

replaced as reference protein by recombinant HvTrxh1 fr om barley [30]. Reaction between EcTrx1 

and HvTrxh1 resulted in K = 1.054 +/- 0.014 corresponding to an E°’ = -270.7 mV (Fig. S3). 

LlNrdH was then incubated with HvTrxh1 in eight reactions yielding K = 0.0787 +/- 0.0039 and 
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E°’=-237.6 +/- 0.8 (Fig. 3C). The obtained E°’ is significantly more positive than that of NrdH from 

E. coli (E°’=-248.5 +/- 1.5 mV) determined by equilibration with the NADPH/NADP+ couple [9]. 

  

3.3.6 Redox potential E°’ by equilibrium to the NADPH/NADP+ couple via NTR  

Using the equilibrium with the NADPH/NADP+ redox couple catalyzed by EcNTR, we reproduced 

the parameter for EcTrx1 reasonably well (E°´=-270.3 +/ - 1.8 mV; Fig. S4A). The E0´ value of 

LlTrxA was also determined by this approach (-258.1 +/- 0.3 mV, Fig. 4A) which is in good 

agreement with the value obtained from protein-protein equilibrium (-259.2 +/- 0.98 mV). 

Determination of LlNrdH was attempted by the same method but very little NADPH was generated 

when NADP+ was added to reverse the reaction (Fig. S4B). Thus, consistent with the finding using 

the protein-protein equilibrium HPLC method described above, LlNrdH is the least reducing protein 

of those characterized in the present study.  

 

EcNTR is a poor reductant of LlTrxD, and was thus replaced by LlNTR for redox potential 

determination of LlTrxD (Fig. 2A). However, stable baselines of NADPH absorbance (A340 nm) 

were not obtained, and the absorbance of NADPH decreased continuously within the time frame of 

the experiment. A comparison of EcNTR and LlNTR showed that the unstable baseline stems from 

an approximately 10-fold higher reduction rate of O2 by the L. lactis enzyme (0.4 NADPH oxidized 

per second). We therefore turned to a semi-anaerobic buffer system to reduce the concentration of 

oxygen in the solution. Glucose (10 mM), and the two enzymes glucose oxidase and catalase (both 

at 0.05 mg/mL) were added in the reaction mixture causing the recorded oxygen-dependent 

NADPH consumption to be reduced by at least a factor of 15. As the LlNTR is severely light-

sensitive compared to EcNTR (O.B., unpublished observation), the concentration of LlNTR was 
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increased 6 fold to 300 nM. Sufficiently stable baselines of NADPH absorbance were thus obtained, 

comparable to those with EcNTR under aerobic conditions. The semi-anaerobic system (with 

LlNTR) was first validated with LlTrxA yielding a similar value (E°’=-257.8 +/- 2.05 mV; Fig. 

S4C) as was obtained with EcNTR (-258.1 +/- 0.3 mV). For LlTrxD, a redox potential of -241.7 +/- 

2.2 mV was obtained (Fig. 4C), thus supporting the determination by HPLC (protein-protein 

equilibrium) in one direction (-243.0 +/-0.2 mV).  

 

Thus, two independent methods have here been used to determine redox potentials. The method 

based on direct protein-protein equilibrium with a known reference has strong advantages as 

determination of absolute reactant concentration is not critical and experiments are varied with 

respect to time, protein concentration and reactant status (i.e. starting with reduced or oxidized 

reference). However, there are both kinetic and thermodynamic limitations. Equilibrium must be 

reached within a reasonable time and the two dithiol/disulfide proteins cannot be too far apart on the 

redox scale, i.e. the equilibrium constant (K) should not differ from 1.0 much more than one order 

of magnitude.  

 

LlTrxA and LlNrdH both display higher redox potentials in comparison to their E. coli counterparts. 

These observations may potentially reflect differences in the intracellular redox environment in the 

two bacteria. The higher redox potential of LlTrxD in comparison to LlTrxA is important as this 

may limit the ability of LlTrxD to reduce potential target disulfides in vivo. LlTrxD is apparently 

incapable of reducing insulin disulfides despite having a higher redox potential than LlNrdH (Fig. 

1). Thus it is hypothesized that the lack of activity with LlTrxD is due to steric or electrostatic 

constrains rather than thermodynamic limitations. 



118 
 

 

3.3.7 Iodoacetamide alkylation kinetics 

Thiol groups in the L. lactis redoxins were subjected to iodoacetamide (IAM) alkylation followed 

by acid quenching and HPLC separation of unmodified and carbamidomethylated species [31]. 

MALDI TOF analysis of alkylated LlTrxD verified carbamidomethylation of a single cysteine 

residue (data not shown), most likely a nucleophilic CN in the active site CNXXCC motif, as 

previously demonstrated for EcTrx1 [32]. The second order reaction rate for IAM alkylation of 

LlTrxD (k = 1050.4 M-1s-1) is 80 and 70 times higher than LlTrxA (k = 12.8 M-1s-1) and EcTrx1 (k = 

14.8 M-1s-1), respectively (Fig.2; Tab.2). The LlTrxD D31N mutant showed a more than ten times 

decreased alkylation rate (k = 88.4 M-1s-1) compared to wt, suggesting a strong influence of the 

active site aspartate residue on thiol reactivity. Data for LlTrxD D31P mutant and LlNrdH was not 

obtained due to failure to obtain reproducible chromatographic separation and quantification of the 

alkylated and non-alkylated forms (data not shown).  

 

The reactivity of cysteine residues is determined by the pKa and the intrinsic nucleophilicity of the 

thiol group [33]. pH-dependent IAM alkylation assays were conducted (not shown) and did not 

exhibit a major shift in comparison with EcTrx1 [32], but the data could not be fitted to obtain a 

reliable pKa value. Irrespective of the thiol pKa of LlTrxD, the IAM alkylation rate is exceptionally 

high in comparison to previous values obtained for Trx family proteins [32, 34, 35] and model 

peptides [36]. The reactivity of thiol groups in this type of bimolecular nucleophilic substition (SN2) 

is influenced by the electrostatic environment and steric constrains. A comparison of the primary 

structure of LlTrxD and EcTrx1 reveals replacements of charged residues at several positions (Fig. 

S1) but since no three-dimensional structure of a close homolog to LlTrxD is available it is very 
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difficult judge what effects these substitutions may have on thiol reactivity. High thiol IAM 

reactivity (k = 1200 M-1 s-1 at RT) was previously observed in the human Trx-like protein TRP-14 

containing a WCPDC active site motif [20].  

 

3.4 Conclusion 

This comparative study demonstrates that all the three L. lactis redoxins investigated are efficient 

substrates of the LlNTR. LlTrxD differs from classical thioredoxins in terms of primary structure 

and biochemical reactivity and is suggested to belong to a distinct subgroup of Trx-like proteins 

with WC[P/G]DC active site motifs present in related bacteria. The active site aspartate is 

conserved and appears to be important for the thiol reactivity and the redox potential of LlTrxD is 

intermediate (-248 mV) between classical glutaredoxins and thioredoxins. The physiological 

importance of LlTrxD and related proteins and their roles in reduction of putative protein disulfide 

targets remains to be investigated.  

 

3.5 Experimental procedures 

 

3.5.1 Bacterial strains and reagents 

E. coli strains XL10-gold (Novagen) and Rosetta DE3 (Stratagene) were maintained on LB agar 

plates and cultivated in LB medium. When appropriate, ampicillin (100 µg/mL) and 

chloramphenicol (20 µg/mL solid media; 5 µg/mL liquid media) was added. Unless stated 

otherwise all chemicals and reagents were from Sigma. 
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Sequence analysis 

Sequence alignments were performed using the ClustalW2 algorithm 

(http://www.ebi.ac.uk/Tools/msa/clustalw2/). Percentage sequence identity is calculated by dividing 

the number of identical residues by the total number of positions in the sequence alignments. Logo-

representation of aligned output sequences (http://www.ncbi.nlm.nih.gov/tools/cobalt/cobalt.cgi) 

from Protein BLAST of LlTrxD against nrNCBI was generated using Weblogo 

(http://weblogo.berkeley.edu/logo.cgi) [37]. The phylogenetic lineage of proteins annotated in the 

thioredoxin (PF00085) pfam (vers 26.0: 20121004) was obtained from the corresponding Uniprot 

entries [38]. 

 

Cloning and site-directed mutagenesis 

Genes encoding LlTrxA, LlTrxD, LlNrdH and LlNTR were amplified by PCR from genomic DNA 

of L. lactis subsp. cremoris MG1363 (kindly provided by Mogens Kilstrup) using primers flanked 

by NdeI and BamHI sites listed in Table S1. PCR products were either i) digested with NdeI 

/BamHI and ligated with NdeI /BamHI treated pET15b (Novagen), ii) subcloned into TA-cloning 

vector pCR2.1 (Invitrogen) or EcoRV linearized, antarctic phosphatase treated pBluescript SK+ 

(Stratagene), digested with NdeI /BamHI and ligated into NdeI /BamHI treated pET15b. D31P and 

D31N mutants of LlTrxD were constructed with QuikChange® Site-Directed Mutagenesis Kit 

(Stratagene) using the plasmid with LlTrxD in pET15b as template and designed primers listed in 

Table S1. Plasmids containing genes encoding EcTrx1 and E. coli NTR (EcNTR) for expression in 

pET14b and pET15b, respectively, were purchased (Eurofins, Germany). The plasmid and 

procedure to obtain recombinant barley HvTrxh1 has been described previously [7]. All constructs 

were verified by bidirectional sequencing (Eurofins) and transformed into E. coli Rosetta DE3. 

http://www.ncbi.nlm.nih.gov/tools/cobalt/cobalt.cgi
http://weblogo.berkeley.edu/logo.cgi
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3.5.2 Protein expression and purification 

Single colonies of E. coli Rosetta DE3 strains containing the constructs outlined above were 

inoculated into 50 mL LB medium and incubated at 37⁰C overnight, followed by inoculation into 

fresh LB medium to reach OD 0.1. Cultures were incubated until an OD600 of 0.6, IPTG (100 µM) 

was added and growth continued for 5 h at 30⁰C or overnight at 20⁰C. The culture was placed on 

ice for 30 min, centrifuged 30 min at 3000 g and cell pellets were stored at -20⁰C. Cell pellets were 

resuspended in Bugbuster protein extraction reagent (Novagen) containing 25 U Benzonase 

nuclease (Merck) and incubated at RT for 30 min with slow shaking followed by 30 min 

centrifugation at 20000 g and 4⁰C. In extractions of the NTRs, FAD (0.1 mM) was included. 

Supernatants were filtered (pore size 0.45 µm) and loaded on HisTrap columns (GE Healthcare) 

equilibrated with loading buffer (30 mM Tris/HCl pH 8, 500 mM NaCl, 10 mM imidazole). Target 

proteins were eluted in a linear gradient from 10−50% elution buffer (30 mM Tris/HCl pH 8, 500 

mM NaCl, 400 mM imidazole). Selected pooled fractions were dialyzed against 30 mM Tris/HCl, 

pH 8, concentrated to approximately 5 mL (Amicon Ultra 6-8 MWCO), applied to a Superdex 75 

26/60 column and eluted by 30 mM Tris/HCl, pH 8, 200 mM NaCl at a flow rate of 0.5 mL/min. 

Selected fractions were pooled, dialyzed against 30 mM Tris/HCl, pH 8, concentrated to at least 100 

µM and stored in aliquots at -80⁰C. Protein concentrations were determined by aid of amino acid 

analysis and by absorbance at 280 nm. The molar extinction coefficients used were 13700, 14400, 

7210, and 14200 M-1cm-1 for LlTrxA, LlTrxD, LlNrdH and EcTrx1, respectively. For purification 

of LlNTR, 20 mM potassium phosphate pH 7.4 (instead of Tris buffer) was used for the HisTrap 

column. After dialysis against 0.1 M potassium phosphate, 1 mM EDTA, pH 7.4, LlNTR was 

concentrated (Amicon Ultra 6-8 MWCO) without further purification. The concentration of active 

LlNTR and EcNTR was determined by FAD absorbance (ε456 = 11300 M-1cm-1). 
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3.5.3 Insulin disulfide reduction assay 

Reduction of insulin disulfide bonds was performed essentially as described previously [22] but 

adapted to a 96-well plate format [39]. Reactions were started by addition of 50 µL 1.66 mM DTT 

to obtain final concentrations of final 0.33 mM DTT, 1 µM target protein, 0.1 M potassium 

phosphate, pH 7.0, 0.2 mM EDTA, 1 mg/ml insulin in 250 µL and OD650 was recorded at 1 min 

intervals in an ELISA plate reader (Power Wave XS, BIO-TEK®, Holm & Halby). Sample 

containing 12.5 µL 30 mM Tris/HCl, pH 8 instead of target protein was used as a negative control. 

For LlTrxD wt and mutants, experiments were also performed with 53 µL of 47 µM target protein 

(final 10 µM). All experiments were performed in duplicates. 

 

3.5.4 Interaction of redoxins with thioredoxin reductase 

The redoxins were assayed as substrates for LlNTR and EcNTR at RT in 0.1 M potassium 

phosphate, pH 7.5, 2 mM EDTA, BSA (0.1 mg/mL), 0.2 mM NADPH with 0.2 mM DTNB as the 

final electron acceptor. The formation of TNB anion was measured at 412 nm (ε412=13600 M-1cm-

1). To determine the apparent kcat and KM, substrate concentration was varied between 0.1 and 5 µM 

at fixed concentrations of NTR (10 or 20 nM). The Michaelis-Menten equation was fitted to the 

data using Kaleidagraph (Synergy Software, Reading, PA, USA).  

 

3.5.5 Reduction of disulfide bonds in compounds of low molecular weight  

The redoxins from L. lactis and EcTrx were compared (at 1.0 µM) in their ability to reduce low 

molecular weight disulfides. The substrate concentration was 1 mM (hydroxyethyl disulfide, GSSG 

and cystamine) and 0.5 mM for cystine. The assay (at RT) of 1.0 mL contained 0.1 M potassium 
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phosphate, pH 7.5, 2 mM EDTA, BSA (0.1 mg/mL), 0.2 mM NADPH and LlNTR (20 nM). Under 

the same conditions, but in a format of 120 µL (quartz cuvette), the peptide hormones vasopressin 

and oxytocin were tested at 0.1 mM. The disappearance of NADPH was followed at 340 nm 

(ε340=6220 M-1cm-1). The results are expressed as the number of disulfides reduced per thioredoxin 

molecule min-1. 

 

3.5.6 Determination of redox potential (E°’) by direct protein protein equilibrium 

Reduced and oxidized forms of thioredoxin were separated and quantified by reversed phase 

chromatography and a thioredoxin (Trxref) with an established E0´ value was used to determine the 

corresponding value of another thioredoxin (Trx) or a related protein, essentially as described 

previously [4]. The difference, ∆E0´, between the two proteins is obtained from the equilibrium 

constant and the Nernst equation:  

[ ][ ]
[ ][ ] (1)     

Trxref(S)Trx(SH)
Trxref(SH)Trx(S)ln)()(

22

22

nF
RTE°´TrxE°´TrxrefE°´ =∆=−  

Here, R is the gas constant (1.987 cal K-1 mol-1), T the (room) incubation temperature (294 K= 

21°C), n is the number of electrons transferred (2), and F is the Faraday´s constant (23,040.612 cal 

mol-1 V-1). The reference E0´ value for EcTrx1, -270 mV, was according to Krause et al. [5]. 

Proteins were reduced by 10 mM DTT for 30 min in the dark. Excess DTT was removed by gel 

filtration (NAP-5 column, GE Healthcare) equilibrated in argon-purged reaction buffer (0.1 M 

sodium phosphate, 0.2 mM EDTA, pH 7.0). The redox reaction was initiated by mixing one protein 

in the reduced state with the other protein in its oxidized state in a 1:1 molar ratio. Two protein 

concentrations were used (25 and 50 µM) and the reaction was also run in the reverse order. The 

reaction (100 µL) was allowed to equilibrate for 4 hrs or O.N. until quenching by phosphoric acid 
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(0.67 M, 100 µL) to a final pH of ~2.0. In order to gauge the loss of reducing equivalents to 

molecular oxygen during the incubation, samples with reduced protein alone were included. 

Typically, they retained about 95% of the reduced form after O.N. incubation. The mixture (150 

µL) was loaded on a C18 RP-HPLC column (3 µm, 300 Å, 4.6 x150 mm; Dionex) at 30°C using a 

Dionex Ultimate 3000 HPLC system. The column was equilibrated in 5% (v/v) acetonitrile and 

0.1% (v/v) trifluoroacetic acid and the proteins were eluted by a gradient of acetonitrile in 0.1% 

(v/v) trifluoroacetic acid during 25 min at a flow rate of 1 mL/min. The gradient was typically 

between 40−60% (v/v) acetonitrile, and adapted to improve separation of the four protein species to 

be analysed. Only in the case of the separation between LlNrdH and HvTrxh1, a much lower 

concentration of acetonitrile was used (36−49.5% (v/v) during 25 min). Column effluent was 

monitored at 215 and 280 nm. The relative amount of reduced and oxidized protein was obtained 

from the peak areas at 215 nm after integration by the software Chromeleon (Dionex).  

 

3.5.7 Determination of redox potentials E°’ by equilibrium to the NADPH/NADP+ couple 
via EcNTR and LlNTR 

Redox potential of the redoxins were determined by equilibrium with the NADPH/NADP+ redox 

couple via EcNTR and LlNTR based on the spectrophotometric approach developed by Krause et al 

[5]. In a volume of 499 µL Trx-S2 (30 µM) was mixed with NADPH (50 µM) in reaction buffer 

(0.1 M sodium phosphate, 0.2 mM EDTA, pH 7.0) and after one min a catalytic amount of NTR (1 

µl to final 50 nM EcNTR) was added to reduce Trx. When a new stable baseline at 340 nm was 

attained (after approximately 3 min) it was assumed that the reduction of Trx-S2 was complete and 

15 µL NADP+ (40 mM based on the molar extinction coefficient at 260 nm (ε260=15300 M-1cm-1)) 

was added to final 1.16 mM to reverse the reaction. The resulting increase in NADPH concentration 

determined from the absorbance at 340 nm (ε340=6220 M-1cm-1) and corrected for dilution (3%) 
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corresponds to the equilibrium concentration of Trx-S2. The concentrations of all four participating 

reactants (Trx-(SH)2, Trx-S2, NADPH and NADP+) were thus calculated and the defined standard 

state of NADPH (E°´ =-315 mV) translated to E°´ values according to the Nernst equation:  

[ ][ ]
[ ][ ] (2)     

NADPHTrxS
NADPTrx(SH)ln)()(

2

2

nF
RTE°´NADPE°´TrxE°´ =∆=−  

Using a single beam spectrophotometer, the contribution to absorbance from additions of NADP+ 

(Δ340 nm=0.052) and NTR (no detectable change) was determined separately, and subtracted. 

Determinations were based on triplicates unless otherwise stated. In order to use LlNTR to catalyse 

the equilibration with LlTrxD, a semi-anaerobic buffer system was introduced containing glucose 

(10 mM), and the two enzymes glucose oxidase and catalase (both at 0.05 mg/ml) in the reaction 

buffer (0.1 M sodium phosphate, 0.2 mM EDTA, pH 7.0). A 6-fold higher concentration (0.3 µM) 

of LlNTR was used. Because of the light sensitivity of LlNTR it was added both after 

approximately 1 min (1 µl 82 µM) and together with the NADP+ after 4 min (15 µL and 1 µL). The 

cuvette was taken out from the spectrophotometer during mixing. 

 

3.5.8 Iodoacetamide alkylation kinetics 

Kinetics of the reaction between IAM and protein cysteine residues was determined essentially as 

described previously [31]. Proteins (12 µM) equilibrated in 1 – 5 mL reducing buffer (0.5 mM 

tris(2-carboxyethyl)phosphine, 50 mM NaCl, 5 mM HEPES, pH 7.5) were incubated for at least 1 h 

at RT and chilled on ice. Samples (50 µL) were removed, mixed with 100 µL of ice-cold reaction 

buffer (45 mM HEPES, 1.5 mM EDTA, 300 mM NaCl, 30 µM IAM, pH 7), and incubated on ice 

for various lengths of time followed by addition of 50 µl 40% (v/v) acetic acid (final concentration 

10%). Unmodified and carbamidomethylated proteins were separated on an Acclaim® 300 reversed 
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phase column (C18, 300 Å, 3 µM, 4.6x150 mm; Dionex) connected to Ultimate 3000 HPLC system 

(Dionex) using an appropriate Acclaim® guard cartridge. The column was pre-warmed to 30⁰C and 

equilibrated with 95% solution A (0.1% trifluoroacetic acid) + 5% solution B (100% acetonitrile). 

Samples were separated by a 25 min linear gradient (37-54%) of solution B. The separation was 

monitored by absorption at 215 nm. Peak areas were evaluated using Chromeleon software 

(Dionex), and second order reaction constants k were obtained by fitting data into equation 3:  

1
𝐴𝐴0−𝐵𝐵0

∙ 𝑙𝑙𝑙𝑙 𝐴𝐴∙𝐵𝐵0
𝐵𝐵∙𝐴𝐴0

= 𝑘𝑘𝑘𝑘  (3) 

(A= [IAM], B = [Trx]). 

Two independent experiments were performed for each protein. IAM alkylation of a single cysteine 

residue in LlTrxD was confirmed by MALDI TOF analysis (data not shown). 
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3.7 Tables 

Table 1. Phylogenetic distribution of Trx-like proteins with selected active site WCXXC motifs 

annotated in the thioredoxin pfam (PF00085) database. 

 WCXXC WCGPC WCXDC WC[G/P]DC WCGDC 
Eukaryota 4293 1147 19 1 1 
Archaea 149 79 8 4 3 
Bacteria* 6373 4280 851 818 232 
   Firmicutes 1867 909 771 745 227 
Viruses 17 4 0 0 0 
Unclassified 24 16 0 0 0 
TOTAL 10856 5526 878 823 236 
 

*Includes  Firmicutes 
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Table 2. Saturation kinetics of LlNTR and EcNTR with redoxin substrates.  

 

Saturation kinetics with LlNTR 

Redoxin  Km (µM) Kcat (s-

1  
Efficiency (M-1s-1) 

LlTrxA 3.48+/- 0.33 26.8  7.7 x106 

LlNrdH 0.48+/-0.05 29.3  6.1 x 107 

LlTrxD 1.80+/-0.13 26.2  1.5 x 107 

LlTrxD D31N 2.10+/-0.25 30.3  1.44 x 107 

LlTrxD D31P 1.63+/-0.18 22.2  1.36 x 107 

EcTrx1 6.05+/-0.49 24.4  4.0 x 106 

 

Saturation kinetics with EcNTR 

Redoxin  Km (µM) Kcat (s-

1  
Efficiency (M-1s-

1  LlTrxA 4.17+/-0.64 21.9  5.3 x106 

LlNrdH 9.96+/-1.44 42  4.2 x106 

LlTrxD <1.0  ca 0.01  ca 1x 104 

LlTrxD D31N 0.15 +/-0.04 0.014  < 1x 105 

LlTrxD D31P 0.93+/- 0.08 0.017  ca 2 x 104 

EcTrx1 2.20+/-0.14 26.3  1.2 x 107 

 

* The relative errors of kcat values are comparable or lower than those on the Km values and therefore not 
displayed 
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Table 3. Low molecular weight disulfides as substrates for redoxins. Standard deviations (%) are based on 
duplicate assays. 

Compound  MW 
(Da) 

EcTrx1 
(min-1)  

StDev 
(%) 

LlTrxA 
(min-1) 

StDev 
(%) 

LlTrxD 
(min-1) 

StDev 
(%) 

LlNrdH 
(min-1) 

StDev 
(%) 

Cystamine (1 mM) 152.28 1.4 4 1.5 1 10 14 0.82 9 

Hydroxyethyl-disulfide 
(1 mM) 

154.25 0.77 2 1.0 6 0.38 16 0.15 16 

Cystine (0.5 mM) 240.30 2.7 3 5.6 6 11 7 0.62 14 

GSSG (1 mM) 612.63 1.9 2 3.9 2 2.4 17 0.28 36 

Oxytocin (0.1 mM) 1007.19 3.2 7 9.4 1.3 13.7 3.3 5.2 1.8 

Vasopressin (0.1 mM) 1084.25 3.6 3.2 10.9 2.3 13.1 8.0 0.39 20 
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Table 4. Second order rates for IAM alkylation reactions. Reduced redoxins (4 µM) were reacted 
with IAM (20 µM) at pH = 7; T = 0⁰C (see Experimental Procedures). Standard deviations (%) are 
based on two independent measurements. 

Redoxin k [M-1s-1] StDev [%] 
LlTrxD wt 1050.4 5.6 

 
LlTrxD D31N 88.4 7.3 

 
LlTrxA 12.8 2.2 

 
EcTrx1 14.8 6 
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3.8 Figure legends 

Fig. 1. Insulin disulfide reduction assay with redoxins in 0.1 M potassium phosphate, pH 7.0, 0.2 

mM EDTA, 0.33 mM DTT and 1 mg/mL insulin (A) 1 µM LlTrxA (●), EcTrx1 (■), LlNrdH (–), 

LlTrxD (▲), LlTrxD D31N (+), LlTrxD D31P (X), control without Trx (▬). (B) 10 µM LlTrxD 

D31N (+), LlTrxD D31P (X) control without Trx (▬). Turbidity was monitored as absorbance at 

650 nm in an ELISA plate reader at 1 min intervals. 

Fig. 2. Michaelis-Menten plot of the redoxins as substrates of EcNTR (A) and LlNTR (B). The 

concentration of NTR was constant (10 or 20 nM) whereas concentrations of the redoxins were 

varied. The rate of absorbance decrease at 412 nm was transferred to NTR turnover (s-1). The 

symbols denote LlNrdH (empty circles), LlTrxA (empty squares), LlTrxD (empty triangles) and 

EcTrx1 (filled triangles). 

Fig. 3. Redox potential by direct protein protein equilibria (HPLC). A. Determination of the redox 

potential of LlTrxA. Reduced LlTrxA and oxidized EcTrx1, both at 25 µM, were incubated O.N. 

before analysis by HPLC with a gradient of 38.7-61.2 % actetonitrile. Integration of the peaks 

yielded K=0.446 corresponding to a difference of +10.2 mV from the reference EcTrx1. B. 

Determination of redox potential for LlTrxD. Reduced LlTrxD and oxidized EcTrx1, both at 25 

µM, were incubated 70 hrs before analysis by HPLC. It is noteworthy that the oxidized form of 

LlTrxD elutes before the reduced form in the gradient (of 36−61.2% actetonitrile). Integration of the 

peaks yielded K=0.117 corresponding to a difference of +27.2 mV in comparison to the reference 

EcTrx1. C. Determination of redox potential for LlNrdH using HvTrxh1 as reference. Reduced 

LlNrdH and oxidized HvTrxh1, both at 25 µM, were incubated O.N. (16.5 hrs) before analysis by 

HPLC in which a gradient of 36−49.5% actetonitrile was employed. Integration of the peaks yielded 

K=0.0733 corresponding to a difference of +33.1 mV from the reference HvTrxh1 (-270.7 mV). 
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Fig. 4. Determination of redox potentials for LlTrxA and LlTrxD by equilibration with 

NADPH/NADP+ via EcNTR and LlNTR, respectively. The concentrations of the four reactants, 

Trx-(SH)2, Trx-S2, NADPH, and NADP+ were calculated to obtain an equilibrium constant. A. 

Equilibrium with LlTrxA catalyzed by EcNTR (1 µl 25 µM) yielding K=83.2 (E0’=-258.4 mV). B. 

Equilibrium with LlTrxD catalyzed by LlNTR yielding K=292 (E0´=-242.3 mV). The expected 

contribution of absorbance from LlNTR was about 0.0015 and neglected.  

Fig. 5. IAM alkylation kinetics. LlTrxD (diamond), LlTrxA (triangle), EcTrxA (square) and LlTrxD 

D31N (cross) were subjected to IAM alkylation. Samples were withdrawn at specified time points 

and the fraction of carbamidomethylated protein was determined spectrophotometrically at 215 nm 

following HPLC separation of alkylated and unmodified protein. 
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3.9 Figures 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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3.10 Supplementary material 

Table S1 Primers used for cloning and mutagenesis.  

Name Sequence$ TM [⁰C] 

TrxA1 5’-atacatatggaatataatattactgatgcaacgtttg-3’ 64.2 

TrxA2 5’-aggatccttcatttcaataagaaaaaattctgtc-3’ 65.7 

TrxH1 5’-atacatatgattattccagaaaatattgaaaatttagc–3’ 63.2 

TrxH2 5’-aggatccattttacctcaagaaatcagtc-3’ 63.6 

NrdH1 5’-gatacatatggttacagtttattctaaaaacaattg-3’ 61.4 

NrdH2 5’-aggatccatctctaaatcatcgtca-3’ 60.9 

TrxB1 5’-atacatatgacagaaaagaaatatgatgttgtca-3’ 62.8 

TrxB2 5’-aggatcctttaacaaaaaattactgacttctttg-3’ 64.4 

LlTrxB-D31P 1 5'- tttttcacagctggttggtgtggaccttgtaattttatcaaacct -3' 77 

LlTrxB-D31P 2 5'- aggtttgataaaattacaaggtccacaccaaccagctgtgaaaaa -3' 77 

LlTrxB-D31P 1 5'- tttttcacagctggttggtgtggaaattgtaattttatcaaacct -3' 75.7 

LlTrxB-D31P 2 5'- aggtttgataaaattacaatttccacaccaaccagctgtgaaaaa -3' 75.7 

$=Restriction sites for NdeI or BamHI respectively are underlined. 
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Fig. S1. Sequence alignment of, LlTrxD LlTrxA, and a range of WCGPC thioredoxins. 
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Fig. S2. Sequence LOGO representation of the top 294 sequences matching LlTrxD from BLAST. 

Numbering below characters refer to sequence  positions in LlTrxD. 
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Fig. S3. Determination of the redox potential of HvTrxh1 using EcTrx1 as reference. Reduced HvTrxh1 and 
oxidized EcTrx1, both at 25 µM, were incubated 4 hrs before analysis by HPLC with a gradient of 37.8−63% 
actetonitrile. Integration of the peaks yielded K=1.055 corresponding to a E°´ difference of -0.7 mV from 
the reference EcTrx1 
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Fig. S4. Determination of the redox potential of EcTrx1 (A) and LlNrdH (B) using EcNTR (50 nM) and of 
LlTrxA (C) using LlNTR (0.3 µM) by equilibration with NADPH/NADP+. A. The experiment suggests a K = 35.2 
and E°´=-269.41 mV for EcTrx1 B. LlNrdH was readily reduced but the reverse reaction was too weak. The 
increase in absorbance (0.064) seen after addition of NADP+ is primarily caused by the intrinsic absorbance 
from NADP+ (0.052) and thus subtracted in these experiments. The absorbance difference of 0.012, was 
judged to be too small for an accurate determination of the equilibrium constant (K). C. The experiment 
suggests a K = 77.6 and a redox potential of E0’ = -259.3 mV for LlTrxA. 
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4 Conclusion and future plans 

The Trx system plays crucial roles in thiol redox regulation (see 1.2). The structure and function of the 

canonical Trx with an WCGPC active site motif has been thoroughly investigated. However, relatively few 

investigations have described Trx homologs with altered active sites, such as e.g. EcTrx2, HpTrx2 and BaTrx2 in 

bacteria (see 1.3.1). An important outcome of this thesis is the discovery of a novel Trx with a WCGDC active 

site (TrxD) in the industrially important bacterium L. lactis , which represents a group of Trx present 

predominantly among Gram-positive bacteria.  

TrxD was shown to significantly influence arsenate and tellurite detoxification but appears not play a 

major role in resistance toward reactive oxygen species (see chapter 2). A broader phenotype screen including 

e.g. addition of reactive nitrogen species may further the understanding of the physiological roles of TrxD. In 

addition, the role of Trx during respiratory growth should be investigated. Identification of Trx targets in global 

thiol proteome (see section 1.2.2) is likely to provide valuable insights into thiol-redox control in LAB. 

The observation that Trx is important but not essential for stress resistance suggests that L. lactis possess 

alternative pathways to maintain the cellular thiol redox pool in a reduced state. It is unlikely that NrdH can 

substitute as a major disulfide reductant and L. lactis does not contain genes for glutathione synthesis. No close 

homologues for genes encoding components of the bacillithiol and mycothiol biosynthetic pathway are present 

in the annotated genome of L. lactis (P. Efler, unpublished observation). In order to understand the thiol redox 

metabolism in this bacterium it is thus of paramount important to identify alternative thiol redox pathways. 

Biochemical characterization of recombinant TrxD revealed an altered reactivity compared to the classical 

WCGPC Trx. In particular, TrxD  displayed an increased nucleophilicity of the active site cysteine and a higher 

redox potential. Furthermore, TrxD failed to reduce the model protein disulfide substrate insulin (Chapter 3). 

An attempt to determine the 3D structure of TrxD failed due to inability to obtain protein crystals. 

Bioinformatics predictions suggest that TrxD belongs to the Trx family and exhibits the Trx fold. However, it is 

difficult obtain a reliable homology model and it would be of a high value to determine the 3D structure of 

TrxD or a homologous protein as a model for the group of WCGDC thioredoxins in Gram positive bacteria. 
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