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Reducing complexity of inverse problems using
geostatistical priors

Thomas Mejer Hansen Klaus Mosegaard Knud Skov Cordua

October 2, 2009

Abstract

In a probabilistic formulation of inverse problems the solution can be givemsasnple
of the posterior probability distribution. All realizations retained in the postesgonple are
consistent with both an assumed prior model and observed data. Sonseipveblems are
unsolvable, in that one can practically never hope to generate a posanige, others are
just 'difficult’ and require special methods to become tractable, while otgas are easily
solved. We discuss how difficult nonlinear inverse problems can belddusdch that their
complexity, i.e. the time taken to obtain a posterior sample, can be reduced sigihjfigsing
informed priors based on geostatistical models. We discuss two appsoachelude such
geostatistically based prior information. One is based on a parametric diescdpthe prior
likelihood that applies to 2-point based statistical models, and anotheraagbpnoakes use of
conditional re-simulation to sample the prior that works for both 2-point anitipteupoint
random models. The latter approach is shown to be superior in terms of tatiopal effi-
ciency. We quantify the information content given by a specific choiceiof pnodel. This
enables us to obtain a lower limit of, for example, the size of a grid cell in agatdmetrized
parameter space. The resulting decrease in effective dimension ofrdmagdar space pro-
vides a much more efficient sampling of the posterior with orders of magnitudeaise in
computational efficiency.

1 Introduction

Mosegaard and Tarantola (1995) present a generalized pdisalgorithm that allows analysis
of non-linear inverse problems with complex prior inforioat Yet, to date most applications
of the generalized Metropolis algorithm, or solutions ohdimear inverse problems in general,
rely on relatively simple a priori assumptions. The geneeal Metropolis algorithm does not
require one to explicitly know the formula describing théoprinformation. A black box that

can sample according to the prior pdf is the only requirenflisegaard and Tarantola 1995).
Geostatistical simulation algorithms provide just sucblgdor generating random realizations
from very complex stochastic prior models. They can rely othliraditional 2-point covariance-
based statistics and multiple point statistics where theg prodel is inferred from a training image
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(Guardiano and Srivastava 1993; Strebelle 2002). Recemiamwents of multiple-point-based
simulation allow one to quantify geologically realistidgrinformation. Here we shall discuss
how the choice of a priori models, based on geostatisticadlom function models, affect the
complexity of an inverse problem. In particular, we shak $®w the computational efficiency
is affected by a specific choice of prior model and the way itriplemented for use with the
generalized Metropolis algorithm.

2 Thegeneralized Metropolisalgorithm

Consider a typical forward problem, where ddte a functiong of some modein (typically the
subsurface)

d = g(m) (1)

An inverse problem is the problem of inferring propertiesrpbased on observatiodsand some
knowledge about the mapping functigntypically related to physical theory. Tarantola (2005)
and Mosegaard (2006) formulate a probabilistic approasolicing inverse problems where prior
information is described by the prior probability densign€tion (pdf)om(m). A probabilistic
measure of the data fit associated to a given model is giveheblkeelihoodL,(m). The solution
to such an inverse problem is a probability density fungtaenoted the a posteriori pdf, and is
proportional to the product of the prior pdf and the likelbitlo(wherek is a normalization factor):

om(m) =k pm(m) Ly (m) (2)

In caseg is a linear function, and botby (m) andLy (m) can be described by Gaussian statis-
tics, Hansen et al. (2006) and Hansen and Mosegaard (2008ps® a non-iterative, efficient
approach using sequential simulation to generate samplbe @ posteriori pdf. It is, however,
more common thag is a nonlinear operator, and the Gaussian prior assumpiomstL (m) and
pm(m) is rather restrictive. Mosegaard and Tarantola (1995) essigg generalized Metropolis
Monte Carlo algorithm for sampling the a posterior distibntoy (m) in the general case where
g is nonlinear. The method allows inclusion of complex pritfiormation and arbitrary, complex
noise model.

Consider a Markov chain wherra, is a realization of the prior pdby(m), andmy 1 is in
the neighborhood afn,, but still a realization ofy(m). Further, assume that the likelihood with
respect to observed data can be calculated as)Land L({m,.1), respectively. Them, 1 is
accepted as a realization of the a posteriori pdf with proiab

P _{ 1 if L(Maya)>L(mn) 3)
accept =\ L(mny1)/L(mn)  otherwise

If my.1is rejectedm,. 1 becomesn, (that is,m, is repeated). Performed iteratively, this algorithm
will sample the a posteriori pdf. In each iteration, one rsetedperturb the current model consis-
tently with prior information, compute the likelihood ofdlperturbed model, and finally generate
a random number between 0 and 1 to decide whether the padtorbeel is to be accepted. Here
we shall focus on, how geologically realistic prior inforfia can be considered for use the gen-
eralized Metropolis algorithm, and the effect it has on tbmputational complexity of the inverse

problem.



3 Quantifying prior information using geostatistics

Generally speaking geostatistics is an application ofeantunctions to describe spatial phenom-
ena, typically in form of spatial variability in earth modelGeostatistical simulation algorithms
have been developed to efficiently generate realizatiomsrafmber of random function models.
Geostatistical simulation algorithms can be divided imto groups where the underlying random
function model is based on 2-point or multiple-point stats (Guardiano and Srivastava 1993;
Strebelle 2002). 2-point-based geostatistical algomsthake into account spatial variability be-
tween pairs of data locations. In case the distribution efrttodel parameters are Gaussian, one
can completely define the underlying random function modeigia Gaussian pdf

1
pm(m) =cexp _E(m_ mprior)tq\i/&rior (m— mprior) (4)

wheremgior is the prior mean, anftMprior is the prior covariance matrix. Multiple-point-based
geostatistical models have no parametric descriptionte&asthe multiple point statistics are in-
ferred from atraining image. The methodology was initigilgposed by Guardiano and Srivastava
(1993), and Strebelle (2002) developed the first compurtalip feasible algorithm for categorical
training images. Zhang et. al (2006) suggested anotheipiaiftoint-based algorithm where pat-
terns from a continuous or categorical training image asglus generate stochastic realizations
with features from the training image. Using these techesgone can generate realizations of
random function models that reproduce geologically réalspatial variability. State of the art
implementation of these algorithms are available throwglekample SGeMS (Remy et al. 2008).

Sampling aprior usingthe Metroplisalgorithm When a parametric description of the random
function model is available, as is the case for a Gaussiaar@nce-based priors (eqn. 4), a
separate Metropolis sampler can be used to sample the pfammation, (Bosch et al. 2005;
Bosch et al. 2006; Jiemez and Bosch 2008).

Samplingaprior using sequential re-simulation  An alternative approach to sample geostatistics-
based prior information is proposed by Hansen et al. (2008ky suggest to sequentially re-
simulate part of the model parameters, conditioned to thramaing, fixed model parameters:

1. Inthe current modety, select a region in the model space, and denote all modehedeas
in this area as unknowmy,. The rest of the model parameters are considered kmawn

2. Perform sequential simulation of,, conditioned tan,. This generatesy_. 1, which is also
a realization of the prior model.

3. Setmi=m;; and go to 1.

When this algorithm is run iteratively it will perform a rantavalk in the model parameter space,
guided by the underlying, prior random function given by ¢e@statistical sampling algorithm.

Sequential re-simulaton can be used with any geostatiatgarithm (both 2-point and multiple-
point based) capable of performing conditional simulatidBuch algorithms include SGSIM,
DSSIM (Soares 2001), SNESIM (Strebelle 2002), FILTERSIM (#¥¥al. 2008) but to name a
few.



3.1 Comparingsequential resmulation and theMetroplisalgorithm for sam-
pling geostatistical-based priors.

At each step in the generalized Metropolis algorithm, onetnahoose to randomly visit a new
model in the vicinity of the current model. The size of theseoé'vicinity’ reflects the exploratory
nature of the algorithm. We shall refer to the distance o sizthe 'vicinity’ as the step length.
Choosing the correct step length is essential for the cortipntd efficiency of the sampling al-
gorithm. If the step length is small, the acceptance rateheilhigh, but only model parameters
relatively close to the initial model will be consideredth step length is high the algorithm will
be more exploratory but the acceptance probability will i@l Gelman et al. (1996) found that
an acceptance rate between 20-40% leads to an algorithnbatithrelatively high acceptance rate
and relative high exploration. Thus, any method used to t&apnior information should allow
tuning of the exploratory step length in such a way that th@aation of the posterior can be
optimized.

Using sequential re-simulation to sample the prior, thp Eagth can be chosen between two
extremes. It is least exploratory when only one model patani® considered for re-sampling per
iteration, and most exploratory when all model parametezs@sampled in each iteration. The
latter approach is equivalent of generating a new uncde@lsample of the prior. Thus we can
directly control the exploratory nature of our prior samglialgorithm.

When using the Metropolis sampler to sample prior infornrgtise need to select an appro-
priate degree of exploration for both the prior Metropohsnpler and the a posteriori Metropolis
sampler. If the step length needed for the prior Metrop@msler is smaller than the step length
leading to a optimal posterior sampler, we suggest to rumptive Metropolis sampler in cascade
to the posterior Metropolis sampler, as suggested by M@sdgand Tarantola (1995). This will
reduce the number of evaluations of the likelihood, whictyscally an expensive calculation.

To evaluate the computational efficiency when using the dfetlis algorithm for sampling the
prior, we consider the computational requirements needexthieve a step of a certain length /
amount of exploration. We quantify the step length as theetation coefficient between and ini-
tial model and the corresponding perturbed model. As aeatsr model we consider a 2D model
of 100x100 grid points, with a point distance of 5 meters. \Wastder two types of covariance
models as priors, a) an exponential covariance model and3auasian covariance. We consider
ranges from 0.5m to 20m. For any given set of covariance mamilrange, we start a Metropo-
lis sampler from an initial unconditional realization, mgia uniform proposal distribution, and
tune the algorithm to ensure an acceptance rate of about 30 Metropolis algorithm is run
for 300000 iteration and we locate the iteration step at Wiaiacorrelation coefficient between
the initial model and the current model is 0.0, 0.1, 0.5 ar®dr@spectively, reflecting different
exploration levels. We do this 100 times, for 100 differeiairsng models, to obtain the average
iteration number needed to obtain a certain correlatiorfficant between the initial model and
the perturbed model. The results are summarized in tabled 2,avhere %’ means that no model
with the given correlation coefficient was found in 3000@0ations.

The main result of tables 1-2 is that as the range increagag®gpect to the spatial sampling
distance, so does the number of iterations needed. The rpatlscorrelation in the prior, the
harder it is to sample it using a Metropolis sample.

A Gaussian covariance model imposes harder constraintmalhscale variability than the ex-
ponential covariance model, since the first order derieativa Gaussian covariance model is zero
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| Range [ 0.5m [1Im [2m [5m [ 10m [20m |
CC=0.9] 8510t | 8510 | 8.8.210" | 1.11(° | 2.11¢% | 5.21¢%
CC=0.5| 6.01¢7 | 5.91¢% | 5.71¢ | 8.61¢° | 3.110° | 1.410
CC=0.1| 1.610° | 1.71¢° | 1.810° | 3.91C° | 2.210* | 8.610"
CC=0.0| 2.610° | 2.810° | 2.41¢ | 7.710° | 3.110* | 1.31

Table 1: Number of iterations to reach a correlation coeffitpf 0.9, 0.5, 0.1 and 0.0 between the
initial model and the perturbed model for an exponentiabciance model with different ranges.
100x100 model parameters describe a 500m x 500m physiocze spa

|Range [0.5m [Im [2m [5m [10m [20m|
CC=0.9]| 8510 | 8510 | 8.810" | 1.41%% | 3517 | »
CC=0.5| 6.01¢° | 6.010% | 5.81¢% | 1.21¢° |
CC=0.1| 1.610° | 1.610° | 1.810° | 5.41C° | =
CC=0.0| 2.610° | 2.810° | 2.51¢° | 8.01C¢° |

8188

Table 2: Number of iterations to reach a correlation coeffitiof 0.9, 0.5, 0.1 and 0.0 between
the initial model and the perturbed model for a Gaussianri@mvee model with range. 100x100
model parameters spanning 500x500m.

at zero offset, and non-zero for the exponential covariamaédel. This means that a realization of
a Gaussian covariance model will be very smooth. Such srmapihin direct contradiction to the
models that are proposed by the uniform proposal distobutif the Metropolis algorithm: using
a uniform prior to propose models, almost none of the modelpgsed will be smooth. In fact,
the probability of suggesting a smooth model, using a unifprior, tends to zero as the spatial
sampling distance tends to zero, or the range becomes ldhgegpect to this distance. Increasing
the range therefore implies that the step length must becegtin order to maintain an acceptance
ratio of about 30%. The longer the range (or the smaller tihepsag distance) the smaller the
step length and hence the more iterations are needed tm @btartain level of exploration.

This is the reason that the Metropolis sampler, using a tmifprior, performs increasingly
worse as the sampling distance is reduced. Also, due to tl®thmess assumption inherent
in sampling from a Gaussian covariance model, it is morecdiffito sample from a Gaussian
covariance than from an exponential covariance model.

This simple example illustrates that using the Metropdaispler with a uniform prior to sam-
ple Gaussian-based prior information leads to a compun@ltipinefficient algorithm for anything
but very low dimensional problems. In addition, the strartge spatial correlation the more CPU
expensive it becomes to use the Metropolis algorithm to $a@pussian models.

In contrast, using sequential re-simulation, the exptosahature of the prior sampler can eas-
ily be adjusted to the sampling problem at hand. The ‘stegtteéms simply chosen as the number
of model parameters needed to obtain a given acceptancdarthe generalized Metropolis sam-
pler. No models will be suggested that are in conflict withopinformation. In addition, the
sequential re-simulation sampler work with any conditiseguential simulation program, both
2-p and multiple point based, where as the Metropolis ambréa sample the prior is limited to
priors with a parametric description of the random functisach as covariance based 2-p pri-



20} .
'S 30 .
N a

i A

50} x

60 1 1 1 1 1 1 |

10 20 30 40 50 60
X (m)

Figure 1: Training image used to generate the reference Im8tlck channel structures have a
velocity of 0.09 m/ns. The background velocity (white) hagbcity of 0.13 m/ns.

ors. The sequential re-simulation sampler provides an@fi@nd non-biased approach to sample
complex prior information, that is well designed for usehittie generalized Metropolis algorithm.

4 Synthetic case study: Application of non-linear inver se prob-
lems with complex prior information

Figure 1 is a channel-based training image from which we igéa@an unconditional realization,
Figure 2, using the single normal equation simulation aligor, SNESIM (Strebelle 2002). This
will be our reference velocity model for a synthetic croseghole inversion problem. Travel times
are computed, traveling from the 20 sources located to thenl€igure 2, to 40 receivers located
to the right. 3% Gaussian noise is added to the synthetielttame delay data, Figure 3, and used
as observed data. We now consider solving this inverse gmghlsing the generalized Metropolis
algorithm to generate samples of the a posteriori proligldlistribution, given the observed data,
the assumed noise model, and an assumed prior model.

We consider a number of prior models based on both 2-pointauitiple-point based random
models. All prior models are assumed to have the correct raedrvariance, as obtained from
the training image in Figure 1. The first 6 prior models aresblasn 2-point random models. The
pure nugget model assumes no spatial correlation, and lhmedel parameters are a-priori con-
sidered uncorrelated. The 'Gau(1)’, 'Gau(3)’ and 'Gau@)or models are based on a Gaussian
covariance model with an isotropic range of 1m, 3m and 8meesgely. The SGSIM prior is
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Figure 3: Calculated first arrival travel time using the rekor
ing geometry shown in Figure 2. 3% normally distributed
noise was added to the travel times.

Figure 2: Reference veloc-
ity model and location of
sources (*) and receivers (0)

based on a covariance model, inferred from the training emag-igure 1, as an exponential co-
variance model with a horizontal range of 6.6m a verticagjgaaf 2.2m. The DSSIM prior is as
the SGSIM prior, except that the correct distribution frdra training image is used. Finally, the
true TI prior is the training image in Figure 1, and the lasbpuse the training image rotated 90
degrees clockwise. The 4 prior models, 'Pure Nugget’, 'S SDSSIM’ and 'True TI' reflects

4 prior models with increasing order of statistics consistéth the training image from which the
reference model was generated.

Figure 5 shows the initial models for the 8 considered pamdom models. For each of these
prior models a generalized Metropolis algorithm was run3®000 iterations. Figure 4 shows the
negative log-likelihood of all models accepted by the Mptis algorithm for 35000 iterations.
Figure 6-7 shows the current model at iteration 20000, 2580000, and 35000.

The initial phase of running the generalized Metropolisoalym is a search for a location
in the model parameter space where the forward responséw ohdodels fit data within their
uncertainty. Thisis the ’burn-in’ phase. One can locatestibof the burn-in process from Figure 4
as the iteration number where the log-likelihood curvediagtout around a level of approximately
—N/2 = —400, whereN is the number of data. When the burn-in phase is over the étgostarts
sampling the a posteriori probability distribution.

As can be seen from Figure 4 it is only when using the pure Nugder, and possible the
'Gau(1)’ prior, that we do not get past the burn-in phase.

As consistent prior information is increased we completelbrn-in phase faster. Thus, for
the 'Pure Nugget’, 'SGSIM’, 'DSSIM’ and 'True TI’ prior, théurn-in is completed ab, 4000,
3800, 1000 iterations respectively, indicating that thepatational complexity is reduced as con-
sistent information content is increased. Also, even if@assian priors 'Gau(1)’,Gau(3)’, and
'Gau(8)’, do not reflect true subsurface variability, thegrfjorm order of magnitudes better than
using the uninformed 'Pure Nugget’ prior.

This simple example suggests that an otherwise relatiady gverse problem, such as the in-
version of first arrival time data, becomes virtually unsdile using an uninformed 'Pure Nugget’
prior.
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Figure 4: Negative log-likelihood as a function of iteratioumber for different choices of prior
model

5 A measure of information content

Realizations of a Gaussian random function can be genenateddn eigenvalue decomposition
of the covariance function, C, using the Karhunen-Loeve esioa

y = EAY?z (5)

whereE is the matrix of eigenvectors of the covariance ma@jx\ is a diagonal matrix of cor-
responding eigenvalues, ands a series of random Gaussian numbers with mean 0 and varianc
1 (Sarma et al. 2008). One can create approximate realsatibthe random function with co-
variance modeC using only a limited number of the eigenvectors with the biggheigenvalues.
When most eigenvalues of are close to zero the approximation tends to be close togieifae
accuracy of using a limited set of eigenvalues and corredipgreigenvectors can be quantified
using an energy spectrum. An energy spectrum of the eigeesgllots the cumulative sum of the
eigenvalues (normalized to 1 as maximum value) as a funofitime number of eigenvalues con-
sidered, sorted in decreasing order. From the energy specne can thus find how many of the
eigenvalues need to be considered in eqn. 5 to retain arcéetal of energy (Sarma et al. 2008),
which indicates that the cumulative energy spectrum carsbd as an indicator of the information
content in any given choice of Gaussian based prior models.

As an example we consider different spatial sample sizea foodel of size 10x10 meter. A
grid spacing of 1m results in 10*10=100 model parameterstid\gpacing of 0.25*0.25, results in
40*40=1600 model parameters. We consider prior modelsavigmge from 0 meters to 20 meters,
ranging from a prior model assuming no spatial connectiaity prior model assuming very strong
spatial connectivity. Figure 8a shows the percentage @ivalilable eigenvectors needed to repre-
sent 95% of the energy content for each given prior. Figurstgiws the number of eigenvectors
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Figure 6: Current model at iteration numb§ 20000, 25000080énd 35000 using the 'Pure
Nugget’, 'Gau(l)’, 'Gau(3)’, and 'Gau(8)’ prior models gtied from to to bottom). The title is the
negative log likelihood for the given model.
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Figure 7: Current model at iteration number,20000, 2500008G@0hd 35000 using the 'SGSIM’,
'DSSIM’, "True Ti’', and "True TI (rot)’ prior r‘}i dels (listedrom to to bottom). The title is the
negative log likelihood for the given model.



needed to represent 95% of the energy content for each gnan p

The number of eigenvectors needed to describe 95% perctreg ofimulative eigenvalue con-
tent using an uncorrelated prior, is 95% of the total numb&igenvectors (i.e. the total number
of model parameters). Thus, increasing the number of madahpeters by a factor of increases
the number of effectively free parameters with a fa¢dorThe number of eigenvectors needed to
describe 95% of the cumulative eigenvalue content usinglalyhcorrelated prior is aboN = 8,
independently of the considered range. Thus, increasaguimber of model parameters by a fac-
tor of N does NOT increase the number of effective free parametéishwneans that for a prior
model with spatial correlation there exists a upper limitite effective number of free parameters
inherent in the choice of prior. The longer the range witlpees to the sampling distance, the
higher the apparent dimension reduction.

There results are important for several reasons. Consglanimcorrelated prior model, some-
times referred to as an uninformed prior, leads to an inyargielem that will be unsolvable except
for very small problems with very few model parameters. Gndther hand, if one prior assumes
some spatial correlation, one can increase the number seidened model parameters dramatically
without increasing the number of free parameters of the gignificantly.

This indicate that, for a specific choice of prior model, ¢hisran upper limit to the complexity
of the inverse problem: A threshold for the spatial samptiirgjancedx exists, below which the
complexity/hardness of the inverse problem will not ineealt may be computationally more
expensive to sample the prior and compute the likelihoodtfan for a model that is more densely
sampled, but the problem of sampling the posterior proltglaensity function will be equally
hard. In other words, for a given choice of prior there is adoWmit for the spatial sampling
distance below which the complexity of the inverse problesndmes constant, and independent
of the number of model parameters.

The analysis presented here is only valid for Gaussiandraselom models (2-point statistics).
Kernel PCA might be a viable approach to quantifying the imfation content of multiple-point
based priors (Sarma et al. 2008).

6 Discussion

Choosing a prior model with (too) many free parameters wilkkendne sampling problem harder.
Choosing a prior model with as many free parameters as modaingders, will result in an un-
solvable problem, as the number of model parameters tenidéindgy. Choosing a prior model
with too few free parameters will restrict the solution spaicicrease the computation time and
perhaps make it impossible to match the data within uncgiég. Our findings suggest that a
well-informed prior, i.e. a prior consistent with the trugbsurface, will perform computationally
more efficiently than a prior in conflict with the true subswwé. For underdetermined inverse
problems, one cannot avoid choosing a prior model.

If one tries to choose a 'neutral’ prior model and relies aneigample a uniform prior (which
in reality is a very specific prior assumption) we have shohat the inverse problem becomes
unsolvable unless the number of model parameters are very Nt only does an ’informed’
prior increase the computational efficiency of samplinggher (in that it will allow longer steps
to be taken by the sampling algorithm, reducing the time betwindependent samples) it also has
direct effect on the shape of the posterior model. If the @baif prior is 'sound’ it will reduce
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Figure 8: Information content.

the complexity of sampling the posterior, since it will be chweasier to locate the area of high
probability. These are two major reasons why the choice iof pnodel has significant impact
on the type of nonlinear inverse problems that can be solgatjuthe generalized metropolis
algorithm.

7 Conclusions

The complexity of an inverse problem is hugely dependenthenptior, (not only the physics /
likelihood) and the way it is introduced into the inverselgem. We considered two alternatives
for quantifying 2-point-based Gaussian random modelsnotdinear inverse problems where the
a posteriori distribution is sampled by the generalizedrbfatlis algorithm. The first method is
a simple utilization of the Metropolis sampler using a umifgproposal distribution. We find this
approach to be applicable only to very low-dimensional isggroblems and for prior assumption
with little-to-no spatial correlation. We also consider athrod based on sequential re-simulation
that is both easy to implement and computationally eficienaddition, it works with any sequen-
tial simulation algorithm, both 2-point and multiple pobased.

A synthetic case study, utilizing both 2-point and multipl@nt-based prior models, shows
the application of the sequential re-simulation for sangplhe prior as part of an application of
the generalized Metropolis sampler. It illustrates howte@omplex priori information can be
guantified by, for example, training images and used to piwealizations of the a posteriori pdf
that honor both data and the complex a priori information.five that the more consistent infor-
mation is added to the inverse problem in this manner, th&ad of sampling the a posteriori
probability function is reduced. The specific choice of gsmnon-spatially correlated prior leads
to a sampling problem that is impossible to solve. Even ferrdlatively easy inverse problem
considered here (first arrival travel time inversion), atispit uncorrelated prior results in a sam-
pling problem that cannot be solved. On the other hand, & pith just a small amount of spatial
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correlation (much smaller than the apparent correlatiogtle of the actual subsurface) makes the
problem relatively easy.

The synthetic case study indicates that the complexity efitlierse problem is reduced as
the spatial correlations become stronger. Using PCA arsalysicompute the energy spectrum of
an eigenvalue analysis performed for a number of differesacance models. We find that for
given a specific spatial correlation length and spatial $egplistance we compute the number of
eigenvectors needed to reproduce 95% of the energy in thrgyespectrum. We find that using
any prior model with spatial correlation, the number of eigeetors needed to reproduce 95 % of
the energy spectrum is smaller than 95% of the number of mual@meters. Thus, a prior with
spatial correlation results in an apparent reduction ofntn@ber of free parameters of the prior.
In addition, for a given choice of correlation length theseailower limit to the spatial sampling
distance, below which the apparent number of free parametethe prior is constant. Thus,
decreasing the spatial sample size will not increase théeuof free parameters, even though the
number of model parameters increase.

We find that using sequential re-sampling for sampling cexyplrior information (as quan-
tified by geostatistical simulation algorithms) providesedfective approach for adding complex
prior information to non-linear inverse problems when sdlby the generalized Metropolis algo-
rithm. Not only does it provide geologically realistic sbtins to inverse problems, it also reduces
the effective dimension of the inverse problem to be solead, hence reduces the computational
requirements. The stronger the spatial prior informattbe,larger the dimension reduction will
be.
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