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Reducing complexity of inverse problems using
geostatistical priors∗

Thomas Mejer Hansen Klaus Mosegaard Knud Skov Cordua

October 2, 2009

Abstract

In a probabilistic formulation of inverse problems the solution can be given asa sample
of the posterior probability distribution. All realizations retained in the posterior sample are
consistent with both an assumed prior model and observed data. Some inverse problems are
unsolvable, in that one can practically never hope to generate a posteriorsample, others are
just ’difficult’ and require special methods to become tractable, while othersagain are easily
solved. We discuss how difficult nonlinear inverse problems can be handled such that their
complexity, i.e. the time taken to obtain a posterior sample, can be reduced significantly using
informed priors based on geostatistical models. We discuss two approaches to include such
geostatistically based prior information. One is based on a parametric description of the prior
likelihood that applies to 2-point based statistical models, and another approach makes use of
conditional re-simulation to sample the prior that works for both 2-point and multiple point
random models. The latter approach is shown to be superior in terms of computational effi-
ciency. We quantify the information content given by a specific choice of prior model. This
enables us to obtain a lower limit of, for example, the size of a grid cell in a grid-parametrized
parameter space. The resulting decrease in effective dimension of the parameter space pro-
vides a much more efficient sampling of the posterior with orders of magnitude increase in
computational efficiency.

1 Introduction

Mosegaard and Tarantola (1995) present a generalized Metropolis algorithm that allows analysis
of non-linear inverse problems with complex prior information. Yet, to date most applications
of the generalized Metropolis algorithm, or solutions of non-linear inverse problems in general,
rely on relatively simple a priori assumptions. The generalized Metropolis algorithm does not
require one to explicitly know the formula describing the prior information. A black box that
can sample according to the prior pdf is the only requirement(Mosegaard and Tarantola 1995).
Geostatistical simulation algorithms provide just such tools for generating random realizations
from very complex stochastic prior models. They can rely on both traditional 2-point covariance-
based statistics and multiple point statistics where the prior model is inferred from a training image
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(Guardiano and Srivastava 1993; Strebelle 2002). Recent developments of multiple-point-based
simulation allow one to quantify geologically realistic prior information. Here we shall discuss
how the choice of a priori models, based on geostatistical random function models, affect the
complexity of an inverse problem. In particular, we shall see how the computational efficiency
is affected by a specific choice of prior model and the way it isimplemented for use with the
generalized Metropolis algorithm.

2 The generalized Metropolis algorithm

Consider a typical forward problem, where datad is a functiong of some modelm (typically the
subsurface)

d = g(m) (1)

An inverse problem is the problem of inferring properties ofm, based on observationsd and some
knowledge about the mapping functiong, typically related to physical theory. Tarantola (2005)
and Mosegaard (2006) formulate a probabilistic approach tosolving inverse problems where prior
information is described by the prior probability density function (pdf)ρM(m). A probabilistic
measure of the data fit associated to a given model is given by the likelihoodLm(m). The solution
to such an inverse problem is a probability density function, denoted the a posteriori pdf, and is
proportional to the product of the prior pdf and the likelihood (wherek is a normalization factor):

σM(m) = k ρM(m) LM(m) (2)

In caseg is a linear function, and bothρM(m) andLM(m) can be described by Gaussian statis-
tics, Hansen et al. (2006) and Hansen and Mosegaard (2008) propose a non-iterative, efficient
approach using sequential simulation to generate samples of the a posteriori pdf. It is, however,
more common thatg is a nonlinear operator, and the Gaussian prior assumptionsaboutL(m) and
ρM(m) is rather restrictive. Mosegaard and Tarantola (1995) suggest a generalized Metropolis
Monte Carlo algorithm for sampling the a posterior distribution σM(m) in the general case where
g is nonlinear. The method allows inclusion of complex prior information and arbitrary, complex
noise model.

Consider a Markov chain wheremn is a realization of the prior pdfρM(m), andmn+1 is in
the neighborhood ofmn, but still a realization ofρM(m). Further, assume that the likelihood with
respect to observed data can be calculated as L(mn) and L(mn+1), respectively. Thenmn+1 is
accepted as a realization of the a posteriori pdf with probability

Paccept =

{

1 if L(mn+1)>L(mn)
L(mn+1) / L(mn) otherwise

(3)

If mn+1 is rejected,mn+1 becomesmn (that is,mn is repeated). Performed iteratively, this algorithm
will sample the a posteriori pdf. In each iteration, one needs to perturb the current model consis-
tently with prior information, compute the likelihood of the perturbed model, and finally generate
a random number between 0 and 1 to decide whether the perturbed model is to be accepted. Here
we shall focus on, how geologically realistic prior information can be considered for use the gen-
eralized Metropolis algorithm, and the effect it has on the computational complexity of the inverse
problem.
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3 Quantifying prior information using geostatistics

Generally speaking geostatistics is an application of random functions to describe spatial phenom-
ena, typically in form of spatial variability in earth models. Geostatistical simulation algorithms
have been developed to efficiently generate realizations ofa number of random function models.
Geostatistical simulation algorithms can be divided into two groups where the underlying random
function model is based on 2-point or multiple-point statistics (Guardiano and Srivastava 1993;
Strebelle 2002). 2-point-based geostatistical algorithms take into account spatial variability be-
tween pairs of data locations. In case the distribution of the model parameters are Gaussian, one
can completely define the underlying random function model using a Gaussian pdf

ρM(m) = c exp

[

−

1
2
(m−mprior)

tC−1
Mprior

(m−mprior)

]

(4)

wheremprior is the prior mean, andCMprior is the prior covariance matrix. Multiple-point-based
geostatistical models have no parametric description. Instead the multiple point statistics are in-
ferred from a training image. The methodology was initiallyproposed by Guardiano and Srivastava
(1993), and Strebelle (2002) developed the first computationally feasible algorithm for categorical
training images. Zhang et. al (2006) suggested another multiple-point-based algorithm where pat-
terns from a continuous or categorical training image are used to generate stochastic realizations
with features from the training image. Using these techniques one can generate realizations of
random function models that reproduce geologically realistic spatial variability. State of the art
implementation of these algorithms are available through for example SGeMS (Remy et al. 2008).

Sampling a prior using the Metroplis algorithm When a parametric description of the random
function model is available, as is the case for a Gaussian covariance-based priors (eqn. 4), a
separate Metropolis sampler can be used to sample the prior information, (Bosch et al. 2005;
Bosch et al. 2006; Jiḿenez and Bosch 2008).

Sampling a prior using sequential re-simulation An alternative approach to sample geostatistics-
based prior information is proposed by Hansen et al. (2008).They suggest to sequentially re-
simulate part of the model parameters, conditioned to the remaining, fixed model parameters:

1. In the current modelmi, select a region in the model space, and denote all model parameters
in this area as unknown,mu. The rest of the model parameters are considered knownmk.

2. Perform sequential simulation ofmu, conditioned tomk. This generatesmi+1, which is also
a realization of the prior model.

3. Setmi=mi+1 and go to 1.

When this algorithm is run iteratively it will perform a random walk in the model parameter space,
guided by the underlying, prior random function given by thegeostatistical sampling algorithm.

Sequential re-simulaton can be used with any geostatistical algorithm (both 2-point and multiple-
point based) capable of performing conditional simulation. Such algorithms include SGSIM,
DSSIM (Soares 2001), SNESIM (Strebelle 2002), FILTERSIM (Wuet al. 2008) but to name a
few.
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3.1 Comparing sequential resimulation and the Metroplis algorithm for sam-
pling geostatistical-based priors.

At each step in the generalized Metropolis algorithm, one must choose to randomly visit a new
model in the vicinity of the current model. The size of the area of ’vicinity’ reflects the exploratory
nature of the algorithm. We shall refer to the distance or size of the ’vicinity’ as the step length.
Choosing the correct step length is essential for the computational efficiency of the sampling al-
gorithm. If the step length is small, the acceptance rate will be high, but only model parameters
relatively close to the initial model will be considered. Ifthe step length is high the algorithm will
be more exploratory but the acceptance probability will be small. Gelman et al. (1996) found that
an acceptance rate between 20-40% leads to an algorithm withboth relatively high acceptance rate
and relative high exploration. Thus, any method used to sample prior information should allow
tuning of the exploratory step length in such a way that the exploration of the posterior can be
optimized.

Using sequential re-simulation to sample the prior, the step length can be chosen between two
extremes. It is least exploratory when only one model parameter is considered for re-sampling per
iteration, and most exploratory when all model parameters are resampled in each iteration. The
latter approach is equivalent of generating a new uncorrelated sample of the prior. Thus we can
directly control the exploratory nature of our prior sampling algorithm.

When using the Metropolis sampler to sample prior information, we need to select an appro-
priate degree of exploration for both the prior Metropolis sampler and the a posteriori Metropolis
sampler. If the step length needed for the prior Metropolis sampler is smaller than the step length
leading to a optimal posterior sampler, we suggest to run theprior Metropolis sampler in cascade
to the posterior Metropolis sampler, as suggested by Mosegaard and Tarantola (1995). This will
reduce the number of evaluations of the likelihood, which istypically an expensive calculation.

To evaluate the computational efficiency when using the Metropolis algorithm for sampling the
prior, we consider the computational requirements needed to achieve a step of a certain length /
amount of exploration. We quantify the step length as the correlation coefficient between and ini-
tial model and the corresponding perturbed model. As a reference model we consider a 2D model
of 100x100 grid points, with a point distance of 5 meters. We consider two types of covariance
models as priors, a) an exponential covariance model and b) aGaussian covariance. We consider
ranges from 0.5m to 20m. For any given set of covariance modeland range, we start a Metropo-
lis sampler from an initial unconditional realization, using a uniform proposal distribution, and
tune the algorithm to ensure an acceptance rate of about 30%.The Metropolis algorithm is run
for 300000 iteration and we locate the iteration step at which a correlation coefficient between
the initial model and the current model is 0.0, 0.1, 0.5 and 0.9 respectively, reflecting different
exploration levels. We do this 100 times, for 100 different starting models, to obtain the average
iteration number needed to obtain a certain correlation coefficient between the initial model and
the perturbed model. The results are summarized in tables 1 and 2, where ‘∞’ means that no model
with the given correlation coefficient was found in 300000 iterations.

The main result of tables 1-2 is that as the range increases with respect to the spatial sampling
distance, so does the number of iterations needed. The more spatial correlation in the prior, the
harder it is to sample it using a Metropolis sample.

A Gaussian covariance model imposes harder constraints on small scale variability than the ex-
ponential covariance model, since the first order derivative of a Gaussian covariance model is zero

4



Range 0.5m 1m 2m 5m 10m 20m

CC=0.9 8.5101 8.5101 8.8.2101 1.1102 2.1102 5.2102

CC=0.5 6.0102 5.9102 5.7102 8.6102 3.1103 1.4104

CC=0.1 1.6103 1.7103 1.8103 3.9103 2.2104 8.6104

CC=0.0 2.6103 2.8103 2.4103 7.7103 3.1104 1.3105

Table 1: Number of iterations to reach a correlation coefficient of 0.9, 0.5, 0.1 and 0.0 between the
initial model and the perturbed model for an exponential covariance model with different ranges.
100x100 model parameters describe a 500m x 500m physical space.

Range 0.5m 1m 2m 5m 10m 20m

CC=0.9 8.5101 8.5101 8.8101 1.4102 3.5105 ∞
CC=0.5 6.0102 6.0102 5.8102 1.2103 ∞ ∞
CC=0.1 1.6103 1.6103 1.8103 5.4103 ∞ ∞
CC=0.0 2.6103 2.8103 2.5103 8.0103 ∞ ∞

Table 2: Number of iterations to reach a correlation coefficient of 0.9, 0.5, 0.1 and 0.0 between
the initial model and the perturbed model for a Gaussian covariance model with range. 100x100
model parameters spanning 500x500m.

at zero offset, and non-zero for the exponential covariancemodel. This means that a realization of
a Gaussian covariance model will be very smooth. Such smoothing is in direct contradiction to the
models that are proposed by the uniform proposal distribution of the Metropolis algorithm: using
a uniform prior to propose models, almost none of the models proposed will be smooth. In fact,
the probability of suggesting a smooth model, using a uniform prior, tends to zero as the spatial
sampling distance tends to zero, or the range becomes long with respect to this distance. Increasing
the range therefore implies that the step length must be reduced in order to maintain an acceptance
ratio of about 30%. The longer the range (or the smaller the sampling distance) the smaller the
step length and hence the more iterations are needed to obtain a certain level of exploration.

This is the reason that the Metropolis sampler, using a uniform prior, performs increasingly
worse as the sampling distance is reduced. Also, due to the smoothness assumption inherent
in sampling from a Gaussian covariance model, it is more difficult to sample from a Gaussian
covariance than from an exponential covariance model.

This simple example illustrates that using the Metropolis sampler with a uniform prior to sam-
ple Gaussian-based prior information leads to a computationally inefficient algorithm for anything
but very low dimensional problems. In addition, the stronger the spatial correlation the more CPU
expensive it becomes to use the Metropolis algorithm to sample Gaussian models.

In contrast, using sequential re-simulation, the exploratory nature of the prior sampler can eas-
ily be adjusted to the sampling problem at hand. The ‘step length’ is simply chosen as the number
of model parameters needed to obtain a given acceptance ratio for the generalized Metropolis sam-
pler. No models will be suggested that are in conflict with prior information. In addition, the
sequential re-simulation sampler work with any conditional sequential simulation program, both
2-p and multiple point based, where as the Metropolis approach to sample the prior is limited to
priors with a parametric description of the random function, such as covariance based 2-p pri-
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Figure 1: Training image used to generate the reference model. Black channel structures have a
velocity of 0.09 m/ns. The background velocity (white) has avelocity of 0.13 m/ns.

ors. The sequential re-simulation sampler provides an efficient and non-biased approach to sample
complex prior information, that is well designed for use with the generalized Metropolis algorithm.

4 Synthetic case study: Application of non-linear inverse prob-
lems with complex prior information

Figure 1 is a channel-based training image from which we generate an unconditional realization,
Figure 2, using the single normal equation simulation algorithm, SNESIM (Strebelle 2002). This
will be our reference velocity model for a synthetic cross borehole inversion problem. Travel times
are computed, traveling from the 20 sources located to the left in Figure 2, to 40 receivers located
to the right. 3% Gaussian noise is added to the synthetic travel-time delay data, Figure 3, and used
as observed data. We now consider solving this inverse problem, using the generalized Metropolis
algorithm to generate samples of the a posteriori probability distribution, given the observed data,
the assumed noise model, and an assumed prior model.

We consider a number of prior models based on both 2-point andmultiple-point based random
models. All prior models are assumed to have the correct meanand variance, as obtained from
the training image in Figure 1. The first 6 prior models are based on 2-point random models. The
pure nugget model assumes no spatial correlation, and thus all model parameters are a-priori con-
sidered uncorrelated. The ’Gau(1)’, ’Gau(3)’ and ’Gau(8)’prior models are based on a Gaussian
covariance model with an isotropic range of 1m, 3m and 8m respectively. The SGSIM prior is
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Figure 3: Calculated first arrival travel time using the record-
ing geometry shown in Figure 2. 3% normally distributed
noise was added to the travel times.

based on a covariance model, inferred from the training image in Figure 1, as an exponential co-
variance model with a horizontal range of 6.6m a vertical range of 2.2m. The DSSIM prior is as
the SGSIM prior, except that the correct distribution from the training image is used. Finally, the
true TI prior is the training image in Figure 1, and the last prior use the training image rotated 90
degrees clockwise. The 4 prior models, ’Pure Nugget’, ’SGSIM’, ’DSSIM’ and ’True TI’ reflects
4 prior models with increasing order of statistics consistent with the training image from which the
reference model was generated.

Figure 5 shows the initial models for the 8 considered prior random models. For each of these
prior models a generalized Metropolis algorithm was run for35000 iterations. Figure 4 shows the
negative log-likelihood of all models accepted by the Metropolis algorithm for 35000 iterations.
Figure 6-7 shows the current model at iteration 20000, 25000, 30000, and 35000.

The initial phase of running the generalized Metropolis algorithm is a search for a location
in the model parameter space where the forward responses of the models fit data within their
uncertainty. This is the ’burn-in’ phase. One can locate theend of the burn-in process from Figure 4
as the iteration number where the log-likelihood curve flattens out around a level of approximately
−N/2=−400, whereN is the number of data. When the burn-in phase is over the algorithm starts
sampling the a posteriori probability distribution.

As can be seen from Figure 4 it is only when using the pure Nugget prior, and possible the
’Gau(1)’ prior, that we do not get past the burn-in phase.

As consistent prior information is increased we complete the burn-in phase faster. Thus, for
the ’Pure Nugget’, ’SGSIM’, ’DSSIM’ and ’True TI’ prior, theburn-in is completed at∞, 4000,
3800, 1000 iterations respectively, indicating that the computational complexity is reduced as con-
sistent information content is increased. Also, even if theGaussian priors ’Gau(1)’,’Gau(3)’, and
’Gau(8)’, do not reflect true subsurface variability, they perform order of magnitudes better than
using the uninformed ’Pure Nugget’ prior.

This simple example suggests that an otherwise relatively easy inverse problem, such as the in-
version of first arrival time data, becomes virtually unsolvable using an uninformed ’Pure Nugget’
prior.
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Figure 4: Negative log-likelihood as a function of iteration number for different choices of prior
model

5 A measure of information content

Realizations of a Gaussian random function can be generated from an eigenvalue decomposition
of the covariance function, C, using the Karhunen-Loeve expansion

y = EΛ1/2 z (5)

whereE is the matrix of eigenvectors of the covariance matrixC, Λ is a diagonal matrix of cor-
responding eigenvalues, andz is a series of random Gaussian numbers with mean 0 and variance
1 (Sarma et al. 2008). One can create approximate realizations of the random function with co-
variance modelC using only a limited number of the eigenvectors with the highest eigenvalues.
When most eigenvalues ofΛ are close to zero the approximation tends to be close to perfect. The
accuracy of using a limited set of eigenvalues and corresponding eigenvectors can be quantified
using an energy spectrum. An energy spectrum of the eigenvalues plots the cumulative sum of the
eigenvalues (normalized to 1 as maximum value) as a functionof the number of eigenvalues con-
sidered, sorted in decreasing order. From the energy spectrum one can thus find how many of the
eigenvalues need to be considered in eqn. 5 to retain a certain level of energy (Sarma et al. 2008),
which indicates that the cumulative energy spectrum can be used as an indicator of the information
content in any given choice of Gaussian based prior models.

As an example we consider different spatial sample sizes fora model of size 10x10 meter. A
grid spacing of 1m results in 10*10=100 model parameters. A grid spacing of 0.25*0.25, results in
40*40=1600 model parameters. We consider prior models witha range from 0 meters to 20 meters,
ranging from a prior model assuming no spatial connectivityto a prior model assuming very strong
spatial connectivity. Figure 8a shows the percentage of allavailable eigenvectors needed to repre-
sent 95% of the energy content for each given prior. Figure 8bshows the number of eigenvectors
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Figure 6: Current model at iteration number 20000, 25000, 30000 and 35000 using the ’Pure
Nugget’, ’Gau(1)’, ’Gau(3)’, and ’Gau(8)’ prior models (listed from to to bottom). The title is the
negative log likelihood for the given model.
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Figure 7: Current model at iteration number 20000, 25000, 30000 and 35000 using the ’SGSIM’,
’DSSIM’, ’True Ti’, and ’True TI (rot)’ prior models (listedfrom to to bottom). The title is the
negative log likelihood for the given model.
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needed to represent 95% of the energy content for each given prior.
The number of eigenvectors needed to describe 95% percent ofthe cumulative eigenvalue con-

tent using an uncorrelated prior, is 95% of the total number of eigenvectors (i.e. the total number
of model parameters). Thus, increasing the number of model parameters by a factor ofN increases
the number of effectively free parameters with a factorN. The number of eigenvectors needed to
describe 95% of the cumulative eigenvalue content using a highly correlated prior is aboutN = 8,
independently of the considered range. Thus, increasing the number of model parameters by a fac-
tor of N does NOT increase the number of effective free parameters, which means that for a prior
model with spatial correlation there exists a upper limit tothe effective number of free parameters
inherent in the choice of prior. The longer the range with respect to the sampling distance, the
higher the apparent dimension reduction.

There results are important for several reasons. Considering a uncorrelated prior model, some-
times referred to as an uninformed prior, leads to an inverseproblem that will be unsolvable except
for very small problems with very few model parameters. On the other hand, if one prior assumes
some spatial correlation, one can increase the number of considered model parameters dramatically
without increasing the number of free parameters of the prior significantly.

This indicate that, for a specific choice of prior model, there is an upper limit to the complexity
of the inverse problem: A threshold for the spatial samplingdistancedx exists, below which the
complexity/hardness of the inverse problem will not increase. It may be computationally more
expensive to sample the prior and compute the likelihood function for a model that is more densely
sampled, but the problem of sampling the posterior probability density function will be equally
hard. In other words, for a given choice of prior there is a lower limit for the spatial sampling
distance below which the complexity of the inverse problem becomes constant, and independent
of the number of model parameters.

The analysis presented here is only valid for Gaussian-based random models (2-point statistics).
Kernel PCA might be a viable approach to quantifying the information content of multiple-point
based priors (Sarma et al. 2008).

6 Discussion

Choosing a prior model with (too) many free parameters will make the sampling problem harder.
Choosing a prior model with as many free parameters as model parameters, will result in an un-
solvable problem, as the number of model parameters tends toinfinity. Choosing a prior model
with too few free parameters will restrict the solution space, increase the computation time and
perhaps make it impossible to match the data within uncertainties. Our findings suggest that a
well-informed prior, i.e. a prior consistent with the true subsurface, will perform computationally
more efficiently than a prior in conflict with the true subsurface. For underdetermined inverse
problems, one cannot avoid choosing a prior model.

If one tries to choose a ’neutral’ prior model and relies on for example a uniform prior (which
in reality is a very specific prior assumption) we have shown that the inverse problem becomes
unsolvable unless the number of model parameters are very few. Not only does an ’informed’
prior increase the computational efficiency of sampling theprior (in that it will allow longer steps
to be taken by the sampling algorithm, reducing the time between independent samples) it also has
direct effect on the shape of the posterior model. If the choice of prior is ’sound’ it will reduce
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Figure 8: Information content.

the complexity of sampling the posterior, since it will be much easier to locate the area of high
probability. These are two major reasons why the choice of prior model has significant impact
on the type of nonlinear inverse problems that can be solved using the generalized metropolis
algorithm.

7 Conclusions

The complexity of an inverse problem is hugely dependent on the prior, (not only the physics /
likelihood) and the way it is introduced into the inverse problem. We considered two alternatives
for quantifying 2-point-based Gaussian random models intononlinear inverse problems where the
a posteriori distribution is sampled by the generalized Metropolis algorithm. The first method is
a simple utilization of the Metropolis sampler using a uniform proposal distribution. We find this
approach to be applicable only to very low-dimensional inverse problems and for prior assumption
with little-to-no spatial correlation. We also consider a method based on sequential re-simulation
that is both easy to implement and computationally eficient.In addition, it works with any sequen-
tial simulation algorithm, both 2-point and multiple pointbased.

A synthetic case study, utilizing both 2-point and multiple-point-based prior models, shows
the application of the sequential re-simulation for sampling the prior as part of an application of
the generalized Metropolis sampler. It illustrates how quite complex priori information can be
quantified by, for example, training images and used to provide realizations of the a posteriori pdf
that honor both data and the complex a priori information. Wefind that the more consistent infor-
mation is added to the inverse problem in this manner, the workload of sampling the a posteriori
probability function is reduced. The specific choice of using a non-spatially correlated prior leads
to a sampling problem that is impossible to solve. Even for the relatively easy inverse problem
considered here (first arrival travel time inversion), a spatially uncorrelated prior results in a sam-
pling problem that cannot be solved. On the other hand, a prior with just a small amount of spatial
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correlation (much smaller than the apparent correlation length of the actual subsurface) makes the
problem relatively easy.

The synthetic case study indicates that the complexity of the inverse problem is reduced as
the spatial correlations become stronger. Using PCA analysis we compute the energy spectrum of
an eigenvalue analysis performed for a number of different covariance models. We find that for
given a specific spatial correlation length and spatial sampling distance we compute the number of
eigenvectors needed to reproduce 95% of the energy in the energy spectrum. We find that using
any prior model with spatial correlation, the number of eigenvectors needed to reproduce 95 % of
the energy spectrum is smaller than 95% of the number of modelparameters. Thus, a prior with
spatial correlation results in an apparent reduction of thenumber of free parameters of the prior.
In addition, for a given choice of correlation length there is a lower limit to the spatial sampling
distance, below which the apparent number of free parameters of the prior is constant. Thus,
decreasing the spatial sample size will not increase the number of free parameters, even though the
number of model parameters increase.

We find that using sequential re-sampling for sampling complex prior information (as quan-
tified by geostatistical simulation algorithms) provides an effective approach for adding complex
prior information to non-linear inverse problems when solved by the generalized Metropolis algo-
rithm. Not only does it provide geologically realistic solutions to inverse problems, it also reduces
the effective dimension of the inverse problem to be solved,and hence reduces the computational
requirements. The stronger the spatial prior information,the larger the dimension reduction will
be.
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