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1 INTRODUCTION 
Real-time decision optimization has become an interesting and challenging topic with the pro-
gress of real-time information processing technology. Relevant applications in civil engineering 
include situations where operational decisions have to be made in response to real-time infor-
mation on evolving natural hazard events. In these situations, all real-time information available 
can and should be best utilized to find the optimal decisions at respective times; taking into ac-
count not only possible future outcomes, but also opportunities to make decisions in future 
times. This type of decision problem is generally described within the framework of the pre-
posterior/sequential decision analysis, see Nishijima et al. (2009); however, the development of 
efficient solution schemes to the formulated decision problems has remained a technical chal-
lenge.  

An efficient solution scheme is proposed by Anders & Nishijima (2011), taking basis in the 
Least Squares Monte Carlo method (hereafter, abbreviated as LSM), which is developed origi-
nally by Longstaff & Schwartz (2001) for American option pricing. In Anders & Nishijima 
(2011) the original LSM is extended and applied to an example for a real-time operational deci-
sion problem for shut-down of the operation of a technical facility in the face of an approaching 
typhoon. However, due to multiple evaluations of the expected consequences for different pos-
sible future states of the typhoon by means of Monte Carlo simulation (MCS), the solution 
scheme becomes less efficient, if the computational time required for MCS becomes dominant. 
The present paper proposes an enhanced solution scheme, which overcomes this drawback. 

The present paper is organized as follows. Section 2 formulates the real-time decision prob-
lems in consideration within the framework presented in Nishijima & Anders (2012). Section 3 
provides a brief introduction to the extensions of the LSM. Thereafter, the proposed enhance-
ment to the extended LSM is introduced. Section 4 presents an application example, which illus-
trates the performance of the enhanced LSM (eLSM). Section 5 concludes the presented work. 
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ABSTRACT: The present paper aims at enhancing a solution approach proposed by Anders & 
Nishijima (2011) to real-time decision problems in civil engineering. The approach takes basis 
in the Least Squares Monte Carlo method (LSM) originally proposed by Longstaff & Schwartz 
(2001) for computing American option prices. In Anders & Nishijima (2011) the LSM is 
adapted for a real-time operational decision problem; however it is found that further improve-
ment is required in regard to the computational efficiency, in order to facilitate it for practice. 
This is the focus in the present paper. The idea behind the improvement of the computational ef-
ficiency is to “best utilize” the least squares method; i.e. least squares method is applied for es-
timating the expected utility for terminal decisions, conditional on realizations of underlying 
random phenomena at respective times in a parametric way. The implementation and efficiency 
of the enhancement is shown with an example on evacuation in an avalanche risk situation. 



2 REAL-TIME DECISION FRAMEWORK 

2.1 Problem setting 

The decision situation considered in the present work is characterized by the following charac-
teristics, see Nishijima et al. (2009): (a) The hazard process evolves relatively slowly and allows 
for reactive decision making; (b) information relevant to predict the severity of the evolving 
hazard event can be obtained prior to its impact; (c) the decision making is subject to uncertain-
ties, part of which might be reduced at a cost; (d) decision makers have options for risk reducing 
activities which may be commenced at any time, supported by the information available up to 
the time. Here, “waiting” to commence the risk reducing measures implies the reduction of un-
certainty but might also reduce available time to complete the risk reducing activities; (e) and on 
top of all, the decisions must be made fast, in near-real time. The decision makers are then re-
quired to make decisions whether they commence one of the risk reducing activities which at 
the same time terminates the decision process (hence, hereafter these are called terminal deci-
sions) or they postpone making a terminal decision.  

2.2 Formulation of decision problem 

The decision problem characterized above can be formulated in accordance with Nishijima & 
Anders (2012). Denote by tA  the decision set consisting of possible decision alternatives at 
time t . Here, time is discretized. It is assumed that the decisions must be terminated before or 
at time n ; hence, {0,1,2,..., }t n . The decision set tA  generally depends on the decisions 
made before time t . If a decision maker decides to terminate the decision process, no decision 
alternative is available at later decision times. It is thus convenient to divide the decision set into 
two mutually exclusive subsets; i.e. ( ) ( ) ( ) ( ),c s c s

t t t t tA A A A A     where ( )c
tA  consists of 

one decision alternative ( )c
ta  “waiting” (i.e. ( ) ( ){ }c c

t tA a ) and ( )s
tA  is the set consisting of 

risk reducing decisions available. Let tE  be a set of variables representing possible infor-
mation available at time t  on the states of the evolving natural hazard event in consideration. 

Given that no terminal decision is made up to time t , the optimal decision *
ta  at time t  is 

identified as the one that maximizes the expected utility at time t  conditional on the collection 
of the information up to time t : 
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Here, ( , )t tU az  is the utility, which is a function of the decision alternative ta  and the realiza-
tion z  of the hazard index Z  relevant for the decision problem. The hazard index Z  is de-
fined through the underlying random sequence 0{ }n

t tY , representing the evolution of the natural 
hazard event. 0 1( , ,..., )t te e e e  is the collection of the information available up to time t . 
Here, it is assumed that , ( 0,1,..., )t t t n y e ; namely, the state of the event relevant to the de-
cision problem is known to the decision maker without uncertainty. Thus, the symbols ty  and 

te  are utilized interchangeably in the following. (. | )t tf e  is the conditional probability densi-
ty/mass function of information 1tE  given t tE e . From Equation 2 it is seen that for the 
decision ( )c

ta  at time t  the optimization requires to know all optimal decisions at future times, 
1, 2,...,t t n  ; hence, backward induction is required. Equation 1 can be rewritten as: 

            

 max ( ), ( ) ,      for 0,1,..., 1
( )

( ),        for .
t t t t

t t

t t

h c t n
q

h t n

   


e e
e

e
 (3) 

Here, 
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The function ( )t tq e , 0,1,...,t n , is the maximized expected utility, hereafter abbreviated as 
MEU. The functions ( )t th e  and ( )t tc e  are named stopping value function (SVF) and contin-
uing value function (CVF), respectively. Note that, whereas the evaluation of the SVF is 
straightforward in the sense that it does not require backward induction, the evaluation of CVF 
requires backward induction. However, no matter how complex the structure of the decision op-
timization problem may seem, ( )t tc e  is only a function of te . Furthermore, if the underlying 
random sequence 0{ }n

t tY  follows ths -order Markov sequence, ( )t tc e  is a function effectively 
of the last s  information, 1 2, ,...,t s t s t   e e e . 

3 ENHANCEMENT OF THE EXTENDED LSM  

3.1 Extended LSM  

The main technical challenge of the optimization problem formulated in Section 2.2 is the eval-
uation of the CVF. The CVF can in principle be evaluated by calculating the expected utility for 
each combination of all possible discretized future states and possible decision opportunities. 
However, in practice this is not computationally feasible, since the total number of the possible 
combinations increases exponentially as a function of the number n . The LSM circumvents 
this by employing the least squares method. The idea behind the LSM is that any regular func-
tion can be represented by a linear combination of an appropriate set of basis functions; there-
fore, the CVF is approximated as such, for details see Longstaff & Schwartz (2001). In the con-
text of American option pricing, this means that if the price of a stock follows a first order 
Markov sequence, the price of its American option is a function only of the current stock price. 
Consequently the CVF is approximated as a superposition of basis functions whose argument is 
only the current stock price. The way on how this idea is implemented in the optimization is ex-
plained along with the extended version of the LSM (called extended LSM) in the following. 

In Anders & Nishijima (2011), it is demonstrated that the idea behind the LSM can be applied 
for the case where the underlying random sequence follows an inhomogeneous higher-order 
Markov sequence. Therein, two extensions are made: (1) the assumptions on the underlying 
random sequence is relaxed from stationary first-order Markov sequence to non-stationary high-
er-order Markov sequence, and (2) the SVF is evaluated by MCS. Note that in many engineer-
ing applications the SVF cannot be evaluated analytically, unlike the case when executing 
American options. Moreover, the MCS in the second extension is computationally expensive 
and the computational effort increases proportional to n . In the following, the steps of the ex-
tended LSM are presented: 

 
Step 1: A set of b  independent realizations (paths) of the random sequence tY  is generated 
by MCS according to the Markov transition density 1( | )t t tf y y , 0,1,..., 1t n   with the initial 
condition 0 0Y y , where 0 1( , ,..., )t ty y y y . These paths are denoted by 0 1( , ,..., )i i i i

ny y y y ,
1, 2,...,i b , where 0 0

i y y  for all paths, see Figure 1 (a). 
 

Step 2: The SVF for all realizations 0{ }i n
t ty , 1, 2,...,i b , are estimated by additional MCS. 

 
Step 3: Starting at the time horizon n  as illustrated in Figure 1 (a), for each path i  the value 
of the MEU 1(( , ))n n nq y Y  is identified by equating ( ) ( )i i

n n n nq hy y according to Equation 3. 
 

Step 4: Moving to time 1n   the CVF is approximated. This begins by relating each MEU 
( )i

n nq y  to 1
i
ny , to obtain the dataset 1( , ( ))i i

n n nqy y , 1, 2,...,i b , see the dots in Figure 1 (b). 
This dataset is utilized to approximate the CVF 1 -1( )n nc  y  with the least squares method. The 



approximated CVF is illustrated by the curve in Figure 1 (b). See Nishijima & Anders (2012) 
for details. The approximated CVF is denoted by 1 1ˆ ( )n nc  y . 
 
Step 5: Having obtained 1 1ˆ ( )n nc  y  for time 1t n  , the realizations of 1 2 1(( , ))n n nq   y Y , i.e. 

1 1( )i
n nq  y , 1, 2,...,i b , are determined as follows:  
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The procedure is repeated backwards in time until 1t  , hence 1 1( )iq y  is obtained for all paths.  
 
Step 6: At 0t   the estimate 0 0 0ˆ ˆ ( )c c y  is defined as the average of the realizations 1 1( )iq y , 

1, 2,...,i b . Finally 0 0( )q y  is obtained as the maximum of 0 0ˆ ( )c y  and 0 0( )h y . The optimal 
decision is the one that corresponds to the maximum. 
 

 
Figure 1. Illustration of (a) three paths of a underlying random sequence with corresponding values 

( )i
n nq y  ( 1, 2,3)i   at time n  and (b) the estimation of the CVF using the sets 1( , ( ))i i

n n nqy y . 

3.2 Enhancement of the extended LSM  

As seen in Section 3.1, additional MCS are required in Step 2 to estimate the SVF in the ex-
tended LSM. The enhanced LSM (eLSM) circumvents this by applying the least squares method 
for the estimation of the SVF. The general idea is explained in the following.  

Analogous to Equation 5 the SVF ,eLSM ( )t th y  of the eLSM is defined as maximum of the 
conditional expected utilities ( )

,eLSM ( , )j
t t tl a y  with respect to the terminal decisions ( ) ( )j s

t ta A . 
Here, the functions ( )

,eLSM ( , )j
t t tl a y  are estimated with the least squares method using the reali-

zations 1{ }i b
t iy , similar to the estimation of the CVF described in Section 3.1; i.e. by linear 

combination of basis functions , 1{ ( )}K
t k kL   with unknown coefficients ( )

,
j

t kr   

                   
( ) ( )

,eLSM , ,1
( , ) ( ) .

Kj j
t t t t k t t kk

l a L r


 y y  (9) 

Therein the least squares method is utilized to estimate the coefficients ( ) ( ) ( ) ( )
,1 ,2 ,( , ,..., )j j j j T

t t t t Kr r rr  
by minimizing the sum of the squared distances between the observed realizations of the de-
pendent variable ( )

,eLSM ( , )j
t t tl a y  in the dataset and their fitted values; in the matrix form this is 

expressed by 

                     
( ) ( ) 2

2arg min || ||j j
t t t rr u L r  (10) 

where 2|| ||  denotes the Euclidian norm, tL  is a b K  matrix consisting of values of basis 
functions , 1{ ( )}K

t k kL   which are functions of realizations of ty  and ( )j
tu  the 1b  vector of 

observed future utilities ( )( , )i j
t tu az , 1, 2,...,i b , given the realization iz  of the hazard index 

related to the path i
ny  and decision ( )j

ta  is made at time t . Note that ( )( , )i j
t tu az  is a realiza-

tion of ( )
,eLSM ( , )j i

t t tl a y . Furthermore, to avoid a bias introduced by the least squares estimation 
within the determination of the MEU, Equation 8 is changed to: 
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where * *( , )i
t tu az  is the observed future utility of path i  for the optimal terminal decision *

ta .  



4 EXAMPLE 

The aim of this section is to demonstrate how the eLSM can be applied to an engineering deci-
sion problem and to compare its performance to that of the extended LSM. For this purpose, a 
decision situation of the evacuation of people in the face of an avalanche event is considered.  

4.1 Problem setting 

Consider a village located nearby a mountain slope having a critical angle for snow avalanches. 
Given prevailing winter conditions and critical snow heights, a decision has to be made whether 
to evacuate people from the village. Assume that the occurrence of a severe avalanche, causing 
significant damages to the village, depends only on the additional snow height ;tS  i.e. tS  is 
the hazard index. Further, if tS  exceeds the threshold s ( 800 [ ])mm  a severe avalanche oc-
curs. Weather forecast by a meteorological agency predicts that snowfall can occur within the 
next hours, which increases the likelihood of the occurrence of the avalanche. However, the du-
ration and the intensity of the snowfall are uncertain. New information becomes available every 
8 hours from the meteorological agency; i.e. the time interval between the subsequent decision 
phases is set to 8 hours ( 8dt  ). At each decision phase a decision is made according to infor-
mation available. Three decision alternatives are assumed; i.e. to evacuate the people (1)a , not 
to evacuate (2)a , and to wait ( )ca . It is assumed that the evacuation takes 16 hours to complete. 

4.2 Consequence model 

The consequences are postulated as follows, see also Table 1: The consequence is equal to 
1EvC   in two cases: (1) when the evacuation has been initiated but the avalanche does not oc-

cur, and (2) when the evacuation is completed before the avalanche occurs. A consequence of 
10DC   is incurred if the avalanche occurs and the people are not evacuated or the evacuation 

was initiated but not completed. No consequence is incurred only in the case when no evacua-
tion is initiated and no avalanche occurs. 

 
Table 1. Conditions and associated consequences postulated in the consequence model. _______________________________________________________________________________________ 

 Additional snow height in the time period [0, ]t   ____________________________________________________________ 

People 800[ ]tS s mm   800[ ]tS s mm   _______________________________________________________________________________________ 
Not evacuated 10DC   0 
Evacuated 1EvC   1EvC   _______________________________________________________________________________________ 

4.3 Probabilistic snowfall model 

A hypothetical probabilistic snowfall model is assumed, which is adapted from a rainfall model 
developed by Hyndman & Grunwald (2000). Let tX  denote the random sequence representing 
the amount of snowfall in the time period ( , ]t dt t . Hereafter, this time period is denoted by 
( 1, ]t t  (i.e. the time unit is 8dt  ) and thus 0{ }n

t tX   for simplicity. The distribution of tX  
is a mixture comprising a discrete component concentrated at 0tx   and a continuous compo-
nent for 0tx  . The discrete component of tX  represents the non-occurrence of snowfall and 
is characterized by the Bernoulli sequence tJ , whose conditional probability function is:  

       1 2 1 1 1 2 1 2( , ) ( 1| , ) ( ( , ))t t t t t t t t t t tP J l µ            y y Y y Y y y y   (12) 

where ( , )t t tJ XY  and ( )l   denotes the logit function which is defined as 
( ) exp( ) / (1 exp( ))l      if 0   and ( ) 0l    otherwise, and  

  1 2 0 1 1 2 2 3 1 1 4 2
2

52( , ) log( ) log( )t t t t t t tµ j j x tc x c                 y y .  (13) 

The continuous component of tX  is strictly positive and characterizes the intensity of the 
snowfall. If 1tJ  , tX  is described by the continuous conditional density 1( | )t tg x y , 0x  . 

( | )tg    follows the Gamma distribution with shape parameter   and mean 1( )t t y , where 

            1 0
2

31 1 2 1 3log( ( )) log( )t t t tj x c t          y .  (14) 



Then the transition probability density function of tX  is defined as (see Figure 2):  

      1 2 1 2 0 1 2 1( | , ) (1 ( , )) ( ) ( , ) ( | )t t t t t t t t t t t t t tf x x g x          y y y y y y y   (15) 

where 0  is the Dirac delta function. The additional snow height is obtained by multiplying 
the snow intensity by the factor sF , which accounts for the density of the snow; i.e.  

                 11 10
( ) 1 1 .

s t

t

t t t s t t t tj js
S S F x S F x 
   y  (16) 

Hence, tS  (the hazard index) at time t  is characterized by the index 1tS   at time 1t   
and a stochastic process composed of a second- and a first-order Markov process (the second 
term in the rightmost equation). The values of the parameters of the model are summarized in 
Table 2. The time frame is set to three days; i.e. 9n  .  

 
Table 2. Parameters of the probabilistic snowfall model. __________________________________________________________________________________________________________ 

Parameter Value Parameter Value ___________________________________________________      _________________________________________________ 

1 0,j j , 0S  0,0,0  1 2 3( , , )c c cc  (0.15,0.3,0.5)  
0 1 5( , ,..., )  α  (4.5,0.26,0.1,0.5,0.05, 0.2)    1.5 
0 1 2 3( , , , )   β  (1.95, 0.2,0.25, 0.04)   sF  10 __________________________________________________________________________________________________________ 

 

 
Figure 2. Illustration of 1 2( | , )t ttf x  y y . 

4.4 Solution with the eLSM 

Here, the MEU in Equation 3 is defined by the expected consequence; i.e. the minimum opera-
tor is used and the inequality sign of Equation 8 is turned. The steps in Section 3.1 are execut-
ed with the extended LSM and the eLSM to obtain the optimal decision.  

 
Step 1: By MCS, generate b  independent realizations of 1{ }n

t tY  and 0 1( , ,..., )i i i i
nS S SS , 

1, 2,..., ,i b  where ( )i i i
t t tS S y  and ( , )i i i

t t tj xy . The realizations 1 2, ,...,i i i
ny y y  are simulated 

according to the probability density functions in Equations 12 and 15; the paths are denoted by 
1 0( , ,..., )i i i i

ny y y y , where 1 1
i
 y y , 0 0

i y y  and 1,2,...,i b . 
 

Step 2: For each i
ty  the value 1( , )i i i

t t t th h  y y  of the SVF is estimated. At time 9n   the 
consequence related to each realization and decision is assumed to be known; i.e. either i

ns  ex-
ceeds the threshold s  or not, thus ,MC ,eLSM

i i
n nh h  for all i . Further, for 1,2,..., 1t n    

(1) with the extended LSM: Simulation of additional M  paths , , ,
1 1( ,..., , ,..., )i m i i i m i m

n t t n y y y y y , 
1, 2,...,m M , for which the observed consequences ( )( , )m j

t tu as , 1,2j  , are determined. 
Here ms  is the realization of the additional snow height related to the path realization ,i m

ny . 
Define ( ) ( )

,MC 1 1
ˆ ( , , ) ( , ) /

Mj i i m j
t t t t t tm

l a u a M 
y y s , then 

             
(1) (2)

,MC ,MC 1 ,MC 1
ˆ ˆ ˆmin{ ( , , ), ( , , )}i i i i i
t t t t t t t t th l a l a  y y y y   (17) 

(2) with the eLSM as explained in Section 3.2: Define 

           
(1) (2)

,eLSM ,eLSM 1 ,eLSM 1
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where ( ) ( )
,eLSM 1

ˆ ( , , )j i i i j
t t t t t tl a   y y L r , 1,2j  . The vector ( )j

tr  of the coefficients related to ( )j
ta  

is computed by Equation 10. i
tL  denotes the thi  row of matrix tL ; tL  consists of values of 

basis functions with arguments ty , 1ty  and tS ; e.g. for 1st  order linear basis functions 
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For 0t   set ( ) ( ) ( ) ( )
0 0,MC 0 0 1 0,eLSM 0 0 1 0 01
ˆ ˆ ˆ( , , ) ( , , ) ( , ) /

bj j j i j

i
l l a l a u a b  

  y y y y s , 1,2j  .  
 
Step 3: Starting at time n , for both LSM approaches, the values of ,MC ,MC 1( , )i i i

n n n nq q  y y  and 
,eLSM

i
nq  are set equal to ,MC

i
nh  and ,eLSM

i
nh  respectively, for all i . 

 
Step 4: Moving to time 1n  the values of 1 1 2( , )n n nc   y y  are similarly estimated for both 
approaches using the least squares method as described in Section 3.1. 

 
Step 5: Then, for each path i  determine the values of 1 1 2( , )n n nq   y y : 
(1) for the extended LSM with the estimate ,MC

ˆi
th  obtained by means of MCS:  

                   

1,MC 1,MC 1,MC
1,MC

,MC

ˆ ˆ ˆ,  if 
,    otherwise
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n

h h cq
q
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(2) for eLSM with the estimate ,eLSM
ˆi
th  obtained by means of the least squares method:  
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1 1,eLSM 1,eLSM

1,eLSM
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where *,
1

i
nu   denotes the observed future consequence in path i  for the optimal terminal deci-

sion *
1na  . As in Section 3.1, moving another time step back the same procedure is repeated. 

This is continued until time 1t   and for each path 1,MC
iq  and 1,eLSM

iq  are determined. 
 
Step 6: Execute Step 6 of Section 3.1. 

4.5 Results 

To evaluate the performance of the eLSM compared to the extended LSM, both methods are 
applied to solve the decision problem of the example. The optimal decision at the initial time is 
obtained by estimating the expected consequences for the three decisions alternatives. Various 
types and degrees of basis functions are implemented; e.g. linear, Legendre and Chebyshev pol-
ynomials. Applying these basis functions, it is found that the results do not significantly differ. 
Thus, only the results obtained with linear basis functions are presented. 

Figure 3 illustrates the findings for different parameter settings of the LSM. Therein, Figure 3 
(a) shows for increasing number b  of paths, 2 2 3 3 4 4 5{10 ,3 10 ,10 ,3 10 ,10 ,3 10 ,10 }b     , the 
convergence of the consequence estimates for the three decisions. For each b  the estimates are 
calculated by the average of 100 computations of the indicated method. To be able to compare 
the results 100 different yet fixed sets of random numbers are used to generate the paths in Step 
1. Hence, the estimates for the terminal decisions are identical for all methods; they are present-
ed by solid lines with circles. The following results are obtained for 510b  : (1)

0̂ 1.0192l  , 
(2)

0̂ 0.8969l   and e.g. 0,eLSMˆ 0.8055c   with the eLSM. The optimal decision is ( )
0
ca  which is 

independent of the type of LSM; see Figure 3 (a). Further, the figure shows that the estimate 0ĉ  
obtained by the extended LSM with 10M   is biased. Therefore it is not considered in Figure 
3 (b) which illustrates the convergence rate in terms of the coefficient of variation (COV) of the 
estimates 0ĉ  as a function of the computational time [sec]. The figure shows a significant im-
provement with the eLSM in terms of computational time; a reduction by the factor of 100. 

An application of the proposed approach in practice is presented in Figure 4. Figure 4 (a) il-
lustrates a hypothetical time series of the additional snow height 6

0{ }t tS   where the threshold 
s  is exceeded within the time interval (3,4] . Applying the eLSM subsequently for each time 
step it is found that the optimal decision at time 0t   is ( )ca  whereas at time 1t   it is found 
to be (1)a  given that the snow height at time 1t   in the figure is realized.  



 
Figure 3. Comparison of the results of the extended LSM (with various numbers M of additional MCS) 
and eLSM. (a) Convergence of the average expected consequences with increasing total number of paths. 

(b) Illustration of the decreasing COV of 0ĉ  related to the increasing calculation time for one LSM 
computation as the number b  of paths increases. 

 

 
Figure 4. Illustration of (a) a hypothetical time series of tS  and (b) the corresponding time series of the 

estimated expected consequence of the three decision alternatives calculated with the eLSM and 510b  . 

5 CONCLUSION 

The present paper proposes an enhancement of the extended LSM in the context of real-time 
operational decision problems for evacuation in the face of emerging natural hazards. The pro-
posed approach (eLSM) is applied to an example and it is found that the eLSM significantly im-
proves the computational efficiency; by the factor up to 100. 
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