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Catastrophic Failure of Polymer Melts During Extension

Henrik Koblitz Rasmussen
Department of Mechanical Engineering

Technical University of Denmark. DK-2800 Kgs. Lyngby, Denmark

Abstract

Numerical flow modeling has been applied to study the break of monodisperse polymer melts

during extension. These continuum mechanical based computations are within the ideas of the

microstructural ’interchain pressure’ theory. Calculated breaks, a result of small initial sample

imperfections, agree with experimental observations.

1 Introduction

It is well known that rupture phenomena exist in polymer melts. They appear as failures in extended
polymer melts [1, 2, 3], development of holes in thin films [4, 5], sharkskin etc.. Most of these
observations are unresolved and they do not occur in common liquids [5, 6]. The ruptures have been
observed to be of either brittle or a flowing nature. The latter one is commonly referred to as a
Considere type of failure in extension, where a necking occurs on the extended sample, eventually
evolving into a break. The brittle type of failure is experimentally observed as a failure evolving
faster than the sampling rate of the equipment [1].

The first effort to obtain an understanding of rupture in polymer liquids and melts dates back to
Ziabicki and Takserman-Krozer in 1964 [7] and Chang and Lodge in 1971 [8]. The quoted papers in
the section above, and this paper as well, all refer to experimental investigations based on monodis-
perse polymer melts. These studies on a theoretical ideal material were initiated by Vinogradov and
coworkers in the seventies [1].

The first effort to obtain an exact understanding of failures in monodisperse polymer melts,
explaining them as of cohesive nature, was published by Joshi and Denn in 2003 [9]. Currently it
seems to be the only existing quantitative theory for a cohesive type of failure in polymer melts,
although other failure mechanisms have been suggested [2] more recently. These studies indicate the
need for an additional explanation for the rupture mechanism upon the fluid dynamics of polymer
melts, where the flow should depend solely on the non-equilibrium configurations of the molecules.
Actually the theory by Joshi and Denn [9, 10] where challenged the same year as it appeared by
Bach et al. [11]. They extended monodisperse polystyrenes experimentally, using the filament stretch
rheometer [12] without observing any breaks, where the theory by Joshi and Denn [9, 10] predicts
the existence of cohesive failures during this extension. To establish a quantitative explanation of the
failure during extension I will follow the ideas of Rasmussen and Yu [6]. They successfully predicted
the delayed failure (or the lack of it) of a cylinder of fixed length, consisting of a pre-extended
monodisperse polymer melt.

There have been remarkable advances in the understanding of the fluid dynamics of polymer melts
in the recent years [13, 14, 15, 16, 17, 18], as new experimental techniques have appeared [12, 19].
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The purpose of this study is twofold. First of all, to study whether the failure in extension can be
explained within the recent theoretical insight in the dynamics of polymers, in order to obtain a
quantitative agreement with experimental observations. Secondarily to discuss its consequences for
the suggested cohesive type of failure mechanisms. As in most experimental studies [1, 2, 3, 11, 20, 21]
the focus will be on the extension and potential breakup of monodisperse polymer melts, applying
narrow molecular weight distributed polystyrene (PS), polyisoprene (PI) and styrenebutadiene (SBR)
melts.

2 Polymer melt dynamics

The recent constitutive equation by Wagner et al. [14, 22] based on the ’interchain pressure’ concept
[13] is applied here. This approach accurately predicts the startup and steady shear [22] as well as
extensional flow [14], potentially followed by stress relaxation [23, 6], of monodisperse polymer melts.
This has currently been documented up to about 160 entanglements in shear [22] and at least 30
in extensional flow [14]. It has the ability to predict large strain reversed [24] including oscillatory
[25] flow as well. Although an immense variety of constitutive concepts have been published in the
past [26, 27, 28, 29], only models based on the ’interchain pressure’ concept are capable of predicting
this dynamic of monodisperse melts [14, 16]. Note that the number of entanglements are defined
as Z = Mw/Me, where Mw and Me are the weight average and the entanglement molecular weight,
respectively. The components of the stress tensor (σij) are given as

σij =

t
∫
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and f(t′, t′) = 1. f is referred to as the molecular stress function. The angular brackets denote
an average over a unit sphere 〈. . . 〉 = 1/(4π)

∫
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. . . du. u is a unit vector. The components of

the displacement gradient tensor, E, are given by Eij(x, t, t
′) = ∂xi/∂xj

′, i = 1, 2, 3 and j = 1, 2, 3.
(x′

1, x
′
2, x

′
3) are the Cartesian coordinates of a given particle in the stress free reference state (time

t′), displaced to coordinates (x1, x2, x3) in the current state (time t). τR is the Rouse time and
M(t − t′) the memory function containing the linear dynamics of the polymer. The Rouse time
uniquely defines the nonlinear dynamic of the melt, although the actual value may depend somewhat
on the used definition. The used definition is based on experimental evidence, as discussed in the
following section 4 .

The memory function by Baumgaertel, Schausberger and Winter (BSW) [30] is used to describe
the linear dynamics. Omitting the glassy part, the memory function

M(t− t′) =

∫ λmax

0

neG
0
N

(

λ

λmax

)ne e(t−t′)/λ

λ2
dλ. (3)

λmax is the maximal relaxation time in an elsewhere continuous distribution and G0
N the plateau

modulus. ne has a unique value for each type of polymer. The BSW model is the currently most
accurate method to fit small amplitude oscillatory data.

3 Modeling

The published breakup studies were performed with a variety of extensional equipment. Basically,
these were either the extension of a cylindrical shaped sample from the ends of the sample [1, 11]



with a fixture moving in the axial (e.g. extensional) direction, or the use of a dual-wind up system
[2, 3, 20, 21]. Both cylindrical [2, 20] and rectangular strips [3] were applied in the dual-wind system.
In these systems, the extension was performed by rolling samples upon two (fixed) counter rotating
systems, rotating with the same rate. In any extension, it is important to distinguish between the
real strain (ǫ) and the set strain (ǫN ) on the equipment. The real kinematic strain is defined as
ǫ(t) = ln(l(t)/l(0)), where l(t) and l(t = 0) are the axial (e.g. z) distances between two narrow
particles in the direction of the extension. Assuming constant extension rates ǫ = ǫ̇ · t or ǫN = ǫ̇N · t.

The complexity of the contact condition toward the extension fixtures is avoided in the numerical
modeling. The initial shape of the specimen is a cylinder with initial radius R and length L(t = 0).
Symmetry is applied at the ends of the samples (z = ±L/2) and at the center (z = 0). The axial
coordinates of the ends of the cylinder (z = ±L/2) are extended exponentially in time to achieve
the extension. Axis symmetry is assumed in applying axial (z) and radial (r) coordinates. The
boundary conditions on the free surfaces are no exertion of stress and pressure, and a neglectable
surface tension. The sample is stress free and at rest initially (at t = 0).

A necking on a sample would be considered an evolution of an instability in a traditional con-
tinuums mechanical framework. A classical linear instability analysis has the ability to predict if a
break does not appear due to its validity in the range of small deviation from the ideal case [31].
Unfortunately a classical instability analysis is incapable of predicting the nonlinear evolution of a
necking and particularly its potential breakup. For polymer melts and entangled solutions it may
be more precise to refer to a sensitivity to the initial conditions. Non ideal conditions will develop
in the preparation and handling of the polymer. Here the initial deviation from an ideal cylinder
is imposed on the center of the sample (z = 0), although an observed break has not been reported
to appear at any specific place on the sample [1, 2, 32]. Some theoretical studies suggest that the
necking should be positioned at the center of the sample on theoretical ideal geometries [33, 34]. The
deviation from the ideal cylinder in the initial geometry is a sinusoidal shaped suppression in the
surface with a depth of H and a width of 2W in the axial direction as illustrated in figure 1.

Computationally, the sample dynamics is evaluated relatively to the sample radius as the effect
of the surface tension (σ) is neglected. Using the surface elastic number, the elasticity relative to the
surface tension [35], a characteristic curvature of less than σ/G0

N ≈ 0.2 µm is obtained. Therefore the
absolute size of the initial deviation becomes important and will affect the dynamic of the necking,
as its curvature approaches a few micrometer.

The numerical modeling of the extension of a sample with axially moving fixture is straight-
forward. The length of the sample is specified as L(t) = L0 exp(ǫ), where L(t = 0) = L0 is the
initial length of the actual extended cylinder. It is more cumbersome to define the initial sample
length (L(t = 0)) in a dual-wind up computation. In a dual-wind up system the unsupported (e.g.
extended) part of the sample is ideally a fixed value, here defined as L0. The length of the sample in
the computations should ideally be L0 at the point where the sample break. By definition a break
is where the cross sectional area goes to zero in finite time and the strain to obtain a (potential)
break is ǫc. The cylinder is therefore extended as L(t) = L0 exp(ǫ− ǫc). In this definition the initial
length L(t = 0) = L0 exp(−ǫc) is implicitly given, as the strain of the break ǫc is unknown prior to
the start of the extension. An iteration procedure is therefore applied to obtain the corresponding
ǫc and L(t = 0) values, if the solution exists.

In the numerical modeling, the finite element method from Rasmussen [36, 37] is used, solving
the momentum balance and volume conservation equations simultaneously. It utilizes a Lagrangian
kinematic, e.g. a particle description, as in the applied constitutive equation (1) and (2). Notice
that the Currie approximation [38] is applied to all the terms represented by the angular brackets in
equation (1) and (2) in all the finite element computations. A computation of the dynamics of the
surface during an extension is shown in figure 1. A clear necking phase occurs, evolving into a break.

Very few papers [2, 20, 32] have reported the appearance of the sample dynamics leading to the



break in monodisperse melts. In these cases the surface development are of a similar character,
although the real appearances represent more complicated surface shapes. In the computations
the initial sinusoidal shaped suppression represents a simple deviation from an ideal surface, and it
continues to evolve as geometrically simple suppression in the surface.

4 Breakup

A break appears when the cross sectional area goes towards zero. Computationally, it is not pos-
sible to find this limit exactly by using a finite element method (see figure 2). To define a break
computationally the same definition as in Rasmussen and Yu is applied: A break occurs if a linear
extrapolation of the (smallest) cross sectional area of the sample, A, versus the time, t, reaches zero
for a sufficiently small change in time. This may be written as the Hencky strain ǫc = ǫ where
A · dǫ/dA < δ · ǫ and δ is sufficiently small. Here a δ value of 0.01 is used, e.g. the actual break is ex-
pected to occur less than 1% later in Hencky strain units. This represents an insignificant difference
in between the theoretically real break and the calculated break.

The currently most extensive breakup study was performed by Wang and co-workers [20] on a
95 kg/mole SBR melt, using a dual-wind up system of the SER type where L0 = 12.7mm. The
critical strain of break ǫc is shown in figure 3, for a R = 1mm cylindrical shaped sample. Cylindrical
samples with an initial radius of R = 1 mm need a correction of ǫ = 0.9 · ǫN [39], resulting in
relation of ǫ̇ = 0.9 · ǫ̇N for the corresponding rates. In figure 3 the strain of break is shown as a
function of the elongational rate multiplied by the maximal relaxation time. The corresponding
computations of ǫc with the material parameters obtained by Rasmussen and Yu [6] and Lyhne et
al. [40] (table 1) are shown in figure 3 as well. I apply the same initial deviations from an ideal
cylinder (H/R = 0.015, 0.05 and W/R = 0.2) as in Rasmussen and Yu [6], where they explained
the spontaneous rupture in polymer melts. As in Rasmussen and Yu [6] only the sample height
has been changed, as the computations are considerably less sensitive to changes in the width. In
experiments, imperfections on the samples will not be exactly the same, although the break is not
very sensitive to the size of the disturbance. The computations show agreement with the observations
on the whole range of flow rates. They predict the steep descent in the stability near the Newtonian
flow area at low strain rates (λmax · ǫ̇ < 1). The break occurs at very low strain values in the area
(1 < λmax · ǫ̇ < λmax/τR ≈ 78) dominated by configurational stress. Finally, the necking is stabilized
in the strain hardening regime (78 ≈ λmax/τR < λmax · ǫ̇).

Contrary to the study on the 95 kg/mole SBR melt by Wang and Wang [20], Bach et al. (2003b)
[11] extended a 390 kg/mole PS up to strains in between 3.6 and 5 without observing any break.
Wang and Wang [20] and Bach et al. [11] measured at about the same λmax · ǫ̇ values, and the 95
kg/mole SBR melt has almost identical flow behavior as a 390 kg/mole PS [6], of course relative to
λmax. Bach et al. [11] extended a short cylindrical sample. They measured and feedback controlled
the local extension exactly at the neck of the sample, ensuring a pre-described extension at the
neck. This avoids a break, contrary to all the other published studies where the overall sample was
extended exponentially in time. An almost similar PS (of 465 kg/mole) extended by Luap et al.
[3] failed catastrophically. They extended rectangular shaped strips using a dual wind rheometer
(of the RME type). The measurement range was limited and the actual break appears at slightly
higher strain values than the reported points in figure 3. The 390 kg/mole PS [6] was reported to have
Z = 29 entanglements and the 465 kg/mole PS Z = 34 entanglements. Applying the well-established
relation λmax ∝ Z3.4 from Milner and McLeish [41] the time constants in table 1 actually indicates
a difference of 3 entanglements between the melts. In most definitions the Rouse time follows a
relation of τR/λmax ∝ 1/Z. Therefore these 3 entanglements represent an insignificant difference, as
observed experimentally [3]. The currently suggested breaking mechanisms of cohesive nature [2, 9]



are unable to predict the above behavior. The break in the PS would therefore be expected to be of
a fluid dynamic nature.

The effect of an increased number of entanglements has been illustrated in figure 3. The only
non-dimensional parameter of importance is the Rouse time, of course relative to relaxation time.
It depends solely on the number of entanglements. The 95 kg/mole SBR melt studied in Wang
and Wang [20] was reported [6] to have Z = 24 entanglements, whereas a SBR melt with Z = 98
entanglements (corresponding to the 240 kg/mole SBR melt from Wang et al. [21]) is expected to
have a Rouse time of τR = (24/98) · (1.34s/57.95s)λmax ≈ 0.48s. The increase in entanglement
number has destabilizing effect at all extensional rates. Actually, very little experimental evidence
exist of the startup and particularly the steady extensional flow behavior of monodisperse polymer
melts above Z = 34 entanglements [6]. For the sake of completeness figure 4 show the theoretically
expected and measured extensional viscosities for the 240 kg/mole SBR melt from Wang et al. (2011)
[21], showing the expected agreement.

Figure 5 contains the break of rectangular shaped 240 kg/mole SBR samples from Wang et al.
[21]. These are shown together with the first published breaking study by Vinogradov et al. [1]
(data from their figure 1). They extended ’dog-bone’ shaped PI, with a central cylinder of length
L0 = 30 mm and a radius of R = 2.5 mm, from the ends of the sample. Due to the large aspect
ratio it is assumed that the set strain is identical to the real one (e.g. ǫ = ǫN ). The original paper
from Vinogradov et al. in 1972 [42] reports a Mw = 575 expected to have Z = 119 [43], although the
time constant in table 1 indicates a Z = 105 [43]. A similar relative rouse time in the PI melt and
the SBR melt with Z = 98 entanglements would therefore be expected. The calculated breaks for
the PI melt are shown in figure 5. The imposed disturbances correspond (non-dimensionally) to the
ones in figure 3. The SBR data show a large scattering, whereas the data from Vinogradov et al. [1]
show agreement with the calculated break, within the scattering of the measurements.

Of course information of the actual initial conditions of the sample is needed in order to get a
computational agreement with each of the individually observed breaks. This allows modeling of the
surface dynamics within the experimental accuracy as shown in Bach et al. [44].

Further the intrinsic nature of the applied constitutive equation is not expected to be unique. It
is able to predict the dynamics of virtually all published rheometric data for monodisperse melts, but
other models are most likely capable of showing a similar agreement and a similar dynamic behavior.

5 Conclusion

The breakup of cylindrical shaped monodisperse polymer melts during extension was modeled, eval-
uating the published breakup studies. To summarize, the break (and the lack of it) of monodiserse
polymer melts can be explained within the framework of its fluid mechanics. This is currently the
only quantitative theory able to predict the break of (monodisperse) polymers, and there seems to
be no need for any additional physical explanation.
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Table 1: Polymer melt parameters. The parameters (λmax and G0
N) in equation 3 for the 240 kg/mole

SBR melt are obtained by fitting the data from Wang et al. [21]. The linear dynamics for the 575
kg/mole PI [42], shifted to 25◦C, agrees with the data for a 483 kg/mole PI [43], at 23◦C. The
corresponding parameters in equation 3 for this PI are from Rasmussen et al. [44]

Polymer SBR PS PS SBR PI

Mw [kg/mole] 95 [2] 390 [11] 465 [3] 240 [21] 575 [42]

Mw/Me [ ] 24 [2] 29 [11] 35 [3] 98 [21] 119 [43]

Temp. [◦C ] 23 150 150 25 25

λmax [s] 57.95 [40] 477 [11] 680 [3] 85 75.6 [1, 44]

G0
N [kPa] 652 [40] 270 [11] 870 470 [44]

ne [ ] 0.261 [40] 0.16 [11] 0.261 [40] 0.25 [43]

τR [s] 1.34 [6] 11 [14] 0.48



6 Figure Captions

Figure 1: The solid lines are the dynamic development of the boundary contours in the finite
element modeling (using the parameters for the 95 kg/mole SBR melt in table 1 and a ǫ̇ = 0.1s−1)
where L0/R = 12.7. The dashed lines are symmetry lines. An initial perturbation of the cylindrical
sample of H/R = 0.05 and a width of W/R = 0.2 is used in this finite element computation.

Figure 2: The smallest radius, r(r(0) = R − H, z = 0)/R, as as function of the Hencky strain, ǫ,
obtained from the finite element computation in figure 1.

Figure 3: The strain of break ǫc as a function of the non-dimensional elongational rate ǫ̇ ·λmax. The
solid and dashed lines are calculated break for a cylindrical sample in a dual-wind up system with
L0/R = 12.7, using the parameters in table 1 for the 95 kg/mole SBR melt (solid lines) and the 240
kg/mole SBR (dashed line). Initial perturbations of the cylindrical sample of depth H/R = 0.05,
H/R = 0.015 and H/R = 0.005 (from the bottom to the top solid curve) and a fixed width of
W/R = 0.2 are used. The dashed curve is at a H/R = 0.05. The measured break of the 95 kg/mole
SBR melt from Wang and Wang [20] (•) and the 465 kg/mole PS from Luap et al. [3] (◦).

Figure 4: The extension visocity, η̄+ = (σ11 − σ33)/ǫ̇, as a function of the time, t. The bullets (•),
interconnected with dotted lines as a guide to the eye, are measurements for the 240 kg/mole SBR
melt from figure 2 and 12 in Wang et al. [21]. The extension rates ǫ̇ are 15s−1, 10s−1, 6s−1, 3s−1,
1.0s−1, 0.3s−1 and 0.1s−1, from the left to the right curve. The solid lines are the corresponding
theoretical prediction from the equations (1) and (2). The dashed line is the linear viscoelastic
envelope. The used parameters are in table 1.

Figure 5: The strain of break ǫc as a function of the non-dimensional elongational rate ǫ̇ ·λmax. The
solid lines are calculated break for a cylindrical sample of length L0/R = 12, extended with fixtures
moving in the axial direction, using the parameters for the 240 kg/mole SBR melt in table 1. Initial
perturbations of the cylindrical sample of depth H/R = 0.05, H/R = 0.015 and H/R = 0.005 (from
the bottom to the top curve) and a fixed width of W/R = 0.2 are used. The measured break of the
PI from Vinogradov et al. [1] (•) and the 240 kg/mole SBR melt from Wang et al. [21] (◦). The
dashed line is the same as in figure 3.
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