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We investigate cooperative fluorescence in a dilute cloud of strongly driven two-level emitters. Starting from
the Heisenberg equations of motion, we compute the first-order scattering corrections to the saturation of the
excited-state population and to the resonance-fluorescence spectrum, which both require going beyond the
state-of-the-art linear-optics approach to describe collective phenomena. A dipole blockade is observed due to
long-range dipole-dipole coupling that vanishes at stronger driving fields. Furthermore, we compute the inelastic
component of the light scattered by a cloud of many atoms and find that the Mollow triplet is affected by
cooperativity. In a lobe around the forward direction, the inelastic Mollow triplet develops a spectral asymmetry,
observable under experimental conditions.

DOI: 10.1103/PhysRevA.87.061801 PACS number(s): 42.50.Nn, 03.65.Nk, 42.25.Fx, 42.50.Ct

The interaction between photons and matter shows great
promises in quantum information processing [1,2], where
atomic ensembles are useful, e.g., for quantum memories [3]
and for slowing down light [4]. Besides atomic ensembles,
many other systems which are deemed auspicious for quantum
computing all rely on an interaction between more than one
quantum emitter [5]. When strongly driven, a single two-
level emitter exhibits a spectral triplet, the so-called Mollow
triplet [6], which, e.g., has been used for the generation of
heralded single photons and entangled photons from solid-
state quantum dots [7]. In collections of many emitters,
cooperative phenomena induced by an interatomic dipole-
dipole interaction have been predicted for weak or no driving,
leading to cooperative decay rates [8,9] and modified Lamb
shifts [10,11] that have been observed experimentally [12–14].
Recently, cooperative phenomena are also being used as
resources for coherently enhancing interactions in solid-state
quantum devices [15–19], where even the ultrastrong-coupling
regime has been reached [20].

State-of-the-art quantum-electrodynamics theory of driven
atomic clouds typically considers the decay of initially inverted
systems [8,12], single-photon excitations in the many-atom
case [9,21–27], few strongly driven atoms [28–30], or the
interference of light emitted by strongly driven noninteracting
atoms [31]. These theories, however, cannot describe strongly
driven many-body systems which are interacting, such as those
needed for quantum simulations [32].

In this Rapid Communication, we report how interatomic
interactions influence the saturation of the excited-state popu-
lation and the cooperative fluorescence spectrum of a strongly
driven cloud of two-level atoms. Surprisingly, our results show
that even when the dipole-dipole interaction between any pair
of atoms is weak, such as in dilute clouds, the collective
interatomic coupling is important for the nonlinear response.

Model. We consider N identical two-level atoms, where
the mth atom at position Rm has a ground state |gm〉 and

*Present address: Department of Theoretical Physics, University of
Geneva, CH-1211 Geneva, Switzerland; johan.ott@unige.ch
†asger@mailaps.org

an excited state |em〉, separated by the transition energy
h̄ωa . The atoms are driven by a plane-wave laser with
wave vector k0, frequency ω0, and amplitude E0 [see
Fig. 1(a)]. The full Hamiltonian has the form H = HA +
HF + HI. Here, HA is the free atomic Hamiltonian HA =∑

m h̄ωaŜ
z
m(t), where Ŝz

m(t) = 1
2 (|em〉〈em| − |gm〉〈gm|) is the

population-inversion operator of the mth atom. The free-
field Hamiltonian is HF = ∑

λ h̄ωλâ
†
λ(t)âλ(t), where âλ(t) is

the bosonic annihilation operator of the photonic mode λ

with frequency ωλ. The electric-dipole Hamiltonian HI =
−∑

m μ̂m(t) · Ê(Rm,t) describes the light-matter interaction.
Here μ̂m(t) = μ∗

mŜ+
m (t)eiω0t−ik0·Rm + H.c. is the dipole opera-

tor, Ŝ+
m (t) = |em〉〈gm| exp(ik0 · Rm − iω0t) the raising opera-

tor of the mth atom rotating in the frame of the incident field,
Ŝ−

m (t) = [Ŝ+
m (t)]† the corresponding lowering operator, and

μm = 〈gm|μ̂m|em〉 is the dipole moment. Finally, Ê(Rm,t) =
i
∑

λ gλeλe
ikλ·Rm âλ(t) + H.c. is the electric-field operator with

eλ the polarization vector of mode λ and gλ =
√

h̄ωλ

2ε0
where ε0

is the vacuum permittivity.
Dynamics. We work in the Heisenberg picture and after the

Born-Markov approximation arrive at the equations of motion
for the operators of the mth atom [33,34],

d

dt
Ŝ+

m = −(�/2 + i�)Ŝ+
m + i�RŜz

m

+ 2i
∑
n�=m

G∗
mnŜ

+
n Ŝz

m + F̂+
m , (1a)

d

dt
Ŝz

m = −�

(
Ŝz

m + 1

2

)
+ i�R

2
(Ŝ+

m − Ŝ−
m )

+ i
∑
n�=m

(GmnŜ
+
mŜ−

n − H.c.) + F̂ z
m. (1b)

Here, �R = |μm · E0|/h̄ is the Rabi frequency, � =
4μ2ω3

a/(3h̄c3) the spontaneous-decay rate, μ = |μm| is the
magnitude of the dipole moment that is equal for all atoms, c

the speed of light in vacuum, � = ω0 − ωa − η the detuning
between the driving field and the atomic resonance, and η

the Lamb shift. Equations (1) are derived in the rotating-wave
approximation (RWA) for the atomic operators. However, the
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FIG. 1. (Color online) (a) Sketch of the setting. A homogeneous
laser field of frequency ω0 is incident in the direction of wave vector
k0 onto a spherical Gaussian-distributed cloud of size σr containing
N identical atoms. Atoms at positions Rm and Rn are coupled via
the radiation field through Gmn. (b) Forward-directed elastic part of
the fluorescence spectrum divided by N2, calculated using Eq. (5)
with N = 3 (blue dashed-dotted line), N = 30 (red solid line), and
N = 30.000 (green dashed line), and fixed b0 = 0.1 pumped with
�/� = −2.5 and �R/� = 5. The emitted light is detected in the far
field in the direction of the wave vector of the scattered light kd at an
angle θd.

RWA is imposed only at the very end of the derivation such
that the counter-rotating terms in the interaction Hamiltonian
are maintained in the calculations [23,34–36] (see also our
Supplemental Material [33]). This makes a useful connection
with classical optics, since then the dipole-dipole coupling
terms Gmn are related to the classical Green’s tensor G [37] by

Gmn = −μ0ω
2
a

h̄
μ∗

m · G(Rmn,ωa) · μne
−ik0·Rmn

= �

2

eikaRmn

kaRmn

e−ik0·Rmn , (2)

where Rmn = Rm − Rn, Rmn = |Rmn|, ka = ωa/c, and we
use the scalar model for G that is justified for dipole-dipole
coupling in the case of dilute clouds [11]. Finally, the terms
F̂+ and F̂ z in Eqs. (1) are the Langevin operators, which are
given by normal-ordered combinations of products of atomic
and field operators [33,38].

Equations (1) describe the quantum nonlinear dynamics of
a cloud of atoms driven by a plane wave of light. For a single
atom, these equations reduce to the well-known optical Bloch-
Langevin equations [38]. Another simple limit of Eqs. (1)
that, however, does not suffice for the present work is the
linear-optics limit. The linear dynamics of Refs. [9,21–27] is
obtained from Eqs. (1) by the usual approximation Ŝ(z)

m = − 1
2 ,

valid for weak driving (�R/� � 1) that maintains the atoms
mainly in their ground states. Furthermore, by letting �R = 0,
Eqs. (1) also describe the dynamics of initially inverted systems
leading to superfluorescence, as investigated in Refs. [8,12].
Here we focus on nonlinear quantum cooperative effects due
to strong driving.

Approximate solutions and validity for dilute clouds.
Solving Eqs. (1) for the expectation values scales as 4N so
that exact numerical computations for clouds having, say,
N � 100, are beyond reach. In the following we focus
on dilute clouds and aim for accurate rather than exact
dynamics. This allows the simplifying approximation that
the dipole-dipole coupling between any two atoms is small,
i.e., Gmn is treated as a perturbation to first order. This

approximation greatly simplifies the problem and allows for
analytic expressions for the expectation values of single-time
operators. Furthermore, for two-time correlations the Langevin
terms contribute negligibly and two-time dynamics can thus
be reduced by the quantum-regression theorem to single-time
dynamics. Some details of the method and calculations can
be found in Ref. [33]. The approximate solutions are valid
for small optical thickness, b0 = 3N/(k0σr)2 � 1. This is
a more severe restriction than on linear theories [9,21–27]
that are valid for a small off-resonance optical thickness
b� = b0/(1 + 4�2/�2) � 1 [26,27]. This difference in the
range of validity can be understood by the fact that, contrary
to the linear theories, our approach takes all frequencies
into account and thus there will always be some part of the
spectrum which is in resonance with the atomic transition
energy.

Excited-state population in the steady state. Let us first
calculate the excited-state population in the steady state
of the mth atom, nm = 〈Ŝz

m〉 + 1/2. Let nm = n(0)
m + n(1)

m ,
where n(0)

m = s/[2(1 + s)] is the usual single-atom excited-
state population, expressed in terms of the saturation
parameter s = �2

R/[2(�2/4 + �2)], and n(1)
m is the first-order

correction due to the dipole-dipole interactions. Solving
Eqs. (1) as a matrix equation to first order in Gmn, we arrive
at [33]

nm = s

2(1 + s)
− (Im {Gm} �/2 + Re {Gm} �) s

(�2/4 + �2)(1 + s)3
, (3)

where Gm = ∑
n�=m Gmn. There is an interesting connection

between Gm and the cooperative decay rate �N and Lamb
shift ηN : By averaging over atomic positions (denoted by
an overbar) and considering a spherical Gaussian-distributed
atomic cloud of root-mean-square size σr (corresponding
to atoms in a harmonic potential), we obtain for k0σr � 1
that Im {Gm} = �(N − 1)/[2(2k0σr)2] and Re {Gm} = �(N −
1)/[2

√
π (2k0σr)3] [33]. These are, respectively, �N and ηN ,

e.g., found from single-photon scattering [9,24] and ηN also
from the scattering correction to the expectation value of the
Hamiltonian [10,11].

For k0σr � 1, i.e., large clouds, �N/ηN = √
πk0σr such

that ηN is negligible and we obtain as a main result that
the ensemble-averaged mean excited-state population, n =
1
N

∑
m nm = n(0) + n(1), is given by

n ≈ s

2(1 + s)
− b�s

12(1 + s)3
, (4)

expressed in terms of the off-resonant optical thickness
b�. Equation (4) shows that for a Gaussian cloud n(1) is
always negative, in other words, the dipole-dipole interactions
decrease the steady-state population. This can be interpreted
as a cooperative dipole blockade, implying that the presence
of other atoms in the cloud leads to a less efficient excitation
of the emitters. The effect is illustrated in Fig. 2, showing
that the steady-state excited-state population decreases with
increasing optical thicknesses. The nonlinear monotonous in-
crease of the population with s illustrates that stronger driving
makes dipole-dipole interactions less important relative to the
interaction with the driving field, and for �R � � we recover
the steady-state population of noninteracting atoms. This
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FIG. 2. Normalized population based on Eq. (4) as a function
of saturation parameter s for various values of the off-resonance
optical thicknesses b�. The circles correspond to the small saturation
parameters used in the inset. Inset: Comparison of n/n(0) based on
Eq. (4) for weak driving (s = 2 × 10−12) with the linearized single-
photon multiple-scattering theory of Ref. [27], as a function of off-
resonant optical thickness b�.

agrees with and generalizes theoretical observations for two
and three atoms [28,30].

To further corroborate our results, we show in the inset of
Fig. 2 that Eq. (4) agrees with existing single-photon multiple-
scattering theory [27] in the limit of weak scattering. In more
detail, to lowest order in s and b0, Eq. (4) becomes n/n(0) =
1 − b�

6 , in agreement with Ref. [27]. Thus, Eq. (4) unifies
both the known dipole-blockade effect for weak driving and
our inclusion of saturation effects of the dipole blockade for
strong driving.

It is interesting to note that, while the large Gaussian
cloud considered here always results in a blockade effect,
i.e., n(1) < 0, an enhanced population due to cooperative
coupling could be obtained by either of two ways: (i) If ηN�

dominates over �N�/2, a transition from negative to positive
first-order correction n(1) is obtained by varying the detuning;
(ii) if �N�/2 is negative. Case (i) is, e.g., obtained for a
Gaussian cloud when |�|/√π� > k0σ , which for a cloud
size of k0σr ∼ 50 would need a detuning of �/� ∼ −100.
Case (ii) could be obtained by controlling the atomic positions
(e.g., with an optical lattice) since the real and imaginary parts
of Gmn both oscillate around zero as a function of interatomic
distance and thus careful positioning could give a negative
�N = Im {Gm}.

Fluorescence spectrum. Next, as our main investigation, we
study the effect of the dipole-dipole interactions on the steady-
state resonance-fluorescence spectrum of the atomic cloud,
given by the real part of the one-sided Fourier transformed first-
order coherence in the long-time limit [39,40]. By assuming
that nonscattered light is filtered out, we can write the far-field
spectrum at detection angle θd as

S(θd,ω)/S0

=
∑
m,n

Re

{
lim
t→∞

∫ ∞

0
dτ 〈Ŝ+

m (t)Ŝ−
n (t + τ )〉eiδωτ+iδk·Rmn

}
,

(5)

with S0 = k4
0μ

2/(12π2ε2
0r

2), where r is the distance from
the center of the cloud to the detector, δω = ω − ω0, δk =
kd − k0, and kd is the wave vector of photons in the detection
direction. The spectrum consists of two parts. The terms
with m = n in Eq. (5) concern photons emitted from the N

individual atoms. The m �= n terms correspond to interference
between photons emitted from different atoms. We emphasize
that both intensity and interference parts have collective
features, as the excitation of each atom is self-consistently
obtained by considering the drive by the total field, i.e., the
incident field plus the field scattered by all the other atoms.
We evaluate Eq. (5) using the quantum-regression theorem
and split the result into the elastic spectrum Sel as well as the
inelastic spectrum Sin, which we discuss separately below.

Elastic spectrum. Based on Eqs. (1) and (5), we calculate
the ensemble-averaged angular-emission pattern of the elastic
spectrum Sel(θd). It consists of an isotropic part, corresponding
to the intensity emission, and a strongly forwardly directed
lobe, due to the interference part of the spectrum [33].
Close to the forward direction, Sel(θd) scales as f 2(θd) =
exp{−2[k0σr sin(θd/2)]2}. The function f (θd) is known from
weak-scattering theory and, e.g., describes interference in
Rayleigh-Gans scattering [41]. For clouds larger than the
wavelength, the forward lobe is the dominant contribution
to the elastic scattering for detection angles smaller than
θc = 2/[ln(N )k0σr], i.e., close to the exact forward direction.
The forwardly directed emission can be seen in Fig. 1(b),
where Sel(θd)/N2 is plotted for different N and fixed b0 for
s ≈ 2. The magnitude of the forward emission is given by [33]

Sel(θd = 0)/S0 = πN2

1 + s
[n(0) + (1 − s)n(1)]δ(δω), (6)

consisting of a noninteracting part and the first-order correc-
tion. Interestingly, Eq. (6) shows how the first-order correction
to the forward-scattering lobe can be expressed in terms of
the corresponding first-order correction to the steady-state
population n(1) of Eq. (4). Surprisingly, the elastically scattered
intensity, which is proportional to the frequency integral of the
elastic spectrum, is not proportional to the atomic population
as is otherwise found in the linear-optics [27] and single-atom
[39] limits. This signifies that detection of scattered light is not
a direct measure of the atomic population.

For s ≈ 2 and b� ≈ 0.004 as used in Fig. 1(b) the correction
to the elastic spectrum due to the dipole-dipole interaction is on
the order of 10−5. While this correction appears to be small for
the elastic spectrum, we will see that in the inelastic spectrum
the cooperative effects are considerable.

Inelastic spectrum. We now turn to the inelastic component
of the spectrum of Eq. (5), Sin, and study how the Mollow triplet
is affected by interatomic interactions. While some limits
of the steady-state population and elastic spectrum can be
investigated in the linear-optics regime, the inelastic spectrum
is a truly nonlinear quantum optical phenomenon that calls for
the theory reported in this Rapid Communication.

Contrary to Sel, for noninteracting atoms, Sin average
to zero in the steady state due to the finite coherence
time. The zeroth-order steady-state spectrum thus exhibits
an angle-independent inelastic emission pattern, which is
simply N times the single-atom Mollow triplet. Interestingly,
the dipole-dipole interactions create interatomic correlations
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FIG. 3. (Color online) Inelastic fluorescence spectrum vs rescaled
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and �/� = −2.5. Inset: Comparison of the asymmetric inelastic flu-
orescence spectrum for θd = 0 (black solid line) with the symmetric
noninteracting atoms spectrum (black dashed line with green shaded
area). The vertical red line shows ωa .

(see Ref. [33]) that allow a forward-directed emission pattern
with cooperative features to survive even in the steady-state
inelastic spectrum. This is shown in Fig. 3, where Sin of a
cloud of N = 25 000 atoms and size k0σr = 5000 for strong
(�R/� = 5), off-resonant (�/� = −2.5) driving is depicted
for several detection angles. While the number of atoms
N = 25 000 is by far too large for usual numerical calculation
methods, it is relevant for experimental settings. The cloud
size corresponds to the experimental value of Ref. [25], where
a detuning ranging from −1.9� to −4.2� was used, consistent
with our � = −2.5�.

All spectra shown in Fig. 3 exhibit the typical three-peak
structure of the single-atom Mollow spectrum, but also a
spectral asymmetry, which is strongest in the forward direction
(see the inset). In contrast, the single-atom Mollow spectrum
is symmetric, even for off-resonant driving. The observed
asymmetry depends on the laser-atom detuning and gives
an increase of the sideband peak closest to the bare atomic

transition frequency ωa. The sideband enhancement is a
consequence of the interatomic interaction resulting in the
light emitted by one atom to be part of the driving field of all
other atoms. This results in a resonant atomic coupling which
is stronger closer to the bare atomic frequency at which the
optical thickness is the on-resonance optical thickness b0. The
∼35% enhancement of the peak at the bare atomic frequency,
as shown in Fig. 3, is a result of cooperative effects showing the
importance of including the dipole-dipole interactions when
dealing with the fluorescence spectrum.

Conclusions, discussion, outlook. In conclusion, we have
shown that dipole-dipole interactions in clouds of cold atoms
affect their optical properties in the strong-driving regime,
even for dilute clouds. We found analytical corrections to
the steady-state population and to the fluorescence spectrum
under strong driving. The analysis allows connecting the
cooperative decay rate and Lamb shift with the Green’s
function governing photon propagation. We found that, while
a spherical Gaussian-distributed cloud exhibits decreased
atomic excitation, a cooperatively increased atomic excitation
is also possible. Moreover, we have shown that cooperative
scattering persists in the Mollow triplet, which is a hallmark
of nonclassical scattering of light by two-level systems. The
cooperative effect gives rise to an angle-dependent spectrum
and is most pronounced in the forward direction, where it
manifests itself as an enhancement of the sideband nearest to
the atomic transition frequency.

While we have considered the simplest model for the atoms,
the scalar two-level model, it is worth noting that the approach
used in this work can be generalized, e.g., to account for the full
vectorial nature of the atom-light scattering and the near-field
components of the dipole-dipole coupling. This is interesting,
e.g., for investigating the importance of cooperative effects
in applications such as superradiant lasers [42], quantum
memories [3,43], and slow light [4,44]. We are confident that
our results for strongly driven dilute clouds will stimulate
the study of denser clouds where interatomic interactions are
expected to be even more important.
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