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Abstract. Bag-of-words (BoW) image description has shown good per-
formance for a large variety of image recognition scenarios. We investigate
approaches to alleviating a standard BoW image description pipeline
representations for the specific task of recognizing pork loins. Specifically,
we extend the BoW description to include depth maps, perform non-rigid
image registration to align the images, and apply PCA dimensionality
reduction on the BoW descriptors. Our results show that the combination
of image registration and PCA yields a more distinctive recognition.

1 Introduction

The goal of our work is to recognize pork loins in order to track them. The
motivation behind the project is to facilitate meat traceability in slaughterhouses.
In recent years, traceability has become an increasingly important aspect of the
meat industry. For consumers, meat safety and quality is a persistent concern
strengthened by reoccurring food recalls and scandals as well as increased animal
welfare awareness [1].

Currently, meat tracking in slaughterhouses is made possible using RFID
tags on carrier devices. However, these carrier devices allow only tracking at
batch-granularity as they carry multiple meat cuts. It is not possible to attach
RFID tags to individual meat cuts because the risk of losing an RFID tag into
the product is too high. In comparison, a robust visual recognition method would
be able to accommodate the tracking problem in a non-intrusive manner.

In this work we explore image recognition methods for enabling meat traceabil-
ity in slaughterhouse environments. We have constructed a baseline method using
the popular BoW approach. Compared to standard visual recognition challenges,
our dataset is characterized by low inter- and intra-variability of the objects
and by trivial background segmentation. We try to exploit these limitations and
propose extensions to the baseline recognition algorithm.

2 Dataset

The dataset for our experiment is constructed using 211 pork loins. The pho-
tographing setup (see Figure 1a) is the same for both photo sessions. We use a
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2 Larsen, Hviid, Larsen, Dahl

Microsoft Kinect camera that captures a depth map along with a standard RGB
image of the loin. Examples of both images are shown in Figure 1b. Next to the
camera a fluorescent tube is mounted spreading light at a wide angle. A selection

table surface

light source

Kinect camera

(a) Camera setup (b) RGB and depth images

Fig. 1: Experiment setup and dataset example.

of the loins undergo different perturbation scenarios in an attempt to simulate a
slaughterhouse treatment. The perturbations are:

Rough treatment 19 loins are knocked hard onto a table before the second
photo session.

Incorrect trimming Pieces of meat and bones are cut off from 18 loins before
the second photo session.

Incorrect hanging 19 loins are stored overnight by hanging them sideways on
Christmas trees (storage hooks) which causes bends.

Illumination and orientation changes 37 loins are rotated between 45◦ and
180◦ around the optical axis before being photographed. This creates varia-
tions in lighting because the light falls differently on a rotated object.

3 Baseline algorithm

The basis algorithm is divided into the following 4 steps [2].

1. Segmentation The pork loin is segmented from the background using a
Markov random field on the depth image.

2. Canonization The segmented pork loin images are then brought to a canon-
ized form through histogram equalization and orientation detection followed
by a rotation to a common orientation. Moreover the RGB images are
converted to gray-scale because the color information is mainly in the red
channel.
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An explorative study on pork loin recognition 3

3. Description From the canonized images we perform BoW image description
by extracting 8 histograms in a 2 × 4 grid to match the shape of a pork loin.
The image features used in the BoW are DAISY descriptors [3] extracted
from the gray-scale version of the RGB image.

4. Matching We measure the similarity of two pork loin images by calculating
the distance between their histograms. For every pork loin from day 1 a
match is established to the pork loin from day 2 with the smallest χ2 distance

χ2(x,y) =
∑D

n=1
(x(n)−y(n))2

x(n)+y(n) , where D is the dimensionality of the vectors

x and y and x(n) is the nth element of x.

Note that because the dataset is small, we have used the entire dataset for
training, validation and testing.

3.1 Performance

Using the baseline algorithm, all 211 pork loins are recognized correctly. To
investigate the sensitivity of the recognition method we want to inspect loins
that have been poorly matched in our experiments. We measure the quality of a
match by its distinctiveness d = di−dc

di+dc
, where dc is the distance of the correct

match and di is the distance of the nearest incorrect match. A large d means
that the matching pork loin image pair from day 1 and 2 stand out from the
rest of the loins. A small d means that there exist a mismatching loin from day
2 with an image description similar to the pork loin from day 1. In Figure 2,
we illustrate the distinctiveness statistics for each perturbation scenario. We
see that the baseline method is very close to yielding a few mismatches as the
distinctiveness of the lowest outliers come close to 0 (a negative value means an
incorrect match). However, the main part of the remaining loins is matched with
a comfortable margin to the nearest incorrect match. That is, the interquartile
range of the distribution of d is above 0.

Incorrect trimming Rough treatment Incorrect hanging Illumination
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

d

Fig. 2: Box plots showing the statistics of the match distinctiveness d of the
baseline recognition method. Rectangles represent the interquartile range IQR =
Q3 − Q1. The whiskers are placed at Q1 − 1.5 · IQR and Q3 + 1.5 · IQR. The
plusses denote outliers.
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4 Extensions to the baseline algorithm

In the following, we attempt to ameliorate the performance of the recognition
algorithm by proposing 3 different extensions.

4.1 Including depth maps

In the baseline algorithm we extract DAISY descriptors from the intensity
image only. We wish to investigate if the image description can be improved by
appending the BoW histograms from the depth map to the BoW histograms from
the intensity images. Compared to the RGB image, the depth image provided
by the Kinect camera contains visible noise, see Figure 3. Moreover, the depth
image can vary significantly between two photo sessions.

In Figure 5a, the performance of this approach is shown. We see immedi-
ately that the depth information does not supplement the intensity information
well as performance drops significantly. Therefore, we have not pursued further
investigations in this direction.

Fig. 3: Canonized images and depth maps of the same pork loin day 1 (top row)
and day 2 (bottom row).

4.2 Image registration

Currently, the canonization step assumes that the pork loin is rigid such that only
rotation and translation is necessary to align the images. However, in the dataset
we have encountered a couple of examples where this assumption does not hold
when the loin has been exposed to incorrect hanging or rough treatment. In this
extension we introduce non-rigid registration of the loins to achieve invariance
towards such perturbations.

Using the pork loin shape generated in the segmentation step, we detect the
4 corners of the pork loin and sample 15 and 6 points along each horizontal
and vertical side of the shape respectively. From these points we perform a
landmark-based registration using thin plate splines to a target shape selected
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among the pork loins. An example of the image warping is shown in Figure 4
In Figure 5b, we see the matching performance using this extension. While the
performance seems to improve the problematic cases in the incorrect hanging
scenario, the distinctiveness of the incorrectly trimmed loins goes down yielding
a single mismatch.

(a) Target shape (b) Input image (c) Warped image

Fig. 4: Image registration. The blue contour is the target shape generated from
the pork loin in (a). The red contour is the shape of the input pork loin.

4.3 PCA-based matching

Inspired by the eigenface approach from facial recognition, we perform a principal
component analysis (PCA) from an eigenvalue decomposition of the descriptor
covariance matrix. That is, we extract the 120 largest eigenvectors from the
covariance matrix of the zero-meaned descriptors in the dataset. Instead of
matching loins using the χ2-distance between their descriptors, we transform
the descriptors into the selected eigenvector components (the eigenfaces) and
perform a matching in this space using the euclidean distance. The idea behind
this approach is to obtain a more robust match caused by the spatial correlation
introduced by the eigenfaces. In Figure 5c, the performance of this approach
is shown. We see that the loins that have been incorrectly trimmed are more
distinctive which makes sense because the eigenfaces are more robust towards
local perturbations such as those caused by trimming a small region of the loin.

Finally, we try to combine the PCA-based matching with the image reg-
istration and show the result in Figure 5d. This approach looks promising as
the eigenfaces are more robust towards the incorrectly trimmed loins that were
problematic when performing image registration. Conversely, we suspect that
the image registration helps the PCA-based matching because the registration
causes a better image alignment which is required for a meaningful PCA.

5 Conclusion

While not all our proposed extensions to the recognition pipeline have shown
good results across all perturbation scenarios, we have shown that the constrained
nature of our dataset can be exploited to achieve better recognition. Notably, we
have achieved invariance towards non-rigid deformations without losing distinc-
tiveness in our image description. This allows for a new range of more flexible
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(a) With depth maps
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(b) With registration
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(c) PCA-based matching
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(d) With registration and PCA-based
matching

Fig. 5: Statistics of the match distinctiveness d for our proposed extensions. Note
that the y-axis scale on the plots is not comparable between the plots because
the descriptors exists in different spaces.

meat products to be recognized. Finally, we should remark that our experiments
are carried out on a small dataset which does not allow for a proper statistical
analysis of the results. On a brighter note, this study has identified new challenges
that would be relevant to investigate in future experiments.
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