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Abstract

It is suggested that the housing of regenerators may have a significant impact
when experimentally determining Nusselt numbers at low Reynolds and large
Prandtl numbers. In this paper, a numerical model that takes the regenerator
housing into account as a domain that is thermally coupled to the regenerator
fluid is developed. The model is applied to a range of cases and it is shown
that at low Reynolds numbers (well below 100) and at Prandtl numbers
appropriate to liquids (7 for water) the regenerator housing may influence
the experimental determination of Nusselt numbers significantly.

The impact of the housing on the performance during cyclic steady-state
regenerator operation is quantified by comparing the regenerator effectiveness
for cases where the wall is ignored and with cases where it is included. It
is shown that the effectiveness may be decreased by as much as 18% for
the cases considered here. A reduced number of transfer units (NTUeff) is
proposed based on the calculated regenerator effectiveness that accounts for
the effect of the housing heat capacity.

Keywords: Wall effects, numerical modeling, Nusselt number, low
Reynolds number, aqueous heat transfer fluid, regenerator

Greek letters

αw Thermal diffusivity of the wall [m2/s]

ϵ Regenerator effectiveness
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µf Fluid dynamic viscosity [Pa · s]

ψ Thermal mass ratio of the wall and the regenerator solid

ρ Mass density [kg/m3]

τ Total cycle time [s]

ε Bed porosity

φ Thermal utilization

Subscripts

f Fluid index

s Solid index

w wall index

Variables

∆p Pressure drop [Pa]

∆rj Radial extent of the jth cell [m]

∆Vi,j Volume of the grid cell with indices i, j [m3]

∆x Axial extent of the cells [m]

ṁ Mass flow rate [kg/s]

q̇fw,i The heat flux across the boundary between the fluid and the wall do-
mains at node i [W]

Ref Reynolds number based on the hydraulic diameter

Rep Reynolds number based on the sphere diameter

nr,sf Number of grid points in the r-direction in the solid and fluid domains

Thot Fluid inlet temperature at the hot end [K]

A = 180, constant in the Ergun equation
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Ac Bed cross sectional area [m2]

AHT Total heat transfer surface area of the bed [m2]

as Specific surface area [m−1]

B = 1.8, constant in the Ergun equation

c Specific heat [J/kgK]

dh Hydraulic diameter [m]

dp Sphere diameter [m]

f Operating frequency [Hz]

h Convective heat transfer coefficient [W/(m ·K)]

i, j Axial and radial indices, respectively

k Thermal conductivity [W/(m ·K)]

kdisp Thermal dispersion [W/(m ·K)]

kstat Static thermal conductivity of the bed [W/(m ·K)]

L Length of the regenerator bed [m]

n Index for the timestep

nx Number of grid points in the x-direction

nr,w Number of grid points in the r-direction in the wall

R Radius of the regenerator bed [m]

r Radial direction

rj Radial center coordinate of the jth cell [m]

SHT Total heat transfer surface area of a grid cell [m2]

T Temperature [K]

t Time [s]
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Tf,cold out Fluid outlet temperature at the cold end [K]

u Pore fluid velocity [m/s]

W Width of the wall bed [m]

x Axial direction

CFL Criterium for the timestep

NTU Number of transfer units

Nu Nusselt number

hw Inverse thermal resistance between wall and fluid [W/m2K]

1. Introduction

The heat transfer characteristics of packed beds operating at low Reynolds
numbers (below 100) and using aqueous heat transfer fluids (with high Prandtl
number) are not abundant in literature. Generally, the behavior of regener-
ators using gases and high Reynolds numbers are the focus of research due
to their applications in regenerative cryogenic refrigeration cycles and energy
storage. However, certain research areas including near room temperature
magnetic refrigeration rely on highly efficient regenerators operating at rel-
atively low Reynolds numbers (ranging between 1 and 100, approximately)
using high Prandtl number heat transfer fluids.

It is well known that the heat transfer coefficient, h, is a function of the
Reynolds number and Prandtl number. It is also apparent that for regen-
erator geometries based on packed particles (and other similar geometries)
the heat transfer coefficient, or Nusselt number, increases as a function of
Reynolds number following some power law. However, the experimental de-
termination of the Nusselt number at low Reynolds numbers and using high
Prandtl number fluids is experimentally difficult as shown below and not
available in detail in the literature.

It is non-trivial to derive accurate heat transfer coefficients from experi-
ments at low Reynolds numbers [1]. Thermal interaction with the ambient
(i.e., parasitic losses), axial conduction and the housing of the heat exchanger
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are all issues that can significantly affect the measurements under these con-
ditions. In Ref. [2] a factor as a function of the non-dimensional wall thick-
ness is suggested as a correction for the thermal lag caused by the thermal
interaction between the heat exchanger and the surrounding housing / wall.

It is common to apply a numerical model where the heat transfer coeffi-
cient may be adjusted in order to match predicted behavior with the experi-
mental data (typically in the form of fluid outlet temperature as a function of
time). Techniques for doing this have been applied for decades (see, e.g., Ref.
[3]). If the applied numerical model is not sufficiently accurate or if it ignores
important physical effects then the resulting Nu-Re correlation may become
inaccurate and unphysical; this would be the case if the Nusselt number goes
to zero or even becomes negative in the limit when that the Reynolds number
approaches zero.

In this paper we propose that the regenerator wall / housing may have an
influence on the experimental determination of the heat transfer properties
at low Reynolds numbers. That is, the apparent (or measured) heat trans-
fer coefficient may be substantially different from the actual heat transfer
coefficient. We also propose that the regenerator wall / housing may have
a significant influence on the performance of a regenerator at low Reynolds
number. That is, the effectiveness of the regenerator under periodic steady-
state operating conditions may be substantially reduced. The wall may act
as a passive regenerator surrounding the actual regenerator matrix since heat
must be transferred to and from the wall from the regenerator solid and the
heat transfer fluid. For housing materials with sufficient thermal diffusivity,
axial conduction in the wall may also have an impact on the regenerator
performance / apparent heat transfer coefficient.

In order to investigate the effect of the regenerator housing, a detailed
numerical model is derived, described, validated and applied to a range of
relevant cases. The model is two-dimensional resolving the flow direction (de-
noted x) and the transverse direction (denoted r) while assuming azimuthal
symmetry. Three domains are included in the model: the regenerator solid,
the heat transfer fluid and the regenerator housing / wall. The appropriate
heat transfer equations are solved in all three domains and evolved forward
in time. The model is designed so that it may be applied in a single-blow
mode, which is relevant if it is used to understand the impact of the housing
on the derivation of accurate Nusselt numbers from experimental data of this
type. The model can also be used for periodic steady-state operation, i.e.
having a periodic (balanced and symmetric) fluid flow. The latter mode is
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Flow direction

r=0 boundary

r = R boundary

r = R+Rw boundary

Figure 1: The modeled geometry. The bold part of the model grid indicates the fluid and
solid domains. The grey part of the grid indicates the surrounding wall / housing domain.
Since the model is radial (with azimuthal symmetry) the volume of the control volume
with indices i, j is ∆Vi,j = 2πrj∆rj∆x, where the center of the cell in the radial direction
is denoted rj .

relevant when probing the impact of the housing on regenerator performance,
or effectiveness, as a function of operating conditions and wall properties.

The remainder of this paper is outlined as follows. In Sec. 2 the numerical
model is derived and presented. In Sec. 3 the results are presented. Finally,
in Sec. 4 the results are discussed and the paper is concluded.

2. Numerical model

The modeled geometry is cylindrical and assumes symmetry around the
center axis. The axial (x) and the radial (r) directions are spatially resolved
in all three domains: fluid, solid regenerator matrix and the solid wall, re-
spectively. Figure 1 shows a schematic of the model geometry and defines
the coordinate system. In the following section the governing equations for
each of the three domains are written out in discretized form using finite
differences.
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2.0.1. Governing regenerator equations

The model solves the transient partial differential equations describing
heat transfer via conduction and convection in a porous regenerator:

ρfcfε

(
∂Tf
∂t

+ u
∂Tf
∂x

)
=

1

r

∂

∂r

(
kdisp,rr

∂Tf
∂r

)
+

∂

∂x

(
kdisp,x

∂Tf
∂x

)
−

has (Tf − Ts) +

∣∣∣∣ ∆pṁρfLAc

∣∣∣∣ (1)

ρscs(1− ε)
∂Ts
∂t

=
1

r

∂

∂r

(
kstatr

∂Ts
∂r

)
+

∂

∂x

(
kstat

∂Ts
∂x

)
+

has (Tf − Ts) (2)

ρwcw
∂Tw
∂t

=
1

r

∂

∂r

(
kwr

∂Tw
∂r

)
+

∂

∂x

(
kw
∂Tw
∂x

)
(3)

The temperature fields (T ) are solved for on the three domains (fluid, regen-
erator solid and wall, respectively denoted by subscripts f, s and w). The fluid
and solid domains are coupled through the convective heat transfer coeffi-
cient, h and the specific heat transfer surface area, as, of the solid regenerator
material.

The above given equations for the fluid and the solid (1–2) are volume
averaged since the actual porous medium is not resolved. For a given control
volume a fraction is fluid and the rest of the volume is solid. This is modeled
through the porosity, ε. The volume average approach also introduces dis-
persion coefficients (kdisp). These and the remaining terms in Eqs. 1–3 are
explained in detail in the following.

2.1. Governing discretized equations

Letting the index n denote the timestep and i and j the spatial grid
indices in the x- and r-directions, respectively, the energy balance for the
discretized fluid domain may be written in the following way:

ρf,i,jcf,i,jε2πrj∆rj∆x︸ ︷︷ ︸
Thermal mass of node i, j

T n+1
f,i,j − T n

f,i,j

∆t︸ ︷︷ ︸
Energy storage

+ui,j
T n+1
f,i+1,j − T n+1

f,i−1,j

2∆x︸ ︷︷ ︸
Convection

 =

T n+1
f,i,j+1 − T n+1

f,i,j

1
2π(rj+∆rj/2)∆x

(
∆rj+1/2

kdisp,r,i,j+1
+

∆rj/2

kdisp,r,i,j

)
︸ ︷︷ ︸

Conduction between nodes i, j and i, j + 1

−
T n+1
f,i,j − T n+1

f,i,j−1

1
2π(rj−∆rj/2)∆x

(
∆rj/2

kdisp,r,i,j
+

∆rj−1/2

kdisp,r,i,j−1

)
︸ ︷︷ ︸

Conduction between nodes i, j and i, j − 1

+
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T n+1
f,i+1,j − T n+1

f,i,j

∆x/2
2πrj∆rj

(
1

kdisp,x,i+1,j
+ 1

kdisp,x,i,j

)
︸ ︷︷ ︸
Conduction between nodes i+ 1, j and i, j

−
T n+1
f,i,j − T n+1

f,i−1,j

∆x/2
2πrj∆rj

(
1

kdisp,x,i,j
+ 1

kdisp,x,i−1,j

)
︸ ︷︷ ︸
Conduction between nodes i, j and i− 1, j

−

hSHT

(
T n+1
f,i,j − T n+1

s,i,j

)︸ ︷︷ ︸
Heat transfer between fluid and solid

+

∣∣∣∣∆pṁρf 2πrj∆rj∆x

LAc

∣∣∣∣︸ ︷︷ ︸
Viscous dissipation

(4)

Here ρ and c denote the density and specific of the solid material and fluid,
and the subscripts f and s denote the fluid and solid, respectively. The con-
ductivity, kdisp, of the fluid includes dispersion, which may differ depending
on whether the radial or the axial direction is considered (see Sec. 2.5). The
porosity of the bed is ε and the heat transfer coefficient describing the fluid-
solid thermal interaction is denoted h. The heat transfer surface area of the
solid within the cell is SHT. The total pressure drop across the bed is ∆p
and the mass flow rate is ṁ. T n is the temperature at time tn and T n+1 is
the temperature at time tn +∆t. Finally, the bed cross sectional area is Ac

The equation for the regenerator solid may be formulated as

ρs,i,jcs,i,j(1− ε)2πrj∆rj∆x︸ ︷︷ ︸
Thermal mass of node i, j

T n+1
s,i,j − T n

s,i,j

∆t︸ ︷︷ ︸
Energy storage

=

T n+1
s,i,j+1 − T n+1

s,i,j

1
2π(rj+∆rj/2)∆x

(
∆rj+1/2

kstat,i,j+1
+

∆rj/2

kstat,i,j

)
︸ ︷︷ ︸
Conduction between nodes i, j and i, j + 1

−
T n+1
s,i,j − T n+1

s,i,j−1

1
2π(rj−∆rj/2)∆x

(
∆rj/2

kstat,i,j
+

∆rj−1/2

kstat,i,j−1

)
︸ ︷︷ ︸
Conduction between nodes i, j and i, j − 1

+

T n+1
s,i+1,j − T n+1

s,i,j

∆x/2
2πrj∆rj

(
1

kstat,i+1,j
+ 1

kstat,i,j

)
︸ ︷︷ ︸

Conduction between nodes i+ 1, j and i, j

−
T n+1
s,i,j − T n+1

s,i−1,j

∆x/2
2πrj∆rj

(
1

kstat,i,j
+ 1

kstat,i−1,j

)
︸ ︷︷ ︸

Conduction between nodes i, j and i− 1, j

+

hSHT

(
T n+1
f,i,j − T n+1

s,i,j

)︸ ︷︷ ︸
Heat transfer between fluid and solid

(5)

The conductivity of the solid is denoted kstat, which is the effective conduc-
tivity of the whole bed when there is no fluid movement, as discussed in Sec.
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2.4. Finally the equation for the solid wall is

ρw,i,jcw2πrj∆rj∆x︸ ︷︷ ︸
Thermal mass of node i,j

T n+1
w,i,j − T n

w,i,j

∆t︸ ︷︷ ︸
Energy storage

=

T n+1
w,i,j+1 − T n+1

w,i,j

1
2π(rj+∆rj/2)∆x

(
∆rj+1/2

kw,i,j+1
+

∆rj/2

kw,i,j

)
︸ ︷︷ ︸
Conduction between nodes i,j and i,j+1

−
T n+1
w,i,j − T n+1

w,i,j−1

1
2π(rj−∆rj/2)∆x

(
∆rj/2

kw,i,j
+

∆rj−1/2

kw,i,j−1

)
︸ ︷︷ ︸

Conduction between nodes i,j and i,j-1

+

T n+1
w,i+1,j − T n+1

w,i,j

∆x/2
2πrj∆rj

(
1

kw,i+1,j
+ 1

kw,i,j

)
︸ ︷︷ ︸

Conduction between nodes i+1,j and i,j

−
T n+1
w,i,j − T n+1

w,i−1,j

∆x/2
2πrj∆rj

(
1

kw,i,j
+ 1

kw,i−1,j

)
︸ ︷︷ ︸

Conduction between nodes i,j and i-1,j

(6)

The conductivity of the wall is kw. For all three domains the index i runs
from 2 to nx − 1. In the fluid and solid regenerator domains, the index j
runs from 2 to nr,sf − 1 whereas in the wall domain it runs from nr,sf + 2
to nr,sf + nr,w − 1. At i = 1, nx and j = 1, nr,sf , nr,sf + 1, respectively, the
equations are altered in order to take the appropriate boundary conditions
into account (see Sec. 2.2).

The thermal properties (mass density, specific heat and conductivity) are
assumed to be functions of the temperature at the beginning of each timestep
n, i.e. they are explicitly prescribed in each timestep.

The discretized formulation of the regenerator equations given above is
implicit. The algorithm for solving the equations is described in Sec. 2.3.

2.2. Boundary conditions

The coupling between the fluid/solid and the wall domains is determined
assuming that the fluid (at node j = nr,sf) is in contact with the wall (at
node j = nr,sf + 1) through the following equation (where 1 ≤ i ≤ nx)

q̇fw,i =
T n+1
w,i,1+nr,sf

− T n+1
f,i,nr,sf

1
2π(rnr,sf

+∆rnr,sf
/2)∆x

(
∆r1+nr,sf

/2

kw,i,1+nr,sf
+

∆rnr,sf
/2

kf,i,nr,sf

+ 1
hw

) (7)

This term is added to the right hand side of the fluid equation (4) and
subtracted from the right hand side of the wall equation (6) at the relevant
values of j. The third term in the denominator of Eq. 7 represents a thermal
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resistance (per surface area) between the two domains. If hw → 0 then
the two domains will be decoupled and in the limit when hw → ∞ there
is no thermal resistance between the two domains other than what may be
deemed the intrinsic physical thermal resistance (the two first terms in the
denominator of Eq. 7). The result presented in the following are all computed
assuming that hw = ∞. The fluid thermal conductivity in Eq. 7 is assumed
to be the intrinsic fluid conductivity (i.e. kf and not kdisp,r). This term (Eq.
7) thus represents the boundary condition for Tf and Tw at r = R. The
boundary condition for Ts at r = R is assumed adiabatic and is thus:

∂Ts
∂r

∣∣∣∣
r=R

= 0. (8)

The boundaries at r = 0 and r = R + W are assumed adiabatic (W
denotes the thickness of the wall), i.e.:

∂Tf
∂r

∣∣∣∣
r=0

= 0 (9)

∂Ts
∂r

∣∣∣∣
r=0

= 0 (10)

∂Tw
∂r

∣∣∣∣
r=R+W

= 0. (11)

At the two ends of the regenerator (x = 0 and x = L, respectively) the
boundary conditions for the fluid depend on the direction of the flow:

∂Tf
∂x

∣∣∣∣
x=0

= 0 if ṁ ≤ 0 (12)

Tf |x=0 = T0 if ṁ > 0 (13)

∂Tf
∂x

∣∣∣∣
x=L

= 0 if ṁ ≥ 0 (14)

Tf |x=L = T1 if ṁ < 0 (15)

Since the Péclet number is always significantly greater than one (Pe =
RefPr), where Ref and Pr are the Reynolds and Prandtl numbers, respec-
tively, the above given inlet boundary conditions (Eqs. 13 and 15) are as-
sumed valid and diffusion at the inlets is ignored (see Refs. [2, 4] for details
about diffusion at inlet boundaries).
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Finally, the boundary conditions for the regenerator solid and the wall at
x = 0 and x = L are

∂Ts
∂x

∣∣∣∣
x=0,x=L

= 0 (16)

∂Tw
∂x

∣∣∣∣
x=0,x=L

= 0 (17)

When simulating a single blow the direction of the flow is constant whereas
when simulating periodic steady-state operating the flow direction is alter-
nating periodically thus making the boundary conditions in Eqs. 13–15 vary
in time.

2.3. Numerical solution of the discretized equations

The discretized equations, 4–6, are formulated and solved using the fully
implicit method. Great care should thus be taken when choosing the timestep
and grid size in order to achieve an accurate solution. Given a specified grid
size, the following criterion defines the timestep size:

CFL =
ṁ∆t

ρfπR2ε∆x
, (18)

where the radius of the bed is R. The CFL (Courant-Friedrichs-Lewy) num-
ber may be set to any value due to the implicit solver. It was, however, found
through thorough testing that a number of spatial nodes of 150, correspond-
ing to a grid resolution of less than 1 mm in the x-direction for the cases
studied here, and CFL = 0.1 gives consistent and precise results.

The model was compared to the classical Schumann solution [5] in single-
blow mode and found to agree (when neglecting axial conduction, viscous
dissipation and internal gradients in the solid) to within 0.3 % when applying
the above mentioned spatial and temporal resolution.

The model was also tested against the published regenerator effectiveness
solution given by Dragutinovic and Baclic [6] under the assumptions that
there is zero entrained fluid heat capacity, no axial conduction, no dispersion,
no viscous dissipation and all the thermal properties are constant. In this
mode the model is run with periodic boundary conditions.

It was found that at values of the NTU (defined below) from 0 to about
1000 the model agrees to within 0.3 % with the published solution at relevant
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values of the thermal utilization (ranging from 0.2 to 1.5 and further discussed
in Sec. 3) in the worst case.

The solution is implemented in Fortran and the source code is freely
available online [7].

2.4. Correlations

The correlations required to run the model are discussed in this section.
The heat transfer coefficient, h, is found from the Nusselt number through

Nu =
hdh
kf
. (19)

It is important to note that it is the fluid thermal conductivity, kf , that
enters Eq. 19 and not, e.g., the dispersion corrected conductivity (kdisp).
The hydraulic diameter, dh, for packed spheres is given by

dh =
2

3

ε

1− ε
dp, (20)

where the sphere diameter is dp. The specific surface area is

as = 6
1− ε

dp
. (21)

There are numerous correlations for the Nusselt number as a function of
the Reynolds and Prandtl numbers. An example of such a correlation was
given in Ref. [8]:

Nu = 2 + 1.1Re0.6p Pr1/3, (22)

and is referred to in the following as the “Wakao and Kaguei” relation. It is
seen that in the limit Re → 0 the Nusselt number becomes 2, which is the
conduction limit for a single sphere [9]. The correlation given in Eq. 22 is a
function of the particle size-based Reynolds number:

Rep =
ρfuεdp
µf

, (23)

where the pore velocity is denoted u and the dynamic viscosity of the fluid
is µf . The Reynolds number based on hydraulic diameter is then

Ref =
ρfuεdh
µf

=
2

3

ε

1− ε
Rep. (24)
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The mass flow rate of the regenerator is

ṁf = ρfuεAc. (25)

Finally, the pressure drop across the bed is calculated using the Ergun rela-
tion [10]:

dp

dx
=

Aαµfεu

d2p
+
Bβρf(εu)

2

dp
(26)

α =
(1− ε)2

ε2
(27)

β =
1− ε

ε3
(28)

A = 180, B = 1.8. (29)

2.5. The effective conductivity of the regenerator

The model presented above is based on volume averages where the control
volume includes one or multiple spheres and fluid paths. It is therefore not
sufficient to consider the intrinsic thermal conductivity of the regenerator
solid and fluid, respectively, when determining the axial and radial conduc-
tion in the bed. The phenomena known as dispersion and the effective static
conduction of the bed must be taken into account. As shown above in Eqs.
1–2 the static conductivity is used to compute conduction in the regenerator
solid energy balance whereas the dispersion-related conductivity is assumed
in the fluid equation. Several correlations for these quantities exist in liter-
ature (see, e.g., Refs. [11, 12] for detailed discussions). The correlation for
the static conductivity applied in this work is taken from Ref. [13]:

kstat = kf

[
(1− α0)

εf0 + ks/kf(1− εf0)

1− ε(1− f0) + ks/kfε(1− f0)
+

α0
2 (ks/kf)

2 (1− ε) + (1 + 2ε)ks/kf
(2 + ε)ks/kf + 1− ε

]
(30)

f0 = 0.8 + 0.1ε (31)

logα0 = −4.898ε, 0 ≤ ε ≤ 0.0827 (32)

logα0 = −0.405− 3.154(ε− 0.0827), 0.0827 ≤ ε ≤ 0.298 (33)

logα0 = −1.084− 6.778(ε− 0.298), 0.298 ≤ ε ≤ 0.580. (34)
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The fluid dispersion in the axial direction (for uniformly packed spheres) is
given by [11]:

kdisp,x = 3/4kfεRefPr. (35)

The expression in Eq. 35 is only valid when the Reynolds number is greater
than 10 [14]. When Ref ≤ 1 the thermal conductivity entering Eq. 1 is
simply the fluid intrinsic conductivity. In the range where 1 < Ref < 10 a
linear variation between kf and the expression in Eq. 35 is assumed.

The dispersion in the radial direction, kdisp,r, is assumed to be 1/5 of the
dispersion in the axial direction [14] although at the low Reynolds numbers
it becomes equal to the fluid intrinsic conductivity, kf . Finally, it is noted
that when there is no flow, Re = 0, the dispersive coefficient in Eq. 35 is zero
and thus only static conduction is present in the bed as described in Eq. 30.

3. Results

The results presented in this section are divided in three sets. In Sec.
3.1 the model is used to simulate a single blow experiment where the wall
is taken into account. This simulated data set is then compared to model
results where the wall is not taken into account but the Nusselt number is
varied to match the simulated data. This simulates the process of using single
blow experimental data in order to infer a heat transfer coefficient.

In Secs. 3.2–3.3 the regenerator effectiveness computed in the case where
the regenerator housing is neglected is compared to cases with different hous-
ing materials and geometries. The regenerator effectiveness is computed for
the periodic steady-state solution. Finally, in Sec. 3.4 a corrected NTU (de-
noted NTUeff) that accounts for the effect of the housing heat capacity on
the effectiveness is suggested.

The non-dimensional groups that are used for analysis of the results based
on the effectiveness under periodic steady state include the thermal utiliza-
tion (φ) and the number of transfer units (NTU):

φ =
ṁcf

2fmscs
(36)

NTU =
hAHT

ṁcf
. (37)

The operating frequency of the regenerator is f = 1/τ where τ is the to-
tal cycle time and AHT denotes the total heat transfer surface area of the
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Table 1: The applied thermal properties of the three domains resolved in the model
(regenerator solid, heat transfer fluid and regenerator wall, respectively). The properties
reflect gadolinium (Gd), water and various materials for the wall.

Property k [W/(m ·K)] ρ [kg/m3] c [J/(kg ·K)] µf [Pa · s]
Solid 10.5 7900 300 -
Fluid 0.6 1000 4200 0.001
Wall 0.25,1,5,10,15,20,100,240 1000 1500 -

regenerator solid. The utilization describes the ratio between the thermal
mass of fluid moved through the regenerator to the total thermal mass of
the regenerator solid. The NTU describes the ratio of the amount of heat
transferred between the solid and the fluid to the thermal mass of the fluid
moved.

The ratio between thermal mass of the wall and the thermal mass of the
regenerator solid is another dimensionless number used in the analysis:

ψ =
mwcw
mscs

. (38)

The regenerator effectiveness is defined as the ratio of the amount of heat
that is actually transferred during a blow process between the solid and the
fluid to the maximum possible heat transfer:

ϵ =

∫ τ/2

0
(Thot − Tf,cold out) dt

(Thot − Tcold) τ/2
. (39)

Constant thermal properties are assumed throughout all simulations. Hot
fluid enters at one end (at temperature Thot) and exits at the other (cold)
end at temperature Tf,cold out.

The properties of the three domains are provided in Table 1. The regen-
erator solid resembles gadolinium (which is a commonly applied material in
active magnetic regenerators) and the heat transfer fluid resembles water.
The wall conductivity spans several orders of magnitude in order to evalu-
ate the impact of this parameter on performance. Considering Eq. 3 it is
clear that the central parameters are the product of the mass density and the
specific heat (ρc) and the thermal conductivity. These have been chosen so
they resemble materials such as plastic nylon, stainless steel and aluminum.
The geometric parameters applied in the model are provided in Table 2. It is
noted that the parameter hw is set to infinity, i.e. the coupling between the
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Table 2: The geometric and operating properties applied in the model.

Property Value Description
L 0.1 m Regenerator length
R 8.3 mm Regenerator radius
W 1− 3 mm Wall thickness
dp 0.5 mm Sphere diameter
ε 0.36 Porosity assumed in the regenerator (closely packed spheres)
nx 150 Resolution in the axial direction
nr,sf 10 Radial resolution in the regenerator
nr,w 10 Radial resolution in the wall
Tinit 290 K Initial temperature of all domains
Tinlet 300 K Fluid inlet temperature (single-blow simulations)
Tcold 290 K Cold side temperature (periodic steady-state simulations)
Thot 300 K Hot side temperature (periodic steady-state simulations)
Ref 0.86-86.8 Range of fluid-based Reynolds numbers applied in the simulations

f (φ = 0.5) 0.128-12.8 Range of operating frequencies at a utilization of 0.5
f (φ = 1.5) 0.042-4.27 Range of operating frequencies at a utilization of 1.5

fluid and the wall domains is dominated by the intrinsic thermal resistance
as defined in Eq. 7.

3.1. Single blow analysis of wall impact at low Re

A typical method applied for determining the convective heat transfer
coefficient in a single-blow experiment is to compare the outlet temperature
curves measured in the experiment with a suitable model. The heat transfer
coefficient used by the model is adjusted in order to provide the best agree-
ment. This comparison may be done in several ways (as described in detail
by Heggs and Burns [3]). Each of the different methods use some charac-
teristic of the outlet temperature curves for the comparison. This may, for
example, be the maximum value of the gradient of the outlet temperature
with respect to time, the root-mean-square difference between the curves or
the difference between the time that the temperature change reaches 20%
and 80% (defined relative to the initial and inlet temperatures). The value
of the heat transfer coefficient, or the Nusselt number, is varied in the model
to provide the best match to the experimental data.

In this work a simulated experimental data set has been produced by
simulating a single-blow with the model while the wall is enabled (having
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Figure 2: (Color online) (a) The fluid outlet temperature as a function of normalized
time for the case with no wall and that with a wall of low thermal conductivity. Ref =
2.6 and 86.8, Tinit = 290 K, Tinlet = 300 K, wall thickness was 1 mm. (b) The Nusselt
number as a function of hydraulic diameter based Reynolds number.

thermal conductivity kw = 0.25 W/(m · K)). This results in an outlet fluid
temperature profile as a function of time denoted Tf,w,out(t). The model is
then applied with the same geometry and operating conditions but with the
wall disabled; the fluid temperature outlet curve is denoted Tf,nw,out(t). The
Nusselt-number is varied in the model until the two temperature profiles
match as closely as possible using some criteria. This process represents
the typical technique used to analyze experimental data in a single blow
case. Figure 2(a) shows examples of such outlet curves for a low and a high
Reynolds number.

The resulting Nusselt number is plotted as a function of Reynolds num-
ber in Fig. 2(b). For comparison, the relation applied in the simulated
data (where the wall was enabled) is plotted in the same figure and denoted
“Wakao & Kaguei” thus following Eq. 22. The model data that matches the
simulated data is fitted to a power law resulting in:

Nufit = 3.2Re0.544p − 6.1, (40)

in which the fitted parameters 3.2, 0.544 and 6.1 have 95 % confidence inter-
vals 0f 0.1, 0.007 and 0.4, respectively. Two points are important to stress
here. Firstly, as the Reynolds number decreases the difference (both abso-
lute and relative) between the applied relation (Eq. 22) and the fitted data
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Figure 3: (Color online) The regenerator effectiveness (defined in Eq. 39) as a function
of the hydraulic diameter based Reynolds number and normalized to the no wall case.
The legend refers to cases with different wall thicknesses expressed as a ratio between the
thermal mass of the wall and the thermal mass of the solid and different values of the
thermal diffusivity of the wall (αw).

(Eq. 40) increases. Secondly, in the limit where Re → 0 the Nusselt number
that best matches the data becomes negative, which is unphysical. It should
rather approach the conduction limit, i.e. some positive value. This result
indicates that the influence of the wall has a significant impact on the deter-
mination of heat transfer coefficients at low Reynolds numbers using a single
blow experiment.

3.2. Effectiveness as a function of Reynolds number

The normalized regenerator effectiveness is defined as the ratio of the
effectiveness of the regenerator operating under periodic steady state con-
ditions to the effectiveness of the regenerator neglecting the impact of the
wall. The normalized regenerator effectiveness is given as a function of the
Reynolds number (based on hydraulic diameter) in Fig. 3. The different
graphs represent the variation in ψ and the variation in wall thermal diffu-
sivity (αw = kw

ρwcw
) as described in the figure legend.

The trends in the figure are that as the Reynolds number increases the
impact of the wall is reduced. The Reynolds number at which the wall has an
impact (which is to decrease the effectiveness compared to the ideal no-wall
case) is observed to depend on the thermal utilization, the thermal mass of
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Figure 4: (Color online) The regenerator effectiveness (defined in Eq. 39) as a function
of the wall thermal conductivity and normalized to the no wall case. The legend refers to
cases with different wall thicknesses expressed as a ratio between the thermal mass of the
wall and the Reynolds number (Ref).

the wall and the diffusivity of the wall. Clearly, the wall can have significant
impact on performance at lower Reynolds numbers.

3.3. Effectiveness as a function of wall conductivity

Figure 4 presents the normalized regenerator effectiveness as a function
of the thermal conductivity of the wall at different values of ψ, Ref and φ.
At large Reynolds numbers the impact of the wall is minimal (as seen in Sec.
3.2). However, at lower Reynolds numbers it is seen that the impact of the
thermal conductivity of the wall is significant in particular when it is greater
than about one.

At the lower value of the utilization (Fig. 4(a)) the impact of the wall
is generally smaller than at the higher value of the utilization (Fig. 4(b)).
In the latter case the duration of the fluid blow periods is greater than in
the former case and thus the time for heat transfer between the solid/fluid
and the wall is greater explaining this effect. Also, in the case with a low
utilization the ratio of thermal mass of the wall and the solid has an impact
at values of the wall conductivity of 10 W/(m ·K) and greater. At the larger
value of the utilization this ratio (ψ) is important in all cases except at the
lowest value of the wall conductivity (0.25 W/(m ·K)).
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Figure 5: (Color online) The NTU (Eq. 37) as a function of Reynolds number. The black
solid line represents the case where the wall is ignored. The other two curves represent
cases where the wall is enabled having different diffusivities.

3.4. Effective NTU

The number of transfer units (NTU) is closely related to the regenerator
effectiveness. An effective NTU is defined here in such a way as to allow the
effect of the wall to be included approximately in simulations that do not
explicitly consider the wall. Given the effectiveness of the model predicted
when the wall is ignored (denoted ϵnw) it is possible to match the model
results that include the wall by varying the NTU, the result referred to as an
effective NTU. Denoting the effectiveness of the model when including the
wall ϵw this may be expressed as:

NTUeff = NTU(ϵw = ϵnw). (41)

It is assumed that the values of the effectiveness are evaluated at the same
conditions (Reynolds number, bed geometry etc.). Figure 5 shows the NTU
as a function of Reynolds number for the no-wall case and when including the
wall (at two different values of the wall diffusivity). Again, at larger Reynolds
numbers the wall has very little impact. However, as the Reynolds number
is decreased the effective NTU is significantly smaller than the no-wall NTU.

4. Discussion and Conclusion

A numerical model that simulates the transient heat transfer problem
present in a regenerator was developed, presented and validated. The model
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is two-dimensional and resolves the axial (flow) direction and the radial direc-
tion thus assuming azimuthal symmetry. Three domains are considered: the
solid regenerator matrix, the heat transfer fluid and the surrounding housing
or wall. Applying the model the impact of the wall on the heat transfer
performance of a regenerator was quantified.

Single-blow experiments were simulated with the model by assuming a
common Nu-Re correlation and enabling the wall under various conditions.
The model was then applied with the wall disabled and the Nusselt number
varied in order to match the temperature outlet curve of the fluid. This re-
sulted in a “measured” Nu-Re relation that is unphysical in the limit when the
Reynolds number goes to zero because the Nusselt number becomes negative.
Related problems occur when experimentally determining Nusselt numbers,
as shown in Ref. [1].

The model was then applied for periodic or cyclic steady-state simulations
where the regenerator effectiveness was used as a parameter for quantifying
the impact of the wall under realistic regenerator operating conditions. The
resulting effectiveness when taking the wall into account was normalized with
the effectiveness of the ideal no-wall cases and it was shown that for Reynolds
numbers below 100 the regenerator wall (housing) may have a significant
impact on the regenerator effectiveness. For the present study the reduction
in regenerator effectiveness compared to the case with no wall was as much
as 18%. It was also shown that the effect depends not only on the Reynolds
number but also on the diffusivity and thermal mass of the wall as well as
the thermal utilization.

Due to the close relation between regenerator effectiveness and the NTU,
an effective NTU was defined for the model cases that include the wall.
The effective NTU is defined as the NTU required by the case with no wall
in order to match the effectiveness associated with the case with the wall
included. The effective NTU is always less than the actual NTU; at low
Reynolds number the reduction in the effective NTU is large indicating that
the wall has a significant impact on performance.

The key conclusion from this work is that the regenerator housing should
be carefully considered both when designing and interpreting experimental
single-blow results with the purpose of determining heat transfer coefficients
as well as when operating regenerators under periodic steady-state condi-
tions. At low Reynolds numbers and high Prandtl numbers even thin walls
with low diffusivities may influence the performance significantly.

The model was developed in Fortran and is freely available through
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Google Code [7].
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