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Abstract. A conservative time integration algorithm based on a convected set of orthonormal
base vectors is presented. The equations of motion are derived from an extended Hamiltonian
formulation, combining the components of the three base vectors with a set of orthonormality
constraints. The particular form of the kinetic energy usedin the present formulation is delib-
erately chosen to correspond to a rigid body rotation, and the orthonormality constraints are
introduced via the equivalent Green strain components of the base vectors. The particular form
of the extended inertia tensor used here implies a set of orthogonality relations between the base
vector components and their conjugate momentum components. These orthogonality relations
permit explicit elimination of the Lagrange multipliers associated with the constraints, leading
to a projected form of the dynamic equation without explicitalgebraic constraints. The differ-
ential equations of motion are recast into discrete form using a suitable combination of mean
values and increments, which is identified by considering a finite increment of the Hamiltonian.
Examples illustrate the accuracy and conservation properties of the algorithm.
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1 INTRODUCTION

Numerical time integration of the motion of rigid bodies hasbeen subject to intensive stud-
ies. In [1] a new approach to time integration of rigid body motion was introduced in which
energy and momentum conservation properties are obtained by judicious discretization in terms
of mean values and increments. In contrast to earlier methods based on asymptotic proper-
ties, the conservative algorithms depend in an essential way on the parameter representation of
the problem. A fully conservative algorithm in terms of quaternion parameters can be obtained
when the normalization condition is carried through the integration process via a Lagrange mul-
tiplier [2]. It was demonstrated in [3] that the rigid body dynamics problem can be formulated
in such a way that the increment of the constraint is embeddedin the kinematic evolution equa-
tion, and the Lagrange multiplier can be eliminated, leading to the introduction of a projection
operator on the force potential gradient. An alternative formulation of the rigid body motion
in terms of a set of convected base vectors has been introduced in [4]. The use of the global
components of the local base vectors as variables simplifiesthe formulation, but at the same
time increases the problem size and changes the character ofthe problem by adding 6 Lagrange
multipliers and introducing algebraic constraints.

In the present paper this problem is solved by extending the idea of ’implicit constraints’ in-
troduced in [3] to the formulation in terms of convected basevectors. The equations of motion
are obtained from Hamilton’s equations. It turns out, that when the kinetic energy is formulated
via the angular velocity components under the assumption ofa rigid body, the rigid body con-
straints are in fact contained in incremental form in the setof kinematic Hamilton equations.
The generalized forces appear in the dynamic part of the Hamilton equations in the form of the
gradient of the force potential. The special form of the inertial tensor in terms of the base vector
components leads to a set of six orthogonality conditions between the base vector components
and the corresponding momentum components. Elimination ofthe Lagrange multipliers by use
of these orthogonality relations leads to a set of equationsof motion, in which the effect of the
constraints is represented via pre-multiplication of the full-component gradient by a projection
matrix.

The modified Hamilton equations are discretized by appropriate mean values and increments
to form an energy and momentum conserving time integration algorithm. The accuracy and
conservation properties are illustrated by the ’flying brick’ and the rotation of a Lagrangian top
in a gravitational field.

2 CONVECTED BASE VECTOR REPRESENTATION

Let x denote the location of a rigid body in a fixed global frame of reference and let a local
frame attached to the rigid body be described in terms of a setof orthonormal base vectors
q1, q2, q3. For simplicity, the present formulation is developed for purely rotational motion
where the origin of the local base coincides with the origin of the global frame, hence the global
componentsx of a point inside the body with local coordinatesx0 can be expressed as

x(t) = Q(t) x0 , (1)

where the deformation gradient tensorQ is defined as

Q = [ q1, q2, q3 ] =
∂x
∂x0

. (2)

The global components of the base vectorsq1, q2, q3 constitute the independent variables of the
present formulation. However, in order to represent a proper rigid body rotation the base vectors
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must remain orthonormal at all time. This corresponds to vanishing of all Green strain com-
ponents, which can be expressed by a set of constraint conditions on the deformation gradient
tensorQ as
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In the present formulation the kinematic constraints appear via their time derivatives in the form

ė = C(q) q̇ = C(q̇) q = 0 , (4)

where the matrixC follows from differentiation of (3) with the6 × 9 deformation gradient
matrix

C(q) =
∂e
∂q

=
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.
The kinetic energy of a rigid body rotating with angular velocity ω takes the following form

when expressed in local components

T = 1

2
ω

TJω , (6)

whereJ is the constant inertia tensor. The local components of the angular velocity in terms of
the base vectors is obtained by projecting the derivativesq̇i on the base vectorsqj. This can be
arranged into the compact matrix form

ω = −1

2
G(q) q̇ , (7)

in terms of the3× 9 matrix

G(q) =





0 −qT
3 qT

2

qT
3 0 −qT

1

−qT
2 qT

1 0



 . (8)

This matrixG(q) has the same structure in terms of the base vectorsq1, q2, q3 as the3×3 skew-
symmetric matrix associated with the standard vector product, and thus the matrix structure
itself implies orthogonality with respect toq in the sense

G(q)
3×9

q = 0
3×1

. (9)

Furthermore, it is an important property in the present formulation thatG(q) satisfy the fol-
lowing relation with respect to the constraint matrixC(q) when the vectorsqj constitute an
orthonormal base,

C(q)
6×9

G(q)
9×3

T = 0
6×3

. (10)
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Upon substitution of the expression for the angular velocity from (7) into (6), the kinetic energy
takes the following bi-quadratic form

T = 1

8
q̇TG(q)TJ G(q) q̇ , (11)

when the base vectorsqj satisfy the constraint (3).

3 EQUATIONS OF RIGID BODY MOTION

The equations of motion for rigid body rotation are developed via the Hamilton’s canonical
equations leading to a set of first order differential equations for the generalized displacements,
here represented as the base vector componentsqj, and their generalized momentum variables,
see e.g. [5].

3.1 Hamilton’s equations

The vector of generalized momentum componentsp = [pT
1 , p

T
2 , p

T
3 ]

T conjugate to the base
vectorsq = [qT

1 , q
T
2 , q

T
3 ]

T follows from time differentiation of the kinetic energy (11), as

p =
∂T

∂q̇T
= 1

4
G(q)TJ G(q) q̇ . (12)

This gives the relation between the momentump and the generalized velocitẏq. For a rigid
body the base vectorsqj are orthonormal, and thus the relation (12) can be used to eliminate the
velocity q̇ from the kinetic energy when pre-multiplicated withJ−1G(q). Hereby the kinetic
energy can be expressed in either of the forms

T (q, p) = 1

2
pTG(q)TJ−1G(q) p = 1

2
qTG(p)TJ−1G(p) q , (13)

where the latter expression is valid, since the structure ofG ensures that simultaneous inter-
change ofq andp in the factors appearing on each side ofJ does not change the value of the
product.

The present formulation is based on an augmented form of the Hamiltonian where the sum
of the kinetic energyT (q, p) from (13) and the potential energy functionV (q) is supplemented
by the homogeneous rigid body constraints (3), whereby

H(q, p) = T (q, p) + V (q) − e(q)Tλ . (14)

The constraintse(q) = 0 are initially introduced via a vector of Lagrange multipliersλ. They
are eliminated subsequently by a displacement-momentum orthogonality relation discussed in
the following section.

The equations of motion follow from the augmented Hamiltonian (14) by differentiation, as

q̇ =
∂H

∂pT
= G(q)TJ−1G(q) p , (15)

ṗ = −
∂H

∂qT
= −G(p)TJ−1G(p) q −

∂V

∂qT
+ C(q)Tλ , (16)

where the derivatives of the kinetic energy follow from (13), and the deformation gradientC(q)
is given by (5).
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3.2 Elimination of Lagrange multipliers

A basic feature of the present formulation is the elimination of the Lagrange multipliers
by use of a set of orthogonality conditions between the generalized displacementsq and the
conjugate momentum vectorp. The orthogonality relations are obtained by pre-multiplication
of the relation (12) definingp with C(q). When using the relation (10), valid for orthogonal
base vectors, the following displacement-momentum relation is obtained,

C(q) p = 0 . (17)

In spite of the resemblance of this relation to the velocity relation (4), it is not a simple refor-
mulation of the constraint derivative conditions.

The Lagrange multipliers are now eliminated by using the time derivative of the displacement-
momentum orthogonality relations (17),

C(p) q̇ + C(q) ṗ = 0 . (18)

Substitution of the time derivatives from (15) and (16) intothis equation leads to the following
expression for the Lagrange multiplier vector

λ =
[

C(q)C(q)T
]

−1
C(q)

∂V

∂qT
. (19)

In particular, it is noticed that the Lagrange multipliers vanish in the absence of external loads,
implying that the homogenous equations with the present form of the inertial matrix can be
solved without explicit introduction of constraints. Substitution of the Lagrange multiplier vec-
tor (19) into the dynamic equation of motion (16) gives

ṗ = −G(p)TJ−1G(p) q −
(

I − C(q)T
[

C(q)C(q)T
]

−1
C(q)

)∂V

∂qT
. (20)

It is seen that the elimination of the Lagrange multipliers via the constraint derivative is equiva-
lent to subtracting the projection of the external potential gradient on the deformation modes via
C(q) from the unconstrained gradient, leaving only the components associated with the rota-
tion modes. This is similar to the result in [3] when eliminating the single scalar normalization
constraint from the four-component quaternion representation of rigid-body rotation.

4 STATE-SPACE TIME INTEGRATION

The basic idea of conservative time integration is to use an integrated form of the evolution
equations. Hereby the discretized form of the equations of motion can be designed to yield
the correct incremental change of energy and momentum over afinite time interval∆t from
tn to tn+1. This is different from collocation based methods where theequations of motion
are matched at discrete points in time. Similarly, when constraints are included in conservative
methods via Lagrange multipliers, the role of the Lagrange multipliers is to ensure satisfaction
of the integrated form of the constraints constraints over the current interval, and thus these
are associated with interval rather than the end points. When a numerical time integration is
initiated from a state that satisfies the constraints, the introduction of the corresponding incre-
mental form of the constraints over the integration time intervals will lead to satisfaction of the
constraints at the integration times.
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A consistent discretization obeying conservation of energy and momentum can be derived
by equating the finite increment of the Hamiltonian to zero, as

∆H(q, p) = ∆qT ∂H∗

∂qT
+ ∆pT ∂H∗

∂pT
= 0 , (21)

where the asterisk denotes the finite derivatives ofH corresponding to the increments∆qT and
∆pT . The individual terms can be identified from (14). The kinetic energy is a biquadratic
form in q andp, hence the increment can be expressed as twice the product ofone factor plus
the increment of the other factor. The potentialV (q) is introduced via of its finite derivative
∂V∗/∂q, see e.g. [6], while the discrete form of the constraints follows from the increment of
(3). This is a homogeneous quadratic form inq and can be represented by a combination of
increments and mean values. The role of the Lagrange multipliersλ is to prevent violation of
the internal constraints at the end of the interval when these are satisfied initially, hence these
are introduced as effective mean values representing theirrole over the interval. Hereby the
discretized equations of motion take the form

∆q =
∂H∗

∂pT
= ∆tG(q̄)TJ−1G(q) p , (22)

∆p = −
∂H∗

∂qT
= −∆tG(p̄)TJ−1G(p) q − ∆t

[

∂V∗
∂qT

− C(q̄)Tλ
]

, (23)

These equations constitute a clear equivalent to the continuous evolution equations (15) and
(16), when the respective gradients are introduced via their finite derivatives.

As in the continuous case it is advantageous to eliminate theexplicit dependence of the La-
grange multiplier using the incremental form of the orthogonality relation between displacement
and momentum (17),

C(p̄)∆q + C(q̄)∆p = 0 . (24)

Upon insertion of the increments from (22) and (23), solvingfor the Lagrange multiplierλ and
back-substitution into (23), the dynamic equation take theform

∆p = − ∆tG(p̄)TJ−1G(p) q − ∆t
(

I − C(q̄)T
[

C(q̄)C(q̄)T
]

−1
C(q̄)

)∂V∗
∂qT

+ ∆tC(q̄)Tλ0 .

(25)

with
λ0 =

[

C(q̄)C(q̄)T
]

−1
[

C(q̄)G(p̄)T + C(p̄)G(q̄)T
]

J−1G(p) q . (26)

The dynamic equation (25) is the discrete analogue to (20). The term includingλ0 is merely an
artefact of the discretization. However, it must be included in order to ensure proper conserva-
tion of energy.

4.1 Integration algorithm

The equations of motion (22) and (25) are conveniently solved simultaneously by means
of Newton-Raphson iterations where the elements of the residual vectorr = [rTq , r

T
p ]

T are de-
fined as

r q = ∆q − ∆tG(q̄)TJ−1G(q)p , (27a)

r p = ∆p + ∆tG(p̄)TJ−1G(p)q + ∆t

[

∂V∗
∂qT

+
(∂Φ∗

∂q

)T

λ− C(q̄)Tλ
]

. (27b)
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Table 1: Conservative time integration algorithm.

1) Initial conditions:
uT
0 = [qT

0 ,p
T
0 ]

2) Prediction step:
u = un,

3) Residual calculation:
r = r(q,p) from (27).

4) Update incremental rotation parameters:
K ij = ∂r i/∂uj,
δu = −K−1 r .
u = u + δu,

If ‖r‖ > εr repeat from 3).

5) Return to 2) for new time step, or stop.

The residual is reduced iteratively to zero by use of the linearized increment corresponding to
changes in kinematics attn+1. This is performed in terms ofδu = [δqT , δpT ]T via the equation

K δu = − r , (28)

where the elements of the tangential stiffness matrixK follow from partial differentiation as

K ij = ∂r i/∂uj . (29)

The implementation of the algorithm is illustrated in pseudo-code form in Table 1.

5 NUMERICAL EXAMPLES

The accuracy and conservation properties are illustrated by two simple examples, - a freely
rotating brick and steady precession of a Lagrangian top in agravitational field.

5.1 Free rotation of a rigid body

First the properties of the homogeneous form of the algorithm, i.e. withV (q) = 0, are
considered by application to free rotation of a rigid body. The moment of inertia tensor with
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Figure 1: (a) Local angular velocity components, (b) Relative error on energy, (c) relative error on length of angular
momentum vector.
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respect to the center of mass is chosen asJ = diag[13, 5, 10], which is equivalent to a box
with side lengths[1, 3, 2] and mass12. The motion is initiated by the initial angular velocity
ω0 = [0, 0.05, 10]T leading to non-trivial rotation in which the body is reversed at regular
intervals, see e.g. [3].

The unstable motion is illustrated in Fig 1(a) in terms of thelocal angular velocity where the
sign change inω3 corresponds to the case where the box is turned upside down. The results
are evaluated for the time step∆t = 0.01 and an iteration tolerance ofεr = 10−8, which leads
to conservation of the total mechanical energyE and the length of the local angular velocity
vector‖L‖ within a relative error of10−15 as illustrated in Fig. 1(b) and 1(c).

5.2 Steady precession of top in gravitational field

This example considering a Lagrangian top in a gravitational field is used to illustrate the
properties of the algorithm whenV (q) 6= 0. The special case of steady precession without
nutation is considered. The top is represented as a cone as illustrated in Fig. 2(a) with height
h and, max radiusr = h/2 and massm = ρπr2/3 with mass density isρ = 2700. The center
of mass is located at a distancel = 3h/4 from the tip, whereby the local moments of inertia
become

J1 = J2 =
3

80
m (4r2 + h2) + ml2 , J3 =

3

10
mr2 .

The top is located in a uniform gravitational field with accelerationg = 9.81. In order to exhibit
steady precession without nutation the following relationmust be satisfied for the nutation angle
θ, the rate of precessioṅϕ and the spin velocitẏψ,

ψ̇ =
mgl

J3ϕ̇
+
J2 − J3
J3

ϕ̇ cos(θ0) ,

see e.g. Goldstein [5]. The initial conditions correspond to the ones used in [2] and [3],ϕ̇ = 10
andθ0 = π/3.
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Figure 2: (a) Configuration of rotating top. (b)x1-coordinate for center of mass. (c)x3-coordinate for center of
mass.∆t = 0.01 (—-), ∆t = 0.005 (−−), Analytical (· · · ).

Simulations are performed for a time step of∆t = 0.01 and an iteration tolerance ofεr =
10−8. For these parameters the conserved quantities, namely themechanical energy and the
vertical component of the angular momentum, are conserved within an accuracy of10−9. The
x1 andx3-coordinates of the center of gravity are illustrated as thefull line in Fig. 2(b) and
2(c). The results show a significant period error compared tothe analytical solution (dotted
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line), which leads to nutation since the criteria for steadyprecession is violated. This issue was
discussed in [3]. However, when the time step of∆t = 0.005 is used, the error is decreased by
a factor of four as illustrated by the dashed line in Fig. 2(b)and 2(c), thereby illustrating the
second order convergence of the present algorithm.

6 CONCLUSIONS

A conservative algorithm for rigid body rotation has been developed using a convected set
of 3 × 3 orthonormal base vector components as generalized displacements. The equations of
motion are derived from an augmented Hamiltonian where rigid body constraints equivalent to
vanishing of all Green strain components are included via6 Lagrange multipliers. However, in
the present formulation it is illustrated that these can be eliminated by use of a a set of orthogo-
nality condition between the generalized displacements and their conjugate momentum vector,
leaving only a projection of the external potential gradient. A consistent time discretization
scheme satisfying the conservation laws of energy and momentum is identified by considering
a finite increment of the Hamiltonian. Furthermore, it is illustrated that when Lagrange multi-
pliers are included in a conservative method, they serve a role as the effective reaction forces
needed to uphold the constraints over a finite time interval,and thus they should be considered
as interval bounded quantities rather than associated withthe end interval points.
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