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Abstract. A conservative time integration algorithm based on a coteeeset of orthonormal
base vectors is presented. The equations of motion areatefiom an extended Hamiltonian
formulation, combining the components of the three baswrewith a set of orthonormality
constraints. The particular form of the kinetic energy usethe present formulation is delib-
erately chosen to correspond to a rigid body rotation, anel dinthonormality constraints are
introduced via the equivalent Green strain componentseb#se vectors. The particular form
of the extended inertia tensor used here implies a set obgahality relations between the base
vector components and their conjugate momentum comporiemese orthogonality relations
permit explicit elimination of the Lagrange multiplierssagiated with the constraints, leading
to a projected form of the dynamic equation without exphdiebraic constraints. The differ-
ential equations of motion are recast into discrete forrngsa suitable combination of mean
values and increments, which is identified by consideringitefincrement of the Hamiltonian.
Examples illustrate the accuracy and conservation prapstf the algorithm.
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1 INTRODUCTION

Numerical time integration of the motion of rigid bodies Hee®n subject to intensive stud-
ies. In [1] a new approach to time integration of rigid bodytimo was introduced in which
energy and momentum conservation properties are obtajnedlicious discretization in terms
of mean values and increments. In contrast to earlier msethaded on asymptotic proper-
ties, the conservative algorithms depend in an essentiabwahe parameter representation of
the problem. A fully conservative algorithm in terms of qeration parameters can be obtained
when the normalization condition is carried through thegnation process via a Lagrange mul-
tiplier [2]. It was demonstrated in [3] that the rigid bodyrdymics problem can be formulated
in such a way that the increment of the constraint is embeudiéx® kinematic evolution equa-
tion, and the Lagrange multiplier can be eliminated, legdanthe introduction of a projection
operator on the force potential gradient. An alternativenfaation of the rigid body motion
in terms of a set of convected base vectors has been intrddadd]. The use of the global
components of the local base vectors as variables simplifee¢ormulation, but at the same
time increases the problem size and changes the charatter mfoblem by adding 6 Lagrange
multipliers and introducing algebraic constraints.

In the present paper this problem is solved by extendingdba of 'implicit constraints’ in-
troduced in([3] to the formulation in terms of convected basetors. The equations of motion
are obtained from Hamilton’s equations. It turns out, theewthe kinetic energy is formulated
via the angular velocity components under the assumpti@nrmfid body, the rigid body con-
straints are in fact contained in incremental form in theadekinematic Hamilton equations.
The generalized forces appear in the dynamic part of the lHamequations in the form of the
gradient of the force potential. The special form of thetilaétensor in terms of the base vector
components leads to a set of six orthogonality conditiot&éen the base vector components
and the corresponding momentum components. Eliminatidimeofagrange multipliers by use
of these orthogonality relations leads to a set of equatdnsotion, in which the effect of the
constraints is represented via pre-multiplication of thié¢omponent gradient by a projection
matrix.

The modified Hamilton equations are discretized by appat@mean values and increments
to form an energy and momentum conserving time integratigoréahm. The accuracy and
conservation properties are illustrated by the 'flying krend the rotation of a Lagrangian top
in a gravitational field.

2 CONVECTED BASE VECTOR REPRESENTATION

Let x denote the location of a rigid body in a fixed global frame dérence and let a local
frame attached to the rigid body be described in terms of afsetthonormal base vectors
d,,0,,05. For simplicity, the present formulation is developed farrgdy rotational motion
where the origin of the local base coincides with the oridithe global frame, hence the global
components of a point inside the body with local coordinatescan be expressed as

X<t) = Q(t) Xo , (1)
where the deformation gradient ten$pis defined as
OX
Q = [0,,0y,03] = oo’ (2)

The global components of the base vectprsy,, g, constitute the independent variables of the
present formulation. However, in order to represent a progel body rotation the base vectors
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must remain orthonormal at all time. This corresponds taskang of all Green strain com-
ponents, which can be expressed by a set of constraint camgliin the deformation gradient

tensorQ as
[ diq, -1
030, — 1
Q305 — 1 — 0
003 + G35 O '
d50; + 9103
[ 910G, +030; |
In the present formulation the kinematic constraints appieeheir time derivatives in the form

3)

N | —

e =C(q)q = C(a)q = 0, (4)

where the matrixC follows from differentiation of [(B) with theés x 9 deformation gradient

matrix _
g 0 o0
0 ¢ 0
oe 0 0 o
CU=%% | o q o ©
g 0 af
93 af O |

The kinetic energy of a rigid body rotating with angular \@tg w takes the following form

when expressed in local components
_1,..,T
T =;wlw, (6)

whereld is the constant inertia tensor. The local components oftigellar velocity in terms of
the base vectors is obtained by projecting the derivatiyes the base vector. This can be

arranged into the compact matrix form
in terms of the3 x 9 matrix
0 —a; a
G@=| a5 0 —qf (8)
-5 9 O

This matrixG(q) has the same structure in terms of the base veqtots,, g, as the3 x 3 skew-
symmetric matrix associated with the standard vector pdand thus the matrix structure

itself implies orthogonality with respect tpin the sense
G(g)g = 0. (9)
3x9 3x1

Furthermore, it is an important property in the present fdation thatG(q) satisfy the fol-

lowing relation with respect to the constraint mat@xq) when the vectors|; constitute an
orthonormal base,

C(g)G(q)" = 0. (10)

6x9  9x3 6x3
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Upon substitution of the expression for the angular veydcam (7) into (6), the kinetic energy
takes the following bi-quadratic form

T = $9"G(9)"IG(q)q, (11)
when the base vectogs satisfy the constrainf(3).

3 EQUATIONS OF RIGID BODY MOTION

The equations of motion for rigid body rotation are devetbpi the Hamilton’s canonical
equations leading to a set of first order differential edquregtifor the generalized displacements,
here represented as the base vector compongnasd their generalized momentum variables,
see e.g.[[5].

3.1 Hamilton’s equations

The vector of generalized momentum compongnts [p?, pI', pI]” conjugate to the base
vectorsg = [g7, g2, 2] follows from time differentiation of the kinetic enerdy (1 hs

- 1G6(9)"3G(g)q. (12)

D—W 1

This gives the relation between the momentprand the generalized velocity. For a rigid
body the base vectogg are orthonormal, and thus the relatibnl(12) can be usedrtoredte the
velocity g from the kinetic energy when pre-multiplicated with'G(q). Hereby the kinetic
energy can be expressed in either of the forms

T(q,p) = 3p"G(q)"I7'G(a)p = 1q"G(p)"I'G(p)q, (13)

where the latter expression is valid, since the structur& ensures that simultaneous inter-
change ofg andp in the factors appearing on each sideJafoes not change the value of the
product.

The present formulation is based on an augmented form of #meilkbnian where the sum
of the kinetic energy’(q, p) from (13) and the potential energy functidiiq) is supplemented
by the homogeneous rigid body constraints (3), whereby

H(q,p) = T(q,p) + V(a) — e(@)" . (14)

The constraintg(q) = 0 are initially introduced via a vector of Lagrange multipe\. They
are eliminated subsequently by a displacement-momentthrogwnality relation discussed in
the following section.

The equations of motion follow from the augmented Hamildon({14) by differentiation, as

. OH _

4= 57= G(9)" I 'G(q)p, (15)
p

s _aH _ T1—1 o av T

p = o G(p)'J'G(p)q oqT + C(a)" A, (16)

where the derivatives of the kinetic energy follow frdml(1&)d the deformation gradie6{q)
is given by [5).
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3.2 Elimination of Lagrange multipliers

A basic feature of the present formulation is the eliminated the Lagrange multipliers
by use of a set of orthogonality conditions between the gdized displacementg and the
conjugate momentum vectpr The orthogonality relations are obtained by pre-multigtion
of the relation[(IR) defining with C(q). When using the relation_(1L0), valid for orthogonal
base vectors, the following displacement-momentum aaiat obtained,

C(a)p = 0. (17)

In spite of the resemblance of this relation to the veloa#ation [4), it is not a simple refor-
mulation of the constraint derivative conditions.

The Lagrange multipliers are now eliminated by using thetiterivative of the displacement-
momentum orthogonality relations (17),

C(p)g + C(g)p = 0. (18)

Substitution of the time derivatives from (15) and](16) ittics equation leads to the following
expression for the Lagrange multiplier vector

A = [C(g) C<q)T}‘1C<Q>gqlT- (19)

In particular, it is noticed that the Lagrange multiplieesish in the absence of external loads,
implying that the homogenous equations with the presemn fof the inertial matrix can be
solved without explicit introduction of constraints. Stihgion of the Lagrange multiplier vec-
tor (19) into the dynamic equation of motidn {16) gives

ov

BT (20)

p = —G(p)"I'G(p)a — (I - C(a)"[Cla) C(a)"] " Cla))
It is seen that the elimination of the Lagrange multiplieesthe constraint derivative is equiva-
lent to subtracting the projection of the external potdigtiadient on the deformation modes via
C(q) from the unconstrained gradient, leaving only the comptsassociated with the rota-
tion modes. This is similar to the result in [3] when eliminatthe single scalar normalization
constraint from the four-component quaternion represemaf rigid-body rotation.

4 STATE-SPACE TIME INTEGRATION

The basic idea of conservative time integration is to usentegrated form of the evolution
equations. Hereby the discretized form of the equations @fan can be designed to yield
the correct incremental change of energy and momentum ofieita time intervalA¢ from
t, to t,.1. This is different from collocation based methods wheredfaations of motion
are matched at discrete points in time. Similarly, when tran#s are included in conservative
methods via Lagrange multipliers, the role of the Lagrangéipiiers is to ensure satisfaction
of the integrated form of the constraints constraints olaerdurrent interval, and thus these
are associated with interval rather than the end points. MAdhrumerical time integration is
initiated from a state that satisfies the constraints, theduction of the corresponding incre-
mental form of the constraints over the integration timeiwls will lead to satisfaction of the
constraints at the integration times.
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A consistent discretization obeying conservation of epengd momentum can be derived
by equating the finite increment of the Hamiltonian to zemo, a

OH OH
* L ApT =/ = 21
g7 + Ap o7 0, (21)

where the asterisk denotes the finite derivatived aforresponding to the increments)” and
ApT. The individual terms can be identified from [14). The kinethergy is a biquadratic
form in g andp, hence the increment can be expressed as twice the prodocedéctor plus
the increment of the other factor. The potentidlq) is introduced via of its finite derivative
0V./0q, see e.g. [6], while the discrete form of the constraintkfes from the increment of
@(3). This is a homogeneous quadratic forngimnd can be represented by a combination of
increments and mean values. The role of the Lagrange matspl is to prevent violation of
the internal constraints at the end of the interval whendlage satisfied initially, hence these
are introduced as effective mean values representing tbleirover the interval. Hereby the
discretized equations of motion take the form

AH(q,p) = Aq”

0H, T lAT S
A = G = AG@TIG(a)p. (22)
. od. NT1-1Em N Vi 1
Ap = -G =~ AGEIIIGEE - A |G - c@ry. (@)

These equations constitute a clear equivalent to the agmii evolution equations ([15) and
(@6), when the respective gradients are introduced via fimitie derivatives.

As in the continuous case it is advantageous to eliminatexpbcit dependence of the La-
grange multiplier using the incremental form of the orthaagjity relation between displacement
and momentuni(17),

C(p)Ag + C(q)Ap = 0. (24)
Upon insertion of the increments frofn (22) ahd|(23), sofmmghe Lagrange multiplieA and
back-substitution intd (23), the dynamic equation takeftine

Ap = — AtG(P)I'G(P)q — At (1 - C(@)[c(@) C(@)]
+ AtC(@)" X

_\ Vi
C(q>) oq” (25)

-1

with

X = [C@C@T] " [C@G(P) + C(PG(@)]I "GP (26)
The dynamic equation (25) is the discrete analogue fo (20.t&rm including\, is merely an
artefact of the discretization. However, it must be inclideorder to ensure proper conserva-
tion of energy.

4.1 Integration algorithm

The equations of motio (22) and_{25) are conveniently sbkienultaneously by means
of Newton-Raphson iterations where the elements of thewasvector = [r],r]" are de-
fined as

r, = Ag— AtG(@)"I'G(q)p, (27a)

©

—— lc(ﬂ/; N (8@*

_ T 7—1 r _ ~a\T
= AP+ ALG(R)IGP)a + Ar| 8q> A—C(q) )\} (27b)
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Table 1: Conservative time integration algorithm.

1) Initial conditions:
ug = [ag,pg]
2) Prediction step:
u=u,,
3) Residual calculation:
r =r(q,p) from (21).

4) Update incremental rotation parameters:
Kij = 8ri/8uj,
Su=—Klr.
u=u+du,
If ||Ir|| > e repeat from 3).

5) Return to 2) for new time step, or stop.

The residual is reduced iteratively to zero by use of theglirzed increment corresponding to
changes in kinematics &t . This is performed in terms @lu = [6q”, 5p”]* via the equation

Kéu = —r, (28)
where the elements of the tangential stiffness madtriollow from partial differentiation as
Kij = 8ri/8uj . (29)

The implementation of the algorithm is illustrated in psewdde form in Tablell.

5 NUMERICAL EXAMPLES

The accuracy and conservation properties are illustraggd/d simple examples, - a freely
rotating brick and steady precession of a Lagrangian topgiaaitational field.

5.1 Free rotation of a rigid body

First the properties of the homogeneous form of the algarjthe. withV'(q) = 0, are
considered by application to free rotation of a rigid bodjnieTmoment of inertia tensor with

e ey ¥ L AN, W)

10— ~. P
W s AL

5]
/ e
<

| ,‘ = ‘ ‘ ‘
-5¢ ! / i ..#.*:.M_—.._&- ks .
A A ~ =16 fmcee oo cmmmmse e © e e
: / o = 10
: w
-10f - === i C—_ = wg 1 prmd
: <] 10"
0 1 2 4 5 6 0 1 2 3 4 5 6
t t

Figure 1: (a) Local angular velocity components, (b) Retadirror on energy, (c) relative error on length of angular
momentum vector.
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respect to the center of mass is chosed as diag13, 5, 10], which is equivalent to a box
with side lengthg1, 3, 2] and masd2. The motion is initiated by the initial angular velocity
wo = [0,0.05,10]7 leading to non-trivial rotation in which the body is revedsat regular
intervals, see e.g. [3].

The unstable motion is illustrated in Figy 1(a) in terms oflial angular velocity where the
sign change invs corresponds to the case where the box is turned upside dote reBults
are evaluated for the time stép = 0.01 and an iteration tolerance ef = 108, which leads
to conservation of the total mechanical enefgyand the length of the local angular velocity
vector||L || within a relative error ofl 0~'° as illustrated in Fig11(b) arid 1(c).

5.2 Steady precession of top in gravitational field

This example considering a Lagrangian top in a gravitatifield is used to illustrate the
properties of the algorithm wheVi(q) # 0. The special case of steady precession without
nutation is considered. The top is represented as a conkstsated in Fig[ 2(a) with height
h and, max radius = h/2 and massn = prr?/3 with mass density i = 2700. The center
of mass is located at a distante- 3h/4 from the tip, whereby the local moments of inertia
become 5 5

2 2 2 2
Jl—Jg—%m(élr + h*) + mil*, Jg—Emr.
The top is located in a uniform gravitational field with a@raktiong = 9.81. In order to exhibit
steady precession without nutation the following relatiust be satisfied for the nutation angle

6, the rate of precessighand the spin velocity,

[ Jy — J-
mg. X 2 3
J3p J3

b = ¢ cos(bh),

see e.g. Goldstein|[[5]. The initial conditions correspamthe ones used in|[2] and/[3}, = 10
andf, = /3.

Figure 2: (a) Configuration of rotating top. (b)-coordinate for center of mass. (e}-coordinate for center of
mass.At = 0.01 (—-), At = 0.005 (— —), Analytical (- - -).

Simulations are performed for a time step/®f = 0.01 and an iteration tolerance ef =
1078, For these parameters the conserved gquantities, namelyebbanical energy and the
vertical component of the angular momentum, are consenrvihvan accuracy of0~°. The
x1 andxz-coordinates of the center of gravity are illustrated asftitidline in Fig. [2(b) and
[2(c). The results show a significant period error comparetthdéoanalytical solution (dotted
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line), which leads to nutation since the criteria for stepogcession is violated. This issue was
discussed in[3]. However, when the time step\af= 0.005 is used, the error is decreased by
a factor of four as illustrated by the dashed line in Fig. Zbd[2(c), thereby illustrating the
second order convergence of the present algorithm.

6 CONCLUSIONS

A conservative algorithm for rigid body rotation has beeraleped using a convected set
of 3 x 3 orthonormal base vector components as generalized desplus. The equations of
motion are derived from an augmented Hamiltonian wherel hgidy constraints equivalent to
vanishing of all Green strain components are included\liagrange multipliers. However, in
the present formulation it is illustrated that these canlimeieated by use of a a set of orthogo-
nality condition between the generalized displacemendslagir conjugate momentum vector,
leaving only a projection of the external potential gratdlieA consistent time discretization
scheme satisfying the conservation laws of energy and mameis identified by considering
a finite increment of the Hamiltonian. Furthermore, it isslirated that when Lagrange multi-
pliers are included in a conservative method, they servdeaa®the effective reaction forces
needed to uphold the constraints over a finite time intearad, thus they should be considered
as interval bounded quantities rather than associatedtagtend interval points.
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