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1 Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital, Hvidovre, Denmark
2 Center for Neuropsychiatric Schizophrenia Research and Center for Clinical Intervention and Neuropsychiatric Schizophrenia Research,

Copenhagen University Hospital, Psychiatric Center Glostrup, Denmark
3 DTU Informatics, Technical University of Denmark, Lyngby, Denmark
4 Department of Neurology, Psychiatry and Sensory Sciences, Faculty of Health Sciences, University of Copenhagen, Denmark

Abstract

Since working memory deficits in schizophrenia have been linked to negative symptoms, we tested whether

features of the one could predict the treatment outcome in the other. Specifically, we hypothesized that working

memory-related functional connectivity at pre-treatment can predict improvement of negative symptoms in

antipsychotic-treated patients. Fourteen antipsychotic-naive patients with first-episode schizophrenia were

clinically assessed before and after 7 months of quetiapine monotherapy. At baseline, patients underwent

functional magnetic resonance imaging while performing a verbal n-back task. Spatial independent component

analysis identified task-modulated brain networks. A linear support vector machine was trained with these

components to discriminate six patients who showed improvement in negative symptoms from eight non-

improvers. Classification accuracy and significance was estimated by leave-one-out cross-validation and per-

mutation tests, respectively. Two frontoparietal and one default mode network components predicted negative

symptom improvement with a classification accuracy of 79% (p=0.003). Discriminating features were found in

the frontoparietal networks but not the default mode network. These preliminary data suggest that functional

patterns at baseline can predict negative symptom treatment–response in schizophrenia. This information may

be used to stratify patients into subgroups thereby facilitating personalized treatment.
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Introduction

In schizophrenia, symptoms are often divided into posi-

tive symptoms, such as hallucinations, delusions and

disorganized thinking, and negative symptoms, such as

anhedonia, alogia and avolition. Negative symptoms are

characterized by an absence of normal behaviour and

share many characteristics with the cognitive deficits also

present in schizophrenia patients. For example, unlike

positive symptoms, negative symptoms and cognitive

impairment : both remain relatively stable over

time (Harvey et al. 2006) ; both respond poorly to anti-

psychotic medication including second generation anti-

psychotics (Lieberman and Stroup, 2011) ; both are good

predictors of functional outcome (Allott et al. 2011) ; both

are associated with dysfunction in similar brain regions

(Williamson, 2007).

Working memory (WM) is often impaired in schizo-

phrenia (Lee and Park, 2005) and has been directly linked

to the presence of negative symptoms (Seamans and

Yang, 2004). While neuroimaging studies have failed to

pinpoint a specific region of dysfunction relating to ob-

served WM deficits (Glahn et al. 2005), they have con-

sistently shown impaired functional connectivity within

networks activated by WM tasks (Schlosser et al. 2003;

Meda et al. 2009 ; Henseler et al. 2010). Of note is that one

study was able to differentiate schizophrenia patients

from healthy control subjects with 96% accuracy based

on functional connectivity during an n-back WM task

(Meyer-Lindenberg et al. 2001). These findings of dys-

connectivity tie in with the notion that schizophrenia is

primarily associated with impairment of functional inte-

gration within brain networks rather than affecting neu-

ronal processing in a single brain area (Stephan et al.

2009).
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In the present study, we employed a multivariate ap-

proach, which allows the detection of subtle large-scale

alterations in network dynamics that have been proposed

to underlie schizophrenia. The strength of using a multi-

variate classification approach is exemplified by recent

work showing that spatially distributed information in

brain tissue in schizophrenia patients at baseline

predicted the frequency of psychotic episodes at 6 yr

follow-up (Mourao-Miranda et al. 2012). Although this

multivariate approach is fundamentally data-driven,

the features that are selected to make the classification are

driven by theory. Both task-positive and task-negative

networks are implicated in the dysfunctional working

memory processes in schizophrenia (Anticevic et al.

2011). Considering the many similarities between nega-

tive symptoms and cognitive impairment, we hypothe-

sized that the functional networks underlying working

memory at pre-treatment baseline in antipsychotic-naive,

first-episode patients would be predictive of negative

symptom improvement after 7 months of atypical anti-

psychotic treatment with quetiapine. This study is partly

motivated by the need for clinical aids in order to guide

treatment choice in the clinic, and also by the need to

better understand the underlying pathophysiology of

symptoms that respond poorly to drug treatment.

Method

Participants

Fourteen antipsychotic-naive, first-episode patients (11

male and three female) were clinically assessed and

scanned with magnetic resonance imaging (MRI) at

baseline and clinically reassessed 6.89 (S.D.=0.57) months

after quetiapine drug treatment at clinically efficacious

doses (mean dose=518 mg; S.D.=291 mg). Patients were

recruited as part of a larger prospective study on first-

episode schizophrenia. Structural and univariate func-

tional MRI (fMRI) findings have been reported elsewhere

(Ebdrup et al. 2010, 2011 ; Nejad et al. 2011). A total of 17

patients of whom we had fMRI data at baseline were

followed up after quetiapine treatment at 7 months. Two

were excluded based on poor imaging quality and one

patient was excluded based on missing symptom assess-

ment data.

Inclusion criteria were a diagnosis of schizophrenia, no

prior exposure to antipsychotic medication, aged

18–45 yr, no medical or neurological co-morbidity and no

history of significant head injury. MRI scans were with-

out pathology as evaluated by a neuroradiologist.

Diagnoses were based on the schedules for clinical as-

sessment in neuropsychiatry (SCAN), version 2.1 (Wing

et al. 1990). Duration of untreated illness (DUI) was esti-

mated from clinical interviews, records and, where

possible, interviews with relatives. DUI was defined as

the time between onset of unspecified psychotic symp-

toms to the date of the MRI scan. Psychopathology was

assessed with the positive and negative syndrome scale

(PANSS; Kay et al. 1987) by trained raters. Interviews

were video-recorded for validation purposes. An intra-

class correlation of 0.92 was achieved in a two-way mixed

effect model of 10 random interviews. All participants

were right-handed as assessed by the Edinburgh hand-

edness inventory (Oldfield, 1971). For all participants

parental-socioeconomic status (P-SES) was assessed

(Hansen, 1986). Six patients were prescribed benzodia-

zepine but abstained on the day of MRI scanning. One

patient received SSRI medication (fluoxetine) at the time

of scanning and two patients last received SSRI medi-

cationo16 months prior to study inclusion. Four patients

fulfilled lifetime DSM-IV criteria for substance abuse, two

of whom had no history of abuse for the past year and

one had none for the past month. One patient had

smoked cannabis on a few occasions in the month prior to

the MRI scan. Substance dependence was an exclusion

criterion. All subjects had a negative urine screening for

substance intake before the examinations.

The study was conducted in compliance with the

Helsinki II Declaration and approved by the Ethics

Committee of the Capital Region (H-KF-01-78/97). All

participants gave written consent after receiving a writ-

ten and oral description of the study.

Experimental working memory task

We used the verbal n-back task to probe working mem-

ory functional networks. This task has been found to re-

liably activate known working memory areas (Rottschy

et al. 2012) and has been used extensively in schizo-

phrenia research (Glahn et al. 2005). The verbal n-back

task consisted of four conditions : rest ; 0-back; 1-back;

2-back. Participants performed seven blocks of each con-

dition in a pseudo-random order. During the rest con-

dition, a fixation cross was continuously displayed and

subjects lay still with their eyes open. During the n-back

conditions, 15 letters were presented for 0.5 s in the centre

of the screen every 2 s. Participants pressed the response

key ‘yes’ with their right index finger to every stimulus

that was presented in the previous trial for the 1-back

condition or two trials previously for the 2-back con-

dition. In the 0-back condition, participants were in-

structed to respond ‘yes’ whenever the letter ‘X’

appeared on the screen. On average, each block contained

four targets out of 15 stimuli. Subjects responded to non-

targets by pressing the response key ‘no’ with their right

middle finger. Participants performed a practice run

outside the scanner.

MRI

MRI was performed using a 3-T Siemens Trio scanner

(Siemens, Germany). A high-resolution anatomical brain

scan was acquired using a 3D T1-weighted sagittal mag-

netization prepared rapid gradient echo (MPRAGE) se-

quence of the whole head (TR=1540 ms; TE=3.92 ms;

1196 A. B. Nejad et al.



flip angle=9x ; voxel size=1 mm3 ; 192 slices). Echo

planar imaging (EPI) was used to measure blood oxygen

level dependent (BOLD) signal as an index of regional

neural activity (TR=2000 ms; TE=30 ms; flip an-

gle=90x ; FOV=240 mm; voxel size=3.8 mm, isotropic

resolution). Each acquired brain volume consisted of

31 contiguous slices oriented parallel to the anterior

commissure–posterior commissure plane. A total of 477

whole-cerebrum measurements were acquired dur-

ing WM task performance. We also acquired a B0 field

map (TR=400 ms; TE1=5.19 ms; TE2=7.65 ms; flip

angle=60x ; distance factor=25%; FOV=240 mm; 31

slices ; slice thickness=3 mm).

fMRI data processing

Pre-processing was conducted with SPM5 (Wellcome

Trust Centre for Neuroimaging, UK). To correct for

scanner gradient nonlinearities, the structural MPRAGE

image was unwarped before being normalized to the

Montreal Neurological Institute (MNI) template using the

VBM5.1 toolbox. The EPI images were unwarped using a

voxel displacement map created from the gradient non-

linearity and acquired B0 field maps (Andersson

et al. 2001). Subsequently, the mean EPI image was co-

registered to the MPRAGE image. All EPI images were

then realigned to the mean EPI image. Next, EPI images

were transformed into MNI space (2 mm isotropic resol-

ution) by applying the spatial normalization transform-

ation parameters of the MPRAGE image. Finally, the EPI

images were smoothed with a Gaussian kernel of 8 mm

full-width half-maximum.

Demographic and behavioural data analyses

Statistical analyses were performed with SPSS version 18

software. Paired t tests tested for clinical changes in

PANSS scores from baseline to follow-up. Patients were

grouped according to improvement on the PANSS nega-

tive symptom scale by subtracting patients’ negative

symptom score at follow-up from their baseline score.

Percentage changes were calculated after transforming

the PANSS scores from interval to ratio scale (Obermeier

et al. 2011). We used the traditional threshold of a 20%

reduction in PANSS symptom scores (Mortimer, 2007) to

define patients as negative symptom improvers.

Mann–Whitney U tests tested for group differences be-

tween improvers and non-improvers on all PANSS

scores, mean quetiapine dose, DUI, age and handedness

scores. Sex ratio, benzodiazepine prescriptions and P-SES

were analysed for between-group differences with x2

tests.

For each n-back condition, we calculated the mean re-

action time (RT) and mean signal detection sensitivity, d ’.

RT was measured from the time of stimulus presentation

until the response. The sensitivity measure, d ’, which in-

dicates how well participants are able to respond cor-

rectly to both targets and non-targets, was calculated as

the Z-transform of the hit rate minus the Z-transform of

the false-alarm rate (MacMillan and Creelman, 2005).

Higher values of d ’ denote better WM performance.

A repeated-measures general linear model tested for

group (improvers, non-improvers) and group-by-WM

load interaction effects. WM load (1-back and 2-back) was

a within-subject factor. RT and d ’ were dependent vari-

ables. Significance was set at a two-tailed level of 0.05.

fMRI data analysis

The fMRI data analysis proceeded in the following steps :

(1) selection of features : spatial independent component

analysis (ICA) was used to extract temporally coherent

functional networks (i.e. components) from fMRI signals.

Those components that showed the strongest associations

with the task were selected for further analyses ; (2)

classification: a linear support vector machine (SVM)

classifier was employed to determine whether the infor-

mation contained in the selected functional networks

distinguished patients who would later go on to improve

in negative symptoms from those who would not ; (3)

visualization: finally, we visualized the brain areas which

best differentiated the two groups by use of weight maps.

Selection of features

Spatial ICA for group analysis was run using the Group

ICA of fMRI Toolbox (http://icatb.sourceforge.net, ver-

sion 2.0c). Spatial ICA reduces the functional imaging

data into time-courses and associated spatial maps,

which account for most of the variance in the temporal

data. The brain areas within the resulting spatial maps

share a common pattern in their time series. Those spatial

maps whose temporal patterns show the strongest cor-

relations with onset of task conditions are presumed to

signify task-related networks.

As a first step, the dimensionality of the pre-processed

fMRI data from all subjects was reduced by singular

value decomposition to 20 dimensions per subject and

temporally concatenated. Independent components,

a priori set to 20, were then estimated from the aggregate

data using the Infomax algorithm. We estimated 20 in-

dependent components as this number has previously

been shown, in a study using a similar verbal n-back task,

to divide data into meaningful task-related networks

(Gordon et al. 2012). Next, subject-specific spatial maps of

each component were generated through back recon-

struction of the group components onto subject-specific

functional data, after which individual component maps

were Z-transformed with voxel values expressing signal

deviation from the group-averaged component (higher

voxel values indicating greater expression of the group

component’s temporal pattern).

Finally, multiple regression of the 1-back and 2-back

WM task parameters against the time series of the group

mean components identified those components which

were strongest associated with the changes in the task,

Brain activity predicts outcome in schizophrenia 1197



i.e. task-related components representing networks

modulated by WM processing. These components were

then used to train a classifier in distinguishing negative

symptom improvers from non-improvers.

Classification

Machine learning classifiers attempt to find a dividing

plane, given the data, which best separate sets of grouped

data. We used a linear SVM (Cortes and Vapnik, 1995) as

our classifier using LIBSVM version 3.1 software (http://

www.csie.ntu.edu.tw/ycjlin/libsvm). SVMs are well-

suited for multivariate pattern discrimination between

two classes of high dimensional data, i.e. for group

analysis of functional neuroimages. The sequential mini-

mal optimization algorithm, incorporated in LIBSVM,

was used to define the hyperplane that best separated

data labelled as negative symptom improvers and non-

improvers. The C-parameter, which penalizes for incor-

rect predictions, was fixed at the default setting of 1.

Classification accuracy was estimated by leave-one-out

cross-validation. The classifier was trained on all data

labelled as a member of negative symptom improvers or

negative symptom non-improvers. One data set re-

mained unlabelled and was used to test whether the

trained classifier was able to correctly classify it as be-

longing to the ‘improver’ or ‘non-improver’ group. This

procedure was repeated until each subject’s data was left

out of classifier-training and used as a test data set. The

accuracy rate of classification was indicative of the per-

centage of times the classifier correctly identified the un-

labelled data sets. We further calculated sensitivity

(proportion of true positives, i.e. correctly classified im-

provers) and specificity (proportion of true negatives, i.e.

correctly classified non-improvers).

The statistical significance of the classifier was tested

by rerunning the leave-one-out procedure on 1000 ran-

dom permutations of the training-set class labelling. The

p-value was thus a non-parametric indication of how of-

ten a classifier trained on a random class labelling could

perform with better leave-one-out accuracy than the

classifier trained on the true labelling of improvers and

non-improvers.

Visualization

When applying SVM, it is possible to obtain voxel values

indicating how important a given voxel is for defining the

dividing hyperplane between two classes. These values,

or classifier weights, can be used to identify brain areas

which make a strong contribution to classification. For

this, we constructed reproducible activation volumes

using the procedure outlined in Rasmussen et al. (2011)

employing the NPAIRS split-half resampling technique

(Strother et al. 2002). This method estimates a re-

producible activation map of Z-scores by plotting

the similarity of classifier weights obtained from 200 in-

dependent split-half samples. The resulting volumes

were thresholded at Bonferroni’s corrected p value

of 0.05. The surviving clusters were those which were

reproducibly important for the classifier to draw the

dividing hyperplane between negative symptom im-

provers and non-improvers.

Results

Demographic and behavioural data analyses

Demographic and clinical data are presented in Table 1.

Patients improved significantly on the positive symptom

subscale after 7 months of quetiapine treatment (t13=4.0 ;

p=0.002). However, we did not observe any significant

improvements from baseline to follow-up on the nega-

tive, general or total PANSS scores (p>0.15 for all).

For the negative symptoms, six patients with positive

difference scores were grouped as negative symptom

improvers (range 18.75–100% change). Eight patients

displaying negative (n=6; range 6.7–100% change) or

null (n=2) difference scores were grouped as negative

symptom non-improvers (Table 2). Two of the patients

that we grouped as ‘improvers’ fell just below our pre-

defined threshold at a symptom reduction of 19%,

whereas the rest displayed >25% symptom reduction.

Nevertheless, the large gulf between ‘improvers’ and

‘non-improvers ’ (>19%) indicates that there was a

qualitative clinical difference between our defined

groups. Handedness, P-SES, mean quetiapine dose, ben-

zodiazepine prescriptions and sex ratio were not signifi-

cantly different between improvers and non-improvers

(p>0.2 for all). Negative symptom improvers were sig-

nificantly (U=7.0 ; Z=x2.19 ; p=0.023) younger than

non-improvers, but did not differ in DUI (p=0.34). The

baseline PANSS negative symptom subscale scores dif-

fered significantly between the improvers and non-

improvers (U=8.5 ; Z=x2.01 ; p=0.043), otherwise no

significant differences were found on the PANSS total or

other subscales (p>0.28 for all). Finally, improvers and

non-improvers did not show any significant between-

group differences or interactions in d ’ (p>0.70 for all) or

Table 1. Demographic and Positive and Negative Syndrome

Scale (PANSS) assessments at baseline and follow-up for all

study participants

Baseline Follow-up

Mean S.D. Mean S.D.

Age (yr) 26.78 4.99

Edinburgh handedness score 97.61 6.25

Negative PANSS 21.21 6.05 20.71 5.24

Positive PANSS 20.64 3.59 16.21* 3.85

General PANSS 40.64 8.54 39.57 9.49

Total PANSS 82.50 13.89 76.50 17.52

* Significant improvement over time.
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RT (p>0.17 for all) on the n-back task. All participants

performed the n-back task to an acceptable standard with

a mean of 90 correct trials out of a possible 105 trials

(S.D.=8.4) in the 2-back condition, ensuring that all

patients were engaged in the task.

ICA and classification results

The regression of the group mean components’ time

series on the 1-back and 2-back WM task parameters

identified a right-lateralized frontoparietal WM network

component (R2=0.367), a default mode network (DMN)

component (R2=0.275) and a bilateral frontoparietal WM

network component (R2=0.187; Fig. 1).

These three network components were used to train

the linear SVM classifier. The classification accuracy was

79% (sensitivity=75%; specificity=83.3%), significant at

p=0.003, in spite of the relatively small sample size.

Post hoc classification results

A number of confounding variables differed between the

‘improver’ and ‘non-improver’ groups. Therefore,

classification was rerun with the data grouped according

to these ‘nuisance’ variables in order to investigate whe-

ther classification improved with this relabelling and so

whether these group-differences were driving our re-

sults.

Since the improvers and non-improvers significantly

differed on baseline negative symptom scores (as as-

sessed by the PANSS negative symptom scale), we

trained a linear SVM classifier on high (n=6) vs. low

(n=8) scorers, grouped according to whether they scored

above or below the baseline negative symptom mean

of 21. The classification accuracy declined to 43%

(sensitivity=62.5%; specificity=16.7%), suggesting that

baseline difference in negative symptom scores did not

influence our earlier result.

Also, Lysaker et al. (1997) previously reported that

cognitive impairment could predict the stability of nega-

tive symptoms at 6-month follow-up. To test whether in

our study the WM-related network components pre-

dicted the temporal stability of negative symptoms rather

than the direction of symptom change, we grouped pa-

tients according to the same criteria as the Lysaker et al.

study (stable scorers<4 point change<variable scorers).

Six patients were labelled as stable negative symptom

scorers and eight as variable negative symptom scorers.

Rerunning the leave-one-out cross-validation resulted in

a classification accuracy of 57.14% (sensitivity=16.7%;

specificity=87.5%), suggesting that differences in the

magnitude of negative symptom change between nega-

tive symptom improvers and non-improvers were not

driving our classification results.

Finally, we tested whether the significant age differ-

ence between the groups was driving the classification by

grouping the patients according to whether they scored

above the mean age of 27 yr (n=7) or below (n=7). The

classification accuracy dropped to 50% (sensi-

tivity=42.9%; specificity=57.1%), suggesting that

the age difference did not influence the classification

accuracy of the negative symptom improvers vs. non-

improvers.

Mapping classifier weights

The reproducible activation map shows the brain regions

which were most reproducibly distinct between the im-

provers and non-improvers (Fig. 2). These regions were

Table 2. Demographic and positive and negative syndrome scale (PANSS) assessments for

negative symptom improvers and non-improvers

Negative symptom

improvers (n=6)

Negative symptom

non-improvers (n=8)

Mean S.D. Mean S.D.

Baseline age (yr) 23.93 3.76 28.92* 4.89

Edinburgh handedness score 98.33 4.08 96.99 7.96

Baseline negative PANSS 24.83 7.55 18.50* 2.78

Baseline positive PANSS 20.33 5.28 20.88 1.96

Baseline general PANSS 39.83 5.91 41.25 10.47

Baseline total PANSS 85.00 15.39 80.63 13.42

Positive PANSS differencea 4.50 6.12 4.37 2.26

General PANSS differencea 2.83 6.94 x0.25 10.33

Total PANSS differencea 12.83 12.04 0.87 15.24

Mean quetiapine dose (mg) 436 290 578 295

Duration of untreated illness (wk) 169 234 317 324

* Significant difference between groups.
a Values reflect means of difference scores (baseline minus follow-up symptom scale scores)

with positive values denoting improvement.
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mainly located within the WM network, including pre-

cuneus, right superior and inferior parietal and right

dorsolateral, ventrolateral and medial prefrontal cortices.

Generally, these regions expressed low values in the

subject component maps, values of which are indicative

of the extent the voxel’s time-course covaries with

the time-course of the network represented in the mean

group component. Low values therefore indicate low

contribution to the variance of the network’s time-course

and thereby suggest that these clusters were not major

nodes of the frontoparietal networks.

Post hoc comparison of features

In order to estimate how important each component was

for differentiating patients who later improved on nega-

tive symptoms from those who did not, we one-by-one

removed a component from the classifier and repeated

leave-one-out cross-validation (Table 3). Removing the

DMN component did not change the accuracy of the

classifier in discriminating between negative symptom

improvers and non-improvers. Training the classifier

on each component separately revealed that the right-

lateralized WM network component performed best.

Discussion

WM-related functional connectivity patterns at

pre-treatment baseline predicted the improvement in

negative symptoms with an accuracy of 79% in anti-

psychotic-naive schizophrenia patients who were subse-

quently treated with quetiapine. The frontoparietal WM

networks rather than the DMN contained most of the

predictive information regarding the later improvement

in negative symptoms. Moreover, the classifier trained on

the more right-lateralized frontoparietal network com-

ponent performed best of the classifiers trained on indi-

vidual components. Accordingly, the reproducibility

activation maps highlighted the right prefrontal and

parietal clusters of the WM components as those brain

regions where the activity pattern contributed most to the

Fig. 1. Independent components of interest maps. Axial slices showing the three components used for classification (thresholded at

z-score of 1.7). Red colour map indicates the bilateral frontoparietal component ; green colour map indicates the right-lateralized

frontoparietal component ; blue colour map indicates the default mode network component.

Fig. 2. Reproducible activation maps. 3D brain showing areas which are most informative to the classifier (thresholded at two-tailed

Bonferroni’s corrected p=0.05 ; minimum cluster size of 20 voxels). Colour maps correspond to the respective component – red and

green for the frontoparietal working memory components.
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discrimination between patients who showed subsequent

improvement in negative symptoms from those who did

not. The right-lateralized frontoparietal component also

fitted best with the WM task conditions, suggesting that

the most cognitively-engaged network best predicted the

course of negative symptoms. Critically, our findings

cannot be attributed to an overt dysfunction of WM since

negative symptom improvers and non-improvers did not

differ in WM performance.

Although the parietal and prefrontal regions generally

constitute key nodes in the WM network (Champod and

Petrides, 2007), most of the identified clusters in the re-

producibility activation maps did not express strong

connectivity within the frontoparietal networks in either

the negative symptom improving or non-improving

group. In agreement with this observation, a recent study

applying graph theory to analyse resting-state functional

brain connectivity in schizophrenia revealed that it was

particularly the weak connections within network or-

ganization that were altered in schizophrenia patients

(Bassett et al. 2012). Since alterations in these weak con-

nections were found to correlate with cognition, as well

as negative symptom measures, the authors concluded

that dysconnectivity of peripheral rather than central

network nodes might underpin cognitive deficits (Bassett

et al. 2012). Our data suggest that baseline connectivity in

weak connections of the WM network may also deter-

mine which course negative symptoms subsequently take

during antipsychotic treatment.

Regions belonging to the DMN were largely absent in

the reproducibility activation maps. This indicates that

the classifier did not find voxels pertaining to the DMN

component important in order to differentiate improvers

from non-improvers. The lack of distinguishing features

in the DMN is further supported by the post hoc com-

parison of features where removing the DMN component

did not change the accuracy of the classifier. Some

previous findings (Bluhm et al. 2007; Lui et al. 2009), but

not all (Garrity et al. 2007), have suggested that DMN

connectivity is correlated with negative symptom sever-

ity. Although our findings do not necessarily conflict

with an association between DMN connectivity and

negative symptoms, they do suggest that the DMN con-

tains little predictive value for negative symptom treat-

ment response.

Quetiapine is a second generation antipsychotic with a

complex receptor profile. Its main therapeutic effect on

cognition and negative symptoms, if any, is thought to

stem from its dopamine 2 (D2) and serotonin 2A (5-HT2A)

receptor antagonism, which leads to an overall increase

in dopaminergic activity in the prefrontal cortex (da Silva

Alves et al. 2008). In healthy subjects, pharmacological

modulation of dopaminergic neurotransmission has

produced differential effects on cognitive performance

and connectivity. The dopamine agonist bromocriptine

increased frontostriatal functional connectivity and im-

proved WM performance in low-WM span subjects but

decreased connectivity and worsened performance in

high-span subjects (Wallace et al. 2011). The differential

effect of bromocriptine supports the presence of an in-

verted U-shape relationship between prefrontal dopami-

nergic activity and working memory (Cools and

D’Esposito, 2011). This inverted U-shaped relationship

may also explain the considerable inter-individual vari-

ation of quetiapine’s effect on negative symptom ex-

pression in the present study. It seems that quetiapine,

seemingly by way of dopamine modulation, has either

beneficial or detrimental effects on negative symptoms

that can be predicted by a WM-related measure ; in this

case, frontoparietal connectivity.

Supporting our line of reasoning, previous studies

have suggested that WM-related profiles at baseline can

predetermine treatment response. For instance, the

Val108/158Met catechol-O-methyltransferase genotype,

Table 3. Comparison of features

Negative symptom improvers vs. non-improvers

Accuracy

(%)

Sensitivityb

(%)

Specificityb

(%)

Three components of interesta 78.57 75 83.33

Working memory

network components

78.57 62.5 100

Default mode network component 50.0 62.5 33.33

Right-lateralized working

memory network component

64.29 62.5 66.67

Bilateral working memory

network component

57.14 50 66.67

a The two working memory network components and the default mode network

component.
b True positives were those instances where improvers were classified accurately ; true

negatives were those instances where non-improvers were classified accurately.
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which has been associated with WM performance and

brain activity as well as risk for schizophrenia (Tan et al.

2007), predicted treatment outcome in schizophrenia

patients with less WM improvement (Weickert et al. 2004)

and poorer negative symptom outcomes (Bertolino et al.

2004, 2007) in Val homozygotes than Met allele carriers

after antipsychotic treatment. van Veelen et al. (2011)

found that pre-treatment WM prefrontal hyperactivity, as

measured with fMRI, predicted worsened general treat-

ment response after 10 wk. Furthermore, increases inWM

(Honey et al. 1999 ; Meisenzahl et al. 2006) and emotional

(Fahim et al. 2005 ; Stip et al. 2005) task-related prefrontal

activity after antipsychotic treatment have been found to

parallel improvements in negative symptoms.

We did not find a direct relationship between the ex-

pression of negative symptoms and WM functional con-

nectivity at baseline. Classifying patients according to

baseline negative symptom scores demonstrated much

poorer accuracy (43%) than classifying based on treat-

ment response. Also, the stability of negative symptoms

could not be predicted based on WM-related network

activity at baseline. Groups defined by magnitude

of change in negative symptom scores were poorly

classified with 57% accuracy. It therefore seems that

pre-treatment functional connectivity of WM-related

networks can predict the treatment response of nega-

tive symptoms but neither their temporal stability nor

baseline severity. Furthermore, age differences did not

seem to be driving the classification results between the

negative symptom improvers and non-improvers.

However, these findings do not rule out that the afore-

mentioned factors and perhaps others such as history of

substance abuse, current non-antipsychotic medication

use and DUI, can interact with WM brain activity to

predict the course of negative symptom change. Any

possible interaction effects do not undermine our find-

ings but would be interesting avenues to pursue in future

studies.

An important limitation of this study is the relatively

small sample size. The present findings, therefore, need

to be replicated in a larger group of patients. A larger

sample size would have allowed us to adjust classifier

parameters in order to improve classification accuracy.

Nonetheless, we attained reasonable accuracy using a

relatively conservative kernel (linear) and an SVM clas-

sifier with default parameters. We attribute the signifi-

cant results in such a small sample at least in part to the

strict inclusion criteria of our study, which ensured that

we studied a well-defined and relatively homogenous

group of patients.

Finally, it is inherently difficult to dissociate real drug

treatment effects on negative symptoms from spon-

taneous fluctuations in negative symptoms attributed to

the natural course of the disease. These factors can only

be disentangled by including an untreated control group

of schizophrenia patients, which for obvious ethical

reasons is not feasible.

In conclusion, we have demonstrated the applicability

of emerging methods in imaging psychiatry for the pre-

diction of treatment outcomes in schizophrenia.

Identifying neural activity patterns at baseline that pre-

dict treatment resistance will not only contribute to a

better understanding of the neural mechanisms involved

in symptom expression and in determining the course of

the disease, but ultimately may be used to tailor early and

individualized treatment. Such ends might be especially

important for the treatment of negative symptoms and

cognitive deficits in light of their strong association with

functional outcome and the limited effect current anti-

psychotic compounds have on these symptoms. Early

intervention tailored to treat cognitive deficits and nega-

tive symptomsmight improve functional outcomes for all

high-risk individuals, with or without transition to psy-

chosis (Lin et al. 2011). There are currently no aids to help

clinicians tailor treatment to patients or those in at-risk

mental state. The current study will hopefully be one of

many studies to come, which aim to find and refine pre-

dictors of treatment response.
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