
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Simulation of the Cystic Fibrosis patient airway habitats using microfluidic devices

Skolimowski, Maciej; Emnéus, Jenny; Geschke, Oliver; Dufva, Martin; Sternberg, Claus; Molin, Søren

Publication date:
2013

Link back to DTU Orbit

Citation (APA):
Skolimowski, M., Emnéus, J., Geschke, O., Dufva, M., Sternberg, C., & Molin, S. (2013). Simulation of the Cystic
Fibrosis patient airway habitats using microfluidic devices.

http://orbit.dtu.dk/en/publications/simulation-of-the-cystic-fibrosis-patient-airway-habitats-using-microfluidic-devices(d5b89651-490a-4552-ac67-45ee96a671b0).html


 

Simulation of the Cystic Fibrosis patient 

airway habitats using microfluidic devices 

PhD Thesis 

Maciej Skolimowski 

 

Supervisor: Jenny Emnéus (2010-2011) and Oliver Geschke (2008-2010) 

 

Co-supervisors: Martin Dufva, Claus Sternberg, Søren Molin 

Department of Micro- and Nanotechnology 

Technical University of Denmark 

June 2011 



 

 

  

 



 

Abstract 

Many severe infections in humans affect the airways. Different types of pneumonia are major 

causes of morbidity and mortality in patients with various weakening conditions, and often 

ineffective anti-microbial therapies fail to remove the infecting microbes. One of the most severe 

genetic diseases affecting human airways is cystic fibrosis. 

Cystic fibrosis (CF) patients suffer from a genetic defect that influences the salt transport over 

the cell membranes. Due to this effect, the mucus layer becomes very viscous as the defect in salt 

transport inhibit diffusion of and establishment of the important airway surface liquid (ASL). A direct 

consequence of the impaired ASL is the impairment of the mucocilliary clearance mechanisms. This 

results in frequent infections in the airways of CF patients, with the risk of pneumonia. Since bacteria 

infect the lungs of these patients in large numbers, the immune system tries to eradicate the 

infections, but with reduced success. This is due to the fact that the bacteria reside embedded in 

mucus and are more or less recalcitrant to the attack. Instead, the lung tissue is gradually damaged 

by the ongoing immunological exposure, eventually leading to massive pulmonary deficiency and 

death. 

The classical ways of studying CF related bacterial infections, primarily Pseudomonas aeruginosa, 

are either to use animal models or to grow the bacteria in flow cell systems. The use of animal 

models raises ethical concerns and is costly. Besides, CF related animal models are still not ideal, 

mainly because the immune response differs between man and e.g. mouse, and because the lung 

pathology after infection is very different in animals compared to humans. 

In flow cell based systems the bacteria are allowed to form a biofilm on the surface, as in the 

airways, and their growth is then monitored using confocal microscopy. However, this is not either a 

suitable CF model as the human airways are subdivided into aerobic and anaerobic compartments. 

To investigate the different compartments of the human airways system it is crucial importance 

to construct a microfluidic model system in which the oxygen level can be regulated and the 

migration of cells between individual compartments can be controlled and monitored. Furthermore, 

the special conditions in the CF bronchi need to be mimicked as the thick mucus plug present there 

seems to be another essential factor in the failure of treating infections in CF patients.  Therefore, in 

this work we propose novel microfluidic devices that on one hand can mimic different airway 

environments by controlling the oxygen levels and on the other hand can mimic the 

microenvironment of the cystic fibrosis bronchi. 

  



 

  



 

Résumé 

Mange alvorlige infektioner i mennesket påvirker luftvejene. Forskellige typer af 

lungebetændelse er primære årsager til sygelighed og dødelighed i patienter med forskellige 

svækkende omstændigheder hvor ineffektive anti-mikrobiel terapi slår fejl i bekæmpelsen af de 

inficerende mikrober. En af de mest alvorlige genetiske sygdomme  der påvirker de menneskelig 

luftveje, er cystisk fibrose.  

Cystisk fibrose (CF) patienter lider af en genetisk defekt der påvirker salt transporten over 

cellemembranerne. På grund af denne defekt, bliver slimlaget meget viskøst da den defekte salt 

transport hæmmer diffusion og etableringen af den vigtige overflade associerede overflade væske 

(Airway surface liquid, ASL). En direkte konsekvens af den hæmmede ASL er en hæmning af cilia slim 

transporten.  

Dette resulterer i hyppige infektioner i luftvejene hos CF patienter med risiko for 

lungebetændelse. Eftersom bakterier i hobetal inficerer lungerne hos disse patienter,  forsøger 

immunsystemet at fjerne disse infektioner, dog med begrænset held.  Dette skyldes at bakterierne 

lever indpakket i slimlaget og er mere eller mindre modstandsdygtige overfor immunologiske angreb.  

I stedet bliver lungevævet gradvist ødelagt grundet den kontinuerlige immunologiske påvirkning der  

med tiden fører til den massive lunge defekt og død. 

Den klassiske måde at studere CF relaterede bakterielle infektioner på, primært med 

Pseudomonas aeruginosa, er enten i dyremodeller eller ved dyrkning af bakterierne i flow celle 

systemer. Brug af dyremodeller er omkostningskrævende og fører til etiske betænkeligheder.  Ud 

over dette er CF relaterede dyremodeller stadig ikke idelle, primært fordi de immunologiske 

reaktioner afviger kraftigt mellem menneske og eksempelvis mus og ydermere fordi at lunge 

patologien efter infektioner er meget forskellige i dyr sammenlignet med mennesker.  

I flow celle systemer lader bakterierne sig fæstne og danne biofilm på overfladerne, som i 

luftvejene, og deres vækst kan blive monitoreret ved brug af konfokal mikroskopi.   Dette er dog ikke 

et passende CF model system da de humane luftveje er underinddelt i aerobe og anaerobe grene. 

For at udnersøger de forskellige grene af det humane luftvejs system er det er yderst vigtigt at 

konstruere et mikrofluidt model system hvor oxygen niveauerne kan blive reguleret og migrationen 

af bakterierne mellem den individuelle grene kan blive kontrolleret og monitoreret.  

Ydermere, de specielle omstændigheder i CF bronkierne nødvendiggør efterligning da de viskøse 

slim ansamlinger syntes at være en anden essentiel faktor i de mislykkede forsøg i at behandle 

infektioner i CF patienter.  Af denne årsag foreslår vi en nytænkning indenfor mikrofluide systemer, 



 

der på den ene side kan efterligne forskellige luftvejs miljøer ved at kontrollere oxygen niveauer og 

på den anden side kan efterligne de mikromiljøer der eksisterer i bronkier  hos cystisk fibrose 

patienter. 
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3 Introduction 

3.1 Motivation 

Cystic fibrosis (CF) is one of the most spread genetic diseases among European and European-

descendant populations. The disease attacks multiple organs among which, the dysfunction of the 

airways clearance is most severe. So far there is no treatment that can alleviate the effects of this 

disease. CF gradually lowers the quality of life and eventually leads to premature death of a patient 

as a result of the recurrent airways infections and decline in respiratory function of the lungs. Due to 

the development of early diagnostics, the prognosis for the patients and their life expectancy has 

improved over recent years. However, a successful therapy that efficiently can treat the infections 

and stop their recurrence has not yet been realised. There is therefore a need for new therapeutic 

strategies based on improved understanding of the infection cycles and the specific interactions 

between the bacteria and the environment in the host organism. 

The current in vivo models of CF related infections are animal models, among which, the mouse - 

either inbred laboratory mice or transgenic cystic fibrosis mice - are the most widely used. These 

models are far from ideal, mainly because of the differences in immune response and the efficiency 

of airways clearing mechanism between mice and human. Besides, the growing ethical concern of 

using animals for medical research makes it especially important to replace or at least reduce the use 

of animals and move toward the use of better in vitro model systems.  

The present in vitro models are mainly based on flow-cell based systems. These models lack to 

describe the complexity of the different compartments of the human airways as well as the 

interaction between these compartments. Irrespective of the quick advancement in the in vivo and in 

vitro models of the CF airways, there is a need for microfluidic models that better resemble the scale 

and conditions met by invading pathogens. Therefore, an advanced microfluidic cell culture system 

that mimics the environmental conditions in three relevant compartments of the airways, i.e., nasal 

sinus cavities, the conductive zones of trachea, bronchi and bronchioles, and the alveolar aerobic 

zone is required, and was developed during this thesis. 

The ability to provide a high-throughput way of studying differences in metabolism, adaptation 

and genetic variability of bacteria living in the airways compartments with different oxygen tension 
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should allow in the future to develop safer, better and more efficient strategies for treatment of CF 

related infections. 

3.2 Aim of the work 

The primary goal of this project was to develop and apply a novel in vitro microfluidic airways 

model that potentially could replace existing, but insufficient animal models. Using the above 

proposed microfluidic artificial airways model, one can look into the bacterial details in the three 

interconnected compartments, their transmitting interaction and the states of the bacterial 

inhabitants before, during, and after antibiotic treatment. The development of an artificial 

microfluidic model, with particular emphasis on resembling the oxygen microenvironments in the 

different compartments should lead to better understanding of the airways and the interactions 

within the complex lung-airway-nasal sinus system.  

Furthermore, a model of the CF bronchi epithelia covered with a thick mucus layer was needed 

to better understand the hindered diffusion of the antimicrobial agent to the focal point of 

infections. 

3.3 Structure of the thesis 

The content of this thesis is based on the results obtained during the three-year period of the 

author’s Ph.D. studies. The thesis has been divided into three main parts: the biological background 

of CF (chapters 4-5), the microfabrication aspects of developing a microfluidic CF airways model 

(chapter 6-7), and the collection of the core results gathered in the published papers and prepared 

manuscripts (chapter 8). 

Chapter 4 is an introduction to the genetic, physiological and microbiological aspects related to 

CF that needs to be considered and that has led up to the design of the microfluidic CF airways model 

in this thesis. Special attention is put on the known reasons for the common failures in the treatment 

of CF related infections alongside with the hypothesis for the causes of the persistent and recurrent 

bacterial colonisation of the airways. The theories that try to explain the impairment of mucociliary 

clearance as well as the resistance of the P. aeruginosa infections to the treatment of different 

antibiotics are presented. The impact of changes in the oxygen tension in the different 

compartments of the CF airways is emphasized in this chapter. 
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Chapter 5 contains a brief review of the few microfluidics models of different human organs 

reported in recent literature. 

Chapter 6 discusses different ways to control the dissolved oxygen concentration in microfluidic 

devices. The techniques used for measurement of dissolved oxygen at the microscale, with special 

focus on the optical methods are presented in this chapter. 

Chapter 7 describes different aspects of microfabrication of microfluidic systems, and finally 

shows the different solutions pursued in this thesis.  

Chapter 8 contains the collection of original papers and manuscripts.  

Paper I (conference proceeding) presents a novel passive micromixer concept that creates direct 

lamination in a 2D channel. This concept is further described in paper II (full published paper). 

This passive micromixer was further used in the microfluidic airways model described in paper V 

(manuscript). 

Paper III (conference proceeding) reports the work performed towards development of a 

dissolved oxygen gradient generator as part of a microfluidic system that can simulate the 

aerobic and anaerobic conditions in the human airways. This system is further described in paper 

IV (full published paper).  

Paper V (manuscript) contains the description of a modular microfluidic system as a model of the 

CF airways.  

Paper VI (accepted conference proceeding) presents the work towards mimicking the CF bronchi, 

which is followed by Paper VII (manuscript) where this system is described in more detail.  

 

The collection of the papers is followed by chapter 9, that contains some brief conclusions and 

future perspectives of the systems developed in this work. The thesis is concluded by a list of 

references. 
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4 Biological background 

4.1 Human airways 

The human airways consist of at least three independent compartments, the conductive airways 

(the trachea, bronchi and bronchioles), the oxygen exchange compartment also called respiratory 

zone (respiratory bronchioles, alveolar ducts and alveolar sacs), and a third less recognized 

compartment, the paranasal sinuses (maxillary sinuses, frontal sinuses and ethmoid sinuses) (Figure 

1). In the first and the last compartment, the environment is essentially anaerobic or micro-aerobic, 

while the alveoli are highly aerated[1]. Traditionally, the airways are divided into the upper 

respiratory tract (nasal cavity, paranasal sinuses, pharynx) and lower respiratory tract (trachea, 

bronchi, bronchioles and pulmonary alveoli)[2]. 

 

 

Figure 1. The human airways. 

The upper respiratory tract is the home for bacterial flora[3, 4], while the lower respiratory tract 

in healthy persons, usually remains sterile.  
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4.2 Cystic fibrosis 

4.2.1 Mutation in the CFTR gene 

Cystic fibrosis (CF) is a severe genetic multiorgan disease, common in European and European-

descendant populations[5]. A mutation in the Cystic Fibrosis Transmembrane Conductance Regulator 

(CFTR) gene cause dysfunction of the mucosa1[6]. Due to this dysfunction, the secreted mucus is less 

hydrated and therefore much more viscous than in a healthy person. This make the natural 

mechanisms of clearing and renewing of the mucous layer impaired. The epithelia of the exocrine 

pancreas, intestine, hepatobiliary system, male genital tract, exocrine sweat glands and, most 

importantly, the airways are affected by this defect[7]. 

The product of CFTR gene, the CFTR protein, has many roles as an ionic channel and regulator[8].  

The protein plays a main role as the chloride channel and the chloride ions regulator, but it is also 

involved in regulation and inhibition of sodium transport (epithelial sodium channels), regulation of 

ATP channels and regulation of vesicle transport in the cells. The CFTR protein also plays a role in 

acidification of intracellular organelles[9-14]. 

There are more than 1 800 different mutations of CFTR gene[15], but in about 70% of the CF 

cases the mutation is a deletion of three-pairs of nucleotides at position 508 (ΔF508) [16]. These 

three-pairs are coding for phenylalanine[17, 18] and the lack of this amino acid residue results in 

improper folding of the CFTR protein and its quick ubiquitination and degradation[14]. Different CFTR 

gene mutations have been gathered and classified according to its effects by Welsh and Smith[19]. 

4.2.2 Diagnosis of cystic fibrosis 

The final effect of most of the mutations is impaired transport of the chloride ions by the CFTR 

protein. Therefore diagnosis of CF is usually made clinically by measuring of the chloride ions 

concentration in sweat. 

Sweat produced by glands in the dermis contains chloride ions in concentration of approx. 

105 mM and is equal to the concentration of chloride in serum. Sweat is transported from the gland 

to the surface through dermal ducts, where the chloride should be absorbed by the epithelial cells in 

                                                            

1 The membrane lining bodily cavities containing cells that secrete mucus 
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a CFTR-dependent manner (Figure 2). In healthy individuals the chloride concentration in secreted 

sweat is below 40 mM [20]. 

 

 

 

Figure 2. Scheme of the healthy and cystic fibrosis sweat gland[20]. 

A chloride concentration in the sweat above 60 mM, determined at least twice or more by 

quantitative pilocarpine ionophoresis, indicate CF[21]. The need for more than one measurement at 

different occasions arises from the risk of false-positive test results. The temporary increase in the 

chloride concentration in sweat can sometimes occur in the healthy person, especially for older 

adults[20, 22]. 

False-negative sweat test results can occur for patients with CF. There are some CFTR mutations 

(patients homozygous for ΔF508 with additional R553Q mutation in one of the alleles) that masks 

improper chloride channel function[23]. False-negative sweat test results can also occur in 

malnourished patients with pulmonary oedema[24]. Therefore, positive sweat test result should be 

followed by genetic screening. Even the genetic screening, due to the numerous possible mutations 

in CFTR gene, is not always 100% conclusive[20]. 

4.3 The dysfunction of the salt transport in CF epithelia 

The dysfunction of the CFTR protein in conductance and regulation of the chloride transport, 

exemplified for sweat glands (Figure 2), hinder secretion of the fluids by pulmonary epithelial cells. 

This leads to changes in the mucus physical and chemical properties and impairment of the 
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mucociliary clearance mechanism in the airways[25]. There are several theories that try to explain 

this impairment, but two of them seem to be most probable, referred to in literature as ‘high salt’ 

and ‘low salt’ theories[26]. The ‘high salt´ theory assumes that the mucus in CF patients has elevated 

sodium chloride concentration. This phenomenon is explained in the same way as in the case of the 

high chloride concentration in sweat, i.e. a high mucus osmolality deactivates the antimicrobial 

peptides secreted by the epithelia, called defensins. This allows bacteria to successfully colonise the 

airways[27, 28]. 

The ‘low salts theory’ also refers to CFTR proteins, which is involved in control of the sodium and 

chloride ions transport mechanism in airway epithelial cells. In healthy epithelia, CFTR allows the cell 

to reabsorb sodium and secrete chloride ions. A high salt concentration in the mucus, osmotically 

drives the water out from the epithelia and rehydrates the mucus (Figure 3). In CF patients, the CFTR 

protein, acting as a chloride channel, is dysfunctional, and thus hinders the salt transport. This leads 

to high salt concentration in the epithelia and low concentration in the mucus, which stops water 

from rehydrating it[26]. Most of the recent publications assume the ‘low salt’ theory and 

dehydration of the mucus.  

 

Figure 3. Hydration control and salt transport mechanism in airway epithelial cell in healthy individuals and CF patients 

(adopted from [26]). 
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4.4 Mucociliary clearance mechanism in healthy individuals and CF 

patients 

The epithelia of the airways is covered by a layer of airway surface liquid (ASL). This liquid, in 

healthy individual airways, can be further divided into two layers according to the viscosity. The 

lower layer, with low viscosity, embeds the cilia growing out the ciliated epithelial cells. It contains 

mainly water and salts and is about 7 µm thick[29]. This layer is referred to in literature as perciliary 

liquid (PCL). The top layer is more viscous and contains, besides water (approx. 98%), salts 

(approx. 1%) and mucin (approx. 1%)[30]. Mucin is a glycosylated protein secreted in the upper 

respiratory tract and lungs by goblet cells and by Clara cells in the terminal bronchioles[31]. 

These two layers protect the lower respiratory tract from infections. In the healthy person, the 

lower respiratory tract is basically sterile while the upper tract is not, which therefore can be a 

source of infecting germs to the lower tract. The sterility of the lower respiratory tract is maintained 

by the fact that the invading germs adhere to the top viscous mucus layer. This layer is then 

transported up the respiratory tract and is removed either by coughing it out or swallowing. The 

transport of the viscous layer is possible only if the lubricating PCL between the top layer and 

epithelium has low viscosity, implying proper hydration. This transport is facilitated by small cilia 

where each cilium performs a slow movement actuating the flow of the mucus. The linear velocity of 

the mucus is in order of tens of micrometres per second[30]. Therefore, in a healthy person´s airways 

the mucus layer is constantly cleared and renewed by the mucociliary system (Figure 4)[32, 33].  

 

Figure 4. The mucociliary clearance mechanism in healthy individuals and CF patients (adopted from [26] and [29]).  
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4.5 Difference between infection clearance systems in conductive and 

respiratory zones 

The mucociliary clearance mechanism is responsible for keeping the conductive zone of the 

human airways sterile. However, the respiratory zone lacks cilia and submucosal glands and the 

defence system against pathogens works in a different manner than the conductive zone. In order to 

facilitate gas exchange, the barrier between blood and air is very thin in the alveoli. Therefore, the 

immune system has a direct access to the surface of the epithelia in the respiratory zone and can 

efficiently eradicate most of the infections[34]. 

This difference between the conductive and respiratory zones also affects the treatment of an 

infection. The antibiotics administered intravenously or orally have better effects on treating the 

infections in the respiratory zone while being much less effective on the pathogens residing in 

conductive zone[35]. On the other hand, the nebulization of antibiotics allows to affect pathogens in 

the conductive zone in a much more efficient way than in the respiratory zone[36-38]. 

4.6 Infections associated with cystic fibrosis 

Due to the impairment of the mucociliary clearance mechanism, CF patients are afflicted with 

frequent airways infections. The source of the infections is the upper respiratory tract. In healthy 

airways, the sterility of the lower respiratory tract is maintained by the fact that the invading germs 

adhere to the thin mucus layer, which is constantly cleared and renewed by the mucociliary 

system[32]. The mucus in the CF patients airways is very thick and viscous and the patient cannot 

clear the tracts[30]. 

The most common bacteria that colonise the airways of CF infants are Haemophilus influenzae 

and Staphylococcus aureus[8]. The simultaneous infection with both of these pathogens is not 

uncommon. In older patients (3 years old or more) Pseudomonas aeruginosa becomes the 

predominant pathogen[39-41]. Approximately 70% to 80% of CF patients are infected with this 

bacteria before reaching adolescence. This can be a result of the fact that P. aeruginosa is a common 

bacteria in the environment[42], which is spotted as an opportunistic bacteria in humans. Up to 20% 

of CF patients have their gastrointestinal tracts infected with P. aeruginosa[43]. This bacteria is also 

responsible for recurrent infections[44]. 
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4.7 Biofilm formation of P. aeruginosa in CF lungs 

Biofilms are communities of bacteria living in a complex extracellular matrix where cells are 

attached to each other or to a surface. This matrix consist mainly (approx. 75-89% of the 

composition) of proteins, exopolysaccharides[45] and additionally nucleic acids, lipids and 

phospholipids[46, 47]. Bacterial biofilms are very common in all kinds of environments including the 

human body[48], where the most commonly known is dental plaque[49].   

The formation of a biofilm is probably due to the response against unfavourable conditions[50]. 

The first step of the biofilm formation is an initial attachment of a previously planktonic cell2 (Figure 

5 A) to the surface. If the cell does not leave the surface nor is cleared from it, the cell becomes 

irreversibly attached (Figure 5 B). The next generations of the cell stay on the surface. Bacteria will 

start to secrete the matrix, making the surface even more attractive to the following cells and the 

biofilm will grow and mature (Figure 5 C and D). If the conditions for the growth will aggravate, the 

biofilm will start to dissolve and the cells become planktonic once again in order to find a spot with 

more suitable conditions (Figure 5 E)[51]. 

 

 

Figure 5. Biofilm formation and dissolution: (A) bacteria in the planktonic state, (B) attachment to the surface (C) 

biofilm growth, (D) mature biofilm, and (E) dissolution of the biofilm. 

P. aeruginosa, as well as number of other bacterial and fungal species, can form biofilms. 

P. aeruginosa biofilms were found in the sputum[52, 53], freshly excised lung sections[50, 54] as well 

as in the post mortem explanted CF lungs[55]. However there is no consensus if the main form of 

P. aeruginosa exists in CF lungs as a biofilm[40].  

 

 

                                                            

2 Cell which can float or swim in the aqueous media 
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4.8 Antibiotic resistance and tolerance of CF infections 

Bacterial airway infections in patients with a normal mucosa are relatively easy to treat with 

antibiotics. This is unfortunately not the case for CF patients and the myriad of infections they 

acquire during their lifetime leave each patient with a high need for recurrent antibiotic treatments. 

This is a multifactorial phenomenon and a lot of theories that try to explain it have recently been 

published[56-59]. 

4.8.1 Antibiotic resistance and antibiotic tolerance 

Antibiotic resistance needs to be distinguished from antibiotic tolerance. Antibiotic tolerance, 

unlike resistance, is not heritable by the tolerant cell progeny. It is rather connected to its decreased 

metabolic activity or the surrounding of the cells. Tolerant cells can still be non-resistant to antibiotic 

when its metabolic activity increases or its surrounding will change (Figure 6)[60]. 

Bacterial biofilms are much more tolerant to antibiotic treatment than planktonic cells. The 

minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) for the 

bacterial biofilms, especially for one cultivated for long time,  can be 1000 times higher than for the 

planktonic form or the newly formed biofilm of the same species[50]. 
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Figure 6. Antibiotic resistance and antibiotic tolerance. 

4.8.2 Antibiotic diffusion through bacterial biofilm 
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obstructed if the agent needs to diffuse through the biofilm matrix[61, 62]. However, according to 

recent findings, the main reason may reside in limited oxygen availability in some parts of the 

airways[57, 63]. These highly different oxygen environments are due to the human physiology of the 

airways and furthermore endured by the oxygen consumption of epithelial and immune cells in the 

local surroundings. 

4.8.3 Influence of oxygen tension on bacterial metabolism 

As P. aeruginosa infections are almost inescapable in CF patients, especially in older patients, this  

makes P. aeruginosa an important organism for studies of “oxygen” phenomena[40]. 

P. aeruginosa is a facultative anaerobic bacteria[64] with reduced growth rate (paper IV) and 

metabolic activity[57] at low oxygen levels. Antibiotics such as tobramycin, ciprofloxacin, and 

tetracycline preferentially kill the physiologically active bacteria living at high oxygen levels (aerobic 

environment), while colistin is more effective on the physiologically inactive bacteria growing in 

anaerobic environment[65-67]. 

In the densely packed biofilm, the cells living at the biofilm surface have considerably different 

nutrients and oxygen accessibility than the cells inside the biofilm[57]. This affects the metabolism 

and growth of cells. The metabolically active and fast dividing cells at the biofilm surface are more 

susceptible for exposure to tobramycin, ciprofloxacin and tetracycline, while the cells inside the 

biofilm remain mostly unaffected. This renders the standard antibiotic monotherapy not suitable for 

biofilm infections. The mixture of at least two antibiotics that can target cells of different metabolic 

activity, e.g. colistin and ciprofloxacin, is usually needed to treat the infections in CF patients[68, 69]. 

4.8.4 Persister cells 

Irrespectively of the environmental reasons, some bacterial cells are growing very slowly or even 

at some point cease to divide. This usually very small fraction of cells are called persisters[70-72] and 

are considered as dormant cells. Since the metabolism of these dormant cells is very slow the 

antibiotics that kill the metabolically active cells will not be able to clear the former. However, even 

some of the antibiotics that affects slow-dividing cells will not be effective for clearing the persister 

cells[73].  

The exact way that leads a cell to its dormant state is not yet fully understood, but it seems to be 

connected with the toxin/antitoxin system present in most bacteria[74] [75-77]. This mechanism may 
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be connected with different functions of the bacterial cells, e.g. reaction to stress, maintenance of 

plasmids, programmed cell death and even biofilm formation[78-81].  

4.8.5 P. aeruginosa biofilm resistance to antibiotics 

The use of beta-lactams, from which penicillin was the first commonly used antibiotic, has a long 

history. The long time exposure and common overuse of antibiotics in general has allowed bacteria 

to develop specific resistance against them over time. The aggressive antibiotic treatment of CF 

infections has for instance allowed P. aeruginosa to quickly develop very efficient expression of the 

beta-lactam degrading enzyme beta-lactamase[82]. Moreover, the biofilm forming P. aeruginosa can 

secrete this enzyme into the intracellular matrix, making the antibiotics unable to reach the cells 

embedded into the matrix[83]. The use of beta-lactamase inhibitors[84] or beta-lactamase-stable 

antibiotics like meropenem[84] seems to be necessary for treatment of CF related infections with 

P. aeruginosa. 

Some strains of biofilm forming P. aeruginosa have developed a specific antibiotic resistance 

mechanism, which is less active in planktonic cells, the so-called efflux pump[58].  The efflux pump 

can actively remove aminoglycosides such as tobramycin, gentamycin as well as ciproflaxin[85]. 

Another mechanism for P. aeruginosa resistance to tombramycin is the production of perismatic 

glucans which can bind this antibiotic[86]. Tobramycin, in order to be effective, needs to enter the 

cytoplasm and to bind to the 30S and 50S subunit of the bacterial ribosome. If most of the antibiotic 

is bound in the periplasm, much larger doses are needed in order to reach the cytoplasm and 

overcome this resistance mechanism. 

4.8.6 The mucoid and non-mucoid phenotypes of P. aeruginosa in chronic infections of 

CF patience 

The wild type strain of P. aeruginosa is a non-mucoid and is relatively easily treatable with 

antibiotics[87]. However, if the infection by this pathogen is not completely eradicated, the wild type 

non-mucoid strain can mutate into the mucoid strain. The mucus secreted by this strain contains very 

viscous alginate. The mucoid phenotype of P. aeruginosa is very hard and in some cases even 

impossible to treat with antibiotics and the patients can become chronically infected[88-90]. 

Recent findings[91] give hope for the treatment of mucoid P. aeruginosa strain with a mixture of 

nebulized colistin and gentamicin applied twice daily in a long-term manner. However, even this 
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harsh treatment allowed clearance of only 58% of the CF patients infected with the mucoid P. 

aeruginosa strain. 

4.9 Airways damages caused by recurring infections in CF airways 

As was described above, the mucociliary clearance mechanism physically removes pathogens 

from the conductive zone of the human airways and keeps and protects it from infections. The 

impairment of this system in CF patients leads to frequent and persistent infections, which escalates 

the response of the immune system and inflammatory defence mechanisms. These involve increased 

activity of the polymorphonuclear neutrophils 3  (PMN), which secrete reactive oxygen species 

(ROS)[92, 93]. This defence mechanism works well in compartments where the mucus is not present, 

e.g. in the alveolar sacks, however is not very effective in the conductive zone of the CF airways, 

which is covered with very viscous mucus. The concentration of ROS is high at the epithelia and 

brings damage to the tissues, but is not high enough in the mucus to kill the bacteria[34]. This effect 

of the immune system activity is responsible for inducing a mutation in the P. aeruginosa mucA gene, 

which leads to the transformation of the non-mucoid strain into the mucoid one. This mutagenic 

effect is likely due to the increased ROS concentration in the environment of the CF airways[94]. The 

alginate present in the biofilm of the mucoid phenotype protects the bacteria embedded in the 

extracellular matrix from the ROS[95]. Therefore, the mucoid phenotype of P. aeruginosa is not only 

tolerant for antibiotic treatment, but can also resist the immune system. Hence, the mucoid 

phenotype of P. aeruginosa which was not removed by the mucociliary clearance mechanism nor by 

the immune system response in the conductive airways, can now colonise the respiratory zone.  

Recent findings show that the biofilm forming P. aeruginosa can protect themselves not only 

from ROS and antibiotics but also from other defence mechanisms, e.g. from phagocytosis[65]. The 

PMNs cannot reach the bacteria not only because of the physical barrier of extracellular matrix, but 

also because they are actively lysed (Figure 7). The factors that induce PMNs necrosis were identified 

as rhamnolipids, secreted by certain strains of P. aeruginosa[96]. 

                                                            

3 A type of white blood cells 
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Figure 7. The damage in alveolar epithelia caused by the PMNs lysis induced by rhamnolipid expressing P. aeruginosa 

strains.  

The secretion of these rhamnolipids has been connected to a quorum sensing (QS) mechanism, 

which allows bacterial cells to communicate[97]. The high concentration of the QS molecules gives a 

signal to the cells about their number, which controls the expression of virulence factors such as 

proteases, pigments, hemolysins and exotoxins[98]. 

In conclusion, the lysis of PMNs, further secretion of ROS, together with virulence factors lead to 

the escalation of the inflammatory mechanism and further damage to the tissues and impairment of 

the respiratory functions[99]. In the healthy person pulmonary function decline with the rate of 

approx. 1-2% per year[100], while this rate in CF patients is about 4 – 10%[101]. Considering the fact, 

that bacterial infections of CF patients are recurrent and very hard to treat, the damages to the 

tissues are eventually fatal. 

4.10 In vivo models of the lung infections in CF patients 

Animal models have proven to be useful in the study of different diseases, their mechanisms and 

possible treatment therapies. The recent advances in genetic manipulations, e.g. specific gene knock-

outs or transgenic animals, have brought new tools for medical research[102]. A number of different 

animals have been tried as models for chronic infections in CF patients[103]. This includes rats[104-
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106], guinea pigs[107], cats[108] and rhesus monkeys[109, 110]. However the most important animal 

model is today a mouse[111-114].  

The main challenge in using the animal models that are not genetically modified has been to 

overcome their very effective mucociliary clearance mechanism. This was done by introduction of 

bacteria artificially embedded in gel matrix such as agar[111], alginate[104] or gastric mucin[115] or 

by suppressing their immune system[103]. However, the effects of these operations were usually not 

satisfying. The animals were either quickly clearing the infection or dying[116]. 

Mice with a CFTR gene knock-out[117] and, more recently, transgenic mice with differently 

mutated human CFTR[118] has brought a new quality to the research on CF related infections. 

However, the main challenge here is a very high fatality among the animals with a dysfunctional CFTR 

gene. The very low survival rate, which even can be below 5%, is mainly due to intestinal problems 

and not due to the respiratory failure[119]. Besides, the animal models of CF related infections are 

still not ideal, mainly because of the immune response differences of man and e.g. mouse, but also 

because the lung pathology after infection is very different in animals compared to humans[103]. The 

other disadvantage are the relatively high costs and growing concerns about ethical aspect of using 

animal models in research[120].  

4.11 In vitro models of the lung infections in CF patients 

The most commonly used and standardized devices for studying initiation and growth of 

bacterial biofilms are microtitre plates. They are especially useful for high-throughput screening of 

attachment of the bacteria to different substrates and initial response of the biofilms for 

chemotherapy[121, 122]. It is however very difficult to use these plates for long time observation of 

biofilms, even when one can use robots for automated culture media change. 

So far, the most successful in vitro models for studying biofilm formation are different kinds of 

flow cell systems. These systems allow to observe the attachment of bacteria, biofilm formation and 

dissolution of the biofilm while nutrients and metabolites are constantly flowing into and out of the 

system[123]. 

The typical flow cell system is comprised of a culture media container, a multichannel pump, a 

flow cell and a waste container. During the constant flow of culture media, air bubbles can gather in 

the flow chambers and disrupt the biofilm. Therefore the flow cell systems are usually equipped with 

bubble traps (Figure 8)[124]. 
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Figure 8. A flow cell system setup (reprinted with permission from[124]). 

The flow cell systems allow to studying biofilms for an extended period of time, which is usually 

not feasible with biofilm formed in a microtitre well plate or in other standard culture vessels like 

tubes and petri dishes. Together with confocal laser scanning microscopy and specialized software 

for biofilm analysis like COMSTAT, the flow cell systems are powerful tools in studying bacterial 

biofilms[125].  These systems have successfully been used for determining spatial distribution of 

bacteria sensitive for different antibiotics[67, 126-128] as well as for the studying the distribution of 

motile and non-motile strains of P. aeruginosa[129]. The disadvantage of these systems is the quite 

complicated and time consuming assembly and lack of high-throughput capabilities in comparison to 

microtitre well plates[123, 124].  

4.12 Summary 

In most cases, CF patients suffer from infections caused by P. aeruginosa. This species can live in 

aerobic as well as in anaerobic conditions. These different conditions together with the mutagenic 

habitats caused by immunological response of the host make the bacteria highly changeable and 

adaptive to the environment. Together with its ability to form a biofilm, P. aeruginosa is extremely 

hard to eradicate from CF patients airways.  

An antibiotic treatment can eventually seem successful, yet after a few months the very same 

bacteria which were responsible for the infection can reappear, possibly as a result of reinoculation 

from the anaerobic sinus[63, 130]. In this context the sinuses could very well serve as a reservoir for 

‘sinus’ bacteria, which are difficult to treat with antibiotics and can cause the reinfection of 

otherwise cleared patients. P. aeruginosa infections will eventually become chronic and the 

pulmonary function will start to quickly deteriorate leading finally to the patient’s death. 
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Therefore it seems to be crucial to better understand the differences in the metabolism, 

adaptation and genetic variability of bacteria living in the airways compartments with different 

oxygen tension. It is also very important to be able to mimic and observe the different environments 

of the human airways, the effect of infection treatment and the interaction between bacteria and 

tissues at the cellular scale. Thus, the microfluidic systems seems to be particularly useful to perform 

such studies.  
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5 Microfluidic devices as models of human organs 

The use of animal models for studying different diseases and research on new pharmaceutics 

seems to be inescapable at present time[131]. However, there is a very strong pressure from public 

society, particular states and international organizations legislature, as well as from industry to 

replace, reduce and refine the research conducted with the use of animals[132, 133]. This strategy is 

known as the “3 Rs” principle[134, 135]. 

The development in cell culture as models of tissues and entire organs allowed to partially fulfil 

these expectations[136]. The main limitation of these substitutes is the lack of complexity of specific 

interactions between different tissues and organs in living organisms[137]. The recent advancement 

in tissue cultures, especially using microfluidic devices, give hope for overcoming some of these 

limitations[138-141]. 

The advancement in the micro- and nanofabrication and assembly as well as better 

understanding of microfluidics have allowed to develop devices for modelling different tissue organs.  

Thanks to these devices the control over the environment, relations and interactions between the 

cells and tissues at microscale and with high special and temporal resolution can be achieved[142, 

143]. The yet small but fast growing number of the microdevices that can reassemble different and 

even entire organs have been reported. This includes blood vessels[144], bones[145], muscles[146], 

liver[147-150], brain[151], guts[152], kidneys[153, 154], endothelia[155] and blood-brain 

barrier[156]. 

In the field of mimicking the human airways, Huh at al.[157, 158] proposed a microfluidic device 

that can simulate injuries to the airways epithelia done by liquid plug flow. The same group proposed 

recently a model of the vacuoles in the lung[159]. In this work the phagocytosis of planktonic 

Escherichia coli cells by neutrophils on the epithelial surface was shown. 

The silicon microfluidic device capable of exchanging gases form the blood stream has been 

recently shown by Hoganson et al.[160] This microfluidic device may be considered as a first step in 

developing a system for assisting patients with respiratory failure. 

According to the author’s best knowledge the microfluidic model of CF bronchi nor the model of 

different compartments of human airways, which would allow the observation of the influence of the 

microenvironment of these compartments on the development and clearance of bacterial infection, 

has not been reported previously. 
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Therefore, a model system that simulates the three compartments of the human airways is 

postulated (paper III and IV). The three sections of the human airways: the conductive airways 

(trachea, bronchi and bronchioles), which are considered micro-aerobic, the highly aerobic gaseous 

exchange compartments (the alveoli) and the compartments of the paranasal sinuses, which are 

basically anaerobic (Figure 9A), are reproduced in this Microfluidic Airways Model (MAM). It is 

realized by cell culture microchambers with different oxygen levels (Figure 9B). The microchamber 

with atmospheric air oxygenated media (aerobic environment) is connected by an additional channel 

to the microchamber with culture media, saturated below the atmospheric air saturation level 

(micro-aerobic environment). This chamber is consecutively connected to the chamber with 

deoxygenated media (anaerobic environment). The connections between the chambers as well as to 

the outlets can be closed and opened, and the actual oxygen level can be determined by using an 

oxygen probe.  

 

Figure 9. (A) Human airways system, (B) Microfluidic Airways Model (MAM). 

The impairment of mucociliary clearance in CF bronchi seems to play very important role in 

developing chronic infections and reinoculation of the bacteria in the alveoli.  Therefore a model of 

CF bronchi, was also proposed (paper VI and VII). 
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Figure 10. (A) Bronchi of the healthy individual and CF patient. (B) The microfluidic model of CF epithelia. 

The microfluidic model of the CF bronchi consists of two microchannels separated by a 

microporous membrane (Figure 10). The membrane is a support for a hydrogel, which mimics the 

mucus layer in CF bronchi. The hydrogel can, in a similar way as in the mucus layer, be enriched with 

different components like DNA and proteins. The microchannel below the membrane simulates the 

artery, which supplies the nutrient containing media and transport of metabolites. These compounds 

are further supplied to the top channel by diffusion through the membrane and hydrogel. On the top 

part of the hydrogel the bacterial cells can be inoculated and cultured while at the bottom side of the 

membrane, epithelial cells are cultured. The top microchannel is enclosed with a cover slide, which 

allows observation and analysis of the biofilm growth by confocal microscopy.  

Mucus plaque 

Air Air 

Epithelial 
cells 

Nutrients, 
metabolite and 

antibiotics diffusion 
 

Hydrogel 

Thick and sticky mucus 
chronically infected with 

bacteria 
 

Bronchi lined with thin 
layer of mucus 

Epithelia 

Bacterial biofilm 

Microporous 
membrane support 

A B 

Healthy bronchi Bronchi of CF patient CF epithelia CF epithelia microfluidic model 





 

31 

6 Oxygen sensing and control in microfluidic biodevices 

6.1 Oxygen permeability of different materials used for microfabrication of 

biochips 

One of the most commonly used material for fabrication of microdevices used for biology is 

poly(dimethylsiloxane) (PDMS)[161-163]. PDMS is a chemically inert, biocompatible and optically 

transparent polymer[164] that is very commonly used for construction of microdevices[165, 166]. 

The most useful technique for microfabrication in PDMS is casting the not yet cross-slinked polymer 

against a mould. 

These properties make PDMS a popular material for fast prototyping of microdevices particularly 

for cell culture purposes. Furthermore it can be utilised as a component in an active scheme of 

oxygen removal due to its high permeability for gases and vapours.  

This high permeability of PDMS can in some cases be considered as a flaw, especially in 

applications where very small volumetric flows of aqueous media are involved. The high permeability 

to vapour means that the media can evaporate through the PDMS. This effect is particularly 

problematic in microdevices, where the surface to volume ratio is very high[167]. Other 

disadvantages of PDMS is the unspecific absorption of hydrophobic molecules[168]. This is due to the 

very high hydrophobicity of the material itself, connected with high solubility of hydrophobic species 

in loose PDMS chain networks. Moreover, the uncured short PDMS oligomers as well as the platinum 

based curing catalyst can leak out from the bulk of material[169, 170]. The high hydrophobicity also 

implies nonspecific adsorption of proteins to the PDMS surface[171]. 

The polymer of choice, when low gas permeability is required, would be poly(ether ether ketone) 

(PEEK). This material has very low oxygen permeability along with very high chemical and mechanical 

resistance[172], as well as exhibiting excellent biocompatibility[173, 174]. However the high price, 

challenging bonding, and lack of transparency makes it difficult to extensively use this polymer for 

constructing microdevices[175, 176]. Therefore the other thermoplastic polymers such as 

polystyrene (PS)[177], cyclic olefin copolymer (COC)[178], poly(methyl methacrylate) (PMMA)[179-

181] (papers I-IV), polycarbonate (PC)[182] (papers V-VII) are more common in microdevice 

fabrication. These materials have a slightly higher oxygen permeability, but they are transparent and 

much easier for processing than PEEK. The use of thermoplastic polymers together with fabrication 
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techniques such as injection moulding allows to produce microdevices for industrial scale[178] 

(paper I). Table 1 contains oxygen permeabilities of different polymers calculated in commonly used 

units (the data was gathered from different sources including different vendor´s datasheets). 

 

Table 1. Oxygen permeability of different polymers: PDMS - poly(dimethylsiloxane), FEP - fluorinated ethylene 

propylene, COC - cyclic olefin copolymer, PC – polycarbonate, PMMA - poly(methyl methacrylate), ETFE - poly(ethylene-

co-tetrafluoroethylene), PEEK - poly(ether ether ketone). 

Polymer 
Oxygen permeability 

Barrer cm3·mil·100inch-2 ·24h-1·atm-1 cm3·mm·m-2·24h-1·atm-1 m3·m·m-2·s-1·Pa-1 

PDMS 800.0 133 333 2 067 183 6.00·10-15 

VITON® 14.0 2 333 36 176 1.05·10-16 

FEP 4.5 748 11 600 3.37·10-17 

COC 2.6 428 6 641 1.93·10-17 

PC 1.8 302 4 677 1.36·10-17 

PMMA 1.4 225 3 488 1.01·10-17 

ETFE 0.6 100 1 550 4.50·10-18 

PEEK 0.1 20 309 8.97·10-19 

6.2 Control of dissolved oxygen concentration in microdevices 

The first step to control the dissolved oxygen concentration in perfusion based cell culture chips 

is the choice of right construction material. However, in order to be able to steer the concentration, 

active removal or supply of oxygen is required. 

The direct oxygen generation by electrolysis of water molecules has been proposed by Park  at 

al[183]. This technique requires microelectrode fabrication and potentially can lead to small 

concentrations of hydrogen peroxide, generated in the same process. A different approach is to 

exploit the very high diffusivity and solubility of oxygen in PDMS[161-163].  

Active removal of dissolved oxygen from a liquid at the macroscale can be achieved in many 

ways. These include bubbling liquid with nitrogen gas, electrochemical reduction of dissolved oxygen, 

biological consumption or chemical reaction with an oxygen scavenger[183-186]. At the microscale 

the first method would lead to extensive drying of the liquid, while the other two complicates the 

fabrication of the system. 



 

33 

There are a few recently published examples of the use of PDMS based microfluidic chips in 

which the authors are using nitrogen or nitrogen-oxygen gas mixtures to develop dissolved oxygen 

gradients[187-189]. The main advantage of such a solution is the possibility of reaching dissolved 

oxygen concentrations above the air saturation point (9.2 ppm at 293K and 1013.25 hPa)[163]. The 

main disadvantages are the complexity of the setup and the possibility of slowly drying out the 

chamber when a low liquid media flow is used.  

6.3 Oxygen scavengers 

The use of oxygen or other gas containers is difficult in cell culture labs, due to safety reasons 

and usually very confined space. Therefore, the application of a liquid oxygen scavenger is preferable 

over systems that rely on such gas containers in order to control the specific oxygen levels. Direct 

addition of an oxygen scavenging agent such as sulphite or pyrogallol to the cell culture media will 

alternate its chemical composition, which will have a heavy impact on the cultured organisms[190]. 

Therefore the technique which allows separating an oxygen scavenging liquid from the cell culture 

media is preferable. This can be achieved by using a gas permeable PDMS membrane. The control of 

the oxygen gradient across the cell culture microchamber can be realised by the combination of the 

diffusive and advective oxygen transport within the microchip (paper III, IV and V).  

6.4 Oxygen sensing 

It is crucial to be able to monitor the oxygen concentration at the microscale and here the 

classical amperometric method is not feasible because of the bulkiness of sensors and restriction to 

only point measurements. The most recent progress in miniaturization of the Clark electrode[191] 

allows one to build an electrode microarray[192, 193], which would allow monitoring gradients 

within microfluidic devices in the future. However, most widely used techniques for measurements 

of oxygen concentrations in microfluidic devices are based on optical methods, which involve 

photoluminescent dyes or polymer matrices doped with these probes[194, 195]. The basic 

phenomena responsible for oxygen sensing is dynamic quenching of the luminescence by molecular 

oxygen[196]. Most of the probes with very high quenching constants are based on either ruthenium 

complexes, such as tris(bipyridyl)ruthenium(II)[197] and Ru(II)-tris(4,7-diphenyl-1,10-

phenanthroline)[198-200] or metalloporphyrins, mainly platinum(II) and palladium(II) 

octaethylporphyrin (accordingly PtOEP and PdOEP)[201-205] (paper IV) and platinum(II) meso-tetra 
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(pentafluorophenyl) porphyrin (PtTFPP)[202, 206, 207] (paper V). Other probes, like Erythrosin 

B[208] or pyrene[209], are also reported as suitable for oxygen sensing purposes. 

The main advantage of the metalloporphyrin based sensors over complexes of ruthenium based 

sensors is the much higher sensitivity. This is especially important for sensing not pure oxygen, but 

atmospheric air saturated cell culture media, where the air saturation scale remains biologically 

relevant. Metalloporphyrins are non-soluble in water which is the main reason why 

mettaloporphyrins are usually embedded in polymers or silicone sol-gel matrices[202, 210]. 

Consequently, ruthenium complexes as water-soluble compounds can be added directly to the 

culture media[189], which definitely would simplify the task of sensing the dissolved oxygen 

concentration of the media. Such an addition would however lead to unspecified alterations in the 

metabolism of the cultured cells[163]. 

Therefore organically modified silica (ORMOSIL) are widely used as a sensor matrix[202]. The use 

of ORMOSIL is advantageous over direct dissolution of the sensing molecule in the culture media due 

to its chemical inertness[211] and the possibility of relatively easy surface modifications[59]. 
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7 Fabrication techniques of polymer microfluidic devices 

Initially, microfluidic devices were mainly fabricated in silicon. This was due to the well-known 

technology of microstructures fabrication developed for the electronic industry[212]. The use of the 

technologies for microfabrication in silicon brings, however, some major drawback. First of all, the 

costs of microfabrication in silicon are very high, especially for prototyping and small batch 

production. This is due to the requirements for using cleanroom facilities, long fabrication processes 

and expensive materials. Besides, the physical and chemical properties of silicon are not optimal for 

some applications, especially for microdevices used for cell culturing. Among these properties the 

minor issues are biocompatibility, lack of optical transparency in the UV and the visible range and 

chemical incompatibility with e.g. alkaline environment[213-215].  

On the other hand, there is a wide range of choice of polymers. Such polymers as polystyrene, 

polycarbonate, poly(methyl methacrylate), poly(dimethylsiloxane), cyclic olefin copolymer and many 

others are relatively cheap, optically transparent and are for most biological application relatively 

biocompatible. The development of different microfabrication techniques for quick prototyping 

(micromilling, laser ablation, mould casting) as well as for mass production (injection moulding, hot 

embossing) allow to use polymer based microdevices in a wide range of applications[216-218]. 

7.1 Micromilling 

Milling is a well known abrasive method for fabrication in polymers as well as in metal, alloys, 

wood and many others. Downscaling of the tools and components brings additional challenges to 

micromilling machines, micromilling and microdrilling tools. These tools have their diameters usually 

much below 1 mm. Up to date, the smallest end mills offered on the market have a diameter of 

5 µm[219]. One of the important issues are small vibrations and excessive forces applied to the 

micromilling tools[220]. For the smallest tools it can be challenging to assess their integrity with a 

naked eye[221, 222]. 

Although the micromilling technique can be used for fabrication in a wide range of polymers, for 

some materials it can be challenging to obtain the desired structures without flaws. One of the most 

important issues is burrs formation[223]. Therefore, milling parameters such as feed rate, spin rate 

and use of coolant need to be carefully selected as well as  the tool path and milling strategies need 

to be optimised for each material[224, 225]. Another disadvantage of micromilling is the relatively 
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high roughness of the machined surface. In order to decrease the surface roughness, mechanical or 

chemical polishing can be performed[226]. This is especially important for optical application of 

microdevices fabricated by milling. 

The micromilling technique can be used for direct structures fabrication (paper I-VI). Due to the 

undoubted advantage in its flexibility, this technique is particularly useful for quick prototyping. 

However, for mass production purposes other techniques as injection moulding and hot embossing 

are usually a better choice. In this case micromilling can be used for fabrication of moulds and 

stamps[227-229]. 

7.2 Laser ablation 

The other useful technique for fabrication of microstructures is laser ablation. This is a process in 

which the material is removed from a solid surface by a laser beam[230]. Two types of lasers: 

excimer laser and CO2 laser are commonly used. In general, the excimer laser wavelengths are in the 

UV range (e.g. 196 nm for ArF laser and 248 nm for KrF laser) while the CO2 laser operates with near 

infrared radiation (10.6 µm). The advantages of the CO2 laser over the excimer laser are its cost-

effectiveness[231, 232] and high speed of ablation while the main disadvantage is a relatively large 

beam diameter[233]. The Gaussian shape of the beam brings further constrains to the flexibility of 

this technique[234]. 

The CO2 laser ablation has been shown particularly useful for quick prototyping of 

microstructures in PMMA[231-234]. Furthermore, it is possible to use this technique for fast and 

precise cutting of foils and membranes[235-239] (papers III-VII). 

7.3 Mould casting 

PDMS is one of the most commonly used materials for quick fabrication of microdevices, 

particularly for applications in life science. The most useful technique for forming the microstructures 

in this material is by casting the uncured mixture of the polymer, catalyst and curing agent against 

the mould[166](papers III-VI). In order to crosslink the polymer chains and to form a rubber, a 

thermal curing follows the casting. The mould is usually fabricated using either micromilling or 

photolithography techniques[142]. 
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7.4 Bonding of microfluidic chip 

Today’s wide range of fabrication methods for microfluidic devices allows to reproduce almost 

any kind of shapes and dimensions in different materials. However, it still might be challenging, in 

some cases, to perform robust and reliable bonding between different chip layers. This is particularly 

problematic if one wants to integrate different materials in one functional microfluidic chip. 

The microfluidic devices fabricated from thermoplastic materials such as PMMA, PC, COC, PS are 

relatively easy to bond using either thermal fusion bonding[240-242] or solvent assisted 

bonding[182, 243, 244]. 

The general rule for thermal fusion bonding of thermoplastics is to heat up the material near or 

above its glass transition temperature (Tg) and apply a pressure in order to increase the surface of 

contact[245]. It is possible to use this technique to bond different thermoplastics as long as the 

materials have similar Tg. Sometimes, the surfaces of the substrates need to be treated (e.g. with 

UV[246] or plasma[247]) before bonding. These treatments are used to locally lower the Tg of the 

materials and to enhance the bonding strength. Careful optimisation of the bonding parameters 

(temperature and pressure) as well as the possible pre-treatment is always needed. 

The other way to bond the thermoplastics is to use solvent assisted bonding. This method can be 

employed even to bond materials with different Tg as long as the different materials have no 

tendency to separate from each other and are soluble in the used solvent[245]. Moreover, the 

exposition of the machined surface to the solvents vapours can reduce its roughness and be used as 

a polishing step[226]. This was one of the methods applied for bonding the devices described in 

papers V-VII. 

In order to bond materials belonging to different groups like thermoplastics and elastomers (e.g. 

PC and PDMS) an intermediate adhesive layer is needed. The choice of the adhesive depends on the 

type of materials to be bonded. One of the easiest ways is to use a pressure activated adhesive 

transfer tapes[248]. These commercially available tapes can be die cut or laser cut to the desired size 

and shape.  This method has been exploited to bond PDMS to thermoplastic substrates in papers 

III-V. 
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Abstract: This paper presents a novel passive micromixer concept that creates direct lamination in a 
2D channel. The principle is to make a controlled 90 degree rotation of the flow cross section followed 
by a splitting into several channels; the flow in each of these channels is rotated further 90 degrees 
before recombination. The 90 degree rotation is achieved by patterning the channel bed with ribs. The 
effect of the mixers has been studied using simulations and prototypes have been made using direct 
micromachining of polymer. Confocal microscopy has been used to study the mixing. The main 
advantage with the presented design is that the channels can be made in one part which only has to be 
sealed by a planar lid e.g. by laser welding or thermal bonding. The geometry and simplicity of this 
design made it suitable for mass production in various polymers using injection moulding techniques. 
 
Keywords: micromixer, injection molding, polymers, computational fluid dynamics, microfabrication 
 
Introduction: A mixing process, very well know at the macro level, is still a challenge to realise at 
microscale. This is especially important in mass production of polymeric devices with integrated 
micromixer units. The micromixers are usually divided into passive and active devices according to the 
source of energy that is used for mixing (Nguyen and Wu, 2005). 
Active mixers, where the external source of energy is needed, are relatively complex and expensive to 
build. Still, due to very low Reynolds number in the microscale, active mixing by introducing 
turbulence is by far not as effective as at the macroscale. 
What is a main cause of problems in the case of active micromixers is, in contrary, a strong advantage 
in case of passive micromixers. Small dimensions of the channels enable us to use diffusion as a 
driving force. Still, to achieve an effective mixing, lamination of the fluid is often employed.  
The most straightforward solution is to divide two fluids that are going to be mixed into small streams 
and then join them alternately. Hinsmann et al. (2001) proposed a 3D structure device based on this 
idea. The device was fabricated in SU-8 epoxy-polymer with a procedure involving several 
photolithography and metal deposition steps. Slightly different devices were proposed by Cha et al. 
(2006). The authors used poly(dimethylsiloxane) (PDMS) as a main construction material. Fabrication 
by this process involves fabrication of silicon moulds and precise aligning of several PDMS layers. 
Other solutions are based on the work of Stroock et al. (2002) where microstructures enable a fluid 
rotation in channels. Since then several micromixers based on these structures, called staggered 
herringbones have been proposed. The mixing usually takes place in the relatively long microstructured 
channels. 
In this work the authors propose a novel approach to micromixing based on rotation, splitting and 
joining fluids in microchannels. The main goal was to develop an effective micromixer that can be 
easily and not expensively mass produced in polymer e.g. by injection moulding techniques. 
Design and fabrication: Figure 1 shows the micromixer design with dimensions. The prototype of the 
device was fabricated by micromilling (Mini-Mill/3PRO, Minitech Machinery Corp., USA) in 
poly(methyl methacrylate) (PMMA, Röhm GmbH & Co. KG, Germany) and sealed with a lid using 
adhesive thin film (ARcare® 91005, Adhesive Research Ireland Ltd.). Alternatively thermal bonding 
and laser bonding were used. This particular fabrication strategy was chosen due to similarity with 
mould fabrication for injection moulding techniques. Other successfully tested fabrication processes 
involve direct laser ablation (48-5S Duo Lase carbon dioxide laser, SYNRAD Inc., USA) in PMMA. 
Results: The lamination in one mixing module was investigated using 3D finite volume simulations in 
ANSYS CFX 11.0. We used a procedure similar to the one recommended by Mendels et al. (2008). 
The two fluids are treated as isothermal and incompressible Newtonian fluids following the Navier-
Stokes equations. Fabricated prototype efficiency was analysed using scanning laser confocal 
microscopy (Zeiss LSM 510 Meta, Brock og Michelsen A/S, Denmark). Two fluorescent dyes: 
Fluorescein and Rhodamine B (Sigma-Aldrich Denmark A/S) were used. Figure 2 shows the high 
degree of conformity between the simulated and measured rotation of the fluids in the microdevice. 
Almost complete mixing was achieved after 3 modules as shown on Figure 3. 



Discussion and conclusions: The presented device was proven to be an effective micromixer, yet 
relatively simple in fabrication. Moreover, the mixer can easily and efficiently be stacked on a limited 
surface as shown on Figure 4. The device can be fabricated in one single piece of substrate and does 
not need any alignment steps which is a substantial advantage over 3D devices known from the 
literature. Furthermore it can be produced from relatively inexpensive polymers like PMMA or 
polystyrene. 
Results from the tests of the different fabrication strategies show that the microdevice can be produced 
in mass scale with techniques like injection moulding and laser ablation. This is especially important in 
applications such as medical diagnostics where cost effective, disposable micromodules are preferably 
used. 
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Fig.1: Above: Design showing four mixing 
modules. Below: Detailed view of the grooves 
with dimensions indicated [mm]. 
 
 

 
Fig 2: Simulated and measured concentration 
distributions within one mixing module 

 
Fig 3: Left: Confocal microscopy images 
showing planes at z = h/2, where h is the channel 
depth. The images show the intensity after 0, 1, 2 
and 3 full modules. Right: Normalized intensity 
of the two flourophores measured across the cross 
sections on the left. 
 

 
Fig 4: Simulated flow field in one compact 
mixing module showing lamination 
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Abstract A novel passive micromixer concept is pre-

sented. The working principle is to make a controlled 90�
rotation of a flow cross-section followed by a split into

several channels; the flow in each of these channels is

rotated a further 90� before a recombination doubles the

interfacial area between the two fluids. This process is

repeated until achieving the desired degree of mixing. The

rotation of the flow field is obtained by patterning the

channel bed with grooves. The effect of the mixers has

been studied using computational fluid mechanics and

prototypes have been micromilled in poly(methyl meth-

acrylate). Confocal microscopy has been used to study the

mixing. Several micromixers working on the principle of

lamination have been reported in recent years. However,

they require three-dimensional channel designs which can

be complicated to manufacture. The main advantage with

the present design is that it is relatively easy to produce

using standard microfabrication techniques while at the

same time obtaining good lamination between two fluids.

Keywords Passive mixer � Micromixer �
Split-and-recombine mixer � Confocal microscopy �
Micromilling � Simulations

1 Introduction

At high Reynolds numbers (typically [2400) two fluids

can readily be mixed by turbulence. In microchannels with

cross-sections less than one millimeter, this becomes dif-

ficult to achieve. For water at room temperature, turbu-

lence in such a channel would require a velocity of several

meters per second, which, in most cases, is unfeasible.

Mixing of two fluids can still be easily done if the Peclet

number is small enough. The Peclet number is defined as

the ratio between advection time and diffusion time as

Pe = uL/D, where u is the characteristic velocity, L the

characteristic length and D the characteristic diffusion

coefficient. When Pe is small, diffusion is fast compared

to advection, meaning that mixing can usually be left to

diffusion alone, e.g. as in a T-type mixer (Wong et al.

2004). This will be the case if the channels are either very

small or the diffusion coefficient is very large. In the

domain where the Reynolds number is small and the

Peclet number is large, mixing becomes difficult. In

microchannels this typically occurs if the channel dimen-

sions are between 1 and 1,000 lm for species with low

diffusivity.

There are several principles already available to achieve

mixing in microchannels. Nguyen and Wu (2005) pre-

sented an overview of some of the mixers available. The

coarsest classification of mixers in their article is between

active and passive mixers. Active mixers can, for example,

utilize pressure field disturbances (Rife et al. 2000; Niu and

Lee 2003) or ultrasonic devices (Yang et al. 2001) to mix

fluids. If the fluids are electrolytes, time-dependent electric

or magnetic fields (Bau et al. 2001; Glasgow et al. 2004)

can be used. It is also demonstrated that moving magnetic

beads in a changing magnetic field can efficiently mix

fluids (Suzuki and Ho 2002).
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In contrast to active mixers, passive mixers are sta-

tionary and do not require any external energy input apart

from the pressure drop required to drive the flow. In gen-

eral, this makes passive mixers simpler to fabricate and

fewer external connections are needed. In the review by

Nguyen and Wu, the passive mixers for microchannels are

subdivided into five categories:

(1) Chaotic advection micromixers: the channel shape is

used to split, stretch, fold and break the flow. One

way of achieving this is to introduce obstructions to

the fluid flow in the channel (Bhagat et al. 2007; Lin

et al. 2007; Hsieh and Huang 2008). Another is to

introduce patterns on the channel walls that rotate the

flow field, as in the staggered herringbone mixer

(Stroock et al. 2002).

(2) Droplet micromixers: droplets of the fluids are

generated and as droplets move an internal flow field

is generated within the droplet causing a mixing of

fluids. The first such mixer was demonstrated by

Hosokawa et al. (1999).

(3) Injection micromixers: a solute flow is splitted into

several streams and injected into a solvent flow

(Voldman et al. 2000).

(4) Parallel lamination micromixers: the inlet streams of

both fluids are splitted into a total of n substreams

before combination. For n = 2, this is the classic T-

type mixer. By increasing n, the diffusion length can

be decreased (Bessoth et al. 1999).

(5) Serial lamination micromixers: the fluids are repeat-

edly splitted and recombined in horizontal and

vertical planes to exponentially increase their inter-

facial area. One well-known example is the Caterpil-

lar mixer (Schönfeld et al. 2004) but other similar

designs have also been proposed (Cha et al. 2006; Xia

et al. 2006).

In this report we present a lamination mixer that is

similar to the serial lamination mixers. However, whereas

both the parallel and the serial lamination mixers described

in the literature need out of plane channels to split and

rejoin the streams, our mixer has all channels in one plane.

This means that the mixer can be fabricated by just bonding

a planar lid on the top of a structured channel. On the other

hand, a three-dimensional channel will need at least two

structured parts which have to be aligned precisely in the

fabrication process. Thus, the main advantage of the

present mixer when compared with active mixers and other

lamination mixers is the ease of fabrication. The structures

can easily be mass produced using polymer replication

techniques such as injection molding or hot embossing.

To the authors knowledge this is the first time a mixer

working on the principle of splitting and recombining in

such a simple design is presented. In order to achieve the

folding, the flows are rotated 90� between each splitting

and rejoining. This helical flow pattern is achieved by

patterning the channel bed. An illustration of a mixing

module of this kind is shown in Fig. 1. In this figure, the

simulated streamlines are colored according to their origin.

The present mixer has been realized using several

microfabrication techniques.

• Direct laser ablation of channels and grooves in

poly(methyl methacrylate) (PMMA).

• Direct micromilling in polycarbonate (PC) and PMMA.

• Milling of the negative structure in aluminum and

replication with injection molding in polystyrene (PS).

• Milling of the negative structure in PMMA and

replication in polydimethylsiloxane (PDMS).

The results presented in this article relate to mixers

milled directly in PMMA. We want to emphasize that the

design, because of its open structure and lack of intricate

details, can easily be realized using a range of microfab-

rication techniques.

2 Procedure

2.1 Microfabrication

As a main fabrication method micromilling (Mini-Mill/

3PRO, Minitech Machinery Corp., USA) in PMMA (Röhm

GmbH & Co. KG, Germany) was used. First, channels with

depth of 50 lm and width of 300 lm (equal to the diameter

of the tool) were milled. In the bed of the channels 200 lm

wide grooves were fabricated using a [100 lm milling

tool. This tool diameter was chosen to minimize the fillet

radius on the corners of the grooves. Cut feed speed was

70 mm/min and spindle rotation was 4,000 RPM.

As an alternative fabrication method, laser ablation

(48-5S Duo Lase carbon dioxide laser, SYNRAD Inc.,

USA) was used. The channels were obtained using a 10 W

laser beam (wavelength 10.6 lm) and a focusing lens with

Fig. 1 Simulated flow field in one mixing module showing lamina-

tion in the Stokes flow regime (Re \ 5). The two fluids enter in the

upper left corner. The interfacial area between the two has approx-

imately tripled at the exit in the lower left corner
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200 mm focal length (beam diameter 290 lm). The abla-

tion velocity was adjusted to 300 mm/min. For ablation of

200 lm grooves, an 80 mm focal length lens was used

(beam diameter 90 lm) and the power was reduced to 4 W.

Ablated structures had a Gaussian-like cross-section as

reported earlier (Klank et al. 2002).

The microdevice was sealed with a lid using a silicone

adhesive thin film (ARcare� 91005, Adhesive Research

Ireland Ltd.). Thermal bonding and laser bonding methods

also gave good results.

2.2 Confocal laser scanning microscopy measurements

To investigate the performance of the designed micromixer

two dyes were used: Rhodamine B and Fluorescein. The

dyes were dissolved in phosphate buffered saline (pH 7.4)

with 0.2% sodium dodecyl sulfate (SDS) (all from Sigma-

Aldrich, Denmark A/S). Confocal laser scanning micros-

copy (Zeiss LSM 510 Meta, Brock og Michelsen A/S,

Denmark) was done using a 409 Fluar oil immersion

objective. A 488 nm Argon laser was used for exciting

Fluorescein and a 543 nm HeNe laser for Rhodamine B.

The pinhole was adjusted for approximately 5 lm z axis

slice thicknesses. The solutions were pumped through the

microdevice by a syringe pump (model 540060, TSE

Systems GmbH, Germany) with flow-rate according to the

desired Reynolds number.

2.3 Simulations

The mixing efficiency was investigated using 3D finite

volume simulations in ANSYS CFX 11.0. The procedure

adopted is similar to the one described by Mendels et al.

(2008) where the fluids are treated as isothermal and

incompressible Newtonian fluids following the Navier–

Stokes equations.

r � u ¼ 0 ð1Þ

q
ou

ot
þ u � ru

� �
¼ �rpþ gr2u ð2Þ

Here u is the velocity vector, q the density, g the viscosity

and t the time. To track the location of the interface

between the two fluids an additional concentration variable

c is transported through the domain by convection and

diffusion.

oc

ot
þ u � rc ¼ Dr2c ð3Þ

Since the mixer works by lamination, the efficiency of the

mixer was best evaluated in the absence of diffusion,

therefore the diffusion coefficient, D, was set to 0 in the

simulations.

At the inlet, a sharp step in c is prescribed, representing

two completely separated fluids. Because of numerical

diffusion, it is necessary to have a fine mesh at the interface

between the two phases. This interface is not initially

known and in order to define a fine mesh here, an adaptive

meshing procedure was used. Equations 1–3 were first

solved on a relatively coarse mesh. When convergence was

obtained, the mesh was refined where the variation in c

over an element edge exceeded a given value. This pro-

cedure was repeated six times with an increasingly finer

mesh, until convergence in mesh size. The fluid properties

in the simulations are the same as water at 20�C with

g = 1.002 mPa s and q = 998 kg/m3.

2.4 Validation

To validate the simulations, a channel was made using

laser ablation. The channel has a cross-section of

300 lm 9 50 lm, and 50 lm deep, 200 lm wide grooves

inclined 55� relative to the channel axis. The shape of the

grooves was measured using confocal microscopy and the

measured geometry was used as a basis for simulations.

The resulting rotation can be seen in Fig. 2. It can be seen

that there is a good qualitative agreement between the

simulated and measured rotations. Using this geometry, the

closest thing to a 90� rotation occurs after three grooves. It

can also be seen that after six grooves, a full 180� rotation

is observed in the simulations. The experimental data

indicates that this rotation is taking place already after five

grooves. Note also the almost perfect match between the

cross-section after the first and seventh grooves in the

simulations, which is also seen after the first and sixth

grooves in the experiments.

2.5 Design optimization

As can be seen in Fig. 2, the rotation after three grooves is

not exactly a straight angle. There is also some deformation

of the interface between the two tracers; it is no longer a

straight line as was the case at the inlet. Three design

parameters were varied in a full factorial design to see how

a 90� rotation could best be achieved:

• the groove angle (45�–55�–65�),

• the depth of the grooves (50–100–200 lm),

• the depth of the channel (50–100–200 lm).

The channel width was fixed to 300 lm. The design

optimization was performed using simulations in CFX of

straight channels to find the configuration that gave a

rotation of the flow as close to 90� as possible. The best

results were obtained with a groove angle of 55�, a channel

depth of 50 lm and a groove depth of 50 lm which are the

parameters used in the following experiments. This optimal
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design is shown with dimensions in Fig. 3. Note that this is

not a global optimum but only the optimum within the

limited space sampled. Other authors have studied the

optimization of helical flow patterns by patterning the

channel (Yang et al. 2005, 2008) and it is likely that further

optimization of the structure is possible.

3 Results and discussion

The lamination observed experimentally and in simula-

tions, for one module, is shown in Fig. 4. There is a good

agreement between the simulated and measured rotations

of the flow field. It is also demonstrated that the mixer is

able to laminate the flow field as desired.

The lamination, as measured with confocal microscopy,

after one to four modules is shown in Fig. 5a. Note that

after three modules the two fluids are mixed well. The

different laminae can still be seen, demonstrating that it is

the stretching and folding effect of the device that is

mixing the fluids. The mixing efficiency will in general be

dependent on the Peclet number, showing better mixing at

lower Peclet numbers. The diffusion coefficients for Rho-

damine B and Fluorescein alone in water are 3.6 9 10-10

and 4.9 9 10-10 m2/s, respectively (Rani et al. 2005). Note

that Rhodamine B is hydrophobic and is likely to form

micelles with sodium dodecyl sulfate, increasing the dif-

fusion coefficient. This increased diffusion coefficient was

not measured. The Peclet number for Fluorescein in the

setup shown in Fig. 5 is 9700. The effective Peclet number

for Rhodamine B is probably larger than for Fluorescein

because of the micelles. This is indicated by the fact that

the evaluated degree of mixing for Rhodamine B rises

slower than for Fluorescein as can be seen in Fig. 5c.

In the original staggered herringbone article by Stroock

et al. (2002), the efficiency is evaluated by measuring the

standard deviation r in fluorescence at different locations.

The distance required to achieve a reduction in standard

Fig. 2 Helical rotation of the flow field in a straight channel with

grooves on the channel bed in the Stokes flow regime (Re * 1). Left
confocal fluorescence microscopy measurements of the distribution of

rhodamine (red, left at the inlet) and Fluorescein (green, right at the
inlet). Center simulated flow field. Right photography showing a top

view of channel. The numbers indicate the cross-section after a given

number of grooves, which can be seen in the right image

Fig. 3 Design showing four mixing modules (above). Detailed view

of the grooves with dimensions indicated (in mm) (below). The main

channel is 50 lm 9 300 lm with 50 lm deep, 200 lm wide grooves,

inclined 55� relative to the channel axis

Fig. 4 Concentration distributions within one mixing module. The

images on the geometry show the simulated distribution and the outer

ones are confocal microscopy measurements
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deviation by 90% relative to the inlet, Dy90, is taken as an

indication of the length of mixer required. This standard

deviation for the present mixer is seen in Fig. 3d after one

to four full modules and it can be seen that this criterion

has been met for the fluorophore with the highest diffu-

sivity, Fluorescein, after four modules. The larger, and

slower diffusing rhodamine B is close to achieving this

criterion. In Stroock et al. this criterion is met after

between 3.5 (Pe = 2000) and 8.5 (Pe = 2 9 105) rotation

cycles. Note that the standard deviation measure for mixing

will be dependent on the resolution of the confocal

microscopy used and therefore these values for mixing

efficiency are not directly comparable from study to study.

They are still included here for an indication of the mixing

efficiency.

To quantitatively evaluate the mixing efficiency, we

define the index of mixing as in (Liu et al. 2004) as

Cmix ¼
rinlet � r

rinlet

ð4Þ

where r is the standard deviation of the fluorescence

intensity. They use simulation to evaluate the mixers and

sigma is the standard deviation in the concentration of a

phase variable. They find that the index of mixing for the

herringbone mixer when mixing solutions of glycerol and

water is approximately 0.5 (Pe = 1000) after two full

mixing cycles. The mixing index for the present mixer is

shown in Fig. 5c.

3.1 Reynolds number dependence

The simulated lamination for two different Reynolds

numbers is shown in Fig. 6. Up to a Reynolds number of 5

(flow rate 50 ll/min), changing the flow rate does not

change the lamination process. The characteristic length, is

in this case, taken as the hydraulic diameter of the channel

(85 lm) and the characteristic velocity is the volume flow

divided by the channel cross-section (300 lm 9 50 lm)

where no grooves are present. It can be seen that in the

Stokes flow regime, almost perfect lamination is observed.

As the momentum effects become more important,

Fig. 5 a Confocal microscopy

images showing planes at

z = h/2, where h is the channel

depth. The images show from

the top the intensity at the

entrance and after one to four

full modules (Re = 5). The

modules can be seen in Fig. 3.

b Normalized intensity of the

two fluorophores measured

across the cross-sections in a.

c The index of mixing evaluated

using the variance in the data

from b. d The standard

deviation of the intensities from

b including a line showing the

criteria used for mixing

Fig. 6 Simulated lamination as a function of the Reynolds number.

For Re \ 5, the profiles are independent of Re to the accuracy of this

graphical representation
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however, the helical rotation of the flow field changes. The

structure still works as a mixer, but since the helical rota-

tion outside the Stokes flow regime is Reynolds number

dependent, it is not given that the two substreams join each

other after the designed 90� rotation for Reynolds number

above five. For the staggered herringbone mixers, which

also reliy on grooves on the channel bed to rotate the flow

field, it has been reported that at high Reynolds numbers

([10) vortices form in the grooves which significantly

reduce the rotation (Williams et al. 2008). Similar effects

are also seen for three-dimensional mixers working on the

split and recombine principle, for example, good lamina-

tion is only observed with the caterpillar mixers for low

Reynolds numbers (\30, Schönfeld et al. 2004).

3.2 Stacking of design

In this report, the focus has not been on making the design

as compact as possible. This can, however, be done when

considering the layout in Fig. 1. By changing the direction

of flow after each rotation of the flow field the overall

shape of one mixer module is rectangular. The module

shown measures 1.5 9 1.7 mm and the rectangular overall

shape makes it easy to pack it densely on a chip device.

4 Conclusions

A new concept for a passive micromixer has been

developed. It is shown that the combination of patterning

the channel bed and splitting and recombining the streams

can be used to make controlled lamination in a 2D

channel system. This is shown using both numerical

simulations and experiments with prototypes. The design

can easily be realized using a range of microfabrication

techniques and mass produced using, for example, injec-

tion molding.

In the design optimization used in this work only a small

subset of the design parameter space was investigated. A

further optimization of the design with respect to mixing

efficiency on an area as small as possible should be carried

out in the future. It is also possible to change the mixer to

divide the flow into more than two substreams. Preliminary

studies indicate that splitting into three or four substreams

can be used to obtain better mixing on a smaller area.

Further examination of this question should be made in the

future.
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ABSTRACT

Here we report work towards development of a microfluidic system that can 

simulate the aerobic and anaerobic conditions in the human airways. The main pur-

pose of this device is to mimic habitats of bacteria that usually attack airways of cys-

tic fibrosis (CF) patients. The presented system enables the study of formation, 

growth, and dissolution of the bacterial biofilms, which is the main cause of the 

massive pulmonary deficiency and eventually death of CF patients. The ultimate 

goal for the microdevice is to replace the existing animal models (mice) in the de-

velopment of new drugs and new treatment strategies in CF. 

KEYWORDS: biochip, cystic fibrosis, biofilm, airways, microsystem 

INTRODUCTION

The airways consist of at least three independent compartments, the conductive 

airways (the trachea, bronchii and bronchioles), the oxygen exchange compartment 

(alveoles) and a third, less recognized compartment, the paranasal sinuses (maxillary 

sinuses, frontal sinuses and ethmoid sinuses). In the first and the last compartment 

the environment is essentially anaerobic while in the alveoles the environment is 

highly aerated. 

THEORY

To simulate the environ-

mental conditions, especially 

the oxygen level which is 

major parameters affecting 

biofilm growth in CF pa-

tients, we propose the micro-

fluidic airways model (Fig-

ure 1). The model consists 

of microchambers for bacte-

rial biofilm growth and mi-

crofluidic channels for pro-

viding oxygen-scavenging 

liquid or oxygen-rich liquid. 

To avoid any impact on the 

Figure 1.  Human airways system, (B) top view 

sketch of Microfluidic Airways Model (MAM) and 

(C) cross-section view of MAM 
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growth of microorganisms from these liquids, the compartments are separated by an 

oxygen permeable membrane. All media and liquid flow is controlled by external 

pumps. The oxygen level in the chambers can be controlled by varying the flow 

rates (Figure 3). A sensing layer for oxygen concentration measurements was incor-

porated at the bottom of the chambers. To provide the possibility of tracking bacte-

rial re-infections, the bacteria growth chambers exposed to different oxygen levels 

were interconnected with channels (Figure 1 B).  

EXPERIMENTAL 

The biochip (Figure 2) was fabricated by micromilling of inlets and outlets and 

laser ablation of the channels in poly(methyl methacrylate). Poly(dimethylsiloxane) 

(PDMS) was used as the oxygen permeable membrane. The oxygen permeability of 

PDMS is a well known property, and its use for supplying oxygen in microdevices 

has been reported [1,2]. However, to our knowledge, no applications comprising ac-

tive removal of oxygen by means of utilizing concentration gradients below oxygen 

saturation has been reported. This mechanism mimics the physiological oxygen ex-

change in the airways compartments. The lid comprising the oxygen sensing layer 

was fabricated by doping uncured PDMS with platinum(II) octaethylporphyrin 

(PtOEP), diluted with THF and spincoated to a thickness of approx. 15 μm on a 100 

μm thick glass lid followed by thermal curing. Substitution of the usually used sen-

sor matrix (ORMOSIL) [3] with PDMS allows to perform biological experiments in 

a 100 μm deep microchamber that is constructed from uniform material. All layers 

were sealed by silicone adhesive tape. 

Figure 2: Designed (A) and fabricated (B) microdevice

To form the dissolved oxygen gradient in one of the culture chambers, oxygen 

scavenger (5% sodium sulphite water solution) was pumped through the correspond-

ing microchannel situated beneath the membrane. The second channel was con-

stantly flushed with oxygen saturated water.  

RESULTS AND DISCUSSION 

Formation of the oxygen concentration gradient inside the culture chamber was 

modelled, using  numerical simulation with COMSOL 3.4 software (Figure 3), and 

experimentally confirmed by photoluminescence lifetime recordings on a multilabel 

reader Victor2 (Perkin-Elmer Life Sciences) with the PtOEP sensing layer. 

A Glass with sensor for 

oxygen level imaging 

Culture chambers with 

media flow 

Channels with oxygen 

scavenging liquid 

Gas permeable membrane

Connection between 

chambers  

B
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The microsystem was used for bacterial biofilm culture. A Pseudomonas aerugi-

nosa strain, isolated from a CF patient (B54-1 WT-blue), was tagged with four dif-

ferent fluorescent proteins and inoculated. The experiment was carried out for 7 

days. The biofilm was formed in 2 days and was not dissolving during the entire ex-

periment. Confocal scanning laser microscopy was used for monitoring the biofilm 

formation (Figure 4).

0.1 ml·h-1
0.5 ml·h-1

2.0 ml·h-1

Figure 3: Left and 

above: oxygen gra-

dient in the designed 

microdevice at vari-

ous flow of the fluid in the chamber. Right: com-

parison between simulated and measured oxygen 

concentration

Figure 4: Confocal images 
of the bacterial biofilm for-
mation in the microdevice. 
Cells express different fluo-
rescent proteins (FP) (top: 
YFP, bottom from left to 
right: RFP, GFP, CFP).

CONCLUSIONS

The presented microfluidic chip was successfully used for generation of the oxy-

gen gradient, which was easily regulated by altering the media flow rate and moni-

tored by time-resolved photoluminescence measurements with integrated microsen-

sor. Separation of the oxygen scavenger allows utilising the chip for cell culture. 

The system was used for culturing of Pseudomonas aeruginosa biofilm. Future 

research will be focused on studies of the different antibiotic treatment strategies of 

bacterial biofilms. 
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A microfluidic chip for generation of gradients of dissolved oxygen was designed, fabricated and tested.

The novel way of active oxygen depletion through a gas permeable membrane was applied. Numerical

simulations for generation of O2 gradients were correlated with measured oxygen concentrations. The

developed microsystem was used to study growth patterns of the bacterium Pseudomonas aeruginosa in

medium with different oxygen concentrations. The results showed that attachment of Pseudomonas

aeruginosa to the substrate changed with oxygen concentration. This demonstrates that the device can

be used for studies requiring controlled oxygen levels and for future studies of microaerobic and

anaerobic conditions.

Introduction

The generation of concentration gradients of different chemicals

in microfluidic biochips is a problem often addressed in the

literature. Typically, for the water soluble components, these are

generated by diffusive mixing in microchannels by splitting and

merging streams with different concentrations of the molecules

of interest.1–6

In this work we address the creation of controlled oxygen

gradients in perfusion based cell culture chips. A few reports exist

that involve e.g., the direct oxygen generation by electrolysis of

water molecules,7 a technique that requires microelectrode

fabrication and that potentially can lead to small concentrations

of hydrogen peroxide, generated in the same process. A different

approach is to exploit the very high diffusivity and solubility

of oxygen in poly(dimethylsiloxane) (PDMS).8–10 PDMS is

a chemically inert, biocompatible and optically transparent

polymer11 that is very commonly used for fast construction of

microdevices.12,13 Its properties make it a popular material for

construction of cell culture based microdevices. Furthermore it

can be utilised as a component in an active scheme of oxygen

removal due to its gas permeability.

Active removal of dissolved oxygen from a liquid at the

macroscale can be achieved in many ways. These include

bubbling liquid with nitrogen gas, electrochemical reduction of

dissolved oxygen, biological consumption or chemical reaction

with an oxygen scavenger.7,14–16 At the microscale the first

method would lead to extensive drying of the liquid, while the

other two complicate the fabrication of such a system.

There are a few very recently published examples of the use of

PDMS based microfluidic chips in which the authors are using

nitrogen or nitrogen–oxygen gas mixtures to develop dissolved

oxygen gradients.17–19 The main advantage of such a solution

would be the possibility of reaching dissolved oxygen concent-

rations above air saturation point (9.2 ppm at 293 K and

1013.25 hPa).10 The main disadvantages are the complexity of the

setup and the possibility of slowly drying out the chamber when

a low liquid media flow is used.

The use of oxygen or other gas containers is difficult in cell

culture labs, due to safety reasons and usually very confined

space. Therefore, the application of a liquid oxygen scavenger is

highly preferable over systems that rely on such gas containers

in order to control the specific levels of oxygen gradients. Direct

addition of an oxygen scavenging agent such as sulfite or

pyrogallol to the cell culture media will alternate its chemical

composition which will have a heavy impact on the cultured

organisms.20 Therefore, in this paper we propose the use of a gas

permeable PDMS membrane to separate an oxygen scavenging

liquid from the cell culture media. To control the oxygen

gradient across the cell culture microchamber we rely on the

combination of the diffusive and advective oxygen transport

within the microchip. To the authors best knowledge, there is so

far no scientific report on such a system applied in biological

studies.

It is crucial to be able to monitor the oxygen concentration at

the microscale and here the classical amperometric method is not

feasible because of the bulkiness of sensors and restriction to only

point measurements. The most recent progress in miniaturization

of the Clark electrode21 allows one to build an electrode micro-

array22,23 which would allow monitoring gradients within

microfluidic devices in the future. However, most widely used

techniques for measurements of oxygen concentrations in

microfluidic devices are based on optical methods, which involve

photoluminescent dyes or polymer matrices doped with these

probes.24,25 The basic phenomena responsible for oxygen sensing

is dynamic quenching of luminescence by molecular oxygen.26

Most of the probes with very high quenching constants are based

on either ruthenium complexes, such as tris(bipyridyl)ruth-

enium(II)27 and Ru(II)-tris(4,7-diphenyl-1,10-phenanthroline)28–30
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or metalloporphyrins, mainly platinum(II) and palladium(II)

octaethylporphyrin (accordingly PtOEP and PdOEP)31–35 and

platinum(II) meso-tetra (pentafluorophenyl) porphyrin

(PtTFPP).32,36,37 Other probes, like Erythrosin B38 or pyrene,39

are also reported as suitable for oxygen sensing purposes.

The main advantage of the metalloporphyrin based sensors

over complexes of ruthenium based sensors is the much higher

sensitivity. This is especially important for sensing not pure

oxygen, but atmospheric air saturated cell culture media, where

the air saturation scale remains biologically relevant. Metal-

loporphyrins are non-soluble in water which is the main reason

why metalloporphyrins are usually embedded in polymers

or silicone sol–gel matrices.32,40 Consequently, ruthenium

complexes as water-soluble compounds can be added directly to

the culture media,19 which definitely would simplify the task of

sensing the dissolved oxygen concentration of the media. Such an

addition would however lead to unspecified alterations in the

metabolism of the cultured cells.10

Here we show the development of a microfluidic device that

combines chambers for cell culturing, an oxygen gradient

generator and an integrated optical sensor. This device was

designed for high compatibility with hardware available in most

laboratories. The system allows one to perform cell culturing

without directly adding an oxygen scavenger or oxygen sensing

compound to the culture media. This microfluidic system is

applied as a useful tool for biological studies where oxygen niches

are required and measurable.

Many bacteria experience fluctuating environmental changes

in their living habitats. This is caused by changes in available

nutritional factors and variation in oxygen concentrations which

the bacteria will have to adapt to in order to become a successful

colonizer.41

One such bacteria is the opportunistic pathogen Pseudo-

monas aeruginosa (P. aeruginosa) which is a recurrent and

persistent cause of lung infections in patients with the genetic

disease cystic fibrosis (CF).42 Here we use P. aeruginosa as the

model organism due to its history as a pathogen in highly

diverting oxygenated milieus. In order for this pathogen to

successfully colonize the human airways it needs to cope with

varying nutritional and oxygen levels.43 Differences in oxygen

levels are generated within the viscous mucus layer of the CF

airways and stress the bacteria to make a respiratory switch to

cope with microaerobic or especially anaerobic conditions.

Anaerobic growth of P. aeruginosa requires the presence of

alternative electron acceptors as NO3
�, NO2

� or arginine in

which the bacteria renders to generate profound biofilm.44,45

Conditions of varying oxygen availability within the mucus

layers of the CF respiratory system is a metabolic challenge for

the bacteria and here we show a device that will be highly

beneficial in future studies where controlled oxygen concent-

rations are needed.

Methods

Design and fabrication

The fabricated device is comprised of five layers (Fig. 1). The

first two bottom layers (coloured red in Fig. 1A) are made of

a very low oxygen permeable material (PMMA, R€ohm GmbH

& Co. KG, Germany, oxygen permeability: 1.35 barrers46).

They contain inlets and outlets in order to connect the micro-

channel (300 mm width, 200 mm depth, 184 mm total length)

and culture chamber. The microchannel and culture chamber

were fabricated by laser ablation (48-5S Duo Lase carbon

dioxide laser, SYNRAD Inc., USA). The third layer, the

membrane, is made of 60 mm thick oxygen permeable material

(PDMS, Dow Corning Corp., USA), obtained by spincoating

(60 s, 800 rpm) uncured PDMS on an ETFE substrate

(Tefzel� Fluoropolymer Film, 200LZ, DuPont de Nemours

(Luxembourg) S.A., Luxembourg) followed by curing in 70 �C

for 1 h. The ETFE substrate was used here as a temporary

solid support for the membrane and was subsequently removed

after integration of the membrane into the microchip. The

fourth layer, a 150 mm thick cell culture chamber, was

fabricated by laser ablation in the low oxygen permeable ETFE

foil. The culture chamber was sealed with a glass slide covered

with the oxygen sensing dye. The sensing layer was fabricated

by doping uncured PDMS with PtOEP (Sigma-Aldrich

Denmark A S�1) diluted in THF. The solution was spincoated

(60 s, 3000 rpm) to a thin film (thickness approx. 8 mm) on the

120 mm thick glass slide and cured at 70 �C for 20 min. All

layers were sealed by silicone adhesive tape (ARcare� 91005,

Adhesive Research, Inc., Ireland) and integrated with the base

module which contains the milled (Mini-Mill/3PRO, Minitech

Machinery Corp., USA) fluidic connectors (Fig. 1B). The

microchip was designed to fit with outer dimensions to the

microscope slide standard (76 � 26 mm).

Fig. 1 Schematic presentation of the different layers of the device (A)

and the fabricated microdevice (B). Here dyes are injected to visualize the

microstructures of the assembled system (blue for channel and yellow for

chamber).
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Numerical simulations

The oxygen concentration gradients were numerically simulated

in COMSOL Multiphysics 3.5a in accordance to the chamber

geometry of the designed device. For the numerical simulation,

the following conditions were assumed: the density and viscosity

of the liquid are similar to water (1000 kg m�3 and 0.001 Pa s,

respectively), a maximum concentration of oxygen in water

(saturation point at standard conditions) of 0.281 mol m�3,

a diffusion coefficient of oxygen in water of 1.9 � 10�9 m2 s�1,

a diffusion coefficient of oxygen in PDMS of 4.1 � 10�9 m2 s�1,

oxygen solubility in PDMS 0.18 cm3(STP) cm�3 atm.8 The equi-

librium between oxygen in water and in PDMS can be described

by eqn (1). The rate constant of oxygen transport from water to

PDMS (k1 in eqn (1).) was set as 1.0 � 10�2 m s�1 47 and the rate

constant (k2) for the reverse flux was set as 1.7 � 10�3 m s�1.

Owater
2 ��! ��k1

k2

OPDMS
2 (1)

The ratio of these two rate constants, under steady state

condition, is equal to the ratio of oxygen concentrations in water

and in PDMS (2). This can otherwise be expressed as a partition

coefficient (Kp) between the oxygen in PDMS and in the water

phase. This implicates the linear correlation between oxygen

concentrations in these two phases (3).

k1

k2

¼ OPDMS
2

Owater
2

¼ Kp (2)

OPDMS
2 ¼ k1

k2

Owater
2 (3)

The oxygen flux at the PDMS–water boundaries was modelled

according to eqn (4). The signs at rate constants depend on the

direction of oxygen diffusion.

fluxO2
¼ �k2$CPDMS

O2
� k1$Cwater

O2
(4)

To simplify the simulation we additionally assumed a rapid

reaction of the oxygen at the interface between the membrane

and the oxygen scavenging liquid (0% oxygen concentration at

this interface as a boundary condition) (Fig. 2). This condition

can be achieved with an adequate flow of the scavenging liquid

and the addition of a catalyst.15 The liquid flow in the chamber

varied from 1 ml min�1 to 500 ml min�1, which corresponds to

a P�eclet number for dissolved oxygen from 0.6 (diffusive trans-

port) to 290.4 (advective transport).

Photoluminescence lifetime measurements of the oxygen gradient

To form the gradient of dissolved oxygen in the growth chamber,

an oxygen scavenger (10% sodium sulfite solution with 0.1 mM

CoSO4 as catalyst, both from Sigma-Aldrich Denmark A S�1)

was pumped by a syringe pump (model 540060, TSE Systems

GmbH, Germany) through the microchannel situated beneath

the membrane with a constant flow rate of 20 ml min�1, while the

growth chamber above the membrane was flushed with atmo-

spheric air saturated water with varying flow rates according to

the values used in the numerical simulations.

Photoluminescence lifetime measurements of the PtOEP based

sensor were carried out on a multi-titre plate reader (Wallac

Victor2, Perkin-Elmer Life Sciences, USA). The entire microchip

was mapped to the sectors of a 384 well plate (Fig. 3). The

excitation wavelength was 340 nm and the emission wavelength

was 640 nm.

In order to correlate the photoluminescence lifetime

measurements with the oxygen concentration, a two point cali-

bration was made. The phosphorescence decay curves for the

Fig. 2 Schematic model of the oxygen gradient generation in the microdevice.

Fig. 3 The chamber mapped to the sector of a 384-wells microplate (the

green area is the biochip, blue circles are the 384 microplate wells while

the red circles are the oxygen gradient measurement points).
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sensing layer flushed with oxygen free and air saturated water

were recorded.

For calculation of the oxygen gradient, in total 12 location

points were used. For each measurement location, the decay of

the phosphorescence curve was determined by reading the

intensities after excitation pulses at 5, 10 15, and 20 ms and then

with 10 ms intervals to 170 ms. In total, 20 points were used for the

determination of each phosphorescence decay curve. The

monoexponential model of the phosphorescence decay was

assumed according to eqn (5), where I(t) is the phosphorescence

intensity at time t, I0 is a pre-exponential factor and s is the

phosphorescence lifetime.

IðtÞ ¼ I0,e
�

t

T (5)

The data were fit to the model using MATLAB 2008a software

and phosphorescence lifetime was determined for every location

point. In order to convert the phosphorescence lifetime to the

dissolved oxygen concentration, a two-point calibration was

done by measuring phosphorescence lifetimes of oxygen free and

atmospheric air saturated water.

Cultivation of Pseudomonas aeruginosa, PAO1 within the

microfluidic chip

Pseudomonas aeruginosa strain PAO148 tagged with a green

fluorescent protein (GFP)49 was grown in the flow chambers of the

device. The individual chambers were either set up with water in

the channels as a control or with oxygen scavenging liquid. PAO1

biofilms were cultivated in chambers irrigated with FAB medium.

For the initial attachment experiment the media was supple-

mented with 0.3 mM glucose and for the long term cultivation

experiments with 10.0 mM sodium citrate. Several studies have

demonstrated that FAB media supplemented with sodium citrate

as the sole carbon source promote a carpet-like biofilm instead of

microcolonies and mushroom-like structures. This generates

a better possibility of quantitative comparison of the bacterial

biomass developed under different oxygen environments.50

The flow chambers were inoculated by injecting 500 ml over-

night culture diluted to an OD600 of 0.005 into each flow

chamber. This inoculum ensured that the entire culture chamber

was filled. To drive the growth of bacterial biofilm on the glass

side the chip was turned upside down without flow for 1 h after

inoculation. The media flow was subsequently started at the

flowrate of 10 ml min�1 using a peristaltic pump (Watson Marlow

205S, Watson-Marlow Inc, USA), directly followed by detection

of attached bacteria by confocal laser scanning microscopy

(CLSM).

In order to illustrate biofilm development in different oxygen

environments the long term cultivation of PAO1 was performed

for 4 days using sodium citrate supplemented FAB media. All

steps were carried out at 37 �C.

Microscopy and image analysis

Microscopic observations and image acquisitions were per-

formed on a Zeiss LSM 510 CLSM (Carl Zeiss, Jena, Germany).

Detectors and filter settings were set for monitoring GFP.

Confocal images of the 1 h initial attachment was taken using the

63�/1.4. For each indicated time point 7 pictures were taken in

random locations of the specific oxygen saturation point. For the

long term experiments, pictures were taken at day 4 using

the 40�/1.4 Plan-Neofluar oil objective. The first location for the

long term biomass measurements was chosen at an oxygen

concentration of 97%. Each consecutive measurement was per-

formed in intervals of 1 mm down the oxygen gradient (see Fig. 8

and Fig. 9 later). All images were processed using the IMARIS

software package (Bitplane AG, Z€urich, Switzerland).

For quantification of biomass the COMSTAT software was

used. COMSTAT defines biomass as a biomass volume divided

by the substratum area (mm3 mm�2).50

Results

Description of the system

We have fabricated a multilayer system where we incorporated:

a PDMS immobilised oxygen sensing probe, a culture chamber,

a gas permeable membrane and a microfluidic channel for

oxygen scavenging.

The purpose of the microfluidic channel is to constantly flush

the PDMS membrane with an oxygen scavenging liquid. This

allows oxygen transport across the membrane by diffusion from

the growth chamber to the microchannel. Here the oxygen is

irreversibly consumed in a rapid chemical reaction. The oxygen

gradients generated within the chamber can be monitored by the

oxygen sensing probe.

The culture chamber was used for P. aeruginosa cultivation in

different dissolved oxygen environments.

Numerical simulations of the oxygen gradients

In order to verify the generation of dissolved oxygen gradients

within the microdevice, numerical simulations were performed.

The gradient can be observed in a horizontal as well as a vertical

plane. Since PAO1 strain forms biofilm on the glass side of the

chamber only the oxygen gradient from the top horizontal plane

was taken into consideration (Fig. 4).

The oxygen gradients vary with the media flow rate (Fig. 4)

due to changes in the ratio of advective and diffusive transport.

This ratio can be described by the P�eclet number (Pe) (see eqn (6)

and Fig. 2 where L is the characteristic length, V is the velocity

the media and D is the diffusion coefficient of oxygen in water).

In the first case where the flow rate of the media is low

Fig. 4 Simulations of the oxygen saturation gradients in the growth

chamber according to the various flow rates of culture media.
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(1 ml min�1, Pe ¼ 0.6), only a very short horizontal distance

within the chamber is needed to remove almost all the oxygen.

When the flow rate within the chamber is increased, the oxygen

saturation at the end of the chamber increases accordingly (2%

at 10 ml min�1 (Pe ¼ 6), 43% at 50 ml min�1 (Pe ¼ 29), 63% at

100 ml min�1 (Pe ¼ 58) and 88% at 500 ml min�1 (Pe ¼ 290) (last

not shown in Fig. 4)).

Pe ¼ L,V

D
(6)

Photoluminescence lifetime measurements of the oxygen

gradients

A two point calibration of the PDMS immobilised oxygen probe

was made to be able to calculate oxygen gradients generated

within the microfluidic device. The determined phosphorescence

lifetimes for oxygen free and atmospheric air saturated water

were: 69.7 � 0.4 ms and 8.2 � 0.1 ms, respectively. These

measurements allowed us to make a correlation between the

photoluminescence lifetime and oxygen concentration (Fig. 5).

The comparison between the numerically simulated and

measured oxygen concentration gradients were made in order to

validate both the theoretical model and the experimental data

(Fig. 6). The simulation curves were plotted as oxygen saturation

in water from the middle chamber cross-section versus the length

of the channel. For each curve, twelve measurement points were

used according to the spots marked in Fig. 3.

The measured oxygen gradients follow the data obtained by

the numerical simulations (Fig. 6). The variance coefficients

between simulated and measured oxygen concentrations were

2.2%, 5.9% and 13.5% for, accordingly, 100, 50 and 10 ml min�1

media flow rates. The measured oxygen concentrations were

slightly higher than the simulated ones at high flow rates and

slightly lower at low flow rates. These differences can be

explained by the flexibility of the PDMS membrane, which was

not taken into consideration in the numerical simulations, for the

sake of model simplicity, The membrane is slightly deflecting due

to hydraulic pressure differences between the chamber and the

channel with oxygen scavenger. This affects the chamber depth

(L, Fig. 2), oxygen diffusion length and consequently the oxygen

gradient.

According to both the numerical simulations and experimental

measurements of the oxygen concentrations, we have shown that

it is possible to control the oxygen gradient by merely alternating

the media flow.

Reduced initial attachment and biofilm growth in the microdevice

To investigate the effect of the oxygen concentration on the

growth of the P. aeruginosa PAO1, we cultivated this strain in the

chip with a defined media known to support aerobic growth. We

hypothesised that the lack of an alternative electron acceptor

would affect the growth pattern of PAO1 under low oxygen

concentrations. As a reference point for comparison purposes,

we arbitrarily chose the culture chamber section with 20% of

atmospheric air saturation (microaerobic conditions).

Following one hour of attachment under this low oxygen

concentration, the attachment capacity of PAO1 to the PDMS

surface was highly reduced. As shown in Fig. 7, PAO1 prefers to

attach to the PDMS surface (shown 146.6mm � 146.6mm area)

during conditions of higher air saturation. The attachment

characteristics of PAO1 was furthermore investigated by time-

lapse confocal microscopy. In a setup where the cells were

allowed 1 h of initial attachment under atmospheric air saturated

media, it was shown that the cells readily leave their attachment

site after the media is reduced in oxygen concentration (data not

shown).

Fig. 5 Phosphorescence decay curve for oxygen free and atmospheric air

saturated water (see equation 5).

Fig. 6 Comparison between simulated (dashed lines) and measured

(solid lines) oxygen concentration gradients in the culture chamber at

different media flow rates.

Fig. 7 Initial attachment of P. aeruginosa strain PAO1 at the end of

microchambers recorded after 1 h of attachment: (A) media saturated

with atmospheric air, (B) 20% of dissolved oxygen saturation.
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In order to quantitatively compare the effect of different

oxygen environments on PAO1 growth we used a FAB media

supplemented with sodium citrate as the sole carbon source.

We measured bacterial biomass formed after 4 days of culti-

vation in the microchambers. Under aerobic conditions

(Fig. 8A) an even distribution of carpet-like biofilm is spread

over the substratum. The drop in oxygen availability has a high

impact on the cells ability to form a stable and evenly

distributed biofilm (Fig. 8B). Fig. 9 shows clear correlation

between PAO1 biomass and the oxygen gradient generated

within the culture chamber.

Discussion

One of the main goals of our work was to design a device that

was fairly easy to fabricate and handle. In order for a device to be

a successful asset to a wide range of functional purposes in

a laboratory, the need for complicated setups and supplies

should be reduced as much as possible. In this paper we

presented a developed system which easily produces controllable

oxygen gradients within a culture chamber.

We exploit the advantages of an oxygen scavenging liquid over

methods which involve flushing the channel with oxygen–

nitrogen gaseous mixtures.19 This significantly reduces the

complexity of the setup and need of additional equipment.

Since PDMS is highly permeable, not only to O2 and N2 but

also to water vapour, the use of pressurised gases would cause

extensive drying of the culture media during long term experi-

ments. In the case of low media flow rates, this could lead to

severe changes in media osmolarity51 and introduce bubbles

within the culture chamber.52

The use of an oxygen tank in the laboratory is furthermore

a serious safety threat to the personnel, therefore any solution

which would eliminate it from the setup is highly desirable.

Furthermore we have produced a system which is cheap in

expenses for oxygen scavenging due to very small amounts of

chemicals needed.

The designed microfluidic system was integrated with a thin

film sensor which was used for the detection of dissolved oxygen

concentration gradients within the cultivation chamber. The

oxygen concentrations were monitored by photoluminescence

lifetime measurements. This specific way of monitoring oxygen

concentration is compatible with several different detection

methods as micro plate readers and fluorescence lifetime imaging

microscopes.

Since bleaching of the oxygen probe by short excitation pulses,

as used in time-resolved spectroscopy, is much lower than in the

case of excitation with continuous light, the proposed thin film

sensor can be used for long term experiments.

Prolonged exposition of the culture chamber to a strong light,

used for oxygen probe excitation, would be harmful for the

cultivated cells.53 Therefore, the short excitation pulses used in

Fig. 8 Four day old biofilm of P. aeruginosa PAO1 cultivated in FAB media supplemented with 10 mM sodium citrate under: (A) atmospheric air

saturation, (B) oxygen saturation (from left to right): 97%, 79%, 60% and 41%.

Fig. 9 Comparison of bacterial biomass developed in different oxygen

environments. The red bars represent the PAO1 biomass within the

culture microchamber under the oxygen gradient (red line). The blue bars

represent PAO1 biomass produced in the atmospheric air saturated

media.
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time-resolved spectroscopy techniques are preferable over

continuous light excitation.

Furthermore, the choice of not using dissolved oxygen probes

generate a system in which the influence of the probes on the

cells10 is completely eradicated. A significant advance over

previous approaches,19 where the authors created a system in

which oxygen probes were present within their setup, is that we

generated a highly biocompatible chip where the toxicity of the

probes is eliminated.

For the making of the thin film sensor, we chose a PDMS

matrix over the organically modified silica (ORMOSIL), which

was widely used as a sensor matrix in previous works.32 This

substitution allows one to perform biological experiments

without exposing the cultivated organism to two different envi-

ronments (a hydrophilic glass-like surface in the case of

ORMOSIL and a hydrophobic silicone rubber surface in the case

of PDMS). Having these two surfaces with radically different

properties could bias biological experimental data. This is

especially important in studies of bacterial biofilm formation,

where adherence will vary according to hydrophilicity of

a specific surface.54 However in other applications, especially for

mammalian cell cultures, the use of ORMOSIL could be

advantageous due to its chemical inertness55 and the possibility

of relatively easy surface modifications.56

Moreover, the cracking problem, reported for low molecular

mass ORMOSIL precursors40 is not present in PDMS films.

Another advantage of the PDMS based matrix is the rapid

fabrication time. The curing time for thin PDMS films is only

20 min while gelation and drying time of ORMOSIL based

matrices, reported in the literature, can be as long as 2 weeks.34

The results from photoluminescence lifetime measurements of

the dissolved oxygen gradients, which was generated within the

culture chamber, correlated well with the results obtained from

the numerical simulation. This does not only confirm the

correctness of the mathematical model of the oxygen transport in

the microfluidic system but also the reliability of time-resolved

luminescence measurements done using the proposed PtOEP film

sensor.

We consider that the discrepancies between simulated and

measured oxygen concentrations observed at some media flow

rates are due to deflection of the PDMS membrane. In order to

include this effect in the numerical simulations one would need to

incorporate one of the stress–strain models for a hyperelastic

material. In the literature one can encounter a limited number of

examples with numerical simulations of PDMS deflection.57,58

However, to our best knowledge, there is no literature data

describing how the gas permeability of PDMS is changing

according to the strain.

When the only changes in dissolved oxygen levels are due to

the chemical reaction with scavenger and diffusion–advection

transport, the numerical simulations can predict the approximate

shape of oxygen gradients within the chamber of the microchip.

However, when this is not the case, e.g. when the chamber is used

for cell culturing or when the material properties are not well

characterised, a simple mathematical model cannot precisely

predict the oxygen consumption. In such a case it will be

necessary to use an integrated sensor.

The designed system was successfully applied to support

growth of P. aeruginosa PAO1 biofilm. PAO1 responded to the

low oxygen concentration environment by a reduced number of

attached cells to the surface of the microchamber after the one

hour adherence period. This indicates that the oxygen concent-

ration within the microenvironment of the attachment site is

highly important for PAO1 to effectively bind to this surface.

The specific response to the low oxygen availability shows

that PAO1 under flow conditions seems to lack the ability to

effectively form an irreversible attachment.

In the CF lungs environment, the bacteria are living in a mucus

matrix with the presence of DNA, proteins and other factors59

which are highly diverting over the course of infection. This

is currently not possible to fully grasp in the experimental

conditions. However the most important factor in the chronically

infected CF patients is the oxygen tension.45 The presented device

makes it possible to generate such differences in oxygen levels

and is here proven to make an excellent platform for this kind of

experimental setup.

Concluding remarks

In this paper we presented a novel approach for oxygen gradient

generation within a microfluidic biochip. The system was

successfully fabricated by micromilling, laser ablation and spin-

coating techniques.

The simple layer-by-layer design allows the incorporation of

several desirable elements as the integrated gas permeable

membrane which we exploited by an oxygen scavenging liquid to

produce the desired oxygen environments. The experimental

data correlated as expected to the numerical simulations per-

formed.

Stability and biocompatibility experiments were successfully

performed over a long term biofilm culture, which proves the

system as an excellent foundation for oxygen dependent studies.

We successfully made a system that does not rely on toxic dyes

or difficult setups, but was built to be easy and safe to operate as

well as highly mobile and compatible with common used bio-

logical laboratory equipment such as microscopes and multi-titre

well plate readers.

In future CF biofilm studies, desired to be investigated in

different oxygen environments, this platform could furthermore

be used with the incorporation of other biologically important

factors, like DNA and proteins. This would be a great advance

towards mimicking the CF airways.
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Abstract 

 

A modular microfluidic airways model system that can simulate the changes in oxygen tension in 

different compartments of the cystic fibrosis airways was designed, developed and tested. The fully 

reconfigurable system comprise from modules with different functionalities: multichannel peristaltic 

pumps, bubble traps, gas exchange chip and cell culture chambers. We have successfully applied this 

system for studying the antibiotic therapy of P. aeruginosa, the bacteria mainly responsible for 

morbidity and mortality in cystic fibrosis, in different oxygen environments. Furthermore, we have 

shown the reinoculation of the bacteria form the anaerobic (CF sinuses) the aerobic compartments 

(lower respiratory tract) after the antibiotic treatment. This effect is hypothesised as the main reason 

for recurrent infections in CF patients. 

1 Introduction 

The human airways are complex multi-compartmental habitats for infectious bacteria. In healthy 

humans, the majority of the airways are essentially kept sterile as a result of highly efficient clearing 

mechanisms1. In cystic fibrosis (CF) patients, this clearing mechanism is severely impaired and 

bacterial infections inflict deteriorating health and becomes the major cause of mortality in these 

patients2, 3. 
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The human airways consist of at least three independent compartments, the conductive airways 

(the trachea, bronchi and bronchioles), the oxygen exchange compartment (alveoli), and a third, less 

recognized compartment, the paranasal sinuses (maxillary sinuses, frontal sinuses and ethmoid 

sinuses). In the first and the last compartment, the environment is essentially anaerobic4, while the 

alveoli are highly aerated. 

In healthy individuals, the conductive airways are constantly cleared by mucociliary transport of 

entrapped microorganisms5. As a result, very few bacteria will ever reach the alveoli. Bacteria that do 

evade this clearing mechanism will rapidly be cleared by the actions of the immune system. The 

sinuses also have a mucociliary clearance mechanism although not as effective as the one found in 

the conductive airways. Large concentrations of bacteria can be found widely spread throughout the 

sinuses, in particular in cases of common colds, etc6. 

Cystic fibrosis patients suffer from a defect in the cystic fibrosis transmembrane conductance 

regulator (CFTR) gene. The affected gene codes for the CFTR protein, which is a chloride channel that 

is present in the epithelial cell membrane. Reduced or absent function of the CFTR will lead to highly 

reduced secretion of chloride and accordingly water over the cell membrane7. A direct consequence 

of this defect is that the mucus layer in the conductive airways becomes very viscous and the 

mucociliary clearance mechanisms are highly impaired3, 8. This results in frequent and recurrent 

infections of the CF airways, with the risk of pneumonia. As the bacteria infect the lungs in large 

numbers, the immune system tries to eradicate the infection but with a reduced effect since the 

bacteria are embedded in mucus and more or less recalcitrant to the cellular defence9. Instead the 

lung tissue is gradually damaged by the on-going immunological exposure, eventually leading to 

massive pulmonary deficiency and death10. In the clinic, the infections can be treated with cocktails 

of antibiotics, which can reduce or sometimes eradicate the infectious agents11 

Bacterial airway infections in patients with a normal mucosa are relatively easy to treat with 

antibiotics. This is unfortunately not the case for CF patients and the myriad of infections they 

acquire during their lifetime leave each patient with a high need for recurrent antibiotic treatments. 

This is a multifactorial phenomenon and there are a lot of theories that try to explain this12-14. The 

most obvious reason for a treatment failure is the hindered diffusion of the antimicrobial agent 

through the thick and viscous mucus layer15, 16. However, according to recent findings, the main 

reason may reside in limited oxygen availability in some parts of the airways17, 18. These highly 

different oxygen environments are due to the human physiology of the airways and furthermore 

endured by the consumption from epithelial and immune cells in the local surroundings. 

As Pseudomonas aeruginosa (P. aeruginosa) infections are almost inescapable in CF patients, 

especially in older patients, this makes P. aeruginosa an important organism for studies of “oxygen” 

phenomena19. P. aeruginosa is a facultative anaerobic bacteria20 with reduced growth rate21 and 

metabolic activity18 at low oxygen levels. Antibiotics such as tobramycin, ciprofloxacin, and 

tetracycline preferentially kill the physiologically active bacteria living at high oxygen levels (aerobic 

environment), while colistin is more effective on the physiologically inactive bacteria growing in an 

anaerobic environment10, 22. 

 An antibiotic treatment can seem eventually successful, yet after a few months the very same 

bacteria that were responsible for the infection can reappear, possibly as a result of reinoculation 

from the anaerobic sinus6. In this context the sinuses could very well serve as a reservoir for “sinus” 

bacteria, which are difficult to treat with antibiotics and can cause the reinfection of otherwise 

cleared patients. 
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The now classical ways of studying CF related bacterial infections, primarily P. aeruginosa, are 

either to use animal models or to grow the bacteria in flow-cell systems.  

A number of different animals have been tried as models of chronic infections in CF patients23. 

This includes rats24-26, guinea pigs27, cats28 and rhesus monkeys29, 30. However the most important 

animal model is a mouse31-34. The use of an animal models is expensive and rise ethical concerns35, 36. 

Besides, the animal models of CF related infections are still not ideal, mainly because of immune 

response differences between man and e.g. mouse, and because the lung pathology after infection is 

very different in animals compared to humans. 

In flow-cell based systems, the bacteria are allowed to form a biofilm on a surface, as in the 

airways, and can then be monitored using a confocal microscope11, 37. However, this is not a suitable 

model for the human airways as they are subdivided into aerobic and anaerobic compartments. 

The advancement in micro- and nanofabrication and assembly, as well as better understanding 

of microfluidics, has made possible the development of devices for modelling different tissue organs.  

Thanks to these devices, the control over the environment, relations and interactions between the 

cells and tissues at microscale with high spatial and temporal resolution can be achieved38, 39. The yet 

small but fast growing number of microdevices that can mimick different and even entire organs 

have been reported. These include blood vessels40, bones41, muscles42, liver43-46, brain47, guts48, 

kidneys49, 50, endothelia51 and blood-brain barrier52. 

In the field of mimicking the human airways, Huh at al.53, 54 proposed a microfluidic device that 

can simulate injuries to the airways epithelia done by liquid plug flow. Recently, the same group 

proposed a model of the vacuoles in the lung55. In this work the phagocytosis of planktonic 

Escherichia coli cells by neutrophils on the epithelial surface was shown. 

In our previous work21 we have shown the possibility of using a poly(dimethylsiloxane) (PDMS) 

membrane and an oxygen scavenging liquid to control the oxygen gradient within cell culture 

microchambers. However, according to the authors’ best knowledge, the microfluidic model of 

different compartments of the human airways that would allow to observe the influence of the 

microenvironment of these compartments on the recurrence of CF related infections has not been 

reported previously. 

Therefore, the aim of this work was to make a model system, which simulates the three 

compartments of the airways to better understand the interplay between them. Using this artificial 

airways model, we can look into the bacterial details in the three compartments, their transmitting 

interaction, and the states of the bacterial inhabitants before, during and after antibiotic treatment. 

2 Microfluidic Airways Model 

The three sections of human airways: the conductive airways (trachea, bronchi and bronchioles), 

which are considered micro-aerobic, the highly aerobic gaseous exchange compartments (the alveoli) 

and the compartments of the paranasal sinuses, which are basically anaerobic (Fig. 1 A), are 

reproduced in this Microfluidic Airways Model (MAM). This is realized by constructing cell culture 

microchambers with different oxygen levels (Fig. 1 B). A microchamber with atmospheric air 

oxygenated media (aerobic environment) is connected by a channel to a microchamber with culture 

media saturated below the atmospheric air saturation level (micro-aerobic environment). This 

chamber is consecutively connected to a chamber with deoxygenated media (anaerobic 

environment). The connections between the chambers as well as outlets can be closed and opened 
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and the actual oxygen level in the compartments is determined by an oxygen probe. The entire 

system is actuated by peristaltic micropumps. 

 
Fig. 1 (A) The human airways system and (B) the Microfluidic Airways Model (MAM) 

3 Design 

The above model was implemented, as a modular system comprised of the following distinct 

modules: a modified previously described multichannel microfluidic peristaltic pump56, 57, a bubble 

trap, gas exchange and cell culture chambers (Fig. 2). The system allows to simultaneously cultivate 

cells in 8 chambers (3 of them facilitate aerobic environment, 2 micro-aerobic environment and 3 

anaerobic environment). 

 
Fig. 2 Modular implementation of MAM 

 

These modules can be attached to form a microfluidic platform. The detailed design of each of 

these modules and the platform is available in the electronic supplementary information (ESI) ‡. 

 

A B 
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4 Materials and methods 

4.1 Microfabrication 

The material of choice for most of the parts was polycarbonate (PC) (Nordisk Plast A/S, 

Denmark). This material exhibits low oxygen permeability (1.8 barrer58), very good mechanical and 

optical properties59 as well as being resistant to alcohols and oils, which is important for sterilization 

and microscopy. The structures in PC were obtained by micromilling (Mini-Mill/3PRO, Minitech 

Machinery Corp., USA) followed by tetrahydrofuran vapour assisted bonding (50°C, 1.5 MPa). 

PDMS inlays were fabricated by casting the silicone mixture (Sylgard 184, Dow Corning Corp., 

USA) against the milled mould. The PDMS parts were bonded to PC using silicone adhesive tape 

(ARcare® 91005, Adhesive Research, Inc., Ireland). The tape was cut into the desired shape using 

laser ablation (48-5S Duo Lase carbon dioxide laser, SYNRAD Inc., USA). 

The gaskets used for sealing the modules to the platform, as well as check valves, were 

fabricated by milling in fluoroelastomer VITON A (J-Flex Rubber Products, UK). 

4.2 Cultivation of P. aeruginosa strains 

The P. aeruginosa laboratory strain PAO1 was used for all biofilm experiments. PAO1 was 

originally isolated from a burn wound 60. PAO1 was fluorescently tagged at a neutral chromosomal 

locus with GFP or mRFP1 with miniTn7 constructs as previously described61. A FAB medium62 

supplemented with 0.3 mM glucose and 65 mM KNO3 (FAB-GN) was used for biofilm cultivation. All 

biofilms and batch cultures were grown at 37°C. PAO1 was pre-cultured overnight in Luria Bertani 

(LB) media and prepared for inoculation in FAB-GN media. The overnight culture was diluted to an 

OD600 of 0.01 and subsequently 100 l was inoculated with a Gilson P200 pipette through the 

designed inlets. In order to visualise the bacteria migration, the anaerobic culture chambers were 

inoculated with the GFP tagged strain and microaerobic and aerobic chambers were inoculated with 

the mRFP1 tagged strain. The device was left upside down for an hour without media flow. Following 

the one hour incubation period, the media flow was started at 500 l·h-1 per channel. After 48 hours 

of cultivation in the growth chambers the media was exchanged to media supplemented with 

50 g·ml-1 of the antibiotic, Ciprofloxacin (Sigma-Aldrich, Denmark A/S). 24 hours antibiotic 

treatment was followed by staining with 1 M SYTOX Blue dead cell stain (Molecular Probes, 

Invitrogen, Denmark). The chambers were left for 48 hours running on media without Ciprofloxacin. 

This was done in order to subsequently evaluate the cells ability to migrate between oxygen 

gradients. Interconnection was made between the chambers and cells were allowed to migrate for 

24 hours before analysed with confocal laser scanning microscopy.  

The interconnections between chambers were made with PVC tubing attached to PEEK 

connector plugs that were inserted into the specific chambers with different oxygen levels.    

4.3 Dissolved oxygen level control 

In order to control the dissolved oxygen levels in the cell culture media, one of the PDMS gas 

exchange module inlays was supplied with an oxygen scavenger (10% sodium sulphite solution with 

0.1 mM CoSO4 as catalyst, both from Sigma-Aldrich Denmark A/S). The second inlay was left open to 

atmospheric air. 

Determination of the oxygen levels in the cell culture chambers was achieved using  the 

phosphorescent oxygen-sensitive nanoprobe based on Platinum(II)- tetrakis-(pentafluorophenyl) 
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porphine (PtTFPP) dye63 (Luxcel Biosciences, Ireland). The oxygen levels were determined by: (i) 

phosphorescence intensity and lifetime measurements on an Axiovert 200 wide-field microscope 

(Carl Zeiss, Germany)  upgraded for phosphorescence lifetime imaging (LaVision Biotec, Germany), 

and (ii) phosphorescence lifetime measurements on a multi-label plate reader (Victor2, Perkin-Elmer 

Life Sciences, USA). The imaging experiments were performed as described in64 using pulsed 

excitation with a 390 nm LED and emission collection at 655±50 nm. Plate reader measurements 

were performed as described in63, using excitation at 340 nm and emission at 642 nm. For such 

measurements the device was inoculated with non-fluorescent P. aeruginosa laboratory strain PAO1, 

then maintained under a flow of medium, containing 0.01 mg.ml-1 of probe, for 12h and then washed 

with medium. Thus, biofilms stained with the phosphorescent probe were produced in the device, 

which can be used to monitor oxygenation and conduct biological experiments for several days. 

The correlation between the phosphorescence intensity or photoluminescence lifetime and 

dissolved oxygen concentration was determined by two-point calibration: at 0% and 100% of 

atmospheric air oxygen saturation in the culture media. The 0% atmospheric air oxygen saturation 

was obtained by supplementing the glucose containing culture media with glucose oxidase (Sigma-

Aldrich Denmark A/S). Each cell culture chamber was calibrated separately. 

4.4 Confocal microscopy and image analysis 

Confocal fluorescence images were taken with a Leica TCS SP5 microscope using a 50x/0.75W 

objective. 4 random pictures were taken from each chamber. Settings for visualization of the probes 

were: 514 nm excitation and 613-688 nm emission for mRFP1; 488 nm excitation and 517-535 nm 

emission for GFP; 458 nm excitation and 475-490 nm emission for SYTOX Blue dead stain. All 

images were processed by the Imaris 7 software package (BITPLANE AG, Zürich, Switzerland).  

5 Results 

5.1 Integration of the modular microfluidic system 

The microfluidic modules described in ESI‡ were successfully fabricated and assembled on a 

microfluidic platform (Fig. 3A). The system was integrated with 16-channel peristaltic micropump. 

The pump was actuated by two motors obtained from commercially available LEGO® Mindstorms® 

NXT 2.0 robotic kit65 (The LEGO Group, Denmark) (Fig. 3B)57. 

 

  
Fig. 3 (A) Microfluidic platform with modules and the peristaltic micropump (B).  

A B Culture chamber module 

Microfluidic modular platform 

Gas exchange module 

Bubble trap module 

Module connecting bubble traps with inlets 

Pumping units 

Pump motors 
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5.2 Determination of the dissolved oxygen level 

The correlation between the phosphorescence intensity of the P. aerugionsa biofilm stained with 

the PtTFPP nanoprobe in the aerobic and anaerobic environments was investigated in order to 

determine the oxygen removal efficiency from the culture media using the gas exchange module (Fig. 

4). The phosphorescence intensity increased approximately two-fold in anaerobic conditions as 

compared with aerobic conditions. 
 

 

 
 

 

Fig. 4 Phosphorescence intensity (top panel) and lifetime (bottom panel) images of the P. aeruginosa biofilm stained 

with the PtTFPP nanoprobe in the culture chambers with high (left) and low (right) oxygen concentration.  

 

A two step calibration curve was established by measuring The photoluminescence lifetime of 

the nanoprobe in oxygen free and atmospheric air-saturated media. The photoluminescence lifetime 

was determined to be 54.5±1.3 µs (oxygen free media) and 29.7±0.6 µs (and atmospheric air-

saturated media). Oxygen concentration in atmospheric air-saturated media was determined to be 

0.281 mM 66. The measurements were performed at room temperature. Assuming a reversible 

collisional quenching model67, the Stern-Volmer constant was determined to be  2.97 mM-1.  
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The photoluminescence lifetimes of the nanoprobe in the chambers, resembling aerobic, micro-

aerobic and anaerobic environments, were: 30.5 µs, 35.8 µs and 51.1 µs, respectively, which 

corresponds to 94.2%, 62.7% and 7.9% of atmospheric air-saturation of the culture media according 

to the two-point calibration curve. 

5.3 Cultivation of P. aeruginosa strains in different oxygen environments 

PAO1 biofilm formation was analysed after 24 hours after inoculation. In order to follow the trail 

of each specific population following each inoculation, we used differently fluorescently tagged 

versions of PAO1. The formation of the initial 24 hour biofilm under different oxygen environments in 

presence of nitrate as an alternative electron acceptor, gives rise to highly equivalent biofilm 

formations within the oxygen compartments.  

The green 3D biofilm presentation (Fig. 5A) originates from GFP tagged bacteria and was 

cultivated under the lowest oxygen saturation. The red biofilm derives from mRFP1 tagged bacteria 

and was cultivated in microaerobic (Fig. 5B) and aerobic conditions (Fig. 5C). However, under the 

tested conditions in a minimal media, the biomass within first 24 hours of growth reached highly 

equivalent magnitudes of biomass regardless of oxygen tension. Under anaerobic conditions, 

supplemented with nitrate as electron acceptor, PAO1 has in LB media shown to develop 3 fold more 

biomass68.  

In order to evaluate the efficiency of the antibiotic ciprofloxacin on PAO1 biofilms under 

conditions on differentially lowered oxygen availability in a FAB-GN media, each chamber was 

challenged with the same ciprofloxacin concentration. After 24 hours of incubation each chamber 

received media supplemented with 50 g·ml-1 of the antibiotic ciprofloxacin for a period of 24 hours. 

The treatment would present the differences in the effectiveness of the antibiotic in a developing 

PAO1 biofilm. Dead cells in the biofilms were visualized by staining each chamber with Sytox blue 

dead cell stain (Fig. 5D-F). The effect of the ciprofloxacin on the PAO1 biofilm was highly dependent 

on the oxygen environment PAO1-GFP biofilm was much more susceptible to the antibiotic 

treatment than biofilm formed under higher oxygen concentrations. The antibiotic concentration 

was chosen to eradicate the majority of cells in the establishing biofilms, though low enough to allow 

surviving cells. PAO1 had in that sense been established enough to produce a healthy biofilm and 

represent a community associated environment.    

Following the 24 h treatment with ciprofloxacin, the chambers were taken off the antibiotic 

containing media for 48 hours and connections between the different oxygen environments were 

made (Fig. 5G-I) (see connection details in the ESI). This enabled tracking of the bacteria in a novel 

way that has previously not been possible. We setup the system in a way to follow in which direction, 

if any, the surviving bacteria would move. As the ciprofloxacin treatment had been stopped the only 

difference between the chambers were the differences in oxygen concentrations. The small green 

clusters on Fig. 5H and I come from the GFP tagged bacteria. This proves that PAO1 moves from 

chambers with low oxygen tension (Fig. 5G) to microaerobic (Fig. 5H) and aerobic chambers (Fig. 5I). 

 

 

 

 

 

 

 



9 

 

7.9% oxygen saturation 62.7% oxygen saturation 94.2% oxygen saturation 

   
A B C 

   

 D E F 

   
G H I 

Fig. 5. 3D representation of the PAO1 biofilms at different oxygen saturation in FAB-GN media (minimal media 

supplemented with nitrate). PAO1 expresses either the fluorescent protein GFP or mRFP1. A-C: 24 hours old biofilms in 

FAB-CN media. D-F: 48 h after inoculation the cells were challenged with 50 µg·ml-1 Ciprofloxacin for 24 hours and then 

stained with dead stain SYTOX Blue. G-I: Interconnected chambers of the different oxygen saturation environments.   

6 Discussion and conclusions 

In this paper we describe design, fabrication, working principle and application of a highly 

complex modular microfluidic system. Integration of different modules, bringing in such important 

functionalities as multichannel fluid control, bubble trapping, gas control - exchange and bacterial 

culturing on a microfluidic lab-on-a-chip system, has been shown to be successfully achieved. The 

modularity allows addition and removal of the different functionalities. The design permits easy 

reconfiguration and tailoring of the system to match particular needs. In case of malfunctions in a 

single module, the system benefits from its modular construction and allows uncomplicated 

exchange of the broken module without the need for fabrication of other essential parts of the 

system. This is particularly important in the field of life science microfluidic systems, in which not yet 

all of these components are suitable for mass production. Furthermore it allows quick prototype 

testing of different system configurations. 
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The microfluidic system in its present configuration enables comparison of changes between 

anatomically driven oxygen tensions in different compartments of the CF airways model, as well as 

full control and sensing of dissolved oxygen levels. By making the system compatible with common 

substrates such as microscope slides and multitier plates, it enables research staff to use standard 

laboratory equipment such as standard microscopes and multitier plate readers. 

Furthermore, the microfluidic CF airways model permits to freely reconfigure connections 

between oxygen rich and oxygen depleted regions without bringing restrictions to the researcher in 

the design of experiments. It enables to mimic some different conditions and diseases in patients 

suffering from CF, such as clogging of the ostia in recurrent sinusitis4, 69 or the development of mucus 

plugs70 in the bronchioles. These experiments were not previously possible to perform in standard in 

vitro flow-cells models for biofilm studies. In vivo models will usually not allow precise control of such 

important conditions. 

Moreover, the use of this microfluidic system, instead of a CF airways animal model, is cheaper, 

safer and easier to handle for researchers. Importantly, it furthermore does not raise any ethical 

concerns, which is the case for the use of animal models in medical research. 

We demonstrated the application of our microfluidic airway model for studying P. aeruginosa 

PAO1 under different oxygen levels in response to treatment with ciprofloxacin. We have in this way 

explicitly shown that the system is an asset in reliable and controllable biofilm evaluations for 

treatment with antibiotics at reduced oxygen concentrations. Importantly, such a system allows 

testing of very small volumes thereby minimizing the use of large amounts of expensive 

antimicrobials. PAO1 survival was shown to be highly dependent on the amount of oxygen available 

during the antimicrobial treatment. This corresponds very well with previous studies where it was 

shown that higher metabolic rate, in nitrate supplemented media under anaerobic conditions, lead 

to a lower survival rate of the bacteria71.  

We have shown that PAO1 under lowered oxygen concentrations moves towards higher oxygen 

concentrations even in nitrate supplemented media. The effect of the presence of nitrate, which 

serves as final electron acceptor for anaerobic nitrate respiration (denitrification) utilized by 

P. aeruginosa, is not favoured in the presence of oxygen and drives the migration towards the higher 

oxygen gradient.  The scenario can mimic the reinoculation of the lower respiratory tract, previously 

cleared with the antibiotic treatment from the sinuses. This effect is hypothesised as the main reason 

for recurrent infections in CF patients17.  
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1 Detailed design of the microfluidic modules 

1.1 Multichannel peristaltic micropump 

The design of the multichannel peristaltic micropump was based on a previously reported 

system1, 2 with two major changes. In the new design (Fig. 1), the previously used 

poly(dimethylsiloxane) (PDMS) inlays were exchanged with thin-walled poly(vinyl chloride) (PVC) 

tubing with 0.63 mm internal diameter (medical grade, Thoma Fluid, Reichelt Chemietechnik GmbH + 

Co, Germany). The module (Fig. 2A) was equipped with two separate micropumping units (Fig. 2B). 

Each unit (Fig. 2B) is capable of actuating up to 8 channels. In this way the capacity of each module is 

a total of 16 individual channels. The replacement of the PDMS inlays with PVC tubing allows us to 

skip the laborious process of the inlay moulding. Besides, PVC is a much more durable material than 

PDMS which makes the entire system more reliable. PVC is also known to be far more resistant to 

organic solvents and does not absorb hydrophobic agents from aqueous media as PDMS does. 

 

 

 
Fig. 1 Exploded view of the multichannel peristaltic micropump. The type of material for each fabricated part is 

indicated in parenthesis, the acronyms stands for: SS – stainless steel, Al –aluminium, PEEK – poly(ether ether ketone), 

PVC - poly(vinyl chloride), PC – polycarbonate. 
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Fig. 2 Multichannel peristaltic micropump: (A) assembled micropumping unit, (B) module with two micropumping 

units facilitating 16 channels. 

 

1.2 Bubble trap module 

The array of bubble traps was designed according to previously reported work3. The entire 

module was made in polycarbonate (PC). Each bubble trap has a volume of 56 mm3 and is equipped 

with a tapered opening on the top which serves as a vent. It can be closed or opened with the plug in 

order to release entrapped air bubbles (Fig. 3).  

 

 

 

 
 

Fig. 3 Scheme of the bubble trap module: (A) image of the module, (B) cross-section of the bubble trap. 

  

1.3 Gas exchange module 

The gas exchange module allows oxygen saturation or desaturation of a desired culture media. 

The working principle of the module was communicated in our previous report4; here described 

briefly. It is based on the oxygen diffusion through gas permeable membranes made from PDMS. The 

culture media flows through the channels fabricated in PDMS. The channels were patterned with 

groves, similar as reported in our previous work5, in order to improve mixing of the media. The 

oxygen can diffuse from the culture media through the integrated membrane to the channel filled 

with oxygen scavenging liquid. The scavenger (sodium sulphite) reacts with the available oxygen. In 

A B 
Plug 

Bubble trap 
chamber 
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Outlet 
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Module base (PC) 

Tubing stoppers (PEEK) 



the case, where the channels are filled with atmospheric air, the media is ensured to be saturated 

with oxygen. The PDMS inlays are enclosed in low gas permeability scaffold, made form PC, in order 

to separate the permeable material from the atmosphere (Fig. 4). 

 

 

 

 

 

 

 

 

Fig. 4 Scheme of the gas exchange module: (A) exploded view of the module, (B) top view for on the module layers.  

1.4 Culture chambers module 

The culture chambers were designed to implement three different oxygen saturation 

environments (Fig. 5). The module consists of 8 chambers that can be interconnected by detachable 

PVC tubing. The volume of each chamber is 4.2 µl and the area for cells attachment equals to 

12.7 mm2. Each chamber has additional tapered openings: one near its inlet and the other near its 

outlet (Fig. 6). The opening near the inlet of the chamber is used as the inoculation site. It can be 

opened and closed with a plug in the same manner as the vents in the bubble trap module. Instead 

of plugs, these openings can be equipped with fittings and tubing in order to interconnect two 

chambers with different oxygen environments.  
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Fig. 5 The scheme of the cell culture chamber module facilitating different oxygen environments. 

 

 

Fig. 6 Cell culture chamber module: (A) scheme of the module with plugs and tubing interconnecting different 

chambers (for clarity of the image, only two interconnections are shown), (B) cross-section of the fitting and tubing. 

1.5 Check microvalve 

The working principle of the designed check microvalve was based on a previous report6. An 

array of 28 check microvalves was fabricated in 1 mm thick fluoroelastomer (Fig. 7A), the same 

material that was used to fabricate the seals. The microvalves are clamped in-between the 

microfluidic modules and the platform. Each microvalve has a chamber with a 150 µm thick 

membrane (Fig. 7B). In the membrane there are two holes with Φ = 500 µm spaced 1.59 mm from 

each other (centre to centre). Such spacing is large enough to cover the holes of the microfluidic 

modules when the membrane is in a relaxed state. Membrane deflection is only possible inward the 

chamber thereby only allowing media flow in one direction (Fig. 7B). 

The purpose of the microvalve is to stop the backflow from the outlet tubing while allowing the 

user to inoculate the system using standard laboratory micropipettes. The membrane thickness, as 

well as the size and spacing between the holes, was optimised in order to get the opening pressure 

low enough enabling the use of a micropipette (typically below 1 kPa).  

 

PVC tubing 

Tubing connector  

Chamber inlet 

A B 



 

 
Fig. 7 Check microvalve: (A) scheme of the module with 28 independent microvalves, (B) the working principle of the 

valve 

 

 

1.6 Modular platform 

The platform was designed to comply with the microplate footprint standards7, 8. This allows the 

device to be used together with a broad range of commonly used laboratory equipment such as 

microtitre plate readers and microscopes. The platform can be equipped with up to 4 modules with a 

microscope slide size (76x26 mm). Modules can be serially interconnected by 28 independent 

channels at the long edges of a module. Additionally, each module has 8 inlets/outlets at each of the 

short edges. The platform has 28 independent inlets and the same amount of outlets (Fig. 8A). 

 

 

Fig. 8 (A) Microfluidic modular platform, (B) gasket used to seal the modules with the platform 

 

Modules are attached to the platform by screws and nuts (Fig. 9) and all the microfluidic 

connections between the modules and platform are sealed by gaskets made from fluoroelastomer 

(Fig. 8B).  
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Fig. 9 Exploded view of the microfluidic platform with modules 

2 References 

 

1. P. Skafte-Pedersen, D. Sabourin, M. Dufva and D. Snakenborg, Lab Chip, 2009, 9, 3003-3006. 

2. D. Sabourin, D. Snakenborg, P. Skafte-Pedersen, J. P. Kutter and M. Dufva, Proceedings of the 

Fourteenth International Conference on Miniaturized Systems for Chemistry and Life Sciences, 

2010, 1433-1435. 

3. W. Zheng, Z. Wang, W. Zhang and X. Jiang, Lab Chip, 2010, 10, 2906-2910. 

4. M. Skolimowski, M. W. Nielsen, J. Emnéus, S. Molin, R. Taboryski, C. Sternberg, M. Dufva and O. 

Geschke, Lab Chip, 2010, 10, 2162-2169. 

5. T. Tofteberg, M. Skolimowski, E. Andreassen and O. Geschke, Microfluidics and Nanofluidics, 2010, 

8, 209-215. 

6. D. Snakenborg, H. Klank and J. P. Kutter, Microfluidics and Nanofluidics, 2011, 10, 381-388. 

7. Microplates – Footprint Dimensions [ANSI/SBS 1-2004], 

http://www.sbsonline.com/msdc/pdf/ANSI_SBS_1-2004.pdf. 

8. Microplates – Height Dimensions [ANSI/SBS 2-2004], 

http://www.sbsonline.com/msdc/pdf/ANSI_SBS_2-2004.pdf. 

 

 

Screws 

Culture chamber module 

Check microvalve 

Microfluidic modular platform 

Gas exchange module 

Bubble trap module 

Inlet tubing 

Oxygen scavenger outlet tubing 
Oxygen scavenger inlet tubing 

Gasket 

Outlet tubing 

Module connecting bubble traps with inlets 



 

93 

8.6 Paper VI 

Skolimowski, M., Nielsen, M.W., Abeille, F., Lopacinska, J., D., Molin, S., Taboryski, R., 

Sternberg, C., Dufva, M., Geschke, O. and Emnéus, J., Microfluidic model of cystic fibrosis 

bronchi. Accepted for Proceedings of the Fifteenth International Conference on 

Miniaturized Systems for Chemistry and Life Sciences, 2011. 

 





MICROFLUIDIC MODEL OF CYSTIC FIBROSIS BRONCHI 
M. Skolimowski

1,2*
, M. W. Nielsen

1,2
, F. Abeille

1,2
, J. Lopacinska

1
, S. Molin

2
, R. Taboryski

1
, O. Geschke

1
, 

C. Sternberg
2
, M. Dufva

1
 and J. Emnéus

1
 

1Technical University of Denmark, Department of Micro- and Nanotechnology, DENMARK 
2Technical University of Denmark, Department of Systems Biology, DENMARK 

 

ABSTRACT 

In this paper we report a microfluidic model to simulate the bronchi of a cystic fibrosis (CF) patient. The biochip is com-

prised of two cell culture chambers separated by a membrane. On top of the membrane an alginate hydrogel is formed in or-

der to simulate the thick mucus layer spotted in a CF bronchi. In the bottom chamber a monolayer of epithelial cells are cul-

tured to simulate the bronchi tissue. By inoculating the pseudomonas aeruginosa PAO1 strain to the hydrogel layer one can 

simulate bacterial infections commonly subjected to the CF patient, and the system can be applied for the studies on antibi-

otic treatment of bacterial infection related to CF. 

 

KEYWORDS: cystic fibrosis, bronchi, model, microfluidic, microfabrication  

 

INTRODUCTION 

Here we report work towards a microfluidic system that simulates the cystic fibrosis (CF) bronchi and the impact of the 

mucus layer on the treatment of bacterial infections. The classical way of studying CF related bacterial infections, primarily 

Pseudomonas aeruginosa, is by growing them in flow-cell systems [1,2]. In these flow cells bacteria are capable of forming 

biofilm, as in the airways, and can then be monitored using confocal microscopy [3]. However, the bacteria in CF patient 

bronchi are not subjected to a constant flow of nutrients as in flow-cell based systems. Instead they embed in the mucus that 

covers the bronchi epithelia through which the nutrients and metabolites are diffusing (Figure 1A). Moreover, the content of 

the mucus highly affects bacterial attachment and biofilm growth. Consequently, the biological response for biofilm drug 

treatments can be altered by changes in the mucus [4]. 

 

THEORY 

While the human primary bronchi have a relatively large lumen diameter (order of magnitude of centimetres), the respira-

tory bronchioles are about 1 mm in diameter. Therefore, in order to be able to mimic it as closely as possible to the in vivo 

conditions, a microfluidic system is required. The presented microfluidic model of the CF bronchi consists of two chambers 

separated by a microporous membrane (Figure 1B). The membrane is the underlying support for a hydrogel, which mimics 

the mucus layer in the CF bronchi. The chamber below the membrane simulates the artery and supplies the media with nutri-

ents and transports the metabolites. These compounds are provided further to the top chamber by diffusion through the mem-

brane and hydrogel. On the bottom side of the membrane epithelial cells are cultured while on the top part of the hydrogel the 

bacteria cells are inoculated. In order to simulate antibiotic treatment, the media in the bottom channel can be supplemented 

with drugs. This supplementation can be performed in cycles, which would mimic drug dosage to CF patients. The introduc-

tion of the human sub-bronchial gland cell line (Calu-3) without the layer of hydrogel can simulate the normal bronchi while 

the same system but with the hydrogel can simulate the bronchi of CF patients. 

 

 

Figure 1: (A) Bronchi of the healthy individual and CF patient. (B) The microfluidic model of CF epithelia. 

 

EXPERIMENTAL 

The biochip (Figure 2) was fabricated in polycarbonate (PC) by micromilling (Mini-Mill/3PRO, Minitech Machinery 

Corp., USA). The PC membrane with 0.45 µm pores was inserted between the milled parts and bonded (tetrahydrofuran va-

pours assisted bonding, 3.5 MPa, 50°C). 

A B 



The hydrogel layer was formed by introduction of 0.3% sodium alginate to the top chamber and 0.1 M CaCl2 solution to 

the bottom chamber. The thickness of the hydrogel was controlled by focusing the sodium alginate stream with PBS (Figure 

3). In order to visualise the hydrogel thickness, the sodium alginate was stained with 6-aminofluorescien according to the re-

ceipt by Strand et al. [5]. 

The biochip was thoroughly washed with PBS followed by cell culture media (DMEM, 10% FBS). Calu-3 cells with a 

density of 5·105 cells/ml were seeded on the membrane in the bottom chamber. 

The inoculum (OD600 = 0.01) of  the P. aeuruginosa PAO1 strain tagged with GFP was introduced into the upper cham-

ber to mimic the bronchi infection (Figure 5). The culture was performed for 3 days in the incubator (5% CO2, 37°C) 

(HERAcell incubator, Heraeus, Germany) with perfusion of culture media through the lower chamber with flow rate 0.3 

ml·h-1. 

 

  

Figure 2: (A) The 3D model of the biochip consist from 3 layers. (B) Fabricated and bonded biochip. 

 

RESULTS AND DISCUSSION 

The obtained thickness of the hydrogel layer in the top chamber was 270±20 µm (Figure 4). The focusing buffer was ac-

tively pushing the sodium alginate through the membrane, therefore a thin (below 100 µm) layer of hydrogel was formed on 

the other side of the membrane. The vertical transport of the calcium ions through the membrane was purely diffusional. 

 

 

 

Figure 3: Numerical simulation of the formation of hydro-

gel layer in the top chamber. The thickness of the layer can be 

controlled by changing  the ratio between the sodium alginate 

and focusing buffer flow rates. 

 

Figure 4: Confocal image of the hydrogel formed 

in the biochip. Green fluorescence  represents calcium 

alginate and the gap between is the porous PC mem-

brane. The alginate was stained according to [5]. 

 

The Calu-3 cells were cultured in the bottom chamber of the system. After reaching the 70% of confluency (3rd day of 

culture) the P. aeruginosa PAO1 strain was inoculated to the upper chamber. The bacteria were allow to form biofilm in the 

hydrogel for 3 days (Figure 5A). The Calu-3 cells were stained with live/dead stain (Calcein AM/PI) in order to visualise the 

viable and necrotic epithelia (Figure 5B). 

The future application of the presented CF bronchi model lies in simulation of antibiotic treatment of CF related bacterial 

infection. The simulation of the treatment can be performed by supplementation of the culture media with drugs. The results 

expected from this should be a better understanding of the problems in the treatment of the chronically infected CF patient. 

A B 

300 µm 



  

Figure 5: (A) Confocal image of the P. aeruginosa PAO1 strain tagged with the GFP growing in the hydrogel. 

 (B) Fluorescence image of Calu-3 cells stained with live/dead stain (Calcein AM/PI) growing below the hydrogel. 

 

 

CONCLUSION 

We have successfully designed and fabricated a microfluidic biochip which can be used as a model of the CF bronchi. 

The co-culture of the Calu-3 cells and P. aeruginosa PAO1 strain using the constructed biochip was shown. By alternating 

the thickness of the hydrogel layer, the presented model can be used in the future for comparative studies of the antibiotic 

treatment of bacterial infections in normal and CF patients. This system is a significant advancement in the mimicking of the 

airways function on the chip reported earlier [6]. 
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Abstract 

Here we present our work on a microfluidic device that mimics the bronchi in people suffering 

from cystic fibrosis. To imitate the mucus of the diseased bronchi, a 200 µm thick hydrogel is formed 

in a controlled manner on the top of a microporous membrane. This membrane is also the support 

for the attachment of the epithelial cells, to mimic the bronchial tissue. In the hydrogel, P. 

aeruginosa are inoculated to recreate the scenario of bacterial infections. Compared to flow- or 

static cell culture systems our microdevice allows better imitation of the nutrient supply through the 

bronchial bio-layers.   

Eventually, nutrient driven development of bacterial growth and the viability of the epithelial 

cells are characterized by confocal laser scanning microscopy.  



 

Introduction 

Cystic fibrosis 

Many severe infections in humans affect the airways. Different types of pneumonia are 

major causes of morbidity and mortality in patients with various immuno compromising conditions. 

Ineffective anti-microbial therapies often fail to remove the infecting microbes. One of the most 

severe genetic diseases affecting the human airways, is cystic fibrosis (CF) [1]. 

CF patients suffer from a genetic defect in the CFTR (Cystic Fibrosis Transmembrane 

Regulator) gene that hinders the salt transport over the cell membranes [2]. This leads to high salt 

concentration in the epithelia and low concentration in the mucus, which stops water from 

rehydrating it [3]. The mucociliary clearance mechanism is impaired and results in frequent 

infections in the CF airways with increased risk of pneumonia[4]. Since the bacteria can infect the 

airways unhindered and thrive in the CF mucus, the immune system tries to eradicate the increasing 

infecting populations. The success of the immunological battery is highly reduced since the bacteria 

are embedded in mucus and more or less recalcitrant to the attacks [5]. Instead the lung tissue is 

gradually damaged by the ongoing immunological exposure [6], eventually leading to massive 

pulmonary deficiency and death.  

Several works exist on the mimicking of the human airways using microsystems: some focused 

on the reproduction of the mechanical function of the alveoli [7-9] while others were more oriented 

on the regulation of mucin production by NCI-h292 epithelial cells [10]. Huh et al. [7] proposed 

recently a model of the vacuoles in the lung. In this work the phagocytosis of planktonic Escherichia 

coli cells by neutrophils on the epithelial surface was shown. However, according to the author’s best 

knowledge there is no system that mimics the bacterial habitats in the CF bronchi.  

 

Microfluidic model of the cystic fibrosis bronchi 

 

The classical way of studying CF related bacterial infections, primarily Pseudomonas 

aeruginosa, is by growing them in flow-cell systems [11-13] or static ones [14]. In the static cell 

systems, the amount of nutrients provided to the cells is decreasing in time as the consequence of 

bacterial consumption. Consequently, in such a system the media have to be renewed regularly but 

render a system with higher throughput than the flow-cell based systems. In the flow cells, nutrients 

and waste are constantly being exchanged to the biofilm forming bacteria. However, the bacteria in 

CF bronchi are not subjected to a constant flow of nutrients. Instead they are embedded in the 

mucus that covers the bronchi epithelia through which the nutrients and metabolites are diffusing 

(Fig. 1).  

While the human primary bronchi have relatively large lumen diameter (order of magnitude 

of centimeters), the respiratory bronchioles can be less than 1 mm in diameter [15]. Therefore, in 

order to respect this order of dimension a microfluidic system is required. 



 

Fig. 1.  Bronchus of CF patient. Cross section and microfluidic dynamic of the CF bronchi 

Materials and methods  

Design 

The in vitro CF bronchus consists of a chamber divided into two parts (bottom chamber - top 

chamber) by a porous membrane (Fig. 2). The membrane is used as a solid support for a hydrogel on 

top and for attachment of epithelial cells beneath. The hydrogel mimics the mucus residing inside 

the bronchi and epithelial cells the bronchial epithelial tissue. In the top chamber, bacteria can be 

inoculated to simulate a bacterial infection taking place in chronically infected CF patients [16]. The 

bottom chamber mimics an artery, provides media with nutrients and transports the metabolites. 

These compounds are supplied further to the top chamber by diffusion through the epithelia layer, 

the membrane and the hydrogel. 

 
 

 

Fig. 2. Model for the mimicking of the CF bronchi. 

  



Procedure 

The reproduction of the in vitro bronchus model as described above followed a specific 

procedure: 

To ensure the sterility inside the device, the entire system is flushed for 30 minutes with 70% 

ethanol and then flushed for another 30 minutes with 5% hydrogen peroxide (Sigma Aldrich A/S, 

Denmark).  

The hydrogel (calcium alginate) was formed by a chemical reaction on top of the membrane. 

Following the formation of the desired thickness of alginate gel, epithelial cells were injected in the 

bottom chamber as described below in the “Epithelial cell culturing” section. Here the cells were 

allowed to adhere to the membrane as the device was orientated in an upside down position (top 

chamber down and bottom chamber up) for 24 hours. Once the bronchial cells reached a confluence 

of 90%, the 2nd day after seeding, bacteria were inoculated in the top chamber to recreate the 

scenario of a  bacterial infection. 

Fabrication of the microfluidic chip 

The main feature of the chip is the chamber in the center where the CF bronchus is mimicked. 

It has an elliptic shape with a perigee of 2 mm, an apogee of 21 mm and a thickness of 2 mm. This 

shape enables to easily remove the bubbles that may get inside the device. The membrane dividing 

the chamber is a hydrophilic poly(tetrafluoroethylene) (PTFE) membrane (BCGM 000 10, Millipore 

A/S, Denmark). It is 50 µm thick with pores of 0.4 µm diameter. Two inlets and two outlets of 0.5 mm 

in diameter are connected to the upper chamber by a 1 mm thick and 0.5 mm wide channels, the 

same for the bottom chamber (Fig. 3). The different inlets are used to inject different solutions (see 

the “Hydrogel formation” section). In practice only one of the outlets from each channel is useful but 

for a symmetry matter more of them are created. 

  



    
 

 
 
 

  

 
 

Fig. 3 Top left: Picture of the microfabricated device. Top right: Exploded view of the microfluidic chip.  
Bottom: Sketches of the top and side and view of the microfluidic chip. 

 

Each chamber with inlets, outlets and channels (except for the porous membrane) were 

fabricated by micromilling (Mini-Mill/3PRO, Minitech Machinery Corp., USA) in two polycarbonate 

(PC) slides (Nordisk Plast A/S, Denmark). Each of the slides has the dimensions of a microscope slide 

(76x26 mm) and a thickness of 3 mm.  

The polycarbonate constituting the cover of the chamber is milled down to 0.5mm in thickness 

to allow the use of high magnification microscope objectives for bacteria observation within the 

culture chamber (top chamber). Both sides of the PTFE membrane were exposed to air plasma (70 

W, 6 mbar) for 30 s to later facilitate the attachment of the epithelial cells. The PC slides were 

exposed to tetrahydrofuran (THF) vapors for 5 min. Eventually, the PTFE membrane was inserted 

between the two polycarbonate slides followed by thermal bonding (using bonding press PW 10 H, 

P/O/Weber, Germany) at 50°C with 4 MPa for 30 min.  
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Microporous 
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Hydrogel formation 

A 100 mM CaCl2 solution (Sigma-Aldrich Denmark A/S) was used to cross-link a 0.5% (w/v) 

solution of sodium alginate (Sigma-Aldrich Denmark A/S) in order to form the calcium alginate 

hydrogel. A phosphate buffer saline (PBS) solution (Sigma-Aldrich Denmark A/S) was used as buffer. 

The hydrogel formation within the chamber was performed in the following order (Fig. 4): 

Flush of both chambers with the PBS solution for 6 min at a flow rate of 10 ml·h-1. This ensures 

that all chemicals previously used for sterilization are washed out. 

Sodium alginate is sent to the top chamber at a flow rate of 5 ml·h-1. In the bottom chamber 

PBS is kept at the same flow rate of 5 ml·h-1. This procedure is carried out for 6 min. 

The flow of PBS is stopped in the bottom chamber, instead CaCl2 is sent with a flow rate of 5 

ml·h-1 for 10 min. Calcium ions diffuse through the membrane and react with the sodium alginate to 

form the gel.  

After the 10 min, the flow of Sodium alginate is stopped and instead PBS is sent through the 

chamber at 5 ml·h-1 for 10 min. The diffusion of calcium ions strengthens the hydrogel and the 

weakly cross-linked alginate is flushed out.  

The chambers are subsequently flushed with PBS at a flow rate of 1 ml·h-1 for 30 min.  

 

 
 

Fig. 4. Process for the hydrogel formation. 

In order to determine the thickness of the hydrogel, experiments with stained sodium alginate 

were conducted. Aminofluorescein was covalently bound to the α-L-guluronate residues constituting 

the alginate by following a particular staining technique [17]. However, no stained alginate was used 

in the system while cell culturing was performed inside the device. 

Epithelial cell culturing  

Calu-3 cells were cultured in 25 cm² tissue culture flasks (Sarstedt Inc., USA) with DMEM 

(Dubelcco’s Modified Eagle Medium) supplemented with 10% (v/v) Fetal Bovine Serum (FBS) , 50 

µg·ml-1 of Gentamicin and 100 U·ml-1/100 µg·ml-1 of Penicillin/Streptomycin. The media was changed 

every second day. Once the cells reached a stage of 90% confluence they were passaged by using 

Trypsin-EDTA solution for 10 min at 37°C. 

From the harvested cells a concentration of 8·105 cells·ml-1 was prepared for seeding inside 

the chip. Cells were inoculated in the bottom chamber where the cells were allowed to adhere to the 

membrane. This was done by placing the device in an upside down position (top chamber down and 

bottom chamber up) for 24 hours in a cell culture incubator (5% CO2, 37°C) (HERAcell incubator, 

Heraeus, Germany). Eventually, the microfluidic chip remained in the incubator with a continuous 

media flow of 0.3 ml·h-1 for both chambers until a cell confluence of about 90% was obtained.  
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Calu-3 viability was checked by using a 40 nM concentration of Calcein AM to stain living cells 

and a 1.5 µM concentration of Propidium Iodide (PI) to stain dead cells. Calcein and PI respectively 

stain the cells with a green and red fluorescence as shown in Fig. 6. 

All chemicals, unless stated otherwise, were purchased from Sigma-Aldrich Denmark A/S. 

Bacteria cell culture 

The P. aeruginosa laboratory strain PAO1 was used all experiments involving bacterial 

cultivation or co-cultivation [18]. PAO1 was grown at 37°C in shaken conditions to stationary phase 

overnight in Luria Bertani (LB) media. Preparation for inoculation was done by diluting to an OD600 of 

0.01 in 0.9% NaCl. 500 µL was inoculated in the top chamber and the cells were allowed to attach 

without any media flow delivered through the system for an incubation period of 1 hour. Following 

the incubation the flow was resumed at 0.3 ml·h-1 in DMEM media with 10% of FBS without 

antibiotics. 

PAO1 was expressing the green fluorescent protein (GFP) tagged by the miniTn7 insertion 

method [19].  

 

Microscopy and data analysis 

A confocal laser scanning microscope (CLSM) (Leica TCS SP5 from Leica Microsystems A/S, 

Denmark) was used to acquire images of cells and hydrogel. Detectors and filters were set for 

monitoring Calcein-, GFP- and PI fluorescence. Images of Calu-3 cells and hydrogels were performed 

with a 10x/0.3 air objective. Bacteria were imaged with a 63x/0.70 air objective. 

In order to evaluate the thickness of the hydrogel, the pixels with an intensity higher than 25% 

of the maximum intensity value were taken into consideration. 

All the pictures were treated and analyzed by using the Imaris 7.1.1 software package 

(BITPLANE AG, Zürich, Switzerland).  

Results 

Hydrogel layer 

The thickness of the hydrogel layer depends on the time in which the Ca2+ ions are able to 

diffuse into the top chamber. The longer they can diffuse, the further up they are able to cross-link 

the alginate in the top chamber. Thus, controlling the time of diffusion allows better control of the 

gel thickness that one wants to achieve. A thickness of about 200 µm was decided for imitation of a 

mucus layer. To obtain this specific thickness, 10 min of diffusion were required during the 3rd step of 

the protocol of “Hydrogel formation” section (Fig. 4). Confocal imaging revealed that the formed 

hydrogel was 230 µm (± 20 µm) thick (Fig. 5A). 

During the optimization of the hydrogel formation, several experiments allowed the 

determination of a diffusion time range: 5 min of Ca2+ diffusion generates approximately 100 µm of 

hydrogel (Fig. 5B) whereas 15 min fills up the top chamber (Fig. 5C).   

 
 



   

Fig. 5. A. Stained hydrogel characterized by CLSM B. 100 µm thick hydrogel obtained after 5 min of Ca
2+

 diffusion. C. Top 
chamber completely filled after 15 min of Ca

2+
 diffusion. 

Co-culture of the Calu-3 epithelial cells and the P. aeruginosa PAO1 

strain 

The growth of the Calu-3 cells was successfully performed inside the microfluidic device. The 

cells reached a confluence of about 90% in 2 days (out of the 24 hours for attachment). To check the 

viability the cells were stained with Calcein AM and PI. Confocal microscopy revealed that less than 

1% of the cells were necrotic after 3 days of culturing (Fig. 6). This resembles normal Calu-3 culturing 

viability in a regular tissue culture flask (data not shown).   

 

 

Fig. 6. Epithelial layer viability after 3 days of culture. 

 

PA01 formed biofilm on top and inside the hydrogel layer (Fig. 7). Because the pores in the 

calcium alginate are much bigger (raging from tens to hundreds of microns) [20] than the size of 

bacteria, single bacteria can easily get inside and start forming microcolonies. 
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Fig. 7. 3D visualization of PA01-GFP embedded in the calcium alginate matrix at day 5. 

Discussion 

Membrane integration 

We demonstrated a fast and easy way to integrate the PTFE porous membrane. No specific 

setup needs to be used or optimized if we compare to in situ membrane integration [21]. No 

alignment or specific treatment is required for this membrane regarding the bonding step. The 

surface treatment of polycarbonate parts using THF vapors and the thinness of the membrane (50 

µm) enable strong and durable bonding, across the membrane, between the PC slides. 

Hydrogel characterization 

In this paper, the term “hydrogel thickness” includes the membrane size, the thickness of the 

gel below and above the membrane. The thickness below the membrane is though negligible (< 2 

µm). Indeed because of due to the low diffusion coefficient of the alginate [22] a very low amount of 

it diffuses beneath the membrane and transforms into calcium alginate. Besides, the alginate does 

not affect the attachment and development of the Calu-3 cells. 

Beyond flow cell and static culture 

As mentioned in the introduction, there are two main ways to culture cells: the flow cell 

culture [11-13] and the static cell culture [14].  

However, those types of culture do not reflect the conditions in which bacteria can develop in 

niches of the human body as in the severe case of the CF airways. As explained in the microfluidic 

model of the CF bronchi, the nutrients are provided to the bacteria by diffusion across different bio-

layers from a cyclic flow (i.e. the blood stream). With this in mind, the proposed microfluidic system 

represents a significant step forward in the study of lung infections since such mimicry has not been 

reported in the literature yet. 

Eventually, this in vitro chip makes microscopy observation possible which is not the case 

when using in vivo models. Moreover, there is a very strong pressure from public societies, states, 

international organizations and from the industry to replace, reduce and refine the research 

conducted with the use of animals [23, 24]. This strategy is known as the “3 Rs” principle [25, 26]. 

Therefore, our developed microfluidic system can play an important role in the replacement of 

animal models used for medical experiments. 

30 µm 



 

A new strategy for drug tests in the CF airways. 

The chip provides a new way to simulate bacterial infections in the airways. In the future, it 

can also provide a novel bio-mimetic approach regarding drug treatment. Antibiotics can be 

delivered in two different manners. One would be using a gaseous form that would be delivered to 

the upper chamber to reproduce treatment using spray antibiotics. On the other hand, a liquid form 

of the antibiotic injected in the lower chamber would simulate intravenous delivery through the 

blood stream. 

The device offers great opportunities to improve the bio-mimicry. The biological resemblance 

between the mucus and the hydrogel can be enhanced by altering the composition of additives as 

mucins and DNA [27, 28]. Such improvement will offer a better model for studying the response of a 

biofilm community to drug treatments [29]. In addition, the chip could be coupled with our previous 

system [30] to recreate the different type of dissolved oxygen conditions inside the airways. Finally 

our device brings great promises in the mimicry of other human organs where the mucus is involved, 

e.g. the gut or the stomach.  

Summary & Conclusion 

In this paper, we have demonstrated the fabrication of a robust and reliable microfluidic 

device. This device enables the setup of an in vitro microfluidic chip based mimicry of an infected 

human CF bronchus. The recreation of the scenario leading infection of the bronchi is based on a 

new approach of bacteria culture to be closer to their in vivo growth: nutrients diffuse through 

different bio-layers to feed the bacteria embedded in the mucus-like matrix. 

Inside the system, the imitation of the CF bronchus has been performed by incorporating Calu-

3 cells and hydrogel, respectively beneath and on top of a microporous membrane. The formation of 

the hydrogel has been controlled in order to mimic a mucus layer as thick as 200 µm. Calu-3 cells, 

mimicking the epithelial tissue, have been cultured for 3 days to reach 90% of confluence. A bacterial 

infection has been simulated by inoculating P. aeruginosa PA01 in the hydrogel. The formation of 

bacterial microcolonies has been observed 2 days later. Confocal microscopy allowed in vitro imaging 

of the different cells to assess of their well growth and good viability. 

For future experiments, such device can enable to simulate and observe the biofilm response 

to drug treatments taken by oral or intravenous ways. Also, mucin and DNA can be added in the 

hydrogel to study the impact of the mucus composition on the bacterial infection. 
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9 Summary and conclusions 

9.1 Key findings 

Microfluidic airways model systems that can successfully simulate the changes in oxygen tension 

in different compartments of the CF airways, have been designed, developed and presented. These 

microfluidic systems were applied for studying of infections with P. aeruginosa, the bacteria that is 

responsible for most of the recurrent CF related infections. 

The two different approaches to the system have been successfully developed. In the first 

approach (paper III and IV), a monolithic microfluidic chip was used. The layer-by-layer design 

allowed the incorporation of several desirable elements as the integrated gas permeable membrane, 

which was exploited by an oxygen scavenging liquid to produce the desired oxygen environments. 

The oxygen gradients were generated within the culture chambers and monitored by a thin film 

oxygen sensing layer. The oxygen concentrations were monitored by photoluminescence lifetime 

measurements. This specific way of monitoring oxygen concentration is compatible with several 

different detection methods as micro plate readers and fluorescence lifetime imaging microscopes. 

The designed system was applied to support growth of P. aeruginosa PAO1 biofilm. PAO1 responded 

to the low oxygen concentration environment by a reduced number of attached cells to the surface 

of the microchamber and lower rate of biomass growth. 

In the second approach (paper V), the advantages of a highly complex modular microfluidic 

system that mimics the different compartments of the CF airways have been exploited. Integration of 

different modules, bringing in such important functionalities as multichannel fluid control, bubble 

trapping, gas control - exchange and bacterial culturing on a microfluidic lab-on-a-chip system, has 

been shown to be successfully achieved. The developed passive micromixer (paper I and II) has been 

utilised to enhance the oxygen exchange in the gas control module. 

In contrast to the monolithic system described previously (paper III and IV), in the modular 

system, the culture microchambers with distinct oxygen concentration were used. In this way, it was 

possible to observe a migration of the cells between the compartments with different oxygen 

tension, as it is hypothesised to happen in the patients airways. The application of the system for 

studying P. aeruginosa PAO1 under different oxygen levels in response to treatment with 

ciprofloxacin in nitrate supplemented media has been demonstrated. It has been shown that the 
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effect of the presence of nitrate, which serves as final electron acceptor for anaerobic nitrate 

respiration utilized by P. aeruginosa, is not favoured in the presence of oxygen and drives the 

migration towards the higher oxygen gradient. It can mimic the reinoculation of the lower respiratory 

tract, previously cleared with the antibiotic treatment from the sinuses. This effect is hypothesised as 

the main reason for recurrent infections in CF patients. It has been shown that the system is an asset 

in reliable and controllable biofilm evaluations for treatment with antibiotics at reduced oxygen 

concentrations. 

A complex model of the cystic fibrosis bronchi was also developed, which allows to simulate the 

CF epithelia covered with a thick and viscous mucus layer (paper VI and VII). This system allows to co-

culturing the epithelial and bacterial cells in the environment close to that spotted in the CF bronchi 

and studying the biofilm growth under these conditions. This is a considerable advancement towards 

the development of an artificial CF bronchi model from the standard flow cell based systems and 

static co-cultures of mammalian and bacterial cells. 

9.2 Future perspectives 

The further research conducted with the described systems should try to answer the following 

question: are the bacteria in the three compartments identical phenotypically and genetically? Is 

there a detectable change in phenotype on the passage from one compartment to another? Do the 

sinuses represent a reservoir for intermittent infections of the same bacterium? Can the reinfections 

be efficiently blocked by addressing the sinus reservoirs?  

The results expected from this should be a better understanding of the problems in the 

treatment of the chronically infected CF patient. Hopefully the knowledge obtained can help in the 

prevention and treatment of these infections which severely affect the life quality of the CF patients. 
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