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ABSTRACT

This paper presents a new design of a discrete time Delta-Sigma (∆Σ) oversampled ultrasound beamformer
which integrates individual channel apodization by means of variable feedback voltage in the Delta-Sigma analog
to digital (A/D) converters. The output bit-width of each oversampled A/D converter remains the same as in
an unmodified one. The outputs of all receiving channels are delayed and summed, and the resulting multi-bit
sample stream is filtered and decimated to become an image line. The simplicity of this beamformer allows
the production of high-channel-count or very compact beamformers suitable for 2-D arrays or compact portable
scanners. The new design is evaluated using measured data from the research scanner SARUS and a BK-8811
192 element linear array transducer (BK Medical, Herlev, Denmark), insonifying a water-filled wire phantom
containing four wires orthogonal to the image plane. The data are acquired using 12-bit flash A/D converters
at a sampling rate of 70 MHz, and are then upsampled off-line to 560 MHz for input to the simulated ∆Σ
beamformer. The latter generates a B-mode image which is compared to that produced by a digital beamformer
that uses 10-bit A/D converters. The performance is evaluated by comparing the width of the wire images at
half amplitude and the noise level of the images. The ∆Σ beamformer resolution has been found to be identical
to that of the multi-bit A/D beamforming architecture, while the noise floor is elevated by approximately 6 dB.
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1. INTRODUCTION

Multi-bit Nyquist-rate analog-to-digital (A/D) converters are the core building blocks of modern digital ultra-
sound beamformers. Using Nyquist-rate A/D converters, significant effort has to be put into signal precondition-
ing and the generation of both voltage and time references. Oversampling A/D converters trade digital signal
processing complexity for relaxed requirements on the analog components compared to Nyquist-rate A/D con-
verters. The Delta-Sigma modulation (DSM) A/D converter combines both oversampling and noise shaping, and
makes it possible to effectively convert an electrical analog signal into its digital, discrete-time representation
using modern digital CMOS technology.1–3 The use of such converters in ultrasound beamformers offers the
following advantages: integration of beamforming logic and A/D converters, as these can be manufactured using
the same semiconductor technology; small area per converter, allowing to accommodate a large number of A/D
converters on a single chip; and low price.

Direct use of DSM A/D converters, followed by first-in-first-out (FIFO) fixed-length delay buffers, adder
and filter/decimator results in a simple fixed focus beamformer with great scalability. Unfortunately, such a
beamformer lacks two features necessary for high quality imaging: weighting/apodization of the received signals,
and dynamic adjustment of the relative delays between the channel data for the purpose of maintaining a shifting
receive focus that follows the current reconstructed echo sample.

A number of researchers have worked on incorporating dynamic receive focusing in ∆Σ beamformers.4–6 The
solutions have suffered to various degrees from introducing extra noise into the digitized signal and/or requiring
additional digital logic. The need for dynamic receive focusing can be overcome by utilizing sequential synthetic
aperture beamforming,7 where the first beamforming stage is a fixed-focus beamformer. With that application
in mind, the current paper presents a comparison of fixed-focus beamformers.
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The problem of integrating channel apodization into such a beamformer has persisted until now. The obvious
approach of using coefficient registers on each channel, selectable by the ADC output bit value (in a case of a bi-
level quantizer), requires a large number of multi-bit adders, which counteracts the goal of simplicity/scalability
of the beamformer.

Variable ∆Σ modulator feedback has been investigated by Norman8 for the purpose of implementing time
gain compensation inside an oversampled converter. In that work, apodization across the channels was not
considered.

This paper presents a new design of a discrete time Delta-Sigma (∆Σ) oversampled ultrasound beamformer
which integrates individual channel apodization by means of variable feedback voltage in the Delta-Sigma analog
to digital (A/D) converters. The output bit-width of each oversampled A/D converter remains the same as in
an unmodified one. The outputs of all receiving channels are delayed and summed, and the resulting multi-bit
sample stream is filtered and decimated to become an image line. The involved signal processing principles
are presented in Section 2. A comparison of the obtained image to one made using a 10-bit A/D based digital
beamformer has been made, and the results are presented in Section 3. The discussion of the suggested new
architecture is presented in Section 4, followed by conclusion in Section 5.

2. METHODS

This section introduces ∆Σ modulators with variable feedback gain and illustrates their use in a beamformer
architecture that features channel weighting (apodization).

2.1 Delta-Sigma modulation

A ∆Σ modulator combines noise shaping and oversampling. A second order modulator uses two integration
stages within a feedback path, as shown in Fig. 1, such that the quantizer output tracks the average input. The
difference between quantizer output and modulator input accumulates in the integrators and ultimately corrects
itself, so that the averages are identical. Apodization is integrated into the modulator by implementing a variable
feedback voltage. In the current work, a bi-level quantizer (a comparator) was chosen. That is the simplest
quantizer possible, and does not require precision manufacturing as multi-level quantizers do. Imperfection in
its threshold level manifests itself as a DC bias in the A/D conversion output. In ultrasound imaging, bandpass
matched filters are used, so any DC components are filtered out.

Figure 1. A discrete time second order ∆Σ-modulator block diagram.

2.2 Delta-Sigma Beamforming

∆Σ receive beamformers have three important benefits over conventional multi-bit methods. First, the A/D
converters can be fabricated on the same chip as the processing circuitry creating the received scan lines. Thus,
interconnect, size, and price are reduced. Second, accurate delays can be achieved simply by manipulating
individual samples at the high sampling rate. Third, the sum across the array is performed on single bits. The
block diagram of a ∆Σ based receive beamformer, as first proposed by Noujaim et al.9 and here modified to
include variable feedback gain, G, is shown in Fig. 2. Fixed focus beamforming is achieved by fixing the output
position of the FIFO buffers to cells whose indexes are calculated from the required inter-channel delays relative
to the channel that has the shortest flight path to the receive focal point. These output positions are switched
for each new emission in order to accommodate new receive focal point, corresponding to a new image line.



Figure 2. ∆Σ beamforming architecture implementing variable feedback gain for each individual receiving channel.

2.3 Oversampling ratio calculation

The following calculations are based on the assumptions that the individual channel noise components are not
correlated between channels, the spectrum density of the analog noise is constant across the spectrum (at the
input of the ADC), and the signal is a sinusoidal one.

The theoretical signal-to-noise ratio (SNR) of a multi-bit Nyquist-rate A/D converter is calculated (equation
(11.16) in10) as

SNR = 6.02×N + 1.76 dB, (1)

where N is the number of output bits of the A/D converter, and the possible levels to represent the input are
2N .

A 10-bit A/D converter, thus, achieves a SNR of

SNR = 6.02× 10 + 1.76 = 62 dB. (2)

The theoretical signal-to-noise ratio (SNR) of a second-order ∆Σ A/D converter is calculated (equation
(14.32) in10) as

SNR = 6.02×N + 1.76− 12.9 + 50 log
fs
2f0

dB, (3)

where fs is the sampling rate and f0 is the frequency of the signal of interest. The fraction in the brackets is
called oversampling ratio (OSR).

To achieve the 10-bit A/D converter SNR, a second-order ∆Σ A/D converter needs to operate at an over-
sampling ratio (after transforming Eqn. 3) of

OSR = 10
62−6.02−1.76+12.9

50 ≈ 22 (4)

An ultrasound beamformer creates image lines by focusing in different directions by means of applying delays
to the signals from individual elements, which are then summed. In doing that, the noise components in the
input signals are also summed. Assuming uncorrelated noise components with root-mean-square (RMS) values
of Vi, the sum noise component will have an RMS value (by extending equation (4.14) in10) of



Vsum =

√√√√ 64∑
i=1

V 2
i (5)

As the echo data is summed across channels in an ultrasound beamformer, apodization is applied in order
to reduce edge effects and improve the sidelobe level of the imaging system point spread functions. When doing
that, the sampled noise (analog + quantization) components Vi in the individual channels do not add with equal
amplitudes, but with scaled ones: Vi = ciVn, where where ci are the windowing function coefficients. For the
case of apodization using the Hamming windowing function, applied to 64 signals, the noise amplitude increase
can be calculated as

Vn64

Vn
=

√√√√ 64∑
i=1

c2i = 5, (6)

The increase of amplitude of the useful signal, assuming it has identical amplitude Vs on all channels before
the apodization, is

Vs64

Vs
=

64∑
i=1

ci = 34.1, (7)

therefore the increase in SNR is 34.1/5 = 6.82 times, equivalent to 6 × log26.82 = 16.6 dB. The resulting SNR
after the channel signals sum is 62 + 16.6 = 78.6 dB.

Using the built-in apodization capability in the oversampled converters, the noise components (analog +
quantization) in their output will have the same amplitudes and the summed noise component will grow by

Vn64o

Vno
=

√√√√ 64∑
i=1

12 = 8, (8)

The signal of interest will grow in the same way as in a multi-bit architecture (eqn. (7)). Thus, for 64
channels, the SNR improvement will be 6 log2

34.1
8 = 12.6 dB, and matching the SNR performance of the 10-bit

A/D beamformer will require an oversampling ratio of

OSR = 10
62+16.6−12.6−6.02−1.76+12.9

50 = 26.4, (9)

which, for a 7 MHz center frequency of the signal and assumed 100 % bandwidth, results in a required sampling
frequency for the Delta-Sigma modulators of 7× 1.5× 2× 26.4 = 554 MHz.

3. MEASUREMENT RESULTS

Raw radio frequency element data from a phantom containing four wires orthogonal to the imaging plane was
acquired using the SARUS research scanner,11,12 and a linear array transducer (BK-8811, BK Medical, Herlev,
Denmark). For generating the B-mode images, the scanner was set up to acquire 192 scan lines with a transmit
focus set at a depth of 4 cm, using 64 active transmit elements weighted by a Hamming window function. The
excitation was a two-cycle sinusoid with f0 = 7 MHz. The receive beamforming was done using the same fixed
delay profile as in transmit, using the same elements and apodization function.

Data was acquired at a sampling rate of 70 MHz, using 12-bit flash A/D converters. For use as an input to
the ∆Σ beamformer, the measured data was offline upsampled to 560 MHz (8 times upsampling). The combined
decimation/matched filter was created by convolving the excitation to the impulse response of the transducer
twice, and upsampling the result to the modulation frequency. The impulse response was assumed to be that of
an ideal transducer (no tail/ringing) with 60 % bandwidth around 7 MHz. The resulting FIR filter was quantized



Wire index Depth Lat. width MB Lat. width OS Ax. width MB Ax. width OS
1 33 1.04 1.04 0.49 0.49
2 56 3.64 3.64 0.42 0.42
3 79 5.98 5.98 0.44 0.43
4 104 6.76 6.76 0.46 0.46

Table 1. Depth of phantom wires, and lateral and axial widths of the wire images in the multi-bit A/D beamformed (MB)
and oversampled A/D beamformed (OS) images. All units are in mm.

to 10-bit representation and has length of 401 coefficients. The feedback level of the ∆Σ A/D converter was
quantized to 16 levels (4-bit quantization) and the apodization in the multi-bit A/D beamformer was quantized
to 256 levels (10-bit representation).

Fig. 3 shows the generated B-mode images by a conventional multi-bit beamformer and the ∆Σ beamformer,
with 70 dB dynamic range. Fig. 4 shows the lateral and axial profiles of the wire images. Fig. 4 shows the lateral
and axial profiles of the imaged wires. The widths of the wire images measured at -6 dB in lateral and axial
direction are presented in Table 3. As expected, the wires further away for the focal point have wider profiles.

As can be observed, there exists an interference pattern that has entered the sampled data. The noise level
of the images under comparison was estimated by calculating the RMS value of the noise in an area that was
relatively free of that pattern, at depths between 106 and 145 mm and lateral positions between -24.8 and -13.9
mm. These values were then divided by the maximum signal values in the images, which in both cases are the
clipped waveforms that represent the emitted signal. The estimated noise floor for the oversampled beamformer
image was -64.7 dB below maximum amplitude, and for the multi-bit beamformer it was at -70.4 dB below
maximum amplitude.

4. DISCUSSION

The two images exhibit the same resolution, therefore introducing apodization in the oversampled architecture
has made its output indistinguishable from that of a multi-bit beamformer. The remaining drawback is the
elevation of the noise floor, which is most likely due to non-optimal filtration for the purpose of removing the
quantization noise.

5. CONCLUSION

A new ∆Σ beamforming architecture with integrated apodization in the discrete time ∆Σ modulator has been
presented. The ∆Σ modulator implements apodization through variable feedback voltage. Using measured
data and offline processing, it was shown that the ∆Σ beamformer focusing performance matches that of a
conventional multi-bit beamforming architecture using 10-bit parallel A/D converters, while the noise floor is
elevated by about 6 dB.

The presented architecture in this paper is expected to contribute to the further development of compact
analog front-ends for multi channel scanners with very large channel count.
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