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Carsten L. Thomsen from NKT Photonics A/S as co-supervisor. The the-
sis is a summary of the most important findings and experiences gained
during this first Ph.D.-study at DTU-Fotonik to work with numerical
modeling of supercontinuum generation in various soft-glass optical fibers.

The project has been part of a larger collaboration between DTU,
Aarhus University (AU) and industry, represented by NKT Photonics,
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light source to be manufactured by NKT Photonics. I would very much
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framing the nonlinearity inherent to supercontinuum generation.
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Abstract

This Ph.D.-project presents numerical simulations of supercontinuum (SC)
generation in optical fiber laser systems based on various soft-glass mate-
rials. Extensive numerical modeling is performed in order to understand
and characterize the generated SC. This includes a review of the gener-
alized nonlinear Schrödinger equation, and a detailed discussion of the
implementation. The thesis primarily considers two types of soft-glasses,
which are characterized by lower attenuation than conventional silica
glasses beyond 2 µm. This low loss enables an extension of the long
wavelength edge of existing SC sources. A novel SC system, incorporat-
ing a fluor based (ZBLAN) step-index fiber (SIF), has been developed by
an industrial collaborator. Numerical simulations show good agreement
with measurements of fs-pumped SC generation stretching above 4 µm
in a ZBLAN fiber.

Furthermore, a design parameter, useful for designing nonlinear laser
systems by passive concatenation of optical fibers is proposed. The design
parameter quantifies regimes of different soliton dynamics, and predicts
either stable soliton redshift for high energy conversion, or soliton fission
giving large redshifts but lower energy conversion.

Finally, it is predicted numerically how it is possible to design a SC
laser spanning the wavelength region between 4 and 12 µm, by pumping
a chalcogenide SIF with a praseodymium (Pr) doped fiber laser operating
at 4.5 µm.

Christian Skovmøller Agger
May 24, 2013
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Resumé (Danish Abstract)

Dette Ph.D.-projekt præsenterer numeriske simuleringer af superkontinu-
umsgenerering i fiberbaserede optiske lasersystemer, som bygger p̊a forskel-
lige blødt-glas materialer. Materialerne er karakteriseret ved at have
et lavere materialetab ved bølgelængder længere end 2 µm, end kon-
ventionelle glasarter baseret p̊a siliciumdioxid. Omfattende numerisk
modellering er foretaget for at forst̊a og karakterisere det dannede su-
perkontinuum. Dette inkluderer en gennemgang af den generaliserede
ikke-lineære Schrödinger ligning, hvortil der gives en detaljeret diskus-
sion af den numeriske løsning. Afhandlingen behandler fortrinsvis to
typer af blødt-glas, ZBLAN og chalcogonide, hvis lave baggrundstab
for lange bølgelængder muliggør en forøgelse af den bølgelængdekant,
som ellers begrænser eksisterende superkontinuumskilder. Et nyt su-
perkontinuumssystem, der anvender en blødt-glad flourbaseret (ZBLAN)
trin indeks fiber, er blevet udviklet og en prototype er fremstillet af
en industriel partner. Numeriske simuleringer viser god overensstem-
melse med målinger af femtosekundpumpet superkontinuumsgenerering,
der strækker sig ud over 4 µm i en ZBLAN fiber.

Derudover præsenterer afhandlingen en designparameter, som kan
bruges ved design af ikke-lineære lasersystemer konstrueret via seriekobling
af passive optiske fibre. Parameteren kvantificerer regimer for forskellig
solitondynamik, og forudsiger enten stabilt rødskifte af en soliton med
høj energikonverteringseffektivitet til følge, eller soliton fission som giver
et stort rødskifte men lav energikonverteringseffektivitet.

Til sidst angives det, hvorledes det er muligt at designe et superkon-
tinuumssystem med effekt i hele bølgelængderegionen mellem 4 µm og
12 µm. Kontinuumet dannes ved at pumpe en blødt-glas chalcogonide
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trin indeks fiber med en praseodymiumdoteret fiber laser, som har en
bølgelængde p̊a 4.5 µm.

Christian Skovmøller Agger
May 24, 2013
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Chapter 1

Introduction

Electromagnetic radiation is an omnipresent part of our world and the
electromagnetic spectrum that summarizes the properties and frequen-
cies associated with the electromagnetic waves propagating in free space,
is so vast it covers waves with wavelengths from thousands of kilome-
tres (106 m) over 20 orders of magnitude to wavelengths as small as the
nucleus of an atom (10−14 m) [1]. The everyday human though, will
experience only a few small overlapping fractions of the electromagnetic
spectrum directly. We feel the heat from the sun, which is infrared (IR)
radiation, our built-in detectors (eyes) view the visible part of the sun
spectrum reflected off of things in our surroundings, and we get sunburned
by the ultraviolet (UV) part of the sun spectrum. These mentioned parts
though, cover only the spectral range from approximately 300 nm and to
1 µm [1].

Conventional laser sources cover even smaller fractions of the elec-
tromagnetic spectrum, and often have very narrow line widths that are
best imagined as single colors. The laser source is a light source with a
particular set of traits, distinguishing it from a traditional source of light,
e.g., an incandescent lamp. More strictly speaking, lasers show spatial
and temporal coherence, i.e., the photons of a laser source propagate in
phase and in a well defined spatial mode of the electromagnetic field. It
is the coherence properties in particular that make lasers very useful for
applications requiring high brightness, i.e., much light confined to a small
area and solid angle. An exhaustive list of uses for lasers is impossible to
make, but uses range from low power applications like sensing and optical
tweezers, over optical communications to welding, cutting and the ultra-
high power: record 500-trillion-Watt laser shot of the National Ignition
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2 Introduction

Facility used for kick-starting a fusion process [2].

It is the fundamental working mechanism of a conventional laser that
cause the narrow linewidth or single color, and while often times useful,
a broad band laser, containing all colors at once, is also desirable. The
aim of this thesis, is to aid in developing such a source, i.e., one that
combines the spatial and temporal properties of a conventional laser with
a continuum of colors, forming a so called supercontinuum (SC), and
consequently appearing as a white light laser (at least when in the visible
part of the spectrum).

A SC can be formed by sending a light pulse from a conventional
laser into (pumping) a nonlinear optical fiber, where the narrow band
pulse undergoes spectral broadening due to nonlinear effects, and par-
tially inherits the coherence properties of the pump. A low-loss optical
fiber allows the photons of the pump beam to interact with each other
and with the material over long distances, without needing amplification.
Furthermore, the spatial confinement of the photons in a fiber, can be so
small that it enhances the nonlinear effects greatly, promoting spectral
broadening. Thus, a low loss optical fiber that supports a small and well
confined mode, is a key enabler for robust SC sources.

Commercial SC sources have already been developed by our industrial
collaborators at NKT Photonics A/S, and can be bought off the shelf.
These available sources cover the range from approximately 400 nm (vis-
ible) and to 2.4 µm (near-IR), with good laser properties [3], but has
nearly reached the limitations of the silica technology they build on. The
short wavelength edge (also called, the blue wavelength edge) is still inves-
tigated for a potential to expand it into the UV but the long wavelength
edge (also called, the red wavelength edge) has reached its full potential.
This is realized, because the transmission window for fused silica stretches
from below 400 nm but not much further than approximately 2 µm after
which, the material absorption increases by orders of magnitude [4].

The maturation of the silica technology has caused a gradual shift
towards other types of glass, that have transmission windows stretching
further into the IR, for the nonlinear fiber in SC sources. In partic-
ular ZBLAN (ZrF4BaF2LaF3AlF3NaF), tellurite (TeO2Na2ZnF2), and
chalcogenide (As2Se3) have been investigated in this thesis, but other al-
ternatives, that allow drawing into fibers, are also available [5]. The non-
linear properties are approximately the same for silica and ZBLAN [6,7],
while tellurite is roughly 30 times as nonlinear as silica [8], and chalco-
genide can be as much as a factor of 1000 more nonlinear than silica [9,10].
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The soft-glass materials though, have different linear properties than sil-
ica, and particularly the zero dispersion wavelength (ZDW) of the bulk
materials are different, and consequently warrants a reconsideration for
the design of a proper pumping laser system.

Creating a SC source with a spectrum stretching further into the
mid-IR, than is already available, is attracting because it opens the door
to numerous applications outside the range of existing SC sources. In
particular directional infrared counter measures (DIRCM) is a promising
application where an IR SC source confuses, or even saturates, the sensors
in the tip of a heat seeking missile, causing it to loose track of target, and
thereby protecting, e.g., civilian aircrafts from potential threats. DIRCM
is a potential application for a source covering the range between 1 µm
and to 4 µm. Proteins and lipids show absorption from around 3 µm to
above 9 µm [11], and thus extending the red edge of beyond 4 µm and
to 12 µm, has been proposed in order to create a source for in-vivo and
non invasive optical biopsies useful in early cancer detection [12]. Besides
these two applications, a range of other uses have been proposed, e.g., de-
tection of explosive or toxic gases, pollution monitoring, industrial quality
checking in, e.g., agricultural, diary, or pharmaceutical productions. Also
mentioned are light detection and ranging (LIDAR), IR absorption mi-
croscopes, optical components testing, and numerous others.

Goals

To be quite clear and specific, the aim of this project, at its onset was to

1. aid in developing a SC source with a spectrum stretching above
4 µm by use of ZBLAN-based fiber technology.

2. gain experience in simulations of supercontinuum generation (SCG)
in interchangeable glass materials, specifically the soft-glasses men-
tioned above.

Along the course of the project, these goals where accompanied by

3. introduction of a design parameter, useful when creating laser sys-
tems by concatenating nonlinear optical fibers. The parameter de-
termines the behaviour, expected from nonlinear dynamics upon
coupling a soliton between two fibers.

4. numerical investigation of the possibility of making a SC source
stretching as far as 12 µm or further, by simulating a praseodymium
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(Pr) doped fiber laser seed system pumping a highly nonlinear
chalcogenide optical fiber.

Outline

This report is divided into the following chapters: In chapter 2 is given a
brief account for the theory behind SCG, and the chapter introduces the
basic nonlinear processes and the mathematical problems that need to be
solved, in order to enable numerical predictions of SC spectra. Chapter 3
investigates ZBLAN based optical fibers, and their use in a mid-IR SC
source. Particularly, the linear properties of ZBLAN are reviewed, a
measurement of the delayed Raman response is presented, along with
measurements and simulations of SC. Finally is given a brief review of an
application developed by our collaborators at Aarhus University (AU),
where a mid-IR SC is used as the light source in an absorption micro-
scope [13], and chapter 3 concludes with a presentation of the celebrated
end product of the successful collaboration between universities and in-
dustry.

Chapter 4 introduces the nonlinear coupling coefficient that defines
regimes of nonlinear dynamics following the coupling of a soliton between
two nonlinear fibers. The parameter is useful when choosing fibers for a
passively concatenated fiber system that enables wavelength tuning with
a high energy conversion based on stable and continuous frequency down
shift of a soliton, or a large redshift with low energy conversion, caused
by soliton fission.

Finally, chapter 5 considers SCG in chalcogenide soft-glass fibers. Two
possible pump sources are considered, and both conventional step-index
fibers (SIFs) and microstructured optical fibers are investigated for po-
tential use in IR SCG. The chapter presents numerical simulations of SC
in a conventional fiber, where it is proposed that a SC spectrum spanning
a region between 4 and possibly beyond 12 µm is achievable. Lastly, chap-
ter 6 presents a summary of the presented work and an outlook towards
interesting future issues to continue working with.

The appendixes, starting page 95, are readable in their own right, and
is meant to be relevant for anyone constructing a numerical solver for
the generalized nonlinear Schrödinger equation (GNLSE). They present
useful building blocks needed to construct a solver code, and should lead
the reader to a position enabling the building of a working code. The
appendixes are divided into the following: In appendix A the traditional
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version of the GNLSE [6,14] is recast to better include the large frequency
range covered by generated SC in the IR, and the transformation into
the interaction picture (IAP) is reviewed in detail. Appendix B contains
a code example, most relevant to be followed by a developer seeking
to investigate different fibers, different materials or different versions of
the GNLSE using a single robust code. In the remaining appendixes, C
through F, technical details for understanding the GNLSE, and how to
solve it, is included. Finally in appendix G, it is specified how to convert
a measurement of the Raman gain profile to a mathematical expression
for the full material response, including both instantaneous response and
delayed Raman response that can be incorporated in the GNLSE.
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Chapter 2

Mathematics and Physics
Related to Supercontinuum
Generation

In linear optics, frequencies are only amplified or attenuated, while in
nonlinear optics, new frequencies can be generated, and a spectrum of
a laser pulse can change drastically during propagation. Historically,
the first observation of supercontinuum (SC) is ascribed to Alfano and
Shapiro [15] and was made in 1970. Here nondegenerate four-photon
coupling (or four-wave mixing (FWM)) caused a frequency doubled laser
beam at 530 nm (doubled from 1.06 µm), with a relatively large peak-
power, to broaden into a spectrum covering the range from approximately
400 and to 700 nm. This initial experiment was done in bulk borosilicate
glass, and required a large peak power because the nonlinearity of glass
is small. Five years later, in 1975, Lin and Stolen produced a broad spec-
trum in a nonlinear optical fiber using a ns-pulsed laser with significantly
less peak power [16]. Ultra low loss optical fibers with low dispersion, can
compensate for a low generic nonlinearity, because they will allow light
to propagate and interact with the material over long distances without
the pulse content diverging temporally or being lost or absorbed by the
waveguide. Furthermore, the well developed fabrication technology of op-
tical fibers, provide waveguides where the guided mode can have a small
effective area, giving a large electric field strength, thereby enhancing the
effective nonlinearity. For these reasons, optical fiber based SC sources
are considered exclusively in this work and the generic configuration we
investigate consist of

7



8 Math and Physics Related to SCG

1. a pulsed pump laser system that generate narrow band laser pulses.

2. a fiber optical waveguide, designed and chosen so that it enables
nonlinear processes to broaden the pump pulse significantly during
propagation.

This chapter reviews the basic theory needed to understand results
presented in chapters 3, 4, and 5. It starts by a brief walk-through of the
linear properties of fiber waveguides in section 2.2, where the finite ele-
ment method (FEM) calculation that yields the properties of the optical
fibers is also introduced. Section 2.3 reviews the generalized nonlinear
Schrödinger equation (GNLSE), which is the nonlinear differential equa-
tion that governs the supercontinuum generation (SCG) itself, and finally
section 2.4 reviews isolated effects often observed in SCG.

2.1 The Mathematical Starting Point

The starting point for modeling any classical electrodynamic phenomenon
is Maxwell’s equations for the electric and magnetic fields. They are [1,6]

∇×E = −∂B

∂t
, ∇×H = J+

∂D

∂t
, ∇ ·D = ρf , ∇ ·B = 0 (2.1.1)

where E is the electric field, B is the magnetic flux density, H is the
magnetic field, J is the current density, D is the electric displacement
field and ρf is the free charge density. The fields in the above equations
are connected by the following macroscopic relations

D = ǫ0E+P = ǫE and B = µ0H+M (2.1.2)

valid for fields in arbitrary media. Here ǫ (ǫ0) is the (vacuum) permittiv-
ity, P is the electric polarization, µ0 is the free space permeability and
M is the magnetization. In this thesis, and commonly in fiber optics in
general, one takes M = J = 0, because optical fibers are dielectric waveg-
uides that do not become magnetized, nor do they conduct current. The
polarization, which in essence describes the interaction between light and
medium, will depend linearly on the electric field strength when it is not
too strong, so that

D = ǫ0E+P = ǫ0E+ ǫ0χ
(1)E = ǫ0(1 + χ(1))E. (2.1.3)

where χ(1) is the linear, or first order, susceptibility and 1 + χ(1) = ǫr is
sometimes referred to as the relative permittivity. Substituting Eq. (2.1.3)
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into Maxwell’s equations, one can derive a linear wave equation (see sec-
tion 2.2.1). When the electric field strength is large enough however, as
can happen in an optical fiber, when much light is confined to a small
core, the polarization becomes nonlinear. This can be illustrated as,

D = ǫ0E+P = ǫ0(1 + χ(1) + χ(2)E+ χ(3)EE+ . . .)E. (2.1.4)

where χ(j), j = 1, 2, . . . is the j’th order susceptibility tensor. Generally,
the susceptibility tensor is time dependent, and a convolution between
the electric field and the susceptibility should be included [6], but this
is left out here for brevity. Inserting Eq. (2.1.4) in Maxwell’s equations
will lead to a complicated nonlinear tensorial differential equation for the
electromagnetic field development that does not lend itself to solving eas-
ily. Instead, if it is assumed that light propagates in a single linearly
polarized mode of the electromagnetic field, e.g., as in the fundamental
mode of an optical fiber, then the problem can be shown to divide it-
self into two parts [6, 17]. One transverse part for the properties of the
field distribution in the mentioned mode of the fiber, and one longitudi-
nal part for the dynamical development of the electric field envelope in
the direction of propagation. These two parts are solved separately and
coupled together through the frequency dependent propagation constant
β(ω) and effective area Aeff(ω), which are outputs from solving the first
part and inputs for the second, or dynamical part, of the problem.

2.2 The Linear Problem - Optical Fibers

The first part of the nonlinear pulse propagation problem, is to solve
Maxwell’s equations for the transverse field distribution in the fiber. This
determines the linear guiding properties of the medium the electromag-
netic field is developing in. There are various different kinds of optical
fibers available for different applications, and they are generally divided
into two classes depending on the underlying physical guiding mecha-
nism. One class is the index guiding fibers while the other is photonic
bandgap (PBG) guiding fibers.

In an index guiding fiber, light is guided by a refractive index dif-
ference that cause total internal reflection [1] to reflect light, diverging
from the fiber core, back into the core region, and thus confining light
to it. The step-index fiber (SIF) is the index guiding fiber type, which
is primarily investigated in the following chapters. A schematic of a SIF
cross section is shown in Fig. 2.1-left. It consists of a core with radius a
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Λ

d

Figure 2.1: Left: Schematic of a SIF cross section with core (cladding) radius a
(b) and refractive index n1 (n2). The index profile is shown below the cross section.
Right: Schematic of three-ring triangular lattice PCF showing the solid material
(black) and air holes (white) with pitch Λ and air hole diameter d. (Left graphics
is from [6], right is courtesy of Simon T. Sørensen).

that has a refractive index n1 = n1(ω) and a cladding of radius b with
refractive index n2 = n2(ω) < n1. The frequency dependence of n1 and
n2 is referred to as material dispersion. The total internal reflection oc-
cur for light propagating out of the plane of the paper in Fig. 2.1-left and
diverging away form the core, at the interface where n1 changes abruptly
to n2 [18, 19]. Outside the cladding, where the radial distance exceeds
b, is a jacket material that provides protection and adds flexibility and
robustness to the fiber. Basically, a SIF is manufactured by surrounding
a bulk cane of core material by a cane of cladding material, heating the
ensemble until it softens enough, and then drawing it into a fiber. The
refractive index difference between core and cladding is typically achieved
by doping the core material of the fiber with various elements that raise
the refractive index. Along with the refractive indexes n1 and n2, the
core and cladding radii a and b, a SIF is characterized by the normalized
frequency (or V -parameter) and the numerical aperture (NA) defined as

V =
2πa

λ
NA and

NA =
√

n2
1 − n2

2 ≈
√

2n1(n1 − n2) = n1

√

2

(

1− n2

n1

)

(2.2.1)

respectively. Instead of the NA, the difference between core and cladding
refractive index is occasionally characterized by the relative index contrast
∆ = (n2

1 −n2
2)/(2n

2
1) [19]. It can be shown that a SIFs supports only one
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single guided linearly polarized mode (the fundamental mode) below the
so called cut-off frequency, i.e., below V ≈ 2.405 for a given wavelength,
core radius a, and NA [18, 19]. The NA determines the maximum angle
of incidence, θmax = sin−1(NA), for a light beam that will become guided
by the fiber [18]. As a rule of thumb, the larger the NA, the better the
mode is confined to the core, but as the NA increases, so does the number
of guided modes supported by the fiber. From the approximated result in
Eq. (2.2.1), it is obvious that the magnitude of the NA increases linearly
with the absolute value of the refractive index of the basic SIF material
(here n1) for a given core-to-cladding index ratio. Practically this means
that fibers, made from high refractive index materials, allows a larger NA
for a given core-to-cladding index ratio.

Another class of index guiding fibers, are the PCFs, and the advent
of these fibers, approximately half way through the nineteen nineties [20],
lead to much interest in SCG in subsequent years after the fist demon-
stration of SC in a PCF [21]. PCFs are particularly well suited for SCG
because they offer very tight mode confinement with a small mode area
leading to a large effective nonlinearity, they can be endlessly single-
mode [22], i.e., only one single guided mode exist for any wavelength,
and the dispersion properties can be engineered to a large extent [14,23].
A schematic of a PCF is shown in Fig. 2.1-right where the black back-
ground represents solid glass with refractive index n = n(ω), and white
circles mark air holes (with refractive index nair = 1) that stretch along
the entire length of the fiber. The grid of air holes is placed in a pe-
riodic manner around a core, a defect in the periodic lattice, where an
air hole is missing. The air holes provide a refractive index boundary,
with a large effective index difference, surrounding the core, providing
tight mode confinement, and causing the total internal reflection, even
though the interface where reflection occurs is less well defined than in
a SIF. The triangular lattice PCF is characterized by the hole-to-hole dis-
tance, or pitch, Λ and the hole diameter d, along with the number of air
hole rings and the grid structure. Examples of other grid structures are,
e.g., cobweb lattice [24] or suspended core/wagon-wheel [25, 26]. PCFs
are commonly made from a single material, thus removing the need for a
dopant, but the fabrication procedure however, is more complicated than
for the SIFs (see Fig. 4.3, page 65 for an example of a drawn PCF).

An example from the category of PBG guiding fibers, is the hollow
core fiber [17]. The PBG guiding fibers work by establishing a frequency
region where propagation is forbidden transversally in the structure. In



12 Math and Physics Related to SCG

this way, light, with a frequency in the PBG, cannot escape the core once
inside it. Such fibers, however, are not treated here.

2.2.1 Finite Element Method Calculations in Comsol

An approximate analytical solution is available for the transverse field
distribution in a SIF, and from this, much of the physics, e.g., the cut-off
frequency mentioned in the last section can be deduced. The approx-
imation, however, requires that the index difference between core and
cladding is small, and this can become questionable for the fibers con-
sidered later on, particularly for the chalcogenide fibers investigated in
chapter 5. Furthermore, since we also consider PCFs that do not have
an analytical solution for the field distribution, a FEM solver is used in
any case. The FEM solver is a commercially available software program
called Comsol (version 3.5a), and it solves the frequency domain equation,

∇× (n−2∇× H̃)− k20H̃ = 0, H̃ = H̃(x, y)euz (2.2.2)

for the eigenvalue u = −iβ − δz (Comsol uses the symbol λ for the eigen-
value, but this is avoided here) and the magnetic field profile H̃(x, y)
at the frequency specified through the input vacuum wavenumber k0 =
ω/c = 2π/λ, where ω is the angular frequency, c is the speed of light in
vacuum, and λ is the free space wavelength. In Eq. (2.2.2), n2 = ǫr is the
relative dielectric function, which is the mathematical representation of
the actual waveguide structure, i.e., SIF or PCF. Eq. (2.2.2) is obtained
by Fourier transform (FT) of Maxwell’s equation, use of Eq. (2.1.3), and
subsequent application of the curl operator. It is a hermitian eigenvalue
problem, and is referred to as the master equation in [27], where it is
treated extensively, because of its fundamental significance to electrody-
namics. Once solved for the magnetic field, the electric field can be found
from Maxwell’s equations.

The diagrams in Fig. 2.2 show the calculation domains used when
calculating the properties of SIFs (Fig. 2.2-left) and the truncated cal-
culation domain used when calculating the properties of PCFs (Fig. 2.2-
right). Only a quarter of the calculation domain is implemented since
one can exploit the even and odd symmetry of the magnetic and electric
fields, when the dielectric function has appropriate symmetry. Strictly
speaking, it is most important to implement the quarter domain when
calculating the properties of PCFs. The complicated structure of PCFs,
containing many boundaries, lead to a very large number of elements for
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Figure 2.2: Example calculation domains for the FEM calculation in Comsol.
Left: SIF Right: PCF.

the FEM calculation, and this in turn, leads to long calculation times and
large memory consumption. The complexity is far less for the SIF. In
Fig. 2.2-left, the inner circle marks the physical core domain of the SIF,
while the largest domain is the cladding region. The outermost domain
is a perfectly matched layer simulating a jacket material on the fiber. In
Fig. 2.2-right the small domains represent the air holes, the smallest re-
gion centered at the origin, is artificial, and only used for approximating
the fraction of light guided by the core. The large domain is the solid
glass material, and the outer layer is a perfectly matched layer truncating
the cladding domain.

Eq. (2.2.2) is solved in a wavelength loop traversing an entire range
by specifying a single wavelength in each step of the loop. For each single
wavelength then, the equation is solved by an iterative algorithm im-
plemented by Comsol. The refractive index of the respective materials,
composing the fiber is updated in each iteration, so material dispersion is
correctly included in the calculation. The eigenvalue u yields the propa-
gation constant β(ω) = −Im(u), and a guiding attenuation defined from
Lambert Beer’s law, and calculated as αg = −2δz = −2Re(u). Further-
more, the electric and magnetic fields distributions give the effective area
for each wavelength, defined by [6, 28]

Aeff =

(∫

|E(x, y)|2dxdy
)2

∫

|E(x, y)|4dxdy (2.2.3)

where E(x, y) is the transverse electric field profile. The denominator
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above can be approximated by

|E|4 = (EE∗)2 = (|Ex|2 + |Ey|2 + |Ez|2)2

≈ |Ex|4 + |Ey|4 + |Ez|4 (2.2.4)

for linearly polarized modes, because ideally, only one of the field com-
ponents contain the entire field information. At a very early stage in the
project, this approximative way of calculating the denominator in the ef-
fective area was implemented because only linearly polarized modes are
considered. This was done even though the true approximation-free ex-
pression could equally well have been used without any noticeable change
in computation time. It has been investigated, what are the implications
of using the approximation, and as a representative of this, it can be
mentioned that the relative difference in the effective area is ∼ 0.006 at
λ = 15 µm in a 2a = 20 µm, NA = 0.5 SIF, when comparing the approx-
imation and the approximation-free expression. Furthermore it is found
that the error increases with increasing wavelength and thus, the error
of 0.006 represents the order of magnitude in the worst case considered
here.

2.2.2 Dispersion of a Guided Mode

The propagation constant β = β(ω), or equivalently the effective refrac-
tive index neff = 2πβ/λ, and the effective area Aeff = Aeff(ω) of the
guided mode, contain the information coupling the transverse and longi-
tudinal parts of the pulse propagation problem. The effective area partly
determine the nonlinear coefficient, (see Eq. (2.3.7)), while the propaga-
tion constant determine how light at different frequencies travel through
the fiber. The dispersion properties of a waveguide is typically divided
into two contributions, one contribution from the waveguide structure,
and one from the material the waveguide is made from [18,29]. As a rule
of thumb, the waveguide dispersion increases with the amount of change
caused to the bulk material by creating the waveguide. Thus, gener-
ally, the waveguide dispersion is smallest in a low index contrast SIF and
increases via large index contrast SIFs over PCFs and to PBG guiding
fibers where the waveguide dispersion is extreme. In the fibers considered
here, the material dispersion enters through the frequency dependence of
the refractive indexes, n(ω), n1(ω) and n2(ω) as mentioned in the last
section. Typically the refractive index of fiber materials are given in the
form of a Sellmeier polynomial fit to measured data points, and generally
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given by [6, 18]

n2 = 1 +
∑

j

Ajλ
2

λ2 − a2j
. (2.2.5)

where parameters Aj and aj can be found in the literature for various
materials (see individual chapters 3, 4, and 5).

It must be noted at this point that whenever treating a SIF in this
work, it has been assumed that the cladding material index (n2) has a
dispersion determined by the appropriate Sellmeier equation, and that
the core index (n1) is calculated from Eq. (2.2.1) using a given NA. Fur-
thermore, the frequency dependence of the NA is ignored throughout,
even though both n1 and n2 are functions of frequency.

Traditionally, one expands the propagation constant in a Taylor series,
around an expansion frequency ω0, as

β(ω) = β(ω0) +
∞
∑

j=1

1

j!

djβ

dωj
(ω − ω0)

j (2.2.6)

where the derivatives are also evaluated at ω0. Doing so allows for assess-
ment of the significance of the individual terms in the expansion. Par-
ticularly β1 and β2 (βj = djβ/dωj) are mentionable. The group-velocity,
i.e, the speed a light pulse travels down the fiber, is determined by β1
through

vg =
1

β1
(2.2.7)

and knowledge of the group-velocity dispersion (GVD) parameter β2, and
in particular the location of the zero dispersion wavelength (ZDW), is
important for the characteristics of SCG [14]. The GVD is often visualized
in terms of the dispersion parameter, D, defined by [6]

D = −2πcβ2
λ2

= − c

λ

d2neff

dλ2
. (2.2.8)

It measures how much a pulse of a given spectral width broadens in time
during propagation of the distance L. A large dispersion then, can be
detrimental to a nonlinear process because it causes the content of a light
pulse to diverge temporally, and thereby decreasing the field strength at
a given instance of time. Particularly the ZDW wavelength, where β2 =
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D = 0 is significant with respect to SCG, because it marks the boundary
to the soliton dynamics regime (see section 2.4.2). For wavelengths with,
D < 0 (β2 > 0) the fiber is said to exhibit normal dispersion, and for
wavelengths with D > 0 (β2 < 0) the fiber is said to exhibit anomalous
dispersion [6].

2.3 The Nonlinear Problem - Pulse

Development

The longitudinal, or dynamical part, of the propagation problem presents
itself in terms of the generalized nonlinear Schrödinger equation (GNLSE)
for the complex electric field envelope development. The GNLSE has
previously shown its applicability in modeling of SCG, and an extensive
and well established review of the physics for SCG in silica PCFs is given
in [14]. The derivation of the GNLSE is complicated but a comprehensive
version is given in [6], where the equation is derived for the electric field
envelope A = A(z, T ), with FT Ã = Ã(z, ω), normalized so that the
instantaneous power in the electric field is [23]

P (T ) = |A(T )|2, with energy E =

∫

|A(T )|2dT. (2.3.1)

In this work however, a slightly different version of the GNLSE, than
derived in [6] and reviewed in [14], is solved.

Before proceeding, a few notes are made to the reader at this point.
The following definition for the FT and inverse Fourier Transform (iFT)

f̃(ω) =

∫

f(t)eiωtdt and f(t) =
1

2π

∫

f̃(ω)e−iωtdω (2.3.2)

are used throughout. Generally, in this work, integration with no bound-
aries specified is implied to mean integration from −∞ to ∞, i.e.,

∫

=
∫∞
−∞ over whichever integration variable is in question. A review of the FT
properties that are useful in connection to the GNLSE is given in ap-
pendix C page 107.

The GNLSE solved here, is based on a derivation by J. Lægsgaard [17]
that explicitly includes the frequency dependence of the effective area.
This is needed, because the effective area variation can be large over the
wavelength range of interest for SCG in the mid-IR. The derivation leads
to a slightly different version of the GNLSE than found in [6], and now
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for the pseudo electric field envelope in the frequency domain C̃(z, ω),
obtained from the frequency domain electric field envelope Ã by

C̃ =

[

Aeff

Aeff(ω0)

]− 1
4

Ã. (2.3.3)

Furthermore, the GNLSE is transformed into the interaction picture
(IAP) (see appendix A page 95) introduced by J. Hult [30] that requires
the following definition

C̃I = e−
˜̂
LzC̃ (2.3.4)

where C̃I is the pseudo electric field envelope in the frequency domain
and IAP. It can be shown that the GNLSE can then be written as [31]

∂C̃I

∂z
= iγ̄(ω)e−z

˜̂
L

[

1 +
ω − ω0

ω0

]

×

F
{

CF−1
{

R̃(ω − ω0)F
{

|C(T )|2
}

}}

(2.3.5)

or written very compactly, as it is presented in [32,33]

∂C̃I

∂z
= iγ̄

ω

ω0
e
˜̂
LzF

{

CF−1
{

R̃F
{

|C|2
}

}}

(2.3.6)

where F {·} denotes the FT. In this version of the GNLSE, the nonlinear
coefficient is

γ̄ = γ̄(ω) =
ω0n2neff(ω0)

cneff

√

AeffAeff(ω0)
(2.3.7)

where n2 is the nonlinear refractive index of the fiber material and c is the
speed of light in vacuum. The function R̃ in Eq. (2.3.6) is the FT of the
response function R(T ) that includes both the instantaneous electronic
response and the delayed molecular vibrational response (delayed Raman
response) of the material. The linear operator is given by

˜̂
L =

˜̂
L(ω) = i {β(ω)− [β(ω0) + β1(ωp)(ω − ω0)]} −

α(ω)

2
(2.3.8)

where β(ω) is the propagation constant found from the transverse part of
the propagation problem, ω0 is the center frequency in the calculation do-
main (expansion frequency, see appendix D page 119), ωp is the frequency
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of the pump source, and α(ω) is the total power attenuation. Notice that
the pump frequency, which is generally different from the expansion fre-
quency to allow the calculation domain to extend to wavelengths below
half the pump wavelength, introduces a retarded time frame T that moves
with the group-velocity vg at the pump frequency. The formal derivation
of this is given in appendix E page 123.

Notice that if the frequency dependence of the effective area and the
effective index is ignored then

C̃ = Ã and γ̄ =
ω0n2

cAeff(ω0)
= γ (2.3.9)

where γ is the, perhaps more familiar, nonlinear coefficient in the GNLSE
derived in [6] and reviewed in [14]. In all numerical simulations of exper-
imental conditions is used a chirp free input pulse given by a Gaussian
shaped pump pulse (see Eq. (C.1.3)) of the form

A(0, T ) =
√

P0e
− T2

2T2
0 +OPPM (2.3.10)

as the initial condition, where P0 is the peak power and T0 is the temporal
width of the pulse (T0 = T

FWHM
/(2

√
ln 2)). The last term in Eq. (2.3.10)

represents the one-photon-per-mode (OPPM) noise model that is used to
model spectral fluctuations from shot-to-shot in the input pulse [14, 31].
The electric field is obtained from the envelope function by multiplica-
tion of a fast varying phase factor with a frequency corresponding to the
central carrier wavelength, or here, pump wavelength λp = 2πc/ωp.

The GNLSE is solved using a fourth order Runge-Kutta integration
scheme with adaptive step size [34], where the error accumulation is con-
trolled by the local goal error method [35]. It can be shown that if loss is
neglected, and the waveguide maintains its dispersion properties along its
length (i.e. no fiber taper, etc.) the version of the GNLSE derived in [6]
conserves a quantity called the photon number [36]. The introduction of
the pseudo electric field envelope C̃ warrants a small correction to the
conserved quantity that becomes

PN (z) =
c
√

Aeff(ω0)

n2neff(ω0)

∫

neff

√

Aeff
|C̃I |2
ω

dω (2.3.11)

and the formal derivation of this, is given in detail in appendix F page 127.
The conservation of the quantity in Eq. (2.3.11) is used to check the
implementation of Eq. (2.3.5). The conservation is quantified through
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the photon number error, given by Err(z) = |(PN (z) − PN (0))/PN (0)|,
and its development is investigated for a simulation where loss and noise
is ignored.

2.3.1 Interpreting Results from Simulations

When a result is obtained from a simulation of the GNLSE, it is given
in terms of a single-shot of the frequency domain pseudo electric field
envelope in the IAP, C̃I , which is then transformed to the complex electric
field envelope Ã according to the transformation rule in Eq. (2.3.3). To
visualize calculated spectra, however, the complex electric field envelope
is plotted in terms of the energy spectral density (ESD) or equivalently
the power spectral density (PSD) in the wavelength domain. These are
calculated as

ESD(z, λ) =
c

λ2
|Ã(z, λ)|2 and PSD = frepESD, (2.3.12)

respectively, where frep is the seed laser repetition rate (see appendix C
page 107).

A single-shot simulation, in this respect, means a single solution ob-
tained from a simulation where the initial condition is imposed with one
instance of random noise given by the OPPM-model from Eq. (2.3.10).
This noise is imposed on the initial condition to model spectral fluctua-
tions from shot-to-shot present in the seed laser. A typical spectrometer in
a measurement setup will smooth such fluctuations in a measured result,
because the spectrometer has a finite wavelength resolution, and all light
in a wavelength region of width ∆λres around the discrete measurement
wavelength λ will be reported as corresponding to it. Furthermore, a typ-
ical data acquisition apparatus has a finite integration time τint ≫ 1/frep,
and a measured spectrum is also correspondingly averaged over a num-
ber of consecutive shots from the seed laser. With a typical value of
frep ∼ 10 MHz and, for example, an integration time of τint = 100 ms,
a measured spectrum corresponds to an average over some 104 shots of
the seed laser. If the repetition rate is on the order of kHz instead, the
average typically corresponds to an order of hundreds of shots.

To mimic the finite spectrometer resolution, simulations of the GNLSE,
which are directly comparable to laboratory measurements, are averaged
using a rectangular box of width ∆λres = 10 nm for each realization of
the noise seed, and afterwards ensemble averaged over a number of in-
dividual simulations to emulate the finite integration time. Hundreds to
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tens-of-thousands of shots, however, will cause a tremendous amount of
computer load, so in this work is used 30 shots in ensemble averages.

2.4 Propagation Effects in Nonlinear Optics

In this section a few key effects, often observed in nonlinear fiber optics,
are introduced because they will be referred to in the following chap-
ters. The descriptions are kept brief for convenient reference during later
chapters.

2.4.1 Self-phase Modulation

The first effect to describe is self-phase modulation (SPM), where a prop-
agating pulse modifies its own phase due to the nonlinear refractive index
n2 of the fiber material. The equation that isolates this particular effect
is the nonlinear Schrödinger equation (NLSE) [6]

∂zA = iγ|A|2A (2.4.1)

where dispersive effects are neglected. This equation is obtained from
Eq. (2.3.5) by assuming the frequency dependence of neff and Aeff can be
ignored, by assuming a purely instantaneous material response, ignoring
the optical shock effect, and ignoring loss.

By multiplication of the complex conjugate A∗, and adding the com-
plex conjugate of the obtained result, it can be shown that the power
P = |A|2 is a constant with regards to z, and one can derive that the
electric field envelope solution is

A(z, T ) = A(0, T )eiγ|A(0,T )|2z. (2.4.2)

From the phase factor in the solution, it is seen that the pulse itself in-
duces a change to the phase of the input A(0, T ), and this causes the
name, self-phase modulation. The phase change, however, do not influ-
ence the power distribution, while in the frequency domain, the effect
of SPM is more complicated. It can be shown that SPM lowers the in-
stantaneous frequency in the beginning of the pulse (leading edge) and
increase the instantaneous frequency at the end of the pulse (trailing
edge), which is generally referred to as a chirp across the pulse [6]. SPM
manifests itself quite clearly in the frequency domain as a number of rip-
ples on the ESD, symmetrically growing around the center frequency, as
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the pulse propagates down the fiber, and consequently broadening it spec-
trally. Figs. 3.9-right and 3.10-right in chapter 3, show examples of SPM
broadening, though here, the optical shock effect causes an asymmetry to
the ripples. SPM is typically observed in the early stages of SCG.

2.4.2 Solitons

It can be shown that if the NLSE includes GVD β2, so that Eq. (2.4.1)
is modified to become [6]

∂A

∂z
= −i

β2
2

∂2A

∂T 2
+ iγ|A|2A (2.4.3)

then one of its possible solutions is,

A(z, T ) =
√

P0sech

(

T

T0

)

e
−i

|β2|z

2T2
0

with FT Ã(z, ω) = πT0

√

P0sech

(

ωπT0

2

)

e
−i

|β2|z

2T2
0 (2.4.4)

if the peak power P0 and pulse width T0 is adjusted so that P0 = |β2|/(γT 2
0 ),

and β2 < 0 (or D > 0), so dispersion is anomalous. The solution (2.4.4)
is called a fundamental soliton and it has the property that neither the
power distribution |A(T )|2 nor the ESD |Ã(ω)|2 change during propaga-
tion, physically because GVD and SPM counteract each other.

The fundamental soliton is one out of an infinite amount of solutions
of (2.4.3) [6] characterized by the soliton number

N =

√

LD

LNL
=

√

γP0T 2
0

|β2|
=

√

n2ωsol

cAeff(ωsol)

P0T 2
0

|β2(ωsol)|
(2.4.5)

where LD = T 2
0 /|β2| is the dispersion length and LNL = 1/(γP0) is the

nonlinear length. If LD ≫ LNL nonlinear effects will dominate the prop-
agation, while if LNL ≫ LD linear dispersive effects dominate. For the
fundamental soliton, the peak power and pulse width is adjusted so that
N = 1, while if they are adjusted so N ≥ 2, then a higher order soliton
is excited in the fiber. Higher order solitons do not propagate with-
out changing shape as the fundamental soliton does, but under idealized
conditions, as described by Eq. (2.4.3), they change shape in a periodic
manner, thereby recovering their initial shape once each period. Dur-
ing SCG though, the governing equation is the full GNLSE, and the peri-
odic dynamics is lost. An energetic seed laser in the anomalous dispersion
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regime, can result in a large initial soliton number, and subsequently, the
spectrum typically develops through pulse breakup, into a number of
fundamental solitons that are often individually distinguishable in a well
developed SC spectrum [14,37].

2.4.3 Four-wave Mixing

The process of FWM is the nonlinear effect that caused the spectral
broadening in the first SC observation [15]. In the process, two photons
are annihilated, and two other photons are created while the total en-
ergy and momentum is conserved. The momentum conservation imposes
a phase-matching condition on the FWM-process that determines the
boundaries of the gain bands for degenerated FWM [38]

g(λ) = Re

(
√

−∆β

[

∆β

4
+ γP0

]

)

(2.4.6)

where ∆β = ∆β(λ) = β(λ) + β(2λp − λ) − 2β(λp) is the accumulated
difference between the phase of the signal, at wavelength λ, the idler at
wavelength 2λp−λ, and the pump. In degenerate FWM, where the annihi-
lated photons are from the same pump, the gain bands are symmetrically
placed in frequency on either side of the pump. The low (high) frequency
gain band is called the (anti) Stokes band. FWM find applications in, e.g.,
optical parametric amplifiers [38], wavelength conversion [39], or a small
niche application has been proposed, where FWM is used in a biosensor
made from a PCF [40].

A typical feature of degenerate FWM is that when the pump is in the
anomalous dispersion regime, the gain bands are wide and continuously
connected across the pump, while the gain bands are narrow and sepa-
rated from the pump, when it is in the normal dispersion regime [14]. In
the time domain, FWM manifests itself as an instability of the power dis-
tribution amplitude as the pulse develops. The term modulation instability
(MI) is used for this time domain analogue to FWM.

2.4.4 Effects From Delayed Raman Response

In the full GNLSE, the delayed response from the fiber material to an
applied electric field, is included through the convolution term in (2.3.5).
The response function is generally written on the form [6]

R̃(T ) = (1− fR)δ(T ) + fRhR(T ) (2.4.7)
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where the first term accounts for the instantaneous part of the mate-
rial response, and δ(T ) is Dirac’s delta-function. The second term is the
delayed Raman response, described by hR(T ), and fR is the fractional
Raman contribution. The delayed Raman response function hR(T ), is
derived from the Raman gain profile gR(Ω) in the specific fiber mate-
rial, and the conversion from a measurement of the gain profile and to
the mathematical function hR(T ) is reviewed in detail in appendix G
page 133. Briefly summarized, the delayed material function is found
from the equation [6]

gR(Ω) = 2γfRIm
(

h̃R(Ω)
)

(2.4.8)

where h̃R(Ω) is the FT of hR(T ) and the fractional Raman contribution
fR, is found by imposing a normalization on hR(T ) so that

∫

hR(T )dT =
1. In chapter 3 is presented the result of two measurements of the delayed
Raman gain in ZBLAN that are compared, and also in chapters 4 and 5
are shown examples of the Raman response function for tellurite and
chalcogenide respectively. In order to analyse the magnitude of different
Raman gains, the quantity

fRIm
(

h̃R(Ω)
)

=
gR(Ω)

2γ
(2.4.9)

is compared, because gR(Ω)/(2γ) is the delayed Raman gain per effective
nonlinearity. Thus, the left-hand side (LHS) above represents the mag-
nitude of the delayed Raman gain, for a given fiber and a given pump
that determines the nonlinearity, thus enabling comparisons of different
Raman gain spectra.

The delayed Raman response establishes a gain region, which is re-
sponsible both for amplification, either spontaneous or stimulated, of light
in the gain band, and can form a cascade of Stokes shifted lines in a laser
spectrum [41]. Also, importantly in relation to SCG, is intra pulse Ra-
man scattering, often called soliton self-frequency shift (SSFS) [42, 43].
This causes solitons to continuously shift their center frequency towards
lower frequencies (red shift) because energy is transferred from the high
energy part of the pulse spectrum to the lower energy part. This process
is vital to the long wavelength edge of generated SC [14]. An example of
a Raman gain is displayed in Fig. 3.5-left, and the SSFS is observed in
Fig. 3.8 both from chapter 3.
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2.4.5 Higher Order Dispersion

Higher order dispersion enters the NLSE by including more terms from
the Taylor expansion in Eq. (2.2.6) than just the GVD β2. In the full
GNLSE all orders of dispersion are included through the definition of the
linear operator in Eq. (2.3.8). Higher order dispersion perturbs the ideal-
ized soliton solutions of the NLSE, and particularly it causes higher order
solitons to fission into their constituent fundamental solitons [14,37], in-
stead of allowing the periodic behaviour observed in idealized higher order
solitons. This soliton fission process is particularly prominent for ultra
fast fs-pulses, and is gradually replaced by SPM and FWM/MI caused
breakup for longer pulses [14]. Furthermore, higher order dispersion en-
ables a resonant energy transfer between a soliton redshifting due to
the SSFS and a phase-matched wave in the normal dispersion regime [14],
often denoted a dispersive wave or non-solitonic radiation [37]. The dis-
persive wave and a redshifting soliton are related through a potential
that trap a redshifting soliton and blue shifted dispersive radiation to-
gether [44].

2.5 Summary of Chapter 2

In this chapter, the electrodynamic model used to simulate SCG is intro-
duced, and it has been argued that the nonlinear pulse propagation prob-
lem is divided into two separate problems connected through the propa-
gation constant β(ω) and the effective area Aeff(ω) of the fiber mode. In
this respect, the two kinds of fiber optical waveguides considered during
the remainder of this work are introduced. The most extensively used
fiber type in the following is the SIF, but also the PCF is discussed and
such fibers are considered in chapter 4. The propagation constant and the
effective area are initially calculated using a commercially available FEM
software package, before they are used in solving the GNLSE. The FEM
calculation includes the material refractive index wavelength dependence
by solving the transverse problem in an iterative manner over a range of
wavelengths and using the appropriate value of the refractive index in each
iteration. After introducing the transverse problem, the first two terms of
the Taylor expansion of the propagation constant are given a little special
attention. The first term containing β1, signifying the group-velocity of
a pulse travelling in the fiber, and the second term contains the GVD
parameter β2. The GVD parameter mark the boundary between normal
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and anomalous dispersion regimes.
Continuing onwards from the transverse problem, the generalized non-

linear Schrödinger equation is introduced. The GNLSE is the nonlinear
differential equation, describing the development of the electric field en-
velope, as a pulse travel down a fiber with a large effective nonlinearity.
The version of the GNLSE solved in this work is based on a derivation by
J. Lægsgaard that is further transformed into the IAP. It treats SCG in a
single mode of the optical fiber, and this mode is always the fundamental
mode in the present work. It is discussed how results from individually
calculated spectra imposed with random noise, are averaged to emulate
spectral fluctuations from a seed laser system, the finite wavelength res-
olution of a typical spectrometer and finite integration time of a data
acquisition device.

Finally, a few of the most relevant isolated nonlinear effects and con-
cepts are reviewed for reference in following chapters along with a brief
mention of higher order dispersion influence on SCG. In the following
chapters the theory is put into practice when simulating SCG in soft-
glass fibers made from ZBLAN in chapter 3, ZBLAN and tellurite in
chapter 4 and chalcogenide in chapter 5.
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Chapter 3

Supercontinuum in a
ZBLAN Soft-glass Fiber

From the onset of this project, ZrF4BaF2LaF3AlF3NaF (ZBLAN) was
a natural choice to investigate as fiber material for a nonlinear fiber
in an infrared (IR) SC source. The soft-glass is a fluor based com-
posite glass material, and it has a nonlinear refractive index of n2 ∼
2.2 · 10−20 m2/W [7, 45], which is comparable to silica [6], whereas the
transmission window of ZBLAN stretches significantly longer into the IR,
due to lower phonon energy than that of silica [5, 26, 46]. Compared to
silica though, ZBLAN is a much less well documented material.

The first challenge experienced during this work, in the endeavour to
aid in obtaining a ZBLAN based mid-IR SC source, then, was to deter-
mine the material refractive index profile for ZBLAN, and because no
measurement of the full profile of the delayed Raman response was avail-
able, perform such a measurement. Accurate information, particularly
regarding the nonlinear refractive index, the delayed Raman response,
and the dispersion properties of the fiber material, are essential in order
to obtain reliable results from numerical modeling, which in turn is im-
portant, when the aim is to suggest a suitable nonlinear fiber for a SC
source.

After obtaining information about the material itself, the second chal-
lenge was to measure and simulate SCG in a ZBLAN fiber using both nor-
mal and anomalous dispersion regime pumping. The achievable spectral
widths from SCG can depend drastically on the pumping regime used, and
so, it is important to establish what regime a pump system must aim at.
Particularly a thulium (Tm) doped fiber laser, that has an emission wave-

27
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length around 2 µm, could initially seem like a viable source. Tm sources
however, are less wide spread than erbium (Er) or ytterbium (Yb) doped
fiber lasers, and thus more problematic to implement in a commercial
system. Some recent publications on IR SC do focus on Yb or Er pump
lasers, but based on a cascade of a silica fiber and a soft-glass fiber [47,48].
The SC is then initially generated in the silica fiber and then coupled into
a soft-glass fiber that pushes the SC further into the IR. However, such
coupling between nonlinear fibers, for improved redshift of solitons, pose
requirements on the matching of the dispersion and nonlinear properties
of the fibers [32,49], and this is discussed in chapter 4.

This chapter reviews the road from start, at a material name and a
few available fibers, out of which one in particular was subject to mas-
sive testing, over measurement of the delayed Raman response, through
simulations and measurements of full scale SCG, to an application and
the final prototype product developed and created by our collaborators
at NKT Photonics. The chapter is organized as follows: In section 3.1,
available literature on the ZBLAN material properties is reviewed, and
special emphasis is on material dispersion properties and attenuation.
Also a measurement of the dispersion in an existing fiber is presented
here. Then, in section 3.2 a measurement of the delayed Raman response
in a ZBLAN fiber is presented, and it is compared to existing measure-
ments of the Raman gain in ZBLAN. In section 3.3.1 the experimental
setup for SC measurements is presented, and in section 3.3.2 measure-
ments and simulations of SCG are compared. At the end of section 3.3,
the debate about the delayed Raman response in ZBLAN from section 3.2
is shortly revisited. In section 3.4 a few suggestions for important consid-
erations to be made when designing a SC source are put forward. Then,
finally, in section 3.5 is presented an application for IR SC, developed by
our collaborators from Aarhus University (AU), and last but not least,
the celebrated overall outcome of the total collaboration, this project has
been part of, is presented in section 3.6.

3.1 ZBLAN Optical Properties

Because ZBLAN is a composite glass, material dispersion can vary be-
tween manufacturers and even between production batches, from the
same manufacturer, and this makes it hard to find accurate data de-
scribing its optical properties. Thus, a literature study was initiated
early on, in the search for material parameters. Firstly, a measurement
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of the material dispersion of ZBLA and ZBLAN was performed on bulk
prisms by Brown et al. in 1985, where the refractive index curve is pre-
sented as a Wemple equation [50]. In this period, ZBLAN fibers were
investigated for use as mainstream fibers in optical communications, at
longer wavelengths than silica based fibers, but background attenuation
levels where too high, above 4 dB/km [50] (even though lower loss where
also reported, at wavelengths close to/inside the transmission window of
silica [51]). The refractive index dispersion of ZBLAN reported in [50]
resembles the shape of the material dispersion from another measure-
ment, performed by F. Gan [52] ten years later in 1995, though shifted
upwards to higher absolute values. Also in [50] it is illustrated that the
absolute values of the refractive index is highly dependent on the amount
of sodium (Na) in the ZBLAN. Compositional differences between [50]
and [52] might explain the differences between the index values. In [53]
Wetenkamp et al. also perform measurements on different bulk prism
ingots, made from ZBLAN, with slightly changing compositions. The
compositional changes result in vertical translation of the absolute value
of the refractive index curve, but only small changes to the shape of the
profile. The final paper to draw out in this respect, was already men-
tioned above, is a 1995 paper by F. Gan [52]. This review-paper reports
the optical properties of multiple fluoride glasses, and presents refractive
index profiles in terms of Sellmeier polynomials (see chapter 2). Finally
a measurement by a fiber manufacturer, also giving a Sellmeier equation,
has been obtained from iRphotonics [54]. To summarize the findings, the
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Figure 3.1: Left: Material refractive index profiles for ZBLAN from different
measurements reported in literature and by one manufacturer of ZBLAN fibers.
Right: Bulk dispersion calculated for the index profiles shown in the left panel.
The inset shows a zoom at the ZD crossings.
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index profiles are shown in Fig. 3.1-left, and here it is clearly seen how
the different measurements show similar shapes, while the absolute values
are different. The bulk ZDWs are calculated to be (see Eq. (2.2.8))

F. Gan [52]: λZD = 1.71 µm,

iRphotonics [54]: λZD = 1.56 µm,

Wetenkamp et al. [53]: λZD = 1.60 µm,

Brown et al. [50]: λZD = 1.62 µm

respectively. There is a spread of ∼ 150 nm between the largest and
the smallest of these possible material ZDWs. The significance of an
uncertainty in the location of the ZDW is discussed in section 3.3.

As mentioned earlier, background losses in ZBLAN were measured to
have a level of more than 4 dB/km [50], and even though fibers with such
an attenuation are less suited for long haul optical communications, in
competition with fused silica that has a minimum loss of ∼ 0.2 dB/km [6],
it is a reasonable loss for SCG, where fiber lengths are on the order of
meters. A measurement of the total attenuation α = α(ω) for a drawn SIF
is provided by FiberLabs [46], and it is shown in black in Fig. 3.2 [46].
This loss curve, which generally shows a loss level around 50 dB/km is
measured soon after fiber drawing and the loss data between 700 nm and
3200 nm was measured by the cutback method for a multi-mode ZBLAN
fiber. The values for wavelengths longer than 3.2 µm and shorter than
700 nm were estimated values [46]. The measurement resolution was
20 nm, but some degree of uncertainty is to be expected according to the
manufacturer [46]. Similar to the measurement in Fig. 3.2, reference [5]
shows a summary (Fig. 2 in [5]) of the multiphonon edge for different
soft-glasses, where the loss edge rises abruptly around 4.5 µm for ZBLAN.
Similarly the loss of ZBLAN is reported to increase after 4 µm in [55].
Even though a strict definition of a loss boundary preventing SCG from
developing further into the IR is not exactly well defined, the tendency in
the loss measurements in [5,55] and by FiberLabs [46] are clear. Loss rises
sharply after a wavelength of around 4 µm, and will start to dominate
a SCG process around 4.5 µm. Thus, a priori, one should not expect SC
to develop much further into the IR than ∼ 4.5 µm in ZBLAN, just as
the fused silica based SC sources, does not go beyond ∼ 2.4 µm.

Based on deficiencies between experiment and simulations, that will
be presented in section 3.3.2, it is suspected that an attenuation band
starting around 2.7 µm is present in experiments that is not accounted
for by the measured (black) loss curve in Fig. 3.2, which is the default
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Figure 3.2: Black solid line is measured absorption in a multimode fiber (courtesy
FiberLabs [46]), and blue is a loss profile with an artificially enhanced loss band,
simulating a large absorption boundary due to an OH-stretch.

loss profile implemented in calculations. Furthermore, it is suspected that
exactly such an attenuation band can be caused by water (OH) intruding
the fiber, since water is known to cause absorption peaks in this partic-
ular wavelength range in fluoride based fibers [56, 57]. To examine this,
an artificial loss peak is added to the measured loss, and simulations are
redone (see section 3.3.2). This is one of the strengths of numerical sim-
ulations that the influence of significant quantities can be investigated
without time consuming laboratory experiments, and a guesstimate for
their impact can be made. Both Gaussian and parabolic band shaped
additions of different peak values, and widths, have been investigated by
rerunning simulations. It was found that a parabolic shaped loss (shown
in blue in Fig. 3.2) with a peak value of 5 dB/m, coinciding with the small
peak of the experimental loss curve, i.e., centered at 2.9 µm, will give sim-
ulation results (shown in blue in the right panels of Figs. 3.12, 3.13, 3.16
and 3.17) that support the long wavelength edge trends exhibited by our
measured PSDs.

3.1.1 A Particular ZBLAN Fiber

As reviewed in the last section, different possible descriptions of the refrac-
tive index wavelength dependence in ZBLAN are available. As discussed,
these differences can, at least partly, be ascribed to different material
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compositions, and it was not possible to find a profile that predicted the
dispersion profile of all the fibers investigated during this project with
complete accuracy. At one point in time though, a choice had to be made
about what dispersion profile to continue working with. The finally ac-
cepted compromise was the most recent literature report by F. Gan [52].

To help substantiate that the material dispersion measured by F.
Gan [52] is suitable to describe the dispersion properties of various ZBLAN
fibers, imaginable for SCG, a numerical calculation, and a measurement
on an existing fiber dispersion is compared. The fiber is the one presented
in [33,58], and it is a commercially available ZBLAN (53%ZrF4-29%BaF2-
3%LaF3-3%AlF3-12%NaF) SIF, with a core diameter 2a = 10.7 µm, and
a numerical aperture of NA = 0.20 made by FiberLabs1. It is also the
fiber used during measurement of the delayed Raman response [59] (see
section 3.2) and during measurement of SCG [33] (see section 3.3). As
mentioned earlier, the NA is considered independent of frequency, and
this is also proposed by the fiber manufacturer [46]. The guiding loss and
effective area found using Comsol (see chapter 2) is plotted in Fig. 3.3-
right (a) and (b). The effective area increases by approximately a factor
of 4 between 1 and 4.5 µm, underlining the necessity of using a version
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Figure 3.3: Left: Dispersion of the 2a = 10.7 µm, NA = 0.2 ZBLAN fiber from
FiberLabs. Black curve is calculated using Comsol and F. Gan [52] Sellmeier data,
and red curve is measurement performed by H. Steffensen in collaboration with
J. K. Lyngsøe of NKT Photonics. The inset shows the full calculated dispersion
profile. Dashed line is the wavelength shifted dispersion curve discussed in sec-
tion 3.1.1. Right: (a) Guiding loss and (b) effective area as function of wavelength
for the same fiber as in left panel, calculated using Comsol.

1FiberLabs, product code: 03B-2-3(09C-27). Other manufacturers of ZBLAN fibers
are, e.g., iRphotonics (Canada) or Le Verre Fluoré (France).
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of the GNLSE that includes frequency dependence of the effective area
for modeling broad band IR SC. The guiding loss starts to grow from
numerical noise at roughly 2.85 µm but for this fiber, it never dominates
the loss curve shown in Fig. 3.2.

The dispersion measurement was made using an interferometric pro-
cedure [60] but, due to source and spectrometer limitations, it was done
in a smaller wavelength region than the one of total interest for SCG.
In a sense, one could argue that the dispersion measurement needs the
light source, the measurement helps to achieve. The measured disper-
sion profile is shown in red in Fig. 3.3-left where the calculation, based
on Sellmeier properties from F. Gan [52], is plotted in solid black. The
dispersion measurement has some degree of uncertainty because the fiber
is multi-moded below 2.8 µm (see chapter 2.2 page 9). This uncertainty,
along with the possible discrepancy between the fiber material and the
literature reported refractive index wavelength dependence is manifested
clearly in Fig. 3.3-left. The calculated ZDW is λc

ZD
= 1.62 µm, while the

measured is λm
ZD

= 1.58 µm. In 1985 was published a letter by Monerie et
al. [51] that measured the dispersion of the fundamental mode in a com-
parable ZBLAN SIF, with a NA of approximately 0.175 − 0.180, and a
core diameter of 2a = 10 µm. The waveguide dispersion of this fiber is
slightly weaker, than in our 10.7 µm fiber, but the ZDW is still reported
to be 1.64 µm, or close to the value calculated for our fiber using F. Gan
Sellmeier data.

Clearly, there is a discrepancy between measurements and predicted
values of fiber ZDWs when considering ZBLAN, but during simulations
of SCG, the difference of approximately λs = λc

ZD
− λm

ZD
= 40 nm is ad-

dressed. This is done by also considering a second dispersion profile than
the one found from the Comsol calculation. This second, and artificial dis-
persion profile, is found by shifting the calculated profile, such as to have
a ZDW that coincides with the measured one, while having same shape
as the Comsol curve. This is achieved by defining a wavelength shifted
propagation constant β′ = β′(ω) = ωn′

eff(ω)/c where n′
eff = neff(λ + λs)

is the corresponding wavelength shifted effective refractive index. Both
the calculated propagation constant, and the wavelength shifted propa-
gation constant is used in simulations, so as to investigate the influence
of ZDW discrepancies. The dispersion profile calculated from the wave-
length shifted effective refractive index is displayed as the black dashed
line in Fig. 3.3-left.
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3.2 Delayed Raman Response in the ZBLAN

Fiber

As mentioned in chapter 2, that introduces the GNLSE, the delayed Ra-
man response is another important input for prediction of SCG. Mea-
surement of the Raman gain profile, originating from the delayed material
response, however, is far from trivial, and only scarce and partial liter-
ature reports were available for the Raman gain in ZBLAN at the start
of this project. Furthermore, these partial measurements do not agree
on the magnitude of the effect, and finally reports of simulations of SCG
in ZBLAN, most often do not quote a Raman response, even though it
is stated one has been included in calculations. Thus no full Raman gain
profile was documented when this work began, and this lack of a suitable
expression to incorporate in the GNLSE lead to the measurement of the
delayed Raman response presented in this section.

Before reviewing the results from the measurement though, it is ben-
eficial to create an overview of existing literature [33] on Raman gain
in ZBLAN. The Raman response in bulk samples of binary compositions
of fluorozirconate glass (ZrF4-BaF2) was analysed in 1981 in [61], and a
strong Raman gain was identified between 17.0 and 17.9 THz, depending
on the content of ZrF4 in the glass (52-74%). In 1985 a ZBLAN fiber
with a core diameter of 18-30 µm (from Le Verre Fluoré) was measured
to have a peak Raman gain of a1 = 1−3 ·10−11 cm/W at a Stokes shift of
ν1 = 17.7 THz when pumping at 1.0 µm [62]. The fibers used in this pa-
per have an index contrast of ∆n = 5·10−3, which roughly corresponds to
NA ∼ 0.15, and core diameters from 18 to 30 µm, and are multimode at
the considered wavelength (1064 nm). Also in 1985 a ZBLAN fiber with
a core diameter of 65 µm (60%ZrF4-30%BaF2-3%LaF3-4%AlF3-3%NaF)
was measured at 514.5 nm to have a Raman peak at ν1 = 17.4 THz with
a maximum gain of 6 · 10−11 cm/W [63]. A smaller peak Raman gain
of a1 = (2 ± 0.5) · 10−11 cm/W at a Stokes shift of ν1 = 17.9 THz was
measured at 580 nm in a ZBLAN fiber with core diameter of 70 µm (from
Le Verre Fluoré) in 1993 [64]. Here a second broader local maximum gain
was also observed at a Stokes shift of ν2 = 10.2 THz [64]. These findings
constituted the knowledge or the Raman response in ZBLAN when work
began, and the reports generally agree that a prominent Raman gain lo-
cated around 17 to 18 THz Stokes shift should be expected, along with
one measurement that finds a gain located around 10 THz Stokes shift.
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3.2.1 Measurement of Delayed Raman Response in the
ZBLAN Fiber

The complete details regarding the measurement of the delayed Raman
gain profile in the 2a = 10.7 µm, NA = 0.2, ZBLAN, SIF, also used for
dispersion measurement, is presented in reference [59]. The experiment
has been performed by our collaborators, primarily owing to work by
C. Petersen and S. Dupont, from AU. The measurement is a pump-
probe measurement, which in essence, compares the gain experienced
by a broadband probe signal, when it is accompanied through the fiber
under consideration by a pump beam, to the spectrum from when it
is unaccompanied. The method proposed, uses a short piece of fiber,
L = 35 cm, which limits walk-off effects between pump and probe caused
by dispersion, and renders attenuation a small concern. The measurement
setup is displayed in Fig. 3.4 [59].
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Figure 3.4: Schematic of experimental setup for the pump-probe measurement
of the delayed Raman gain profile in the 2a = 10.7 µm, NA = 0.2, ZBLAN, SIF.
Graphics is courtesy of C. Petersen [59].

The main laser system consists of a Ti:Sapphire regenerative amplifier,
which gives 800 nm pulses with a full-width-at-half-maximum (FWHM) of
0.1 ps, a pulse energy of 1 mJ, and the laser has a repetition rate of frep =
1 kHz. The output is divided into two beams directed into two tunable
optical parametric amplifier systems (TOPAS, Light Conversion) that can
be wavelength tuned separately, and thereby generate the pump and the
probe at 1650 and 1800 nm respectively. A chopper in the pump laser arm
is synchronized with the laser system and absorbs every second shot, so
the spectra of the probe signal can be recorded either accompanied by or
unaccompanied by the pump pulse at 1650 nm in consecutive shots. The
pump pulse is stretched temporally by inducing a chirp from a grating, to
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approximately 8 ps so nonlinear effects caused by the pump are avoided.
The probe signal passes a delay stage, where the temporal overlap between
pump and probe can be adjusted before the light beams are coupled
into the ZBLAN SIF together, and the output spectra are recorded by a
spectrometer.

The gain profile, that was recorded at AU, is shown as black dots in
Fig. 3.5-left. This measurement confirm the gain peak at ν1 = 17.4 THz
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Figure 3.5: Left: Raman gain profile measured at AU with a pump wavelength
of λR

p = 2πc/ωR
p = 1650 nm. Dots are experimental data and solid line shows the

fit given by Eq. (3.2.1) and Table 3.1 [59]. Right: Plot of fRIm(h̃R) for the two
available full Raman profiles [59,65], and for silica for comparison [6].

and also finds a second broader peak as in [64] but at ν2 = 12.4 THz. In
the co-propagating pump-probe experiment, it is not possible to measure
the gain spectrum for small Stokes-shifts due to a strong background
contribution from the pump. However, measurements of the spontaneous
Raman scattering spectrum for ZBLAN display non-vanishing values of
the scattering cross-section for low Stokes-shifts [63]. To accommodate
this non-vanishing gain for small Stokes-shifts, the measured Raman gain
is fitted to a sum of two Gaussian functions, so the gain profile takes the
form [59]

gR(Ω) = a1e
−

(Ω/(2π)−ν1)
2

2w2
1 + a2e

−
(Ω/(2π)−ν2)

2

2w2
2 (3.2.1)

where aj is the amplitude, νj is location and wj is the width of the j’th
Gaussian fitted peak of the delayed Raman gain. The Gaussian fit is
shown in solid black in Fig. 3.5-left and the coefficients for Eq. (3.2.1)
are listed in Table 3.1. Recently bulk measurements of a ZBLAN glass
with the same composition as the fiber investigated here, placed the
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two peaks at 17.7 THz and 8.4 THz with identical amplitudes of 1.15 ·
10−11 cm/W [65]. The parameters, adapted to the form of Eq. (3.2.1),
for all the mentioned measurements, partial and full, of the Raman re-
sponse of ZBLAN fibers (notice that reference [65] uses bulk ZBLAN) are
summarized in Table 3.1 for comparison. Here the amplitudes values are

Ref. a1 a2 ν1 ν2 w1 w2 fR
[10−11 cm/W] [THz] [THz]

[59] 0.54 0.25 17.4 12.4 0.68 3.5 0.06

[62] 1− 3 - 17.7 - - - -

[63] 2.91 - 17.4 - - - -

[64] 1.09 - 17.9 10.2 - - -

[65] 0.85 0.85 17.7 8.4 2.7 12.9 0.24

[66] 3.6 - 17.7 - 1.19 - 0.19

Table 3.1: Overview of literature values for the delayed Raman gain, adapted to
the form of Eq. (3.2.1) and scaled to a measurement wavelength of 1060 nm for
comparison [67].

scaled to a measurement wavelength of 1060 nm [67]. All measurements
agree in that the main gain peak is around 17.4 THz, while, in contrast,
there is a large spread in the location of the second and broader gain
peak measured at AU to be located at 12.4 THz. The spread in the am-
plitude of the main gain peak value (a1) is a factor 7 and thus also quite
significant. Here it is important to bare in mind that ZBLAN is a com-
posite material with properties that depend on the specific composition.
In addition, the process of fiber drawing may have a significant influence
on the resulting material properties of ZBLAN as, e.g., shown in [68],
where it was found that the drawing process reduces the refractive index
on the order of 10−3. This could be one reason for the difference between
the AU-measured fiber Raman gain and the bulk Raman gain measured
in [65], where the same ZBLAN composition is used in both cases.

When a Raman gain profile gR = gR(Ω) is given, the time response
function hR(T ) is calculated as [6, 69] (see appendix G page 133 for a
detailed derivation of this)

hR(T ) =
θ(T )

fR

c

πn2ωR
p

∫ ∞

0
gR(Ω) sin(ΩT )dΩ (3.2.2)

where θ(T ) is the Heaviside step-function that ensures causality, ωR
p is

the frequency of the pump pulse (Petersen et al. used λR
p = 1650 nm [59])
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in the gain profile measurement experiment, and fR is found as a nor-
malization factor by requiring that

∫

hR(T )dT = 1. This normalization
is important, because simulations need not only the specific shape and
fitting parameters of the gain profile, but also the integrated fractional
Raman contribution, fR derived from the normalization of Eq. (3.2.2).
From the AU-measured gain profile and Eq. (3.2.2) fR = 0.062 is found.
If we again compare with [65] then their value of fR = 0.24, is four times
larger than the value found at AU. In Fig. 3.5-right is shown a plot of

fRIm
(

h̃R(Ω)
)

=
g(Ω)

2γ
(3.2.3)

for the measurement at AU and by Yin et al. [65], and also a representative
gain spectrum for fused silica is plotted for comparison [6], and here it is
clear, how the Raman response found by Yin et al. is stronger than found
by AU, and particularly the low frequency broad gain peak is stronger
than found in [59]. Furthermore, the value for the nonlinear refractive
index is found to be n2 = 5.4 · 10−20 m2/W in [65], while in this work is
used the generally accepted value of n2 = 2.1 · 10−20 m2/W [7,45,55,66].

Finally, it must be noted that a general uncertainty in the value of
fR for ZBLAN is observed in the literature on numerical modeling. For
example fR is sometimes simply assumed to have a value close to silica,
fR = 0.2 [7] or data from the ZBLAN Raman gain (with two main peaks)
is inserted into a single oscillator model, e.g., giving fR = 0.19 [66].

Regardless of other measurements, the Raman gain profile measured
at AU is implemented in simulations of SC through use of Eq. (2.4.7). In
section 3.3.6, the debate of the Raman profile is briefly visited once more.

3.3 Supercontinuum Generation in the ZBLAN

Fiber

Reasonable material parameters have been established, and the dispersion
properties of the fiber available to measurements, have been calculated.
The next step in the process is to measure the spectra of a generated SC
in the 10.7 µm fiber, also used in the two previous sections and compare it
to simulations. Again, the measurements are made by our collaborators
at AU, owing to C. Petersen and S. Dupont, while the role of the author
has been to interpret the spectra in terms of the physical processes, based
on simulations, and give suggestions as to what specifically to focus on,
when designing a mid-IR SC laser.
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Before investigating the experiment and results of simulations, a few
other measurements of ZBLAN based SCG are examined. During this
project, there has been a slight competition between ours and foreign re-
search groups that also try to extend SC into the IR, and admittedly
these groups had a head start. One of the early reports of ZBLAN
based SCG, which is from 2006, is found in [48], where a concatenated
silica-ZBLAN fiber system, pumped by an Er source, generates solitons
that redshift from 1.55 µm and to approximately 3 µm. Both fibers used
in [48] are SIFs, and the ZDW for the ZBLAN fiber is reported to be
1.63 µm, i.e., similar to the 10.7 µm fiber used in measurements at AU,
and the fiber described in [62]. In [48] the Er source pump is at 1.55 µm,
i.e., in the normal dispersion regime of the ZBLAN fiber, and the silica
fiber acts like an intermediate passive step, between pump and soft-glass
fiber, where the pump pulse is redshifted to cross the ZDW of the ZBLAN
fiber before coupling it in.

Also in 2006 was presented an example for imitation [55]. The exper-
imental setup, used in this letter, is the same as used in a paper from the
same group the following year [70] and again in 2009 [47], and resembles
the system from reference [48]. The pump system from [47, 55, 70] also
build on passive concatenation of a silica and a ZBLAN fiber, so light
crosses the ZDW of the ZBLAN fiber before in coupling. The widest SC
achieved extends to approximately 4.5 µm, and an increasingly higher av-
erage power, culminating at 10.5 W is developed over the course of their
achievements from 2006 to 2009. This large average power, however, is
mostly caused by an increased repetition rate of the seed laser, and less
because the individual shots from the seed laser are developed to become
increasingly energetic. Quite recently though, the group published re-
sults, where an active element is implemented in their pump setup just
prior to coupling light into a ZBLAN SIF [71]. The active element is
a Tm doped fiber amplifier that boosts the power of wavelength compo-
nents around 2 µm before continuing SCG in the ZBLAN fiber. The Tm
amplifier causes more light to shift to wavelengths beyond 3.8 µm than
when using the passive source, but also, it absorbs all light below 1.8 µm
thus effectively a SCG between 1.9 µm and 4.5 µm is obtained. The Tm
amplifier does not enable an extension of the 4.5 µm edge, which is caused
by inherent material loss according to [71].

An optimistic paper from 2009 [45], finds that the upper limit for SCG
in ZBLAN is determined solely by the fiber confinement loss, and if
this can be controlled or neglected the long wavelength edge can be ex-
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panded above 4.5 µm. In fact it is found that by using a very short
piece of ZBLAN SIF (0.9 cm and 2 cm respectively) from FiberLabs
(2a = 9 µm, NA = 0.2 and λ

ZD
= 1.65 µm), losses are negligible, and

the long wavelength edge can be extended as far as 6.28 µm using normal
dispersion regime pumping at 1450 nm, and it is speculated that SC as
far as 8 µm is achievable. This group is the same as made the Raman gain
profile measurement from reference [65] discussed in the previous section.

This extract of measurements, composed the state-of-the-art reports
of SC in ZBLAN-based fibers at the onset of this project, i.e., spectra
to approximately 4.5 µm had been produced and reproduced. Generally,
references spice their measurements with numerical simulations only oc-
casionally, and when they do, limited information about the calculations
is provided and correspondence between measurement and simulation is
not always perfect. Numerical simulations have helped tremendously in
the development of silica based SC sources, and similarly numerical pre-
dictions might prove helpful to optimize mid-IR SC sources. With the
aim of achieving SC to 4.5 µm, the measurements and simulations that
are presented in the following were performed.

3.3.1 Experimental Setup for Measurements of
Supercontinuum

The experimental setup for SC measurements at AU is similar to the one
used for the Raman measurement. It is slightly simpler though, because in
principle, experimental SCG is basically a matter of forcing as much light
as possible into the nonlinear fiber at once, without burning it. Thus, the
system for the measurement of SCG, which is shown in Fig. 3.6 [33], is a

TOPASTi.Sapph
800 nm
100 fs
1 kHz

Soft glass
fiber

Pump
110 fs

Filters

Parabolic
reflector

Monochromator

Focusing
objective

Filters

PbSe/Si
detector

Figure 3.6: Experimental setup for our SC measurement. Graphics is courtesy
of C. Petersen [59].
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pump laser, some focusing optics, the nonlinear fiber under investigation,
and a spectrometer to acquire the generated SC. The pump laser, which
is the same as described in section 3.2, is directed into a single TOPAS
that allows the pump wavelength to be tuned in the range from 1200 nm
to 2600 nm, thus enabling pumping in both the normal and anomalous
dispersion regime of the nonlinear fiber. Usually, the output from the
TOPAS is strongly attenuated, yielding pulse energies on the order of
1 µJ. The pulse duration of the pump is determined by an intensity
dependent autocorrelation, and the pump is coupled into the ZBLAN fiber
with an efficiency around 30% using a ×10 focusing objective. The output
from the fiber is collimated using a gold off-axis parabolic reflector with a
focal length of 25 mm. The use of reflective optics ensures that the output
from the fiber is not influenced by chromatic aberrations. The collimated
output is sent to a scanning monochromator (Spectrapro2300i, Acton
Research). The light is focused at the entry slit of the monochromator by
a CaF2 lens with focal length of 15 cm. The dispersed light at the exit slit
is detected using a two-color detector (Si/PbSe, Hamamatsu) connected
to a boxcar integrator synchronized with the laser system. Appropriate
filters are inserted to suppress higher order diffraction artifacts. The
spectrum is finally compiled from measurements with the various filters
and gratings, as well as measurements with both Si and PbSe detectors
to cover the entire wavelength range from the visible to the mid-IR. A
correction is performed to account for the wavelength dependent efficiency
of detectors and gratings. The output spectral density is normalized to
the measured total output power [33].

3.3.2 Simulation of Supercontinuum Generation in the
ZBLAN Fiber

Measured spectra of SC are presented below and compared to results
from simulations. The measurements and simulations divide themselves
into two categories. One part where pumping is performed in the normal
dispersion regime at λp = 1450 nm, and one where pumping is in the
anomalous dispersion regime at λp = 2000 nm. The pulse widths and
peak powers for the pumping regimes are summarized as
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λp = 1450 nm: - The pulse width is T
FWHM

= 145 fs and two power
levels are used.
- The lower peak power is P0 = 710 kW.
- The higher peak power is P0 = 1180 kW.

λp = 2000 nm: - The pulse width is TFWHM = 110 fs and two power
levels are used.
- The lower peak power is P0 = 1110 kW.
- The higher peak power is P0 = 2130 kW.

The fiber is L = 1.85 m of the 10.7 µm, NA = 0.2, FiberLabs, ZBLAN, SIF
already encountered above, with calculated ZDW of 1.62 µm.

The initial condition for simulations, representing the pump pulses,
is an unchirped Gaussian shaped function, given by Eq. (2.3.10). In all
simulations the number of points on the frequency/time axis is Nt = 217

and the GNLSE is solved in a wavelength window with λmin = 0.45 µm
and λmax = 6 µm, which has a corresponding expansion wavelength of
λ0 = 2πc/ω0 = 837.2 nm (see appendix D page 119). The time resolution
is dt = 1.62 fs, and the frequency resolution is dω = 2.25 ·1015 rad/s, and
the local goal-error is δg = 10−6 [23, 35]. The nonlinear refractive index
of ZBLAN is taken to be n2 = 2.2 · 10−20 m2/W in all simulations.

Using these numerical parameters that are fixed throughout the re-
mainder of this section, ensures comparable results. Calculation time is
on the order of a few days for a single shot, and thus to limit the com-
putational effort, 30 independent runs for each ensemble average is used
for the averaging procedure as discussed in chapter 2 section 2.3.1. To
check the numerical implementation of the GNLSE, the photon number
error [36] (see Eq. (2.3.11) page 18) is plotted in Fig. 3.7, for a typical
simulation with P0 = 1110 kW, T

FWHM
= 110 fs and λp = 2000 nm, cor-

responding to the simulation shown in Fig. 3.16, though neglecting loss
and noise. Here it is seen that the relative error stays below 5 · 10−6.
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Figure 3.7: The photon number error as function of propagation distance for a
typical simulation neglecting loss and noise. P0 = 1110 kW, T

FWHM
= 110 fs and

λp = 2000 nm.

3.3.3 Normal Dispersion Regime Pumping

A single shot contour plot of the spectral development for the two power
levels used when pumping in the normal dispersion regime is shown in
Fig. 3.8-left and right. The pulse quickly undergoes a large broadening
and already after ∼ 10 cm of propagation, individual solitons that start
redshifting due to the SSFS are clearly visible on the long wavelength side
of the pump. To review the spectral development form the onset of prop-
agation, single shot example power distributions and corresponding ESDs
are shown, for the first ∼ 7.5 cm, in Figs. 3.9 and 3.10 for the low and high

Figure 3.8: Single shot spectral development calculated for P0 = 710 kW (left)
and P0 = 1180 kW (right) and λp = 1450 nm. White dashed line marks the
fiber ZDW. Both plots are normalized logarithmic plots truncated at −40 dB.
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Figure 3.9: Left: Temporal profile in the first ∼ 7.5 cm of propagation. Right:
Corresponding development of the ESD during propagation. Black (red) vertical
line marks the pump (ZDW of the fiber). λp = 1450 nm and P0 = 710 kW.

peak power level respectively. In both figures, it is observed how the pulse
spectrum initially broadens due to SPM, and that light crosses the ZDW
into the anomalous dispersion regime. This initial SPM is clearly noticed
until ∼ 2 cm of propagation in both Figs. 3.9-right and 3.10-right. The
ripples are characteristic of SPM and build up around the center of the
pulse, though they are not symmetric, which is expected from pure SPM,
but the asymmetry is caused by the optical shock effect [6]. The op-
tical shock effect also causes the slanted power distributions observed
in the corresponding temporal profiles. When SPM has broadened the
pulse enough spectrally, GVD will cause it to break up temporally, and
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Figure 3.10: Left: Temporal profile in the first ∼ 7.5 cm of propagation. Right:
Corresponding development of the ESD during propagation. Black (red) vertical
line marks the pump (ZDW of the fiber). λp = 1450 nm and P0 = 1180 kW.
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this has just happened at 5.3 cm in Fig. 3.9-left, while in Fig. 3.10-left
the break up is more pronounced at 5.3 cm. The light that has crossed
the ZDW into the anomalous dispersion regime, forms solitons that ra-
diate dispersive waves, phase-matched with the solitons across the ZDW.
The solitons subsequently undergo redshift due to SSFS, all the while
the dispersive waves blue shift slightly on the normal dispersion side of
the ZDW [14,37,72,73]. The soliton number (see chapter 2) is given by

N =

√

n2ωsol

cAeff (ωsol)

P0T 2
0

|β2(ωsol)|
(3.3.1)

where ωsol is the frequency of the soliton, and as light passes the ZDW into
the anomalous dispersion, N becomes large because β2 → 0 at the ZDW.
This means that a significant amount of solitons can be generated even
though only a fraction of the pump energy passes the ZDW by SPM. After
the initial approximately 10 cm of propagation the dynamics becomes
less dramatic, and it is perhaps best displayed in Fig. 3.8-left and -right
how the continued propagation is dominated by redshifting solitons and
corresponding dispersive radiation in the normal dispersion regime.

Fig. 3.11 shows a single shot spectrogram (Fig. 3.11-left) and the
corresponding ESD (Fig. 3.11-right) after L = 1.85 m. At the output
of the fiber, at least N = 6 solitons, phase-matched with non-solitonic
radiation (marked by vertical dotted lines in Fig. 3.11-left), are clearly
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Figure 3.11: Left: Spectrogram after L = 1.85 m. The vertical white lines
mark distinguishable solitons phase-matched to non solitonic or dispersive wave
radiation. Right: The corresponding single shot pulse ESD. White (red) dashed
horizontal (vertical) line marks the calculated ZDW in the left (right) panel. In
both plots, the pump wavelength is λp = 1450 nm and P0 = 1180 kW.
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distinguishable, and it is also clearly seen, how the redshifting solitons
determine the long wavelength edge of the SC, while the phase-matched
dispersive waves determine the short wavelength edge. Normal dispersion
regime pumping can thus generate a broad SC, as was also found in [45]
in ZBLAN and already in 1978 in silica [41].

Dispersion Measurement - Intermezzo

As a small side note at this point, it can be mentioned that the curve
shape observed in Fig. 3.11-left, is a representation of the group-velocity
wavelength dependence experienced by light propagating in the fiber. In
Fig. 3.11-left, a time delay of zero, corresponds to the arrival of the pump
frequency component at the fiber end facet. A negative delay corresponds
to frequency components arriving sooner than the pump, and frequencies
with positive delays arrive later than the pump. The frequency compo-
nent to arrive first is, by definition, the ZDW, since this designation is re-
served for points of extreme on the group-velocity curve (see Eq. (2.2.7)).
For the fundamental mode, this extreme means that the ZDW marks
the fastest travelling frequency component in the fiber. Because the
curve observed in Fig. 3.11-left is a simulated result, it is a representa-
tion of the numerically implemented group-velocity curve, obtained from
the Comsol calculation. But a spectrogram as shown in Fig. 3.11-left can
be obtained from measurements on existing fibers, by using frequency re-
solved optical gating (FROG) experiments [14]. The GVD in a fiber, can
then be found by a FROG measurement and subsequent differentiation of
the obtained group-velocity curve. The method could be a viable alter-
native to dispersion measurements by the interferometric procedure used
in section 3.1.1 [60], which is strongly influenced by beatings between
higher order modes in the fiber. Dispersion measurements on nonlin-
ear fibers by FROG measurements have been proposed in 1997 in [74],
though demonstrated in a relatively limited wavelength range. Quite re-
cently, such measurements have been done at AU, with another aim than
measuring dispersion, but seemingly, the method will be able to deter-
mine the dispersion of multiple modes excited in the fiber in one sitting
and over a wide wavelength range.
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3.3.4 Supercontinuum Generation - Continuing

The end results of simulations and measurements of normal dispersion
regime pumping SCG are compared in Fig. 3.12-left and -right for a
peak power of P0 = 710 kW and in Fig. 3.13-left and -right for P0 =
1180 kW. Measurements are displayed as black curves, while other curves
are calculated ensemble averages. In Fig. 3.12-left the green curve is
calculated using the propagation constant calculated using Comsol (shown
as solid black in Fig. 3.3-left), while the red curve is calculated with the
wavelength shifted dispersion profile (dashed black in Fig. 3.3-left), as
discussed in section 3.1.1. The dashed vertical lines in Figs. 3.12 and 3.13
mark the pump wavelength (black), the calculated ZDW (green), and the
wavelength shifted ZDW (red) respectively. In Figs. 3.12-right and 3.13-
right the blue curve is calculated using the numerically enhanced loss
including the artificial absorption band, marked in Fig. 3.2.

0.5 1 1.5 2 2.5 3 3.5
10

0

10
1

10
2

10
3

Wavelength [µm]

P
ow

er
S

pe
ct

ra
lD

en
si

ty
 [n

W
/n

m
]

loss band

 

 

Simulation
Shifted Simul.
Measurement

0.5 1 1.5 2 2.5 3 3.5
10

0

10
1

10
2

10
3

Wavelength [µm]

P
ow

er
S

pe
ct

ra
lD

en
si

ty
 [n

W
/n

m
]

loss band

 

 

Simulation
Artificial Loss
Measurement

Figure 3.12: Left: Measurement (black) and simulations (green) of SCG for
λp = 1450 nm and P0 = 710 kW. The red spectrum is obtained for the wavelength
shifted dispersion profile in Fig. 3.3-left. Right: Blue curve shows simulation using
the artificially enhanced loss profile shown in blue in Fig. 3.2. Dashed vertical lines
mark pump wavelength (black) and the ZDW (red, green) of the fiber.

Comparing the measurement and simulations in Fig. 3.12-left and
right, the simulations generally show larger levels of the PSD at short
wavelengths than the measurement observes. This fact gives an indication
that the calculated dispersion is not exactly corresponding to the physi-
cal dispersion in the fiber, because the predicted group-velocity matching,
displayed by the curve shape in Fig. 3.11-left, is different from the physical
one. Another prominent feature from the comparisons, is that measure-
ments show a significantly lower amount of light in the wavelength region
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Figure 3.13: Left: Measurement (black) and simulations (green) of SCG for
λp = 1450 nm and P0 = 1180 kW. The red spectrum is obtained for the wavelength
shifted dispersion profile shown in Fig. 3.3-left. Right: The blue curve shows the
simulation with artificial loss shown in Fig. 3.2. Dashed vertical lines mark pump
wavelength (black) and the ZDW (red, green) of the fiber.

above 2.7 µm than what is found in simulations. As already mentioned in
section 3.1, a possible explanation for this is an attenuation band caused
by water absorbed in the fiber, and this band is qualitatively marked with
vertical black solid lines in the figures presenting spectra. The SC spectra,
plotted in blue in the right panel of Fig. 3.12 and 3.13, show simulated
results that include the artificial loss. The loss band provides a barrier
that halts the SSFS, and consequently simulations with no artificial loss
predict a longer wavelength edge, and a larger level of the PSD in the
absorption band, than the artificial loss simulation does.

By the group-velocity matching mechanism between redshifting soli-
tons and the dispersive waves already mentioned, the overshoot of the
predicted long wavelength edge of the generated SC, observed in the green
and red curves of the left panels of Figs. 3.12 and 3.13, cause a similar
overshoot of the short wavelength edge. Therefore the spectrum is pre-
dicted to be too wide in either end. This overestimation of the bandwidth
is reduced slightly in the simulations with artificial loss, shown in blue
in the right panels of Figs. 3.12 and 3.13, because the loss barrier halts
the SSFS and consequently will predict a blue wavelength edge closer to
the pump. Simulation including the artificial loss show a behaviour more
similar to that of the measured SC spectrum. This is particularly clear in
Fig. 3.13-right, while in Fig. 3.12-right it is seen that the loss is not com-
pletely explaining discrepancies between measurements and simulations.
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From the calculated spectra in Figs. 3.12 and 3.13 the width of the SC
spectral output can be measured, where the limit used is PSD(λ) >
1 nW/nm. The bandwidths become ∆λm = 2.05 µm, ∆λc = 2.19 µm,
and ∆λc

WS = 2.33 µm for the measured (m), calculated (c) and wave-
length shifted (WS) PSD, respectively, for pumping with P0 = 710 kW.
Increasing the power to P0 = 1180 kW one finds ∆λm = 2.40 µm,
∆λc = 2.52 µm, and ∆λc

WS = 2.61 µm respectively. The deviation be-
tween measured and calculated SC spectral widths are less than 15% in
the worst case.

Finally, it is seen that the effect of wavelength shifting the dispersion
profile to shorter wavelengths is to shift the edges of the PSD similarly
while not affecting the width of SCG greatly, and thus, the exact location
of the fiber ZDW is not crucial to prediction of this wide SC spectra.
It is also observed that the SC from the wavelength shifted dispersion
operator is the broadest when pumping in the normal dispersion regime.
This is because the ZDW is moved closer to the pump, and consequently
light is pushed into the anomalous dispersion regime at an earlier stage
of propagation and soliton dynamics start sooner.

3.3.5 Anomalous Dispersion Regime Pumping

In the anomalous pumping regime, when pumping at λp = 2000 nm, the
spectral development of the SC is governed by soliton dynamics from the
beginning of propagation. Contour plots showing the spectral develop-
ment for the two power levels of P0 = 1110 kW and P0 = 2130 kW

Figure 3.14: Spectral development calculated for P0 = 1110 kW (left) and P0 =
2130 kW (right) and λp = 2000 nm. White dashed line marks the fiber ZDW.
Both plots are normalized logarithmic plots truncated at −40 dB.
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are shown in Fig. 3.14-left and -right respectively. Also in this regime
is observed a rapid broadening of the input pulse. To elaborate on the
dynamics of the SCG, Fig. 3.15-left and -right illustrate the spectral de-
velopment in the first∼ 5 cm of propagation. In the anomalous dispersion
regime, the pump laser excites a higher order soliton from the onset of
propagation, and the soliton number is N ≈ 14.1 and N ≈ 19.6 for the
low and high power case respectively. The soliton undergoes initial pulse
compression of the power distribution while SPM broadens it in the fre-
quency domain, and this is observed in the bottom of Fig. 3.15-right.
The periodic recovery of the initial pulse shape exhibited by an ideal
higher order soliton (see chapter 2) is lost because the propagation is
perturbed by higher order dispersion and Raman scattering etc. Instead
of returning to the initial pulse shape, the pulse fissions into a number
of constituent fundamental solitons that are clearly visible in Fig. 3.15-
left already after ∼ 2 cm of propagation [14,37]. The rapidly redshifting
solitons are ejected from the main pulse due to the slow down in prop-
agation speed caused by the GVD. As earlier discussed, the redshifting
solitons emit phase-matched dispersive waves, during the fission process,
at wavelengths shorter than the ZDW. This is similar to what was found
for normal dispersion regime pumping. After the initial and dramatic
soliton fission the propagation continues with prominent redshift much
like in the normals dispersion pumping case, and this is observed in the
contour plots of Fig. 3.14.

−0.5 0 0.5 1 1.5

1.1 cm

Delay [ps]

2.1 cm

3.2 cm

P
ow

er
 [a

.u
.]

5.3 cm

0.5 1 1.5 2 2.5 3 3.5 4 4.5

1.1 cm

Wavelength [µm]

2.1 cm

3.2 cm

E
ne

rg
y 

S
pe

ct
ra

l D
en

si
ty

 [a
.u

.]

5.3 cm

Figure 3.15: Left: Temporal profile in the first ∼ 5 cm of propagation. Dashed
curved in bottom power distribution is the input pulse. Right: Corresponding
development of the ESD during propagation. Black (red) vertical line marks the
pump (ZDW of the fiber). The soliton number is N ≈ 14.1, and λp = 2000 nm and
P0 = 1110 kW. Dashed black (red) vertical line marks pump wavelength (ZDW).
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The comparisons between measurement and simulations for the two
power levels used in the anomalous dispersion regime are shown in Fig. 3.16-
left and -right for a peak power of P0 = 1110 kW and in Fig. 3.17-left
and -right for P0 = 2130 kW respectively.

As in the last section the red, green and blue curves are ensem-
ble averages, where the red curve is calculated using the wavelength
shifted dispersion profile (dashed black in Fig. 3.3-left) and blue is cal-
culated using the artificial loss, shown in Fig. 3.2. The same trend as
in Figs. 3.12 and 3.13 is observed in Figs. 3.16 and 3.17, where the
level of measured PSD is lower in the band from 2.7 to 3.5 µm than
the simulated level. However, the SSFS is so strong, when pumping di-
rectly in the anomalous dispersion regime, especially when pumping with
P0 = 2130 kW that solitons can cross the loss band and shift to wave-
lengths longer than 3.5 µm. The long wavelength edge is then ultimately
determined by the fiber transmission window that stops around 4.5 µm.
In Fig. 3.16-right, the simulation including the artificial loss is shown in
blue. The simulation confirms the trend that an attenuation band may
be present in the experiment from around 2.7 µm, which is not accounted
for by simulations without the artificially enhanced loss. However, the
attenuation introduced artificially do not exactly predict the location of
the long wavelength edge of the SC.

From Figs. 3.16 and 3.17 the bandwidth of the measured and the
calculated SC spectra can be found. The bandwidths become ∆λm =
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Figure 3.16: Left: Measurement (black) and simulations (green and red) of SCG
for λp = 2000 nm and P0 = 1110 kW. The red spectrum is obtained for the
wavelength shifted dispersion profile shown in Fig. 3.3-left. Right: The blue curve
shows the simulation with artificial loss shown in Fig. 3.2. Dashed vertical lines
mark pump wavelength (black) and the ZDW (red, green) of the fiber.
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Figure 3.17: Left: Measurement (black) and simulations (green and red) of SCG
for λp = 2000 nm and P0 = 2130 kW. The red spectrum is obtained for the
wavelength shifted dispersion profile shown in Fig. 3.3-left. Right: The blue curve
shows the simulation with artificial loss shown in Fig. 3.2. Dashed vertical lines
mark pump wavelength (black) and the ZDW (red, green) of the fiber.

3.0 µm, ∆λc = 3.0 µm and ∆λc
WS = 3.1 µm for low power P0 = 1110 kW

and ∆λm = 3.7 µm, ∆λc = 3.6 µm and ∆λc
WS = 3.6 µm for high power

P0 = 2130 kW. The deviation between the measured and calculated SC
spectral widths is in this regime less than 5%. In the anomalous pump-
ing regime, is also see a small shifting of the entire spectrum to shorter
wavelengths, when applying the wavelength shifted dispersion profile.

3.3.6 Discussion of Spectral Predictions

There are several factors that can cause the observed discrepancies be-
tween the measured and calculated width of the generated SC. The dis-
crepancies can first and foremost be related to uncertainty in the fiber
attenuation and dispersion, as well as to the assessment of the peak power
coupled into the fiber. Regarding the dispersion uncertainty, it has been
verified that a shift of the dispersion profile on the order of tens to a
hundred nm do not have great impact on the width of predicted SC. An
uncertainty in the group-velocity matching, however, have a larger impact
on the predicted widths, since the blue edge is determined by the disper-
sive waves linked to the redshifting soliton through the group-velocity
matching. A measurement of the dispersion, e.g., by the FROG measure-
ment technique discussed in section 3.3.3 might give good insight into
the entire GVD profile of the fiber. It should also be mentioned that the
diameter of the ZBLAN SIFs available to our measurements have been
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found to vary quite significantly over relatively short distances. Cutting
a piece of fiber in two different places on a fiber spool, from the same
production batch, have been known to result effectively in two different
fibers. This is ascribed to the immaturity of the ZBLAN fiber technol-
ogy, and will inevitably cause discrepancies between measurements and
idealized simulations.

The assessment of the power coupled into the fiber is based on an au-
tocorrelation of the input pulse along with measurements of the average
power in the beam before and after propagation through the fiber. This
is an indirect way of estimating the input power, which can cause dis-
agreement between measured and calculated SC spectral widths. In [33]
are made simulations that check the influence of the input peak power by
redoing the calculations presented in the last section, with a peak power
reduced by 20%. Generally it can be concluded from this investigation
that the estimated peak power has not been too low, and that this may
also be a cause of overshoot for the predicted bandwidths by simulations.
However, as the spectral width of the simulated SC is predicted to within
15% for normal dispersion regime pumping and within 5% for anomalous
dispersion regime pumping, the estimation of the power coupled into the
fiber has been reasonable.

To conclude the findings from simulations of SCG in ZBLAN, a final
investigation is made to review the significances of differences between
measurements of the delayed Raman response at AU [59] and by Yin et
al. [65].

Delayed Raman Response - Revisited

A tentative comparison between calculated SCG using the Raman mea-
surement by AU [59] and measured by Yin et al. [65] is showed in Fig. 3.18-
left and -right. In this section, the blue curves are calculated using the
delayed Raman response measured by Yin et al. [65] and their value of
fR = 0.24. The nonlinear refractive index however, is kept at n2 =
2.2 · 10−20 m2/W. The simulations are ensemble averages using 30 shots
as the green curves, however, to keep the computational load low, the
blue curves are calculated using fewer grid points (Nt = 215), and a
smaller calculation domain (stretching from 0.6 and 5 µm), than used in
the last section, while the value of the goal error was δg = 10−6. This
means that cyclic effects in the time domain are observed, however no
spurious temporal overlap occur. In both graphs of Fig. 3.18 the blue
curve predicts a significantly extended long wavelength edge, particularly
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Figure 3.18: Comparison of measurement (black) and SCG calculated using
Raman measured at AU [59] (green) or measured by Yin et al. [65] (blue). Left:
Using λp = 1450 nm and P0 = 1180 kW. Right: Using λp = 2000 nm and
P0 = 1110 kW.

in Fig. 3.18-right, and this wavelength edge will be extended even further,
if the proposed value of n2 = 5.4 · 10−20 m2/W [65] is used.

Given these results, it seems adjacent to conclude that the magnitude
of the measured Raman response by Yin et al. might be slightly overesti-
mated. In the pump-probe technique employed by Petersen et al. at AU,
it is troublesome to filter away the large background contribution from
the pump and consequently it is hard to measure the delayed Raman gain
for small Stokes-shifts. Thus it cannot be ascertained, with complete cer-
tainty, whether or not the spectrum by Yin et al. has the right shape, but
it seems the measured magnitude, leading to fR = 0.24, is somewhat too
large.

3.4 Nonlinear Fiber and Seed Laser for
Mid-infrared Supercontinuum Source

As clearly seen in the last section, the widest spectrum is achieved by
pumping in the anomalous dispersion regime of the nonlinear ZBLAN
fiber, and consequently a prototype mid-IR SC laser system should aim
for this. Pumping in the normal dispersion regime, and having SPM cause
light to cross the fiber ZDW, does create a SC, but it is not as broad,
and the PSD level at long wavelengths is less, than if anomalous disper-
sion regime pumping causes soliton dynamics from the very beginning of
propagation.
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The ZDW of investigated ZBLAN SIFs has not been observed to be
lower than 1.55 µm, and Yb based lasers seem to be ruled out for being
too deep in the normal dispersion regime. Tapering the ZBLAN fibers is
a possibility for lowering the ZDW so it approaches the operating wave-
length of Yb sources, and an extensive theoretical study of the dispersion
properties of tapered ZBLAN SIFs, has been performed by M.Sc. student
Irnis Kubat [75]. Tapering though, still rules out Yb based sources for
pumping a ZBLAN fiber directly, but Er sources can prove useful [75].
Tapering will complicate the construction of a commercial system, and
a first approach should be to aim for a seed laser above 1.7 µm and no
fiber taper. Such a system could be achieved by, e.g., using a Tm based
source, or a concatenated fiber system, as studied in [47,48] and discussed
in chapter 4, where a silica fiber acts like an intermediate redshifting agent
between pump and ZBLAN fiber.
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Figure 3.19: Left: Effective area (a) and dispersion (b) as function of wavelength
for different NAs and core diameter 2a = 10 µm. Right: Effective area (a) and
dispersion (b) as function of wavelength for different core diameters and NA = 0.2.

Taking a closer look at Fig. 3.19, which displays effective area (a)
and dispersion (b) of various ZBLAN SIFs, it is seen from Fig. 3.19-
left(a) that a large NA is needed in order for the fundamental mode to
stay well confined and guided by the core at long wavelengths. If the
effective area becomes large, the nonlinear effects halt, because the field
strength decreases (the nonlinear coefficient from Eq. (2.3.7) is inversely
proportional to the effective area). Similarly, the right panel shows that
using a smaller core fiber has a drastic impact on dispersion. Using a
small core fiber will increase the effective nonlinearity, but too small a
core will cause the guiding loss to increase (Fig. 3.19-right(a)). Thus, too
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small a core can also be problematic for SCG to 4.5 µm, and furthermore,
it is often easier to achieve effective coupling between the pump fiber and
the nonlinear fiber, if the core is reasonably large. Thus, the suggestion
for a pump source and a nonlinear fiber, based on the measurements
and simulations here, is a source in the anomalous dispersion regime
(λp > 1.7 µm) and a relatively large NA (NA > 0.20) and with a small
core 2a < 10 µm ZBLAN SIF.

3.5 The Infrared Absorption Microscope

An application for mid-IR SC is developed at AU [13] and demonstrated
in Fig. 3.20-(a) through (c). In Fig. 3.20-(a) an oil/water sample is placed

Figure 3.20: (a) Conventional microscope image of sample investigated by the IR
absorption microscope. (b) 3.05 µm (c) 3.50 µm. Image size is 300 µm × 375 µm
and each pixel is 5 µm× 5 µm. Graphics is courtesy S. Dupont [13].

under a conventional microscope to generate a visible image. Subse-
quently, the sample is illuminated using an IR SC source, and spatial
absorption is recorded in a pixel-wise scanning (raster-scanning) fashion,
by translating the XY Z-stage the sample is mounted on. The experimen-
tal setup is shown Fig. 3.21-(a), where focusing optics shine the IR SC
onto the sample, and a spectrometer records the resulting spectrum [13].
The generated IR SC illuminating the sample, ranges from 1.4 µm to
4.0 µm, and is created in a ZBLAN SIF with core diameter of 2a = 7.0 µm
and a NA of 0.2. It is pumped by a fiber-laser emitting pulses of approx-
imately 1 ps at λp = 1900 nm with a repetition rate of frep = 40 MHz.
The spectrum of the SC is shown in Fig. 3.21-(b).

A detector records what wavelengths are being absorbed by the sam-
ple, by comparing the signal that has passed the sample, to a reference
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measurement of the SC. Fig. 3.20-(b) and (c) shows regions of absorp-
tion at 3.05 µm and 3.50 µm respectively, where a blue color illustrates
regions of high absorption and red region have large transmission at the
particular wavelength. Because water absorbs at 3.05 µm, it is seen in
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Figure 3.21: (a) Schematic of the experimental setup for the IR absorption
microscope. (b) Spectrum of the SC used in the measurement. Graphics is courtesy
S. Dupont [13].

Fig. 3.20-(b) that the top part of the picture contains water, while as
oil absorbs at 3.5 µm it is seen from Fig. 3.20-(c) that the bottom part
contains oil. The middle part transmits light both at 3.05 and 3.5 µm
corresponding to an air-bubble. Because the molecular absorption of a
sample can be measured in the entire range of the IR SC in a single shot
(or a limited number of shots), the microscope shows promise in, e.g.,
real-time chemical analysis, e.g., in combustion or breath analysis.

3.6 The Mid-infrared Supercontinuum Laser
Source

Finally, the mid-IR SC source, developed and built at NKT Photon-
ics during this project, is shown in Fig. 3.22. The image shows the
MIRCompact, but also a larger model, the MIRPower, exist. It is a
portable turn-key prototype that produce the spectrum displayed in blue
in Fig. 3.23. The MIRPower, which is of slightly different design, pro-
duces a more energetic spectrum than the MIRCompact. The spectrum
of the MIRPower is displayed in green in Fig. 3.22. The bandwidths are
from 1.5 to 4.2 µm and 1.5 to 4.3 µm for the MIRCompact and MIR-
Power respectively. Notice how the spectra from the MIR sources show a
less pronounced dip in the level of PSD, than the loss band proposed in
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Figure 3.22: Picture of the celebrated turn-key MIRCompact prototype con-
structed by P. M. Moselund and C. Petersen at NKT Photonics. Picture is courtesy
of NKT Photonics.
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Figure 3.23: PSD of the MIRCompact and the MIRPower. Spectra are courtesy
of NKT Photonics.

Fig. 3.2 justifies. The fibers used in the MIR sources are produced more
recently, and drawing procedures and environment may have improved in
the mean time.

This thesis is not the proper place to disclose exactly what fibers
or pump sources are used by the MIR SC lasers, nor is it the place to
disclose what auxiliary considerations are needed in order to choose them,
but considerations like described in section 3.4 show some of the concerns
to address during design of a ZBLAN based SC source.
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3.7 Summary of Chapter 3

In this chapter, the linear propagation properties of the soft-glass ZBLAN
has been review, and a suitable measurement of the bulk material refrac-
tive index dispersion has been found in literature. It has been argued
that among the available profiles, the prediction of the overall shape of
the dispersion profile of a drawn fiber is more crucial than knowing the
exact location of the ZDW. An uncertainty in the ZDW will typically
be on the order of 100 nm, and it has been substantiated that the pre-
dicted width of simulated SC spectra are not severely impacted by this.
On the other hand, knowledge of the phase-matching between dispersive
waves and redshifting solitons is important to predict the blue wavelength
edge of the SC, and, it is proposed that a dispersion measurement using
a FROG measurement technique in the entire range of SCG, can help
retrieve such knowledge.

A loss measurement for a ZBLAN fiber, provided by the fiber manu-
facturer, was also presented, and it agrees with literature reports on the
background attenuation in ZBLAN, while predicting that material ab-
sorption starts to increase around 4 µm and dominating SCG at around
4.5 µm. It is speculated that a loss band might be present in the fiber
which is not accounted for by the loss measurement. Simulations of SCG
are done both with and without an artificially enhanced loss curve that
contain a loss barrier centered around 2.9 µm, and results show, to some
extent, a better correspondence to measurements, when the loss is in-
cluded. Such a loss band, in the proposed wavelength region, can be
caused by water absorbed in the fiber. To obtain better knowledge of the
actual loss, a cutback measurement of the fiber loss in the entire range of
interest could be performed.

Furthermore, a measurement of the Raman gain profile in a 2a =
10.7 µm, NA = 0.2, ZBLAN, SIF has been presented in this chapter.
The measurement and literature does not agree completely on the mag-
nitude and location of gain bands, and most significantly, another full
profile measurement disagrees with the one measured at AU. This other
measurement predicts a larger Raman gain for smaller values of the stokes
shift and it finds a significantly enhanced value of the fractional contri-
bution from delayed Raman response of fR = 0.24, which should be
compared to the value of 0.062 found at AU. Simulations performed us-
ing their reported Raman response suggests that it might be just slightly
overestimated.



60 SC in a ZBLAN Soft-glass Fiber

The chapter also reviews the spectral development of SC using fs-
pumping both in the normal and anomalous dispersion regime, by com-
paring measurements and simulations of SCG. The fiber used for this
is the same ZBLAN fiber also used for measurement of the delayed Ra-
man gain. Simulations find that both normal and anomalous dispersion
regime pumping will yield a broad SC spectrum, and that it develops
from clear soliton fission in the anomalous dispersion regime. The broad-
ening process is similar in the normal dispersion regime, but here SPM
must cause enough light to cross the ZDW and into the anomalous dis-
persion regime before solitons that redshift are formed. In chapter 5 will
be shown examples of ps pumped SCG, and here the main differences are
discussed.

Finally, this chapter concludes with the presentation of a possible
application for mid IR SC and the final end goal, a turn-key mid-IR laser
is shown along with its achievable spectra.



Chapter 4

Concatenating Fibers for
Continued Nonlinear Effects

As reviewed in chapter 3, the zero dispersion wavelength (ZDW) of bulk
ZBLAN is 1.7 µm [52], and it was demonstrated that the expected ZDW
of ZBLAN step-index fibers (SIFs) is often located around 1.6 µm. Fur-
thermore, the widest supercontinuum (SC) spectra were achieved when
pumping in the anomalous dispersion regime. Therefore ytterbium (Yb)
and erbium (Er) based pump sources that operate at ∼ 1.06 µm and
∼ 1.55 µm, respectively, are not the ideal pump sources for ZBLAN
based infrared (IR) SC, because they are in the normal dispersion regime.
Fiber sources based on thulium (Tm) that have an operating wavelength
range between 1650 and 2100 nm [76], is a more natural choice for a
pump source, but the Tm technology is less developed, and lack of opti-
cal components make Yb and Er lasers more attractive in a commercial
system.ZrF4BaF2LaF3AlF3NaF (ZBLAN)

In chapter 3 was pointed to a number of research publications, e.g., [47,
48], where it is suggested to use an Er based source in spite of it being in
the normal dispersion regime of most ZBLAN fibers. It is suggested to
overcome this by using a silica fiber, with anomalous dispersion at the Er
wavelength, as an intermediate and passive component that redshifts the
pump pulse, before it is coupled into the nonlinear fiber. The nonlin-
ear soliton matching (NLSM)-scheme reviewed in this chapter, and intro-
duced in [32], was conceived during a discussion of the design of such tun-
able laser sources for pumping ZBLAN fibers above their ZDWs, by use of
standard Er fiber laser technology. The discussion was based on consider-
ations about what was more important when choosing fibers, whether the

61
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linear properties, e.g., mode-field diameter (MFD) matching and refrac-
tive index matching are more important than to consider the nonlinear
properties of the fibers. When coupling light between two optical fibers,
the linear properties are typically matched in order to avoid loss of power
during the coupling [1,77]. When coupling solitons between two nonlinear
fibers however, and expecting continued nonlinear dynamics, preservation
of the soliton number becomes an equally important matching require-
ment.

In this chapter, it is reviewed how the NLSM-scheme gives a quantifi-
cation of the expected behaviour of soliton related dynamics after cou-
pling of solitons between nonlinear optical fibers. The proposed NLSM-
scheme is generic, and it serves equally well for other wavelength ranges,
or other fiber materials than used while demonstrating it here. The
demonstration is done using suitable but imaginable fibers, because the
scheme has not yet been demonstrated in practise. Also in this chapter
is given an account for the second soft-glass material, tellurite, briefly
considered during this project work, and its properties are discussed in
section 4.1.1.

4.1 Coupling of Solitons Between Nonlinear

Fibers

The generic concept of the NLSM between two nonlinear fibers is il-
lustrated in Fig. 4.1 [32]. Here a fundamental soliton (soliton number
N = N1 = 1) at pump wavelength λp is launched into fiber 1 where it
undergoes an initial redshift (Fig. 4.1 bottom) until a desired coupling
wavelength λc. Subsequently the redshifted soliton is coupled into fiber
2, where it has a corresponding soliton number N = N2. There are then
three scenarios depending on the soliton number N2: (1) If N2 < 1/2
there is not enough power to excite a soliton in fiber 2 (Fig. 4.1 top left).
In this case the spectral content of the pulse will not change, but the pulse
will spread temporally due to linear effects only. (2) If 1/2 < N2 < 3/2
(Fig. 4.1 top middle) the pulse will remain a fundamental soliton in fiber
2. This case of continued fundamental soliton propagation gives a large
conversion of energy from the input pulse at the beginning of fiber 1 and
to the redshifted soliton at the end of fiber 2. (3) If N2 > 3/2 (Fig. 4.1 top
right) a higher order soliton is excited, which will undergo soliton fission
or pulse breakup, and subsequent soliton self-frequency shift (SSFS) and
dispersive wave generation. A breakup of the fundamental soliton caused
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Figure 4.1: ESD evolution in a generic fiber system: Initially an N = 1 soliton
redshifts in fiber 1, and the output is coupled into fiber 2.

by soliton fission will reduce the amount of energy converted from the in-
put soliton wavelength to the wavelength of the most redshifted soliton,
but it increases the total amount of soliton redshift.

For demonstrating the NLSM-scheme two idealized systems of con-
catenated fibers are considered. In both systems, fiber 1 is taken to be a
silica photonic crystal fiber (PCF) with a pitch Λ = 3.3 µm, seven rings
of air-holes, and a ratio between air hole diameter d and pitch d/Λ = 0.52
(see chapter 2). Material dispersion for fused silica is found in the liter-
ature [18]. The fiber has a calculated ZDW of 1033 nm, and the value
for the nonlinear refractive index is n2 = 2.6 · 10−20 m2/W [6]. Fiber 2
is either a ZBLAN or a tellurite PCF, and in the following, fiber 2a is
the designation for the ZBLAN PCF and fiber 2b is the tellurite PCF.
Material dispersion for ZBLAN is found in [52], as in chapter 3, while
material dispersion of tellurite is found from [78].

4.1.1 Tellurite Soft-glass Material

Before continuing with the demonstration of the NLSM-scheme, it is ap-
propriate to consider the second soft-glass material studied in this work,
which is is tellurite. Tellurite is also a composite material like ZBLAN,
and the composition considered here is 70TeO2 − 10Na2O− 20ZnF2 [78].
The refractive index is shown in Fig. 4.2-left, and here is also plotted the
bulk material dispersion, calculated using Eq. (2.2.8) giving a ZDW of
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Figure 4.2: Left: Refractive index (blue) and dispersion (black) of bulk tellu-
rite [78]. Right: Comparable delayed Raman response for tellurite [78], ZBLAN
and silica.

2.13 µm. A tellurite fiber preform that contains an air hole pattern can
be created, e.g., by extrusion, and in this way tellurite PCFs have been
demonstrated [79]. Creating a PCF from tellurite has been shown to de-
crease the ZDW from the bulk value, and a ZDW of 1780 nm has been
found for a four ring triangular PCF [78]. The nonlinear refractive index
of tellurite is n2 = 5.9 · 10−19 m2/W [8], and tellurite is thus approxi-
mately a factor of 25 − 30 more nonlinear than silica and ZBLAN, thus
making it a promising candidate for supercontinuum generation (SCG).
The tellurite modelled in this work has a fractional Raman contribution of
fR = 0.064 and the Raman response given in [8], is fitted with a weighted
sum of two damped harmonic oscillators of the form

hR(T ) = f1
τ21 + τ22
τ1τ

2
2

e
− t

τ2 sin

(

t

τ1

)

+ f2
τ23 + τ24
τ3τ

2
4

e
− t

τ4 sin

(

t

τ3

)

(4.1.1)

with weights f1 = 0.36, f2 = 0.64, and time constants τ1 = 7.1 fs,
τ2 = 66.6 fs, τ3 = 13 fs, and τ4 = 34.3 fs [78]. In Fig. 4.2-right is
shown the comparable Raman gain per nonlinearity fRIm(h̃R) for tellu-
rite along with the two proposed measurements of the delayed Raman
gain in ZBLAN, reviewed in chapter 3, and silica [6] for comparison.

Somewhat similar to ZBLAN, tellurite should be able to guide light to
approximately ∼ 4.5 µm, but the material absorption is highly influenced
by the fabrication environment, and a broad and large absorption band
has been identified in tellurite centered at 3.3 µm, with tails stretching
both to longer and shorter wavelengths [78]. Indeed, extruded PCF pre-
forms where obtained by the Technical University of Denmark (DTU)
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from an institutional collaborator, and these were drawn into fibers at
the DTU draw tower facility. An example of a drawn PCF is shown in
the microscope image in Fig. 4.3. The core region is approximately 5 µm.

Figure 4.3: Microscope image of a tellurite PCF drawn from a preform at
the DTU draw tower facility by Scott Yuan. The core diameter is approximately
5 µm.

Fiber samples were sent to our collaborators at Aarhus University (AU)
for measurements of SCG, using the experimental setup discussed in chap-
ter 3, but coupling light into the fibers proved extremely difficult, and
furthermore, large loss as described in [78] impeded the material severely
and it never was a success to use tellurite fibers. Nonetheless tellurite is
considered for the theoretical demonstration of the NLSM-scheme, and
wideband SCG has been demonstrated using tellurite, e.g., in [80], though
under different conditions than considered here.

4.1.2 Nonlinear Soliton Matching

The idealized equation, governing solitons is the nonlinear Schrödinger
equation (NLSE), and the idealized soliton concept was briefly discussed
in chapter 2. When influenced by the delayed Raman response, soli-
tons redshift [42], and the governing equation is the generalized nonlin-
ear Schrödinger equation (GNLSE). Thus, to demonstrate the NLSM-
scheme, an ideal soliton is used as the input, or initial condition, for
solving the GNLSE, firstly over L = 10 m of propagation in fiber 1.
The soliton is characterized by the soliton number, which was also de-
fined in chapter 2, N2 = γP0T

2
0 /|β2|, and the ideal fundamental soliton

has a peak power adjusted so that N = 1. In the following is used a
soliton with a central wavelength λp = 1550 nm, and full-width-at-half-
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maximum (FWHM) pulse duration of TFWHM = 50 fs, corresponding to an
ultra fast Er laser source. Mathematically, the initial condition is given
as

A(0, T ) =
√

P0sech

(

T

T0

)

(4.1.2)

where the peak power is P0 = |β2|/(γT 2
0 ), when N = 1. For the demon-

stration purpose of the NLSM-scheme considered here, no noise has been
added to the input, thereby eliminating the need for ensemble averaging.
Furthermore, since the essence of the NLSM is the coupling itself, and
the wavelengths considered, at least until soliton fission occurs, are less
than 2 µm, propagation loss is ignored in both fiber 1 and 2, in spite of
large losses for wavelengths longer than 3 µm in tellurite. To determine
the development of the electric field envelope, the GNLSE is solved, as
proposed in chapter 2. The simulated result for soliton propagation in
fiber 1 is shown in Fig. 4.4 (and in the bottom of the contour plots shown
in Fig. 4.7-left and -right), where the redshift is clearly demonstrated by
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Figure 4.4: Input and output for an ideal fundamental soliton propagating in
10 m of fiber 1. The center wavelength changes from λp = 1550 nm and to
λc = 1816 nm.

a change in central wavelength from 1550 nm and to λc = 1816 nm af-
ter 10 m of propagation, while the soliton continuously adjusts its pulse
width and peak power to preserve the soliton number, so at the output of
fiber 1, N1 = 1 (see Fig. 4.1 for notation and Table 4.1 for values). Using
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Fiber j Aeff ,j β2j T
FWHM,j P0j Nj

[µm2] [ps
2

km ] [fs] [kW]

1-in 14.2 -77.9 50.0 13.08 1.00

1-out 1 15.0 -134.2 122.5 4.58 0.99

2a-in 2 9.0 -53.2 122.5 4.58 9.73

2b-in 2 14.7 -77.2 122.5 4.58 1.22

Table 4.1: Pulse and derived parameters used in calculations [32]. See Fig. 4.1
for notation.

.

that N1 = 1, one has the relation

N2
1 =

T 2
01P01γ1
|β21|

= 1 (4.1.3)

where T01 and P01 are the pulse width and peak power of the soliton
at the output of fiber 1, respectively. An adiabatic soliton coupling is
assumed, which preserves the pulse shape when passing the interface,
but can decrease the peak power. Thus, it is reasonable to assume that,
T02 = T01 where T02 is the soliton pulse width at the input of fiber
2. Linear loss mechanisms, e.g., Fresnel reflection and MFD mismatch
dictates that P02 = ηP01, where 0 ≤ η ≤ 1 is the power coupling efficiency.
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Figure 4.5: Left: The calculated dispersion of fiber 1, 2a and 2b. Right: Effective
area Aeff of fiber 1, 2a and 2b. Vertical line marks the coupling wavelength λc =
1816 nm.
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Using this, a nonlinear coupling coefficient is defined as

η2
NL

=
N2

2

N2
1

=
T 2
02P02γ2/|β22|

T 2
01P01γ1/|β21|

= η

(

γ2/|β22|
γ1/|β21|

)

(4.1.4)

which is given in terms of material parameters, fiber dispersion, and the
power coupling efficiency η only. The nonlinear coupling coefficient ηNL

is then decoupled from the pulse width and peak power. In the case
considered here, when coupling a fundamental soliton from fiber 1 into
fiber 2, η

NL
is equivalent to the factor by which the soliton number changes

across the interface.

To calculate the nonlinear coupling coefficient for specific examples,
fiber 2a is now taken to have a pitch of Λ = 3.3 µm and an air-hole to pitch
ratio of d/Λ = 0.52. The ZDW of fiber 2a is calculated to be 1.15 µm, and
similarly fiber 2b is taken to have a pitch of Λ = 3.5 µm and d/Λ = 0.8.
The ZDW of fiber 2b is calculated to be 1.66 µm. The dispersion curves
and effective areas for all fibers are plotted in Fig. 4.5-left and -right
for comparison. Notice the locations of the ZDW and the difference in
effective area. This difference, particularly between fiber 1 and fiber 2b,
will cause a MFD mismatch. In Fig. 4.6 is shown the nonlinear coupling
coefficient η

NL
for fiber 2a and 2b as function of wavelength. Notice that
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Figure 4.6: Nonlinear coupling coefficient, η
NL

for fiber 2a and fiber 2b. Solid
curves are for η = 1 and dashed is for η = η

MFD
(λc). The dashed vertical line marks

λc = 1816 nm, and the horizontal lines mark the soliton propagation regimes.

η
NL

is singular at β22 = 0, thus η
NL

→ ∞ at the ZDW of fiber 2. The
black horizontal solid lines in Fig. 4.6 mark the quantitative bands defined
by the NLSM-sheme:
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Linear regime: - The nonlinear coupling coefficient η
NL

< 1/2, and
no further spectral changes is induced to the propa-
gating pulse due to nonlinear effects.

Stable regime: - Here, 1/2 < η
NL

< 3/2, and a stable soliton is ex-
pected to continue propagation and further redshift
in fiber 2.

Sol. fis. regime: - Finally, 3/2 < η
NL

, and soliton fission or pulse
breakup is expected to occur.

Propagation is continued in fiber 2, by using the calculated pulse at the
end of fiber 1, as initial condition for a restarted simulation of the GNLSE
with fiber parameters for fiber 2a and 2b respectively. The full spectral
development from input in fiber 1 and to the end of fiber 2a and 2b is
shown in the contour plots of Fig. 4.7. From Fig. 4.6 it is clearly seen that
the NLSM condition for stable continued propagation is satisfied for the
fiber 1 → 2a coupling where 1/2 < η

NL
< 3/2 (η

NL
= 1.22). The stable

propagation of a redshifting fundamental soliton is confirmed in Fig. 4.7-
left. The central wavelength increases further from λc = 1816 nm to
1857 nm, and approximately 83% of the energy from the input pulse is
converted to this wavelength. For the matching between fiber 1 and 2b,
however, it is found that η

NL
≫ 3/2 (η

NL
= 9.73) and consequently, soliton

fission is expected to occur in fiber 2b. Simulation results for propagation
in 10 m of fiber 1 and 8 m in fiber 2b are shown in Fig. 4.7-right. Also here
it is clearly confirmed that after a short distance of propagation in fiber

Figure 4.7: Left: Evolution of the ESD in fiber 1 and fiber 2a, where η
NL

= 1.22,
and a fundamental soliton propagates throughout the system. Right: Evolution
of the ESD in fiber 1 and fiber 2b, where η

NL
= 9.73 ≫ 3/2 and a higher order

soliton undergoes soliton fission. In both simulations the power coupling efficiency
is assumed to η = 1. White vertical line marks the ZDW of fiber 2.
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2b, soliton fission causes a breakup of the pulse, and generates multiple
separated solitons. The central wavelength of the most redshifted soliton
becomes λ = 3103 nm in this case, and approximately 18% of the energy
in the input soliton has been converted to this wavelength.

In the calculation shown in Fig. 4.7-left and -right it has been assumed
that η = 1 and the power is coupled perfectly from fiber 1 and into fiber 2.
The power coupling efficiency, however, depends on a number of factors,
and a reduced power coupling can, e.g., be due to imperfect matching
of the MFDs. For Gaussian shaped modes, the coupling loss from MFD
mismatch can be estimated from [77]

η
MFD

= 4
A2

eff,1A
2
eff,2

(A2
eff,1 +A2

eff,2)
2

(4.1.5)

but it should be noted that the modes in PCFs are not completely Gaus-
sian shaped, but Eq. (4.1.5) is used as an approximation to the coupling
efficiency. Furthermore, Fresnel reflections can occur when coupling be-
tween materials of different refractive indexes, and in a laboratory envi-
ronment, there can be other causes, limiting the power coupling. However,
using the effective areas from Table 4.1 gives a power coupling efficiency
of η

MFD
= 99% ≈ 1 for the fiber 1→ 2a coupling and η

MFD
= 77% for

the fiber 1→ 2b coupling, both calculated at λ = λc = 1816 nm. As
indicated by Eq. (4.1.4), inclusion of the power coupling efficiency lowers
the NLSM curve by a factor of

√
ηMFD . In Fig. 4.6 is shown the NLSM

curve for the fiber 1→ 2b coupling both with η = 1 and η = η
MFD

cal-
culated from Eq. (4.1.5) and it is seen to have limited effect, and does
not decide the propagation regime in fiber 2. By design of the waveguide
dispersion and choice of nonlinear fiber material, it is also possible to
compensate for the linear power reduction from MFD mismatch, and it
is thus concluded that NLSM takes precedence over MFD matching, and
that matching of nonlinear properties are the first consideration that is
needed when designing a system based on continued nonlinear dynamics
by coupling between fibers.

Even though, it may seem an idealized situation to have coupling of
a nearly fundamental soliton with N ≈ 1, it is quite general because
breakup of an energetic pulse, as often observed in SCG, will cause a
higher order soliton, excited from the input of fiber 1, to break up into
its constituent solitons [14, 37]. Thus, provided fiber 1 is long enough
for the pulse break up to occur, Eq. (4.1.4) will predict the behaviour of
continued soliton propagation quite generally.
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The regimes defined by the NLSM-scheme can be used depending
on the expected outcome of SCG in a concatenated fiber system. If a
large redshift is wanted, where an energetic carrier wave, e.g., a pump, is
wavelength shifted, the design of a concatenated system should aim for
a nonlinear coupling coefficient in the stable regime defined above, i.e.,
1/2 < η

NL
< 3/2. This could be the case, when choosing fibers for an Er

based fiber laser, redshifted to pump a ZBLAN SIF above its ZDW. If
instead, a large redshift or a broad SC is wanted, then fibers should be
designed to aim for a nonlinear coupling in the regime where η

NL
≫ 3/2.

Such considerations could be useful, e.g., when coupling an entire SC
spectrum, developed in a ZBLAN fiber, into, e.g., a highly nonlinear
chalcogenide fiber for further broadening into the mid-IR.

4.2 Summary of Chapter 4

In this chapter was proposed a quantity, the nonlinear coupling coefficient
η
NL

, that describes the coupling of fundamental solitons across a generic
fiber interface. The proposed NLSM-scheme does not depend on specific
pulse parameters, e.g., pulse duration and peak power, but instead it de-
pends only on material and fiber parameters. In this sense, it is a specific
design parameter that can be used for optimization of fiber waveguide
systems for, e.g., large redshifts of stable solitons or for wide band SCG.
The NLSM-scheme defines two regimes of expected nonlinear dynamics,
i.e., the stable soliton regime, which can be used to obtain a large energy
conversion from input to output, or, if a large redshift is wanted instead,
the second regime should be employed. Numerical simulations on exam-
ple fibers and a possible laboratory pump source are carried out, and
confirm the validity of the defined regimes. Finally it is concluded that
design of dispersion and nonlinear properties combined, take precedence
over considerations leading to efficient power coupling when designing a
concatenated laser system, even though such considerations might also
be important.

In this chapter is also discussed the linear properties of tellurite, which
is the second soft-glass material considered during this project work. As
mentioned, PCF preforms were obtained for tellurite fibers, and fibers
were drawn at DTU, but unfortunately large levels of loss and trouble-
some in-coupling of light prevented tellurite from being pursued any fur-
ther. Instead, the focus is now changed to the final soft-glass material
considered in this work, which is chalcogenide that is treated in chapter 5.



72 Concatenating Fibers for Continued Nonlinear Effects



Chapter 5

Supercontinuum up to 12 µm

in Chalcogenide Fibers

In this chapter it is investigated if the long wavelength edge of light that is
generated by supercontinuum (SC) can be extended beyond the ∼ 4.5 µm
limit found in chapter 3. To achieve this, the last soft-glass material to
be considered in this work is introduced. Chalcogenide glasses compose
a series of compound glasses [81], but typically either As2S3 or As2Se3
or possibly germanium (Ge) doped combinations, are used in fiber op-
tics. Particularly the compound As2Se3 has a transmission window that
has been reported to stretch as far as 17 µm [81]. Extending the long
wavelength edge of SC light sources far into the mid-IR will open for nu-
merous applications inaccessible to sources limited to ∼ 4.5 µm. Proteins
and lipids show absorption from around 3 µm to above 9 µm [11], thus,
provided sufficient average power is delivered, a SC source covering this
range could be applicable to, e.g., quality control of agricultural, diary,
and pharmaceutical productions. Similarly, a SC source covering this
wide a range may prove useful in biochemical analysis by enabling iden-
tification of bio-molecular spectral signatures, and it has been proposed
that such a source can be used in devices for in-vivo and non-invasive
optical biopsies, useful in early cancer detection [12].

Chalcogenide enables the generation of mid-IR SC to above 10 µm
due to its wide transmission window, and because the nonlinear refractive
index n2 is between 200 and 1000 times larger than for silica and ZBLAN,
depending on the content of sulfur (S) or selenium (Se) [9,10]. One viable
path suggested for obtaining a broadband SC in chalcogenide, is a low
threshold SC generated in tapered chalcogenide fibers [82]. This leads

73
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to small core fibers with limited power handling capabilities, and here,
a path leading to higher average power levels, more ideally suited for
applications, is pursued by using large core fibers.

In this chapter is presented the linear properties of chalcogenide (only
As2Se3 is considered) and both photonic crystal fibers (PCFs) and step-
index fibers (SIFs) are studied for potential use in a SC source. Dis-
persion engineering of PCFs enables a large shift of the zero dispersion
wavelength (ZDW) compared to the bulk material, thus enabling seed
lasers at wavelength less than 3 µm to pump in, or near to, the anomalous
dispersion regime of such fibers. After PCFs have been considered, SIFs
are investigated by modelling a λp = 4.5 µm praseodymium (Pr) doped
chalcogenide fiber laser as pump source simulated for supercontinuum
generation (SCG). It is predicted that infrared (IR) SC ranging between
4 and 12 µm is achievable, and that the long wavelength edge of such SC
will ultimately be determined by the long wavelength loss edge of a re-
alised fiber.

5.1 Chalcogenide Fiber Design

As was reviewed in chapter 3, the material absorption becomes large for
wavelengths longer than 4.5 µm in ZBLAN, and the long wavelength
edge of ZBLAN based SC cannot extend much further. A similar reason
was valid for silica based SC sources that are limited to approximately
2.4 µm. The transmission window of chalcogenide, however, has been
reported to extend far into the IR, though different accounts have been
given for the achievable IR transmission properties [83–85]. In [83] the loss
is reported to increase after 12 µm while [84] reports a loss of 0.01 cm−1 at
∼ 17 µm and [85] finds the transmission window is between 1 and 10 µm
for As2Se3. Regardless, the chalcogenide fiber technology is a developing
technology as the ZBLAN technology is, and here is used a frequency
constant background material loss of 1 dB/m, because an institutional
partner, from the University of Nottingham [86], show promising results
for the possibility of producing SIFs from chalcogenide with material
losses of this magnitude. Thus, in this chapter, the total attenuation
used in simulations is calculated as

αtot(ω) = αmat + αg(ω) (5.1.1)

where αmat = 1 dB/m is the material loss and αg is the guiding attenua-
tion calculated using Comsol (see chapter 2) for the particular fiber under
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consideration.

Two measurements are available for the bulk material refractive in-
dex properties of chalcogenide [83,86], and Fig. 5.1 shows the wavelength
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Figure 5.1: Blue: material refractive index wavelength dependence for chalco-
genide (As2Se3) [83, 86]. Black: calculated bulk dispersion. Solid (dashed) line
is for the Sellmeier polynomial by Skorobogatiy et. al. [83] (Seddon et. al. [86]).
The bulk material ZDW is calculated to be λ

ZD
= 7.22 µm [83]. The dotted

vertical lines mark the two considered pump wavelengths at 2.9 µm and 4.5 µm
respectively.

dependence of the refractive index obtained from these measurements
as blue curves. Solid lines are for a measurement by Skorobogatiy et.
al. [83], while dashed lines are for the measurement provided by A. Sed-
don et. al. from the University of Nottingham [86]. The measurements
are fitted to a Sellmeier equation, given by Eq. (2.2.5), and the parame-
ters for the Sellmeier fit for the two different measurements are listed in
Table 5.1. Also shown in Fig. 5.1, in black curves, are the correspondingly
calculated bulk group-velocity dispersion (GVD) curves (see Eq. (2.2.8)).
The ZDW calculated from the measurement by Skorobogatiy et. al. is
λZD = 7.22 µm, while the measurement by Seddon et. al. [86] shows all
normal dispersion in the bulk material. In chapter 3 is was demonstrated
how it is advantageous to pump directly in the anomalous dispersion
regime, preferably close to the ZDW, enabling soliton dynamics at an
early stage of propagation. However, it was also observed that one can
obtain a SC by normal dispersion regime pumping, if nonlinear effects
shift enough light from an energetic pump pulse near the ZDW into the
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Aj aj
Ref. j [µm2] [µm]

[83] 1 4.99487 0.24164
2 0.12072 19
3 1.71237 2a1

[86] 1 0.61989 0.543873
2 6.067837 0.277139

Table 5.1: Coefficients for the Sellmeier Eq. (2.2.5) [83,86].

anomalous dispersion regime. Due to the large n2 and strong Raman re-
sponse in chalcogenide, a higher order Stokes-shifted Raman line can cross
the ZDW and generate light in the anomalous dispersion regime [87,88].
This will be the exclusive case studied in this chapter, and to this end,
two different model laser systems that are proposed to be developed dur-
ing the future project collaboration of MINERVA [12], are modelled as
pump sources. The location of the ZDW at a long wavelength rules out
the conventional ytterbium (Yb), erbium (Er) and thulium (Tm) sources
that are too deep in the normal dispersion regime to be candidates for
generating SC as far as 12 µm, and therefore one of the model lasers is a
Q-switched Er:ZBLAN fiber laser pumping at λp = 2.9 µm. The second
proposed laser is an actively mode-locked ns-pulsed fiber laser with a Pr
doped chalcogenide fiber cavity operating at λp = 4.5 µm [12]. Power
levels in the range of tens of kW’s can be achieved from the well proven
Er/Yb-technologies, and a peak power of 1 kW should be achievable in
a mode-locked Pr laser, though the technology is an emerging technol-
ogy [12].

5.1.1 Chalcogenide Photonic Crystal Fibers

Because the ZDW is at 7.22 µm strong waveguide dispersion engineer-
ing is needed in order to enable a pump laser at λp = 2.9 µm to be
near the ZDW. Chalcogenide, however, can be drawn into PCFs, and
both PCFs with a chalcogenide-air cladding [89] and all solid PCFs have
been demonstrated [90]. In Fig. 5.2-left is shown the dispersion properties
for a triangular lattice air-hole PCF with d/Λ = 0.8 for different values of
the pitch Λ (see chapter 2) calculated using Sellmeier data from [83]. The
tailoring of dispersion properties enabled by PCFs is clearly witnessed,
and the ZDW is lowered significantly from the bulk value, which is marked
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Figure 5.2: Left: Dispersion of PCFs with d/Λ = 0.8 for different values of the
pitch Λ calculated using material data from [83]. Vertical black (red) lines mark
the a pump wavelength of λp = 2.9 µm (bulk material ZDW). Right: Confinement
loss αg calculated for the fibers in the left panel.

by the red dashed vertical line in Fig. 5.2-left. The calculated confine-
ment loss, displayed in Fig. 5.2-right dictates that for d/Λ = 0.8 one
should not go below a pitch of Λ = 4 µm, or the guiding loss will increase
abruptly at wavelengths lower than 12 µm. The fiber with a ZDW closest
to λp = 2.9 µm, which is not impeded by guiding loss before 12 µm, is
the Λ = 4 µm fiber that have a ZDW calculated to be 3.37 µm. Such a
fiber could be useful with the proposed Er:ZBLAN fiber laser operating
at 2.9 µm, however, here is not performed any calculations of SCG in
chalcogenide PCFs, but instead, focus is turned to SIFs.

5.1.2 Chalcogenide Step-index Fibers

The absolute value of the refractive index of chalcogenide is ∼ 2.75, and
this value facilitates the fabrication of SIFs with higher values of the nu-
merical aperture (NA) (see Eq. (2.2.1)) than when comparing to silica
and ZBLAN fibers, where the refractive index is ∼ 1.45. Particularly a
NA = 0.45 chalcogenide SIF has been used in reference [10], and larger
values of the NA are expected from the collaboration with Nottingham
University [86]. The waveguide dispersion is not as strong in SIFs as it
is in PCFs, and consequently a pump source for a SIF-based SC source
must operate at wavelengths closer to the ZDW of the bulk material. For
this purpose, the Pr-doped fiber laser, mentioned in section 5.1, that op-
erate at 4.5 µm, is considered. To find a suitable SIFs candidate for a
nonlinear fiber at this pump wavelength, three different SIFs are studied
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with core diameters of 5, 10 and 20 µm respectively. The smaller core
fibers facilitate a higher nonlinearity due to small core areas, but as also
discussed above and in chapter 3, confinement loss will possibly impair
the guiding properties at long wavelengths. A large core fiber enables
easier in-coupling of the pump laser light and the power handling is im-
proved, but at the expense of a decreased effective nonlinearity. Power
handling is an important consideration for highly nonlinear materials like
chalcogenide, because an increased nonlinear coefficient generally lowers
the threshold for detrimental self-focusing effects [91].
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Figure 5.3: (a) Dispersion for the 2a = 20 µm (left) and for the 2a = 10 µm
(right) chalcogenide SIF for different values of NA. The inset shows the ZD cross-
ings. (b) Total loss for the 2a = 20 µm (left) and for the 2a = 10 µm (right),
for different values of NA. All curves are calculated using the Skorobogatiy et.

al. material dispersion [83].

In Figs. 5.3(a)-left and -right are shown the calculated dispersion in
a 2a = 20 µm and a 2a = 10 µm SIF respectively, for different val-
ues of the NA using the Sellmeier reported by Skorobogatiy et. al. [83],
and Figs. 5.3(b)-left and -right show the corresponding total attenua-
tion given by Eq. (5.1.1). In Fig. 5.3(b)-left and -right is clearly seen
that decreasing the core size increases the total loss for long wavelengths.
Similar waveguide characteristics can be calculated for the 2a = 5 µm
fiber, and a summarizing comparison between the three fiber geometries
is shown in Fig. 5.4. In Fig. 5.4(a) is shown the ZDW as function of NA,
in Fig. 5.4(b) is shown the value of the dispersion D at the pump wave-
length D4.5 = D(λp) and in Fig. 5.4(c) is plotted a figure of merit for the
long wavelength attenuation edge, defined as the wavelength λ3dB where
the total attenuation is αtot(λ3dB) = 3 dB/m. Based on Fig. 5.4(c) it
is found that loss dismisses the 2a = 5 µm SIF as a candidate for SCG
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Figure 5.4: (a) ZDW λ
ZD

, (b) Dispersion at pump wavelength D4.5 = D(λp),
and (c) the 3 dB/m total attenuation edge λ3dB as function of NA. In all graphs,
solid (dashed) [dotted] line is for 2a = 20 µm (2a = 10 µm) [2a = 5 µm] and the
circles mark data points that are calculated using the Skorobogatiy et. al. material
dispersion [83].

between 4 and 12 µm. The 2a = 5 µm fiber also shows a ZDW strongly
increasing with NA in Fig. 5.4(a). Above NA = 0.3 the 2a = 20 µm SIF
has low loss, the ZDW decreases for increasing NA, and D4.5 changes only
slightly. At NA = 0.7 the 2a = 10 µm SIF has a ZDW comparable to the
2a = 20 µm fiber and lower absolute value of the dispersion at the pump
wavelength D4.5. A small core size will also give a larger nonlinearity thus
making the 2a = 10 µm and NA = 0.7 the optimal candidate, among the
investigated, for SCG, and such a fiber should be manufacturable [86].

All in all it is concluded from Fig. 5.4 that a SIF with 2a = 10 µm
and NA = 0.7 is the best choice for SCG to 12 µm. However, to consider
a fiber with a less extreme value of NA, and better power handling prop-
erties, the primarily considered fiber for SCG is a 2a = 20 µm SIF. The
2a = 20 µm, NA = 0.5, fiber has a ZDW calculated to be 6.74 µm, while
the ZDW of the 2a = 10 µm fiber is 6.85 µm when using Sellmeier data
by Skorobogatiy et. al.

The chosen fibers are also considered using the Sellmeier data by Sed-
don et. al. [86]. The dispersion curves using this data for the material
refractive index are shown in Fig. 5.5(a) for the 2a = 10 µm fiber and in
Fig. 5.5(b) for 2a = 20 µm. Most noticeable is that 2a = 20 µm, NA = 0.7
is the only parameter configuration yielding anomalous dispersion (be-
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tween 8.2 and 13.7 µm) and that the 2a = 20 µm, NA = 0.5 fiber shows
all normal dispersion. The 2a = 10 µm fiber shows all-normal dispersion
for any of the investigated values of NA. The calculated confinement loss
found using the Sellmeier polynomial by Seddon et. al. is nearly indis-
tinguishable from the corresponding loss curves shown in Fig. 5.3(b)-left
and -right, and therefore not shown.
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Figure 5.5: Dispersion curves for the (a) 2a = 10 µm and (b) 2a = 20 µm chalco-
genide SIF for different values of the NA using the Sellmeier provided by Seddon et.

al. [86]. Notice: One fiber (the 2a = 20 µm, NA = 0.7 fiber) shows anomalous
dispersion between 8.2 and 13.7 µm.

5.2 Parameters for Modelling Supercontinuum
Generation in Chalcogenide

To enable the prediction of the bandwidth of SCG in chalcogenide, the gen-
eralized nonlinear Schrödinger equation (GNLSE) is solved for the pseudo
electric field envelope C̃ = C̃(z, ω) and an initial condition given by
Eq. (2.3.10), as described in chapter 2. The quasi continues wave (CW)
ns-pulses expected from the Pr doped fiber laser, though, are so long that
the calculation domain cannot be made large enough to encompass the
pulse both in time and in frequency, when the expected broadening of
the generated SC is so large. Thus, instead, pulse widths are taken to be
T

FWHM
of 10, 20 and 40 ps in order to illustrate a trend for the SC gen-

erated by increasingly broad and energetic pulses. The input pulse has a
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central carrier wavelength λp = 4.5 µm, and the nonlinear refractive index
of chalcogenide is taken to be n2 = 2.4 · 10−17 m2/W [10]. Light prop-
agation in chalcogenide is influenced by two-photon absorption (TPA)
that cause a nonlinear loss of energy. Generally the effect of TPA is
modelled by including and imaginary part to the nonlinear coefficient γ
from (2.3.7), and the energy loss it causes can influence the nonlinear
dynamics, e.g., decreasing a soliton redshift [92,93]. TPA is significant in
the wavelength region around 1.5 µm, and since pumping at 4.5 µm in the
following, TPA is not included when solving the GNLSE. The delayed
Raman response is given on the form, previously encountered

R̃(Ω) = (1− fR) + fRh̃R(Ω) with

h̃R(Ω) =
τ21 + τ22

τ22 − τ21 (i+ τ2Ω)2
(5.2.1)

where fR = 0.115 is the fractional delayed Raman contribution, and
h̃R(Ω) is the delayed Raman response function with time constants τ1 =
23.1 fs and τ2 = 195 fs [83]. With the given time constants, the delayed
Raman response gain spectrum consists of a single peak at a Stokes shift
of 6.9 THz. Fig. 5.6 shows fRIm(h̃R) for chalcogenide, for fused silica and
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Figure 5.6: Comparable delayed Raman response fRIm(h̃R) as function of Stokes
shift. The delayed Raman gain shows a single gain peak at 6.89 THz [83]. Also
plotted for comparison are the Raman responses for for silica [6] and for ZBLAN
(see chapter 3).

for the two measurements of the Raman response in ZBLAN presented
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in chapter 3 for comparison. The first two anti-Stokes- and four Stokes-
shifted orders of a Raman cascade corresponding to a pump wavelength
λp = 4.5 µm are listed in Table 5.2.

λR2
aS λR1

aS λp λR1
S λR2

S λR3
S λR4

S

µm µm µm µm µm µm µm

3.73 4.08 4.5 5.02 5.68 6.53 7.68

Table 5.2: The location of the first two Raman anti-Stokes and four Stokes lines
when pumping at λp = 4.5 µm.

5.2.1 Time- and Frequency Grid and Extreme
Broadening

The ps-pulses that are investigated during simulations on SCG in the
chalcogenide SIFs, are initially narrow band. The spectral bandwidth of
the initial condition decreases correspondingly as its temporal width is
increased, when going through T

FWHM
of 10, 20 and 40 ps. This is due

to the constant time- bandwidth product of a Fourier transform (FT)
limited pulse, and for all values of TFWHM , a sufficient frequency resolu-
tion at the onset of propagation must be ensured, while also having a
calculation domain with the proper bandwidth after the extreme spectral
broadening has occurred during propagation. This imposes requirements
on the number of grid points on the time- and frequency axes. If one
expects b points within the input energy spectral density (ESD) |Ã(ω)|2
frequency full-width-at-half-maximum (FWHM) ω

FWHM
, it means that

one needs a frequency spacing of ∆ω = ω
FWHM

/b. The bandwidth of the
generated SC is

ωB = 2πc

(

1

λmin
− 1

λmax

)

(5.2.2)

where λmin (λmax) is the minimum (maximum) wavelength edge of the SC
after propagation. The number of points needed on the grids then, is

Np =
ωB

∆ω
=

2πcb(λ−1
min − λ−1

max)

ω
FWHM

. (5.2.3)

For the Gaussian shaped input pulse used here, it can be shown from FT
theory (see appendix C page 107), that the corresponding frequency width
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of the ESD, is given by ωFWHM = 4 ln 2/TFWHM . Thus, the number of grid
points needed becomes

Np =
bπc(λ−1

min − λ−1
max)TFWHM

2 ln 2
. (5.2.4)

To be certain that the effect of four-wave mixing (FWM) is included (see
section 5.3) in the calculation, and to eliminate edge effects due to implicit
periodic boundary conditions of the discrete Fourier transforms (DFTs),
that can lead to numerical artifacts, the calculation domain is taken to
stretch from λmin = 1.2 µm and to λmax = 18 µm. The largest number
of grid points, that are tolerable is Np = 218 points, or computation time
will be enormous, and for TFWHM = 40 ps one will thus have

b =
2Np ln 2

πc(λ−1
min − λ−1

max)TFWHM

≈ 12.4. (5.2.5)

Ideally one should require a large value of b, but it is found that the
value above, which represents worst case, give trustworthy results that
are presented in section 5.3. The value of b is calculated for the different
simulations performed and summarized in table 5.3. Even though the

TFWHM 10 ps 20 ps 40 ps

b 49.6 24.8 12.4

Table 5.3: Number of grid points per ESD frequency FWHM, b for each value of
T

FWHM
investigated.

computational load is also significant using Np = 218 grid points (the
computation time for the most dynamical simulation with the most ener-
getic pulse has been between three and four weeks), this amount is used in
all simulations to have exact comparable calculation domains. With the
specified limits in the frequency domain and Np = 218, the time domain
width becomes 1.12 ns, with a grid spacing of dt ≈ 4.3 fs.

5.3 Results of Simulations

In all simulations the peak power is fixed at P0 = 1 kW and the pump
wavelength is fixed at λp = 4.5 µm to model the Pr doped fiber laser.
All spectra presented in the following are ensemble averages over 30 shots
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Figure 5.7: Left: Location of FWM gain band as function of wavelength for
P0 = 1 kW and λp = 4.5 µm for the fibers considered. (a) Anti-Stokes and (b)
Stokes gain band. Right: The photon number error as function of propagation
distance for T

FWHM
= 40 ps and neglecting loss and noise. Solid (dashed) line is

for simulation using Sellmeier data by Skorobogatiy et. al. [83] (Seddon et. al. [86]).

as described in chapter 2. The plots shown in Fig. 5.7-left reveal FWM
gain (see Eq. (2.4.6)) at (a) anti-Stokes wavelengths around 2.6 µm and
(b) at Stokes wavelengths around 16.7 µm for both the 2a = 10 µm
and the 2a = 20 µm fiber. Notice that the gain bands are asymmetric,
when plotted on a wavelength axis Notice also that the peak gain is
gmax = γP0 and thus, the gain is largest for the 2a = 10 µm, because
a smaller effective area leads to a larger γ. Simulations made using the
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Figure 5.8: Left: SCG in the 2a = 20 µm, NA = 0.5 SIF after L = 3 m of
propagation for different values of T

FWHM
and Sellmeier data from [83]. Right:

SCG in the 2a = 20 µm, NA = 0.5 SIF and Sellmeier data from [86]. Dashed black
(red) line marks λp (ZDW).
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Sellmeier data provided by Seddon et. al. [86] show no sign of FWM.
To include the effects of FWM, in the simulation based on Sellmeier
data from Skorobogatiy et. al., the calculation domain must be chosen to
stretch below 2.59 µm and above 17 µm. As mentioned above though,
all simulations use λmin = 1.2 µm and λmax = 18 µm to avoid edge
effects from the periodic boundary conditions of the DFT, Nt = 218

points on the time/frequency grid, and a goal error of δg = 10−8. To
check the conservation of the photon number, the photon number error
(see Eq. 2.3.11), is plotted in Fig. 5.7-right for all fibers in the case of
T

FWHM
= 40 ps and neglecting loss and noise.

5.3.1 The Larger Core Fiber

The results of SC spectral development after L = 3 m of propagation
in the 2a = 20 µm, NA = 0.5 SIF are shown in Fig. 5.8-left and -right
using the Sellmeier data from [83] and [86], respectively. The widest
spectrum found for the 2a = 20 µm fiber corresponds to a pulse of width
T

FWHM
= 40 ps, incident on the fiber with properties calculated using

dispersion data from Skorobogatiy et. al. [83]. All the found bandwidths
are measured numerically as the 30 dB drop from the ESD maximum
value, and summarized in Table 5.4. The widest spectrum found for this
fiber spans a wavelength region from 3.1 to 12.8 µm, and thus two octaves
in the IR.

Generally, the spectral development starts from the onset of propaga-
tion by slight broadening caused by self-phase modulation (SPM) followed
by a very pronounced forming of a cascade of Raman Stokes and anti-
Stokes waves [87,88]. The development of the Raman cascade is displayed
in Fig. 5.9-left where green vertical lines mark the locations of anti-Stokes
and Stokes lines (see Table 5.2). A very good correspondence between
predicted values and cascade-peaks is observed. After the initial broad-
ening of the spectrum due to the delayed Raman effect, which continues
to dominate until L ∼ 1 m, and the fourth order Raman line has crossed
the ZDW, soliton related dynamics begin to dominate. Light has shifted
across the ZDW, and numerous nonlinear effects cause further spectral
broadening. Spectrograms showing how the spectral development contin-
ues after the Raman cascade is created is shown in Fig. 5.9-right. After
light has shifted into the anomalous dispersion regime individual solitons
start to redshift due to the soliton self-frequency shift (SSFS) and after
3 m of propagation a wide SC is formed. A Raman cascade, similar to the
one described here, has been experimentally observed in fused silica in
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Figure 5.9: Left: Spectral development in the first approximately 30 cm of the
2a = 20 µm SIF with an input pulse width of T

FWHM
= 40 ps. Green vertical lines

mark the higher order Stokes and anti-Stokes Raman lines from Table 5.2, and red
is the fiber ZDW. Right: Spectrograms showing the spectral development during
propagation in the 2a = 20 µm fiber. White dashed line marks ZDW.

1978 [16] where a Q-switched ns Nd:YAG laser at 1.064 µm with ∼ 50 kW
peak power coupled into a 33 µm core Ge-doped silica fiber generated at
least three stokes shifted Raman lines. Similarly three Raman orders were
observed from a 1553 nm laser, pumping ns pulses with ∼ 2 kW of peak
power, into small core (< 6.5 µm) chalcogenide fibers [87] and a large
core chalcogenide fiber (2a = 65 µm) pumped with ns pulses at 1.9 µm
generate four Stokes orders in [88]. Furthermore, a spectral development
similar to the one observed, starting with the strong Raman cascade has
been reported in [87,94].

5.3.2 The Smaller Core Fiber

The results of SC spectral development in the 2a = 10 µm, NA = 0.7 SIF
are shown in Fig. 5.10-left and -right using the Sellmeier data from [83]
and [86] respectively. For this fiber, the broadening is so violent and
the nonlinearity so strong that the calculation domain can only house
propagation until L ≈ 0.75 m for the simulation based on the Sellmeier
data by Skorobogatiy et. al. This is manifested in Fig. 5.7-right where a
sudden increase in photon number around L = 1.2 m signifies a break-
down of trustworthy result. The increase in photon number is preceded
by breakthrough of energy at the spectral boundaries of the calculation
domain due to the periodic boundary conditions of the DFT, and for this
reason, SC is not propagated further than L = 0.75 m in the small core
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Figure 5.10: Left: SCG in the 2a = 10 µm, NA = 0.7 SIF after L = 0.75 m of
propagation for different values of T

FWHM
and Sellmeier data by [83]. Right: SCG

in the 2a = 10 µm, NA = 0.7 SIF and Sellmeier data by [86]. Dashed black (red)
line marks λp (ZDW).

fiber. The mechanism behind the spectral broadening is the same as for
the large core fiber, however it develops over a shorter length of fiber and
extremely broad SC is demonstrated already after L = 0.75 m. Notice
the narrow FWM peaks marked in Fig. 5.10-left. The broadest spectrum
for this simulation is stretching between 3.0 and 15.3 µm is demonstrated
for the pulse width of T

FWHM
= 40 ps.

5.3.3 Bandwidths and Fiber Length

The large nonlinearity of chalcogenide enables broad SCG in spite of
pumping deeply in the normal dispersion regime of the SIFs, and in spite
of using a rather modest peak power of 1 kW. The development of the
band edges predicted by the calculations are shown in Fig. 5.11-left and
-right for single shot simulations using T

FWHM
= 40 ps and the 20 µm

and the 10 µm fiber respectively. In the ps-pumped regime, demon-
strated here, the initial broadening mechanisms are SPM, as was also
the case in chapter 3, but now accompanied by strong Raman amplifica-
tion that forms the prominent Raman cascade observed in Fig. 5.9-left.
These mechanisms do evidently not broaden the spectrum over distances
as short as when compared to the fs-pumped soliton fissions witnessed
in chapter 3 and longer fiber lengths are needed. The band edges of the
generated SC, however, do show a tendency to saturate, and this is par-
ticularly clear for the solid blue and red curves in Fig. 5.11-right. The
saturation means that SC is almost fully developed after 30 cm for the
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Figure 5.11: Black curves show the energy in a single-shot spectrum as function
of propagation distance, while red (blue) curve is the long (short) wavelength edge
of the generated SC using T

FWHM
= 40 ps. Solid (dashed) line is for Sellmeier data

from [83] ( [86]). Left panel is for the 2a = 20 µm fiber, while right panel is the
2a = 10 µm fiber.

10 µm fiber, while the fiber length of 3 m of the 20 µm is appropriate,
though 2.5 m of propagation might possibly have sufficed (Fig. 5.11-left).
Finding the optimal fiber length is important in regards to attenuation
in a realized experiment, especially since simulations here employ a mod-
est and frequency constant material loss, that do not included discrete
absorption bands, and when considering there are different reports of

T
FWHM

λmin λmax

[ps] [µm] [µm]

a: (Spectra in Fig. 5.8-left).

10 3.9 10.7

20 3.5 11.9

40 3.1 12.8

c: (Spectra in Fig. 5.10-left).

10 3.2 14.3

20 3.1 14.8

40 3.0 15.2

T
FWHM

λmin λmax

[ps] [µm] [µm]

b: (Spectra in Fig. 5.8-right).

10 4.1 7.4

20 4.2 9.1

40 4.4 10.4

d: (Spectra in Fig. 5.10-right).

10 4.0 9.4

20 4.1 9.4

40 4.1 9.5

Table 5.4: Band edges of the simulated SC for the 2a = 20 µm SIF, a: (b:)
using Sellmeier data from [83] ( [86]). Bandwidths of the simulated SC for the
2a = 10 µm SIF, c: (d:) using Sellmeier data from [83] ( [86]).



5.4 Summery of Chapter 5 89

when the long wavelength material absorption edge becomes significant
in chalcogenide. The curves showing the band edges of the SC fluctu-
ates for small propagation distances, both in 5.11-left and -right, because
a specific 30 dB band edge is not well defined at the early stage of SC
development, when the Raman cascaded has not yet merged to a full SC.

The spectra calculated using material dispersion properties provided
by Seddon et. al. [86] show significantly less broadening than spectra
based on Sellmeier data from Skorobogatiy et. al. This is attributed to
the complete absence of anomalous dispersion regime, and correspond-
ing soliton dynamics. The full developed band edges calculated in all
simulations are summarized in Table 5.4.

5.4 Summery of Chapter 5

In this chapter was considered the possibility of creating a broad band SC
in chalcogenide (As2Se3) fibers stretching beyond the ∼ 4.5 µm limit
achieved by ZBLAN based SC. Two laser sources, that are emerging
technologies, one at 2.9 µm and one at 4.5 µm respectively, have been
proposed for this purpose [12]. Suitable fiber designs have been sug-
gested, and particularly, chalcogenide PCFs are candidates for pumping
at 2.9 µm, while SIFs are possible candidates for pumping at 4.5 µm. Two
particular SIFs are subject to further investigations, and numerical simu-
lation of SCG show that these fibers are both very promising candidates
for broadband IR SC in the range from 4 µm to above 12 µm.

The results of this chapter are supported by calculations only, and a
rather modest material loss have been employed. It must be expected
however that the long wavelength absorption edge in a realised fiber will
ultimately determine the long wavelength edge of generated SC. Cal-
culations show a very large broadening of the incident light pulses over
propagation distances in the order of 1 m, and in this sense, a loss larger
than modelled here, will impact the generated SC but will not be ruining
to it, since fiber lengths can be kept short. In any case, the results of this
chapter should be considered a tentative estimate of the achievable width
of SCG in chalcogenide fibers.

To improve the numerical model, more accurate data is needed re-
garding the loss and the dispersion of chalcogenide. In particularly, a
cut-back measurement of the loss from a drawn fiber could be useful, and
perhaps dispersion measurement, e.g., by the frequency resolved optical
gating (FROG) method, mentioned in chapter 3 could also be beneficial.
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Chapter 6

Conclusion

During the course of this Ph.D.-project three different soft-glasses have
been investigated, primarily by numerical simulations, for use in generat-
ing a wide band mid-infrared (IR) supercontinuum (SC). Firstly, the fluor
based ZBLAN material was investigated thoroughly both using numerical
simulations and measurements. Then tellurite was briefly considered, but
material loss proved high in preform samples drawn into photonic crys-
tal fibers (PCFs) at Technical University of Denmark (DTU), and this
material was not pursued very far. The last material was chalcogenide
that show great potential for supercontinuum generation (SCG) in the
mid-IR.

The linear properties of ZBLAN demonstrate a bulk zero disper-
sion wavelength (ZDW) that cause conventional seed laser sources, based
on Yb/Er doped fibers, to be less suited as pump sources than the more
recently emerging Tm technology. It is demonstrated that an adequately
energetic pulsed laser source pumping in the normal dispersion regime
of a ZBLAN step-index fiber (SIF) will enable the generation of SC, but
also that it is preferable to use a source pumping directly in the anoma-
lous dispersion regime, to achieve a broader spectrum. During the review
of ZBLAN the linear properties have been thoroughly discussed, and a
measurement of the fiber dispersion and a measurement of the delayed
Raman gain profile was presented. The Raman measurement was com-
pared to existing partial measurements, and another full measurement,
and based on simulations of fs-pumped SCG, it is concluded that the
Raman response by Petersen et al. of Aarhus University (AU) show good
correspondence with measurements, and gives an appropriate description
of ZBLAN. The correspondence between measurements and simulations
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lead to a short discussion of what fibers are suitable as suggestions for
a SC source, and a prototype mid-IR SC laser has been manufactured by
an industrial collaborator showing spectra with SC spanning the region
between 1.5 µm and 4.3 µm.

To extend the long wavelength edge of SCG further, it has been in-
vestigated numerically if it is possibility to make a SC, stretching beyond
12 µm, by simulating a praseodymium (Pr) doped fiber laser pumping
a highly nonlinear chalcogenide SIF. The results are very promising,
though it should be kept in mind that they are solely based on numer-
ical predictions and should be considered an optimistic estimate for the
width of a possible mid-IR SC in chalcogenide. The long wavelength edge
of a SC developing in a chalcogenide fiber, will eventually be determined
by the long wavelength absorption edge in a realised fiber.

6.1 Future Perspectives in Mid-infrared
Supercontinuum Generation

Further numerical studies and modelling of SCG in ZBLAN could po-
tentially improve a second version of a mid-IR SC source. Particularly,
more specific numerical investigations could be performed in regards to
the spectral flatness and specific coherence properties of the SC, which
has not been investigated here. In this respect, further measurements of
the Raman response could be performed in order to give a final conclusion
about the magnitude of the delayed Raman gain in ZBLAN. In addition
to this, cut-back measurements of the loss in ZBLAN fibers could be made
in the entire wavelength range practical for SCG, and further dispersion
measurements could be performed, e.g., by the frequency resolved opti-
cal gating (FROG) measurement method proposed. The ZBLAN fiber
drawing technology is characterized by less maturity when comparing to
silica based fiber technology, and fibers obtained from manufacturers can
show great deviations from batch to batch, and even from piece to piece
on a fiber spool. In time, better characterization will be possible when
fiber drawing technology improves.

During the Ph.D.-project the nonlinear soliton matching (NLSM)
scheme was introduced. This scheme should be considered when design-
ing a system of concatenated passive optical fibers for extended benefit of
nonlinear effects in a system of multiple different nonlinear fibers. It was
shown that matching the nonlinear properties of fibers takes precedence
over linear properties, and in future work, a practical demonstration of
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the scheme could be interesting. Particularly, it could prove exciting to
use the NLSM-scheme to predict the development of a full SC coupled
from a ZBLAN fiber, where it is initially created into a uniform or tapered
chalcogenide SIF for further redshift into the IR. Doing so could prove a
viable approach to obtaining a broad SC in the IR without designing en
entirely new seed laser for pumping chalcogenide directly.

Pumping chalcogenide directly however, does show a promising fu-
ture in mid-IR SCG, and it could be very interesting to witness the mea-
surement of a realised SC spectrum in a chalcogenide SIF pumped by a
novel 4.5 µm Pr doped seed laser. Similarly, the investigations of 2.9 µm
pumped SCG in chalcogenide PCFs could be extended further to elab-
orate on the potential of such a setup, and also measurements could be
very interesting as future research.

In regards to the numerical work done during this project, the re-
sults are largely build upon brute force calculations and vast amounts of
computer power. It could be very beneficial for continued work, using dif-
ferent soft-glasses, to study and quantify the role of the local goal error,
δg, when changing between materials that have nonlinear properties that
vary significantly, thereby determining what is an appropriate selection
criterion that ensure reliable results while not draining computational
resources. Similarly, it could also be investigated what significance the
calculation domain width, and the number of samples per energy spec-
tral density (ESD) full-width-at-half-maximum (FWHM), as discussed
in chapter 5, has on results. During these studies, it has been observed
that numerical artifacts sometimes find their way into calculated spectra
if appropriate care is not taken to use a calculation domain that is wide
enough or use an adequately large number of grid points. Instead of using
brute force, as done here, to overcome these observed artifacts, it could
be assessed whether they influence results significantly. Typically, the ac-
cumulated energy in spectral components that are ascribed as numerical
artifacts can be many orders of magnitude lower than the energy of the
entire signal, and perhaps they do not influence results in a significant
way, so lower numerical tolerances are acceptable, but this needs further
investigations.
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Appendix A

The Generalized Nonlinear
Schrödinger Equation in the
Interaction Picture

In this appendix, conversion from the generalized nonlinear Schrödinger
equation (GNLSE) for the complex electric field envelope A(z, T ), de-
fined so that P (t) = |A(t)|2 is the instantaneous power [6, 23], via the
frequency domain GNLSE for the pseudo electric field envelope C̃(z, ω)
and to the frequency domain interaction picture (IAP) GNLSE intro-
duced by J. Hult [30], is reviewed in detail. The introduction of the IAP
version of the GNLSE is significant because it represents a tiny paradigm
shift in the way the GNLSE is simulated by Ole Bang’s group at DTU.
The method used in the Ph.D.-thesis by M. H. Frosz [23] and the method
proposed in [6] to solve the GNLSE, both build on the split-step Fourier
method (SSFM), while recent results both in this thesis and in [78, 95]
transform the GNLSE to the IAP before solving it. Using the SSFM, the
linear and nonlinear parts of the GNLSE are separated and individually
propagated incrementally, whereas when solving the GNLSE in the IAP,
both the linear and nonlinear part are propagated together in a single
step.
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A.1 The GNLSE

The GNLSE for the time domain complex electric field envelope A(z, T )
is [14]

∂A

∂z
+

α

2
A−

∑

k≥2

ik+1

k!
βk

∂kA

∂T k
=

iγ

(

1 + iτshock
∂

∂T

)(

A

∫

R(T ′)|A(T − T ′)|2dT ′

)

(A.1.1)

where α = α(ω) is the power attenuation, βk = dkωβ is the k’th derivative
of the propagation constant with respect to frequency ω, and T = t−z/vg
is a retarded time frame moving with the group velocity vg = 1/β1(ωp)
at the pump frequency ωp (see appendix E page 123). The nonlinear
coefficient is

γ =
n2ω0

cAeff(ω0)
(A.1.2)

where n2 is the nonlinear refractive index of the fiber material, c is the
speed of light in vacuum, and Aeff (ω0) is the effective area of the mode
at the expansion frequency ω0. The term with ∂/(τshock∂T ) accounts for
the optical shock effect with shock time τshock which is often taken to be
1/ω0. Finally R(T ) is the material response function.

It has been argued, e.g., in [17] that Eq. (A.1.1) does not account
accurately for modal dispersion in cases of strong wavelength dependence
of the effective area. Such strong modal dispersion is particularly promi-
nent in photonic bandgap (PBG) fibers around the band edges [17], but
also when considering extremely broadband supercontinuum generation
(SCG), the effective area variation can be large across a spectrum. This
variation should be included in the GNLSE, but is ignored in Eq. (A.1.1).
The considerations in [17] lead to a frequency domain equation for a
pseudo electric field envelope C̃(z, ω) and this equation has been used
extensively during this Ph.D.-work. The GNLSE is then [31]

∂C̃

∂z
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F
{
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R(T ′)|C(T − T ′)|2dT ′

}

(A.1.3)
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where C̃ = C̃(ω, z) is the Fourier transform (FT) of the pseudo field
envelope C = C(z, T ). The nonlinear coefficient changes slightly from
the definition in Eq. (A.1.2) and becomes frequency dependent

γ̄(ω) =
n2n0ω0

cneff(ω)
√

Aeff(ω)Aeff(ω0)
. (A.1.4)

Here n0 = neff(ω0) is the effective refractive index of the mode neff(ω)
at the expansion frequency. Finally, the transformation between the FT
of the pseudo electric field envelope C̃ and the FT of the electric field
envelope Ã is

C̃(z, ω) =

[

Aeff(ω)

Aeff(ω0)

]− 1
4

Ã(z, ω). (A.1.5)

Notice that if the frequency variation of the effective area and effective
index is ignored so that Aeff(ω) = Aeff(ω0) and neff(ω) = n0 then

C̃ = Ã and γ̄(ω) =
n2ω0

cAeff (ω0)
= γ. (A.1.6)

A.2 Transforming into the IAP

Equation (A.1.3) is a 1st order partial differential equation that can be
written in terms of two operators, where one operator is linear while
the other one is nonlinear. To see how Eq. (A.1.3) is transformed into
the IAP, we start by writing it explicitly as the sum of operators

∂C̃

∂z
=
(

˜̂
L(ω) +

˜̂
N(ω)

)

C̃. (A.2.1)

The linear operator
˜̂
L is defined in Eq. (2.3.8) and

˜̂
N is a nonlinear

operator representing the entire right-hand side (RHS) of Eq. (A.1.3).
Now defining the transformation

C̃I = e−z
˜̂
LC̃ (A.2.2)

inserting it into the left-hand side (LHS) above, and differentiating, one
gets
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Inserting in the RHS of Eq. (A.2.1) then
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and removing the equivalent terms, one gets

∂C̃I

∂z
= e−z

˜̂
L ˜̂
Nez

˜̂
LC̃I = e−z

˜̂
L ˜̂
NC̃ (A.2.5)

so finally
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The above equation is solved in a single step, e.g., by the Matlab-function
ode45(), or another suitable numerical integration scheme. The one used
in this work is a fourth order Runge-Kutta scheme that incorporates
the local goal error method [35]. In appendix B, starting page 99, a
code example is suggested that can solve Eq. (A.2.6) under very general
conditions using the ode45() solver from Matlab.



Appendix B

Structuring a Matlab-code
for Solving the Generalized
Nonlinear Schrödinger
Equation

In this appendix, I give a review of how a code for solving the generalized
nonlinear Schrödinger equation (GNLSE) in the interaction picture (IAP)
can be structured in a very versatile yet simple and comprehensive way.
The appendix includes a code example, which is, to be quite clear, the
boiled down essence of the practical experience I have gained in solving
the GNLSE in this 3 years of Ph.D.-work. It must be stressed that struc-
turing a code like in the example is very beneficial because it operates
only on the most essentially needed input for solving the GNLSE. Each
of these inputs are calculated in separate functions, and these functions
are easily changed or substituted without any changes to the remaining
code. This is very neat when investigating different fiber structures, fiber
materials, pump systems or versions of the GNLSE. The code example
is for Matlab, and relies heavily on the function concept here, but it is a
good starting point for porting to an open-source language like python,
or a more high-performance programming language, e.g., Fortran or C++,
which could potentially reduce execution time.

The code example is a simplified version of the actual solver used
throughout this work, and in particular, it does not include a random
noise model to superimpose on the initial condition [31], nor does it deter-
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mine the solution using an adaptive step size algorithm with a customized
error control, e.g., like the local goal error method [35]. Instead, for sim-
plicity, it uses a built-in function from Matlab (ode45()) for performing
the numerical integration.

It is noted to the reader, that the code has produced the results shown
in section B.2.2, but it requires properly defined auxiliary functions to
work. To appreciate how these are defined and parsed to the solver,
one must be familiar with the struct-type in Matlab (in object-oriented
programming languages one can use classes). The struct-type is use-
ful because an arbitrary amount of variables, function-handles or other
structs can be stored in them, and parsed around among functions at
will.
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B.1 Code for Solving the GNLSE (or NLSE)

1 function [t, omega , z, A]= Solve_a_NLSE (ForOps ,ForInt)

2
3 global c_light

4 c_light =2.99792458*1 e8; %%% speed of light in vacuum.

5 s = struct ();

6
7 % %%%%%%%%%%%% parameters for input %%%%%%%%%%%%%%%%

8 z=ForInt.z;

9 [Aini , s.t, s.Omega , s.w_0 , s.w_p]= ForOps.EnvFunc (ForInt ,

ForOps.EnvParams );

10
11 [s.Aeff , s.Aeff_0 , s.Aeff_p ]= ForOps.AeffFunc (s,ForOps.

AeffParams );

12 [s.neff , s.n0 ]= ForOps.nEffFunc (s,ForOps.nEffParams );

13 [s.L, s.beta2AtPump ] = ForOps. LinOpFunc (s,ForOps.LinOpParams )

14 [ForOps.NLOpParams .R_Omega , s.fR]= ForOps. MatResFunc (s,ForOps.

MatResParams );

15 ForOps.NLOpParams .gamma=ForOps.gammaFunc (s,ForOps.NLOpParams )

16 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

17
18
19
20 % %%%%%%%%%%% Actual solution of problem %%%%%%%%%%%%

21 C_tilde_IAP = gotoC_tilde_IAPfromA (Aini ,z(1) ,s);

22 [~, C_tilde_IAP ]= ode45(ForInt.WhatEqn ,z,C_tilde_IAP ,[],s,

ForOps.NLOpParams );

23 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

24
25
26
27 % %%%%%%%%%%%%%%%%%%% Return values %%%%%%%%%%%%%%%%%

28 A= gotoAfromC_tilde_IAP (C_tilde_IAP .’,z,s);

29 t= fftshift (s.t);

30 omega=fftshift (s.Omega)+s.w_0;

31 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

32 end

B.2 Structure of Code

Line 1: The return values are the time axis t, the physical angular frequency
axis omega, the propagations distances z and a corresponding array
containing the electric field envelope A in the time domain. No-
tice the functions in line 23 and 30 that perform the conversion
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back and forth between electric field envelope and pseudo elec-
tric field envelope. The electric field envelope could equally well
have been returned in the frequency domain, but it will be redun-
dant to return both. The Matlab-structs ForOps and ForInt are
two structs where the first contains function handles and structs
with parameters needed for execution of lines 10-17. The sec-
ond struct, ForInt, contains information regarding the numerical
integration, e.g., wanted propagation distances, number of points on
time-/frequency grid, wavelength window, what equation to solve,
etc.

Line 5: In this line is defined a simple holding container where parameters
calculated in the scope of the solver are stored. From a speed/mem-
ory perspective, parsing s and all its content around among func-
tions that need variables from the scope of the solver, is not very
effective, because it leads to redundant parsings, and is perhaps not
advisable. However, in the case considered here, it simplifies the
code, because all auxiliary functions (lines 10 through 17) can be
defined with a small number of input arguments.

Line 10: The struct, ForOps, contains a function EnvFunc that take two
structs as input arguments, and returns the initial condition, Aini
in the time domain, the time, t, and pseudo frequency, Omega, axes,
the expansion frequency w 0 and the pump frequency w p. The func-
tion EnvFunc is stored in ForOps by issuing ForOps.EnvFunc

= @myEnvFunc, and parsing ForOps to the solver. Here, myEnvFunc.m
must be a valid Matlab-function. It may seem arbitrary that it is the
envelope function that returns the time and frequency axes for the
calculation, and that the axises are not returned and independent
function. This is actually advisable though, because physically, the
sample times, where the envelope is known, defines the time axis,
that defines the frequency axis. Finally, it should be noticed, that
the envelope must be returned with the proper chirp, so it is cor-
rectly positioned in the pseudo-frequency window (see appendix D
page 119).

Strictly speaking, the pump frequency, which is returned by the en-
velope function, is insignificant in the eye of the solver, but gener-
ally, it is good measure, that the auxiliary functions (in lines 10-17)
return significant variables to the scope of the solver, because they
can be needed in calculations, e.g., if one wants the solver to de-
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termine the soliton number at the onset of simulation, or find the
group velocity dispersion at the pump frequency etc. etc.

Line 12-17: These lines execute functions, all stored in ForOps as illustrated
above, that return, the effective area, the effective index, the lin-
ear operator, the full material response, and nonlinear coefficient
as function of the frequencies returned by the envelope function.
As in line 10, the variables, s.Aeff p, s.beta2AtPump and s.fR,
which are Aeff (ωp), β2(ωp) and fR receptively, are not necessarily
significant to the solver, but often needed for secondary calculations
along with the pump frequency.

These lines are where the true strength of the proposed code struc-
ture reveals itself. If one wants to change fiber material, e.g., shift-
ing from silica to ZBLAN or chalcogenide, just parse the appropriate
Raman response in a Matlab-function to the solver. Similarly, dif-
ferent fibers can be loaded by appropriately changing the content
of the functions in lines 12 through 14.

Line 23: This line converts the electric field envelope in the time domain, to
the pseudo electric field envelope in the frequency domain and IAP
before inputting it to the solver.

Line 24: This is the line where the numerical integration is done. It is also
where the bottle neck lies, and where vast amounts of calculation
time can be spent. In this simple example the simple and built-in
Matlab-function ode45() is implemented. This function should be
substituted with a special-tailored integration scheme incorporating
a customized adaptive step size algorithm (e.g., like the local goal
error method [35]) in a more elaborate solver. Obviously, the inte-
gration scheme needs an implementation of the equation the solver
should operate on, and the equation is parsed to the integration
scheme as a function handle stored in ForInt.WhatEqn. Below, in
section B.2.3 and B.2.4, is printed two examples of implementations,
one of the GNLSE and one of the nonlinear Schrödinger equation
(NLSE), respectively. What equation is simulated can then be de-
fined simply by storing the correct function handle in ForInt.WhatEqn
at call time and defining the appropriate material response and
nonlinear coefficient calculating functions. Again, this versatility
reveals the strength of the code structure proposed here.

Line 30-32: Results are transformed from the pseudo electric field envelope in
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the frequency domain and IAP and to the time domain electric field
envelope and returned along with the time and physical frequency
axis.

B.2.1 Speed Optimizing

As mentioned above, the bottleneck is in line 24, and this is no matter
what numerical integration scheme is used. In this line, the GNLSE
is evaluated a large number of times and a large number of discrete
Fourier transforms (DFTs) are performed, so the function implementing
the GNLSE-evaluation itself, shows a great potential for speed optimizing.
In this respect, the use of fftshift() and scaling of FT (see appendix C,
section C.4, page 113), should be avoided internally in the solver, until
the very end, when results are returned. This can be achieved by starting
the calculation in the same domain where it ends, and not perform any
intermediate scaling. As a final remark, data files can be large when the
number of samples is large (e.g., ≥ 217). Therefore, it may be preferable
to save data regarding the pulse, e.g., energy, peak power or photon num-
ber (see appendix F page 127), in many locations along the calculation,
while only storing the entire pulse in few places. Furthermore, it is advis-
able not to return the time (or frequency) axis with each pulse, but only
once and storing it separately.

B.2.2 Small Example

The solver function from section B.1 is tested with a small assignment
used in teaching sessions on solving the GNLSE. The full GNLSE ignoring
frequency dependence of Aeff and neff is solved for a silica fiber with

β2 = −1.6334 · 10−27 s2/m and β3 = 6.4520 · 10−41 s3/m, and
˜̂
L =

i(β2Ω
2/2 + β3Ω

3/6), with material response given by

R(T ) = (1− fR)δ(T ) + fR
τ21 + τ22
τ1τ

2
2

e
− T

τ2 sin

(

T

τ1

)

θ(T ) (B.2.1)

where τ1 = 12.2 fs, τ2 = 32 fs, fR = 0.18 and θ(T ) is the Heaviside step
function and δ(T ) is Dirac’s delta-function. The nonlinear coefficient
γ = 0.02942 (Wm)−1, n2 = 2.4 · 10−20 m/W, and Aeff = 2πn2/(λpγ).
The initial condition is a Gaussian shape given by Eq. (C.1.3) with P0 =
5552 W, T0 = 10 fs, and λp = 1064 nm. The calculation domain stretches
from, λmin = 535.8 nm to λmax = 75.29 µm. Care must be taken to
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ensure ωp = ω0, because the given values of β2 and β3 are calculated
at this expansion frequency. The time step is dt ≈ 1.8 fs and Nt = 210

points are on the time-/frequency grids. Finally, the propagation distance
is L = 10 cm. The results are shown on Fig. B.1-left and right.
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Figure B.1: Left: Contour plot of spectral development as function of propaga-
tion distance. Right: Spectrum after L = 10 cm. Red vertical dashed line marks
pump.

B.2.3 GNLSE Implementation

1 function dC_tilde_IAP_dz =GNLSE(z,C_tilde_IAP ,s,NLOpParams )

2
3 L=s.L;R_Omega= NLOpParams .R_Omega ;gamma=NLOpParams .gamma;

4 w0=s.w_0;W=s.Omega; % axes and data is loaded in scope of

GNLSE

5
6 C_tilde = C_tilde_IAP .* exp(L*z);

7 C = fft(C_tilde);

8 Int = abs(C).^2;

9
10 convol = C.* fft(R_Omega .* ifft(Int));

11 dC_tilde_IAP_dz =1i*gamma .*(1+W/w0).* ifft (convol).* exp(-L*z);

% RHS of full GNLSE in the IAP.

12
13 end
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B.2.4 NLSE Implementation

1 function dC_tilde_IAP_dz =NLSE (z,C_tilde_IAP ,s,NLOpParams )

2
3 % axes and data is loaded in scope of GNLSE

4 L=s.L;gam=NLOpParams .gamma; w0=s.w_0;W=s.Omega;

5
6 C_tilde = C_tilde_IAP .* exp(L*z);

7 C = fft(C_tilde);

8
9 dC_tilde_IAP_dz =1i*gam.* ifft (C.* abs(C).^2) .*exp(-L*z); % RHS

of NLSE in the IAP.

10
11 end



Appendix C

Fourier Transforming

It is essential, when working with the generalized nonlinear Schrödinger
equation (GNLSE), and building a numeric code that solves it, to be well
familiar with both continues Fourier transform (FT) and discrete Fourier
transform (DFT)1. The continues FT pair, transforming between time
and angular frequency, used in this thesis is defined in Eq. (2.3.2) but
repeated here for convenience

f̃(ω) = F {f(t)} =

∫

f(t)eiωtdt and

f(t) = F−1
{

f̃(ω)
}

=
1

2π

∫

f̃(ω)e−iωtdω.

As a note to the reader of this text, integration with no specified bound-
aries is implied to mean integration from −∞ to ∞, i.e.,

∫

=
∫∞
−∞ over

whichever integration variable is in question.
Numerical implementations of FTs are inherently DFTs, and working

with DFT requires a certain amount of experience. Gaining this expe-
rience, and in particular making results of DFT comparable to results
of continues FT, can cause serious frustrations and be exhaustively time
consuming.

In this appendix, I will walk through some of the basics of the FT,
starting with a few properties of common continuous functions found
in nonlinear optics and some basic useful relations of FTs. After this, a

1One should keep a mental footnote that the framework of understanding the ana-
lytical mathematics and physics related to the GNLSE builds on the continues FT.
Thus, typically, the researchers mind imagine a world of continues variables and FTs.
The computer world, however, is discrete.
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short review of Parseval’s theorem is given because its physical meaning is
significant in this setting. Parseval’s theorem defines the energy spectral
density (ESD), and it can be used to check that results from DFTs are
scaled to be consistent with expected results from continuous FTs. In
section C.4 and onwards Matlab’s DFT algorithm is reviewed, definitions
of time and frequency axes are given, and implementation examples are
printed along with a corresponding demonstration. This appendix, and
in particular the last sections, can be very beneficial to read for people
struggling with DFTs in Matlab.

C.1 Common Pulse Shapes

In nonlinear optics one often encounters two types of bell-shaped functions
used to describe the complex electric field A(t) in the time domain. The
envelope function A(t) is defined in such a way that P (t) = |A(t)|2 is the
instantaneous power [6, 23], and due to this definition the energy carried
by such a pulse is E =

∫

|A(t)|2dt, i.e., the area under the |A|2-curve.

C.1.1 The Gaussian Shape

The temporal power distribution of the electric field envelope of a spatially
coherent laser pulse is often modelled as a chirp-free FT-limited Gaussian
function. A laboratory measurement will typically measure the power-
distribution of such a pulse, and define it as

|A(t)|2 = P (t) = P0e
− t2

t20 (C.1.1)

where P0 is the peak power. Such a laser pulse will often be characterized
by its full-width-at-half-maximum (FWHM) power-level, and in this case
it is found from even symmetry of the Gaussian, to be t

FWHM
= 2t+,

where t+ > 0 is the positive solution to P (t+) = P0/2. Thus,

P0e
−

t2+

t2
0 =

P0

2
⇒ t+ =

√
ln 2t0 > 0 and

t
FWHM

= 2
√
ln 2t0 ≈ 1.665t0. (C.1.2)

The (phase-free or chirp-free) field envelope of the laser pulse is

A(t) =
√

P (t) =
√

P0e
− t2

2t20 . (C.1.3)
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Notice here, the factor of 2 that appears in the denominator of the ex-
ponential of the electric field envelope above, and does not appear in the
power distribution (C.1.1). This factor of 2 can easily become a source of
confusion. By usual convention it belongs in the electric field envelope.

The FT of the electric field envelope is given by

Ã(ω) =

∫

A(t)eiωtdt =
√

P0

∫

e
−

(

t2

2t2
0
−iωt

)

dt =

√

2πP0t0e
−

(ωt0)
2

2 (C.1.4)

where Eq. (18.75) from [96] was used in the last equality. The ESD (see
section C.3 about Parseval’s theorem) is given by

ESD(ω) = |Ã(ω)|2 = 2πP0t
2
0e

−(ωt0)2 . (C.1.5)

The FWHM of the ESD is then found by the same manipulations as in
the time domain to give

ωFWHM =
2
√
ln 2

t0
=

4 ln 2

t
FWHM

. (C.1.6)

By using Eq. (18.72) from [96], the energy in a Gaussian pulse is found
to be (for the second equality see Eq. (C.3.3))

E =

∫

P0e
− t2

t20 dt =
1

2π

∫

2πP0t
2
0e

−(ωt0)2dω =
√
πP0t0. (C.1.7)

C.1.2 The sech Shape

In the scope of nonlinear optics, a soliton is usually referred to as one of
the solution to the nonlinear Schrödinger equation (NLSE), which can be
found analytically. The most simple (or the fundamental) soliton is given
by a secant hyperbolic function. The (phase-free) electric field envelope
and power distribution of a fundamental soliton is [6]

A(t) =
√

P0sech

(

t

t0

)

⇒ P (t) = P0sech
2

(

t

t0

)

. (C.1.8)

By definition it holds that sech(x) = 1/ cosh(x) = 2/(e−t/t0+et/t0), where
cosh is the cosine hyperbolic function. As for the Gaussian function,
symmetry dictates that t

FWHM
= 2t+, where it can be derived that t+ is
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found from the solution to u2 − 6u + 1 = 0 with u = exp (2t+/t0) that
leads to t+ > 0. The end result is

t
FWHM

= 2t+ = ln(3 + 2
√
2)t0 ≈ 1.7627t0 (C.1.9)

which is the same as in [6]. The FT of the sech is

Ã(ω) =

∫

√

P0sech

(

t

t0

)

eiωtdt = 2
√

P0

∫ ∞

0

cos(ωt)

cosh
(

t
t0

)dt

= π
√

P0t0sech

(

ωπt0
2

)

(C.1.10)

where it was used that exp(iωt) = cos(ωt) + i sin(ωt), that sech(t/t0) =
1/ cosh(t/t0) is an even function, that a product of two even functions is
even, and finally Eq. (18.113) [96]. The ESD is

ESD(ω) = |Ã(ω)|2 = π2P0t
2
0sech

2

(

ωπt0
2

)

. (C.1.11)

By same reasoning as in the time domain, the frequency FWHM ESD
level is

ω
FWHM

=
2 ln(3 + 2

√
2)

πt0
. (C.1.12)

The energy carried by a soliton is

E =

∫

P0sech
2

(

t

t0

)

dt =

1

2π

∫

π2P0t
2
0sech

2

(

ωπt0
2

)

dω = 2P0t0 (C.1.13)

where it was used that
∫

sech2(u)du = 2. For the second equality above
see Eq. (C.3.3).

C.2 A Few Needed Relations

C.2.1 The δ-function

The Dirac delta function is given by

δ(ω) =
1

2π

∫

eiωtdt, and has the property

f̃(ω0) =

∫

f̃(ω)δ(ω − ω0)dω. (C.2.1)
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In particular for f̃(ω) = 1 then f̃(ω0) = 1 =
∫

δ(ω − ω0)dω is the area
under the δ-function for any ω0.

C.2.2 Transforming the Differential Operator

With the used definition of the FT pair, the differential operator ∂t trans-
forms as

F
{

∂A

∂t

}

=

∫

∂A

∂t
eiωtdt =

[

Aeiωt
]∞

−∞
− iω

∫

Aeiωtdt = −iωÃ. (C.2.2)

where the [Aeiωt]-term vanishes if A is a square integrable function, which
is a requirement for it to have a FT. The process can be repeated k times
to yield ∂k/∂tk → (−iω)k. The reverse will also be true, so that

F−1
{

−iωÃ
}

= F−1F
{

∂A

∂t

}

=
∂A

∂t
(C.2.3)

and −iω → ∂/∂t.

C.2.3 FT of Real Valued Function

For a real valued function f(t) of the real variable t, one has

f̃∗(ω) =

[
∫

f(t)eiωtdt

]∗

=

∫

f(t)ei(−ω)tdt = f̃(−ω) (C.2.4)

and from this it follows that

f̃ ′(ω)− if̃ ′′(ω) = f̃ ′(−ω) + if̃ ′′(−ω) ⇒
f̃ ′(ω) = f̃ ′(−ω) and f̃ ′′(ω) = −f̃ ′′(−ω) (C.2.5)

so the real part, f̃ ′, of f̃(ω) is even and the imaginary part, f̃ ′′, is odd.

C.3 Parseval’s Theorem

Parseval’s theorem is very important to bare in mind, because it defines
the ESD, and because it can be used to check that ones implementations
of DFTs are consistent with what is expected from continues FTs. At
first sight the mathematical formulation can seem cumbersome; for two
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complex-valued functions f(t) and g(t) of the real variable t one can
calculate

∫

f(t)g∗(t)dt =

∫

1

2π

∫

f̃(ω)e−iωtdω

[

1

2π

∫

g̃(ω′)e−iω′tdω′

]∗

dt

=
1

(2π)2

∫

f̃(ω)g̃∗(ω′)e−i(ω−ω′)tdωdω′dt. (C.3.1)

Integrating over t, recognizing the Dirac δ-function (see Eq. (C.2.1)), and
then integrating over ω′ will give

∫

f(t)g∗(t)dt =
2π

(2π)2

∫

f̃(ω)

[
∫

g̃∗(ω′)δ(ω′ − ω)dω′

]

dω

=
1

2π

∫

f̃(ω)g̃∗(ω)dω. (C.3.2)

Now one can comprehend why Parseval’s theorem is important. In the
special case when f = g = A(t), Parseval’s theorem straight forwardly
states that the energy in a pulse

E =

∫

|A(t)|2dt = 1

2π

∫

|Ã(ω)|2dω =

∫

|Ã(ν)|2dν (C.3.3)

is the same in both the time- and frequency (ν = ω/(2π)) domain. This
physical interpretation, that may seem obvious, makes a simple and very
powerful mnemonic for the theorem. In another formulation, Parseval’s
theorem states that the area under the power distribution |A(t)|2 must be
the same as the area under the |Ã(ω)|2-curve (albeit the factor of 1/(2π)).
Parseval’s theorem thus defines the energy spectral density ESD(ω) =
|Ã(ω)|2 as the frequency domain analogue to the time domain power
distribution. Calculating the energy in both time- and frequency domain
by integration of |A(t)|2 and |Ã(ω)|2 respectively can be used to check if
the results of DFTs are scaled correctly to be compared with results from
continues FTs.

Finally, one should take care not to confuse the ESD with the FT
of the power-distribution P̃ (ω) = F {P (t)} 6= |Ã(ω)|2. The only place, I
have encountered, where one needs to calculate the FT of the power dis-
tribution is when finding the convolution integral in the GNLSE including
the delayed Raman response.

C.3.1 ESD in Wavelength Domain

The ESD is often visualized, as a function of wavelength, i.e., as ESD(λ).
To keep the definition of ESD(λ) in thread with Parseval’s theorem, so
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that the area under the ESD(λ)-curve is the total energy in the spectrum,
then

E =

∫ ∞

0
ESD(λ)dλ =

1

2π

∫ ∞

0
|Ã(ω)|2dω (C.3.4)

where only positive wavelengths are included. To identify ESD(λ) the
following transformation is needed

λ =
2πc

ω
⇒ dλ

dω
=

d

dω

(

2πc

ω

)

⇒ dω = −2πc

λ2
dλ. (C.3.5)

Inserting this in (C.3.4) while the integration limits transform as ω =
0 ⇒ λ = ∞ and ω = ∞ ⇒ λ = 0 then

E =

∫ ∞

0
ESD(λ)dλ = −

∫ 0

∞
c
|Ã(λ)|2

λ2
dλ =

∫ ∞

0
c
|Ã(λ)|2

λ2
dλ. (C.3.6)

Thus, the ESD in the wavelength domain can be read off above to be
ESD(λ) = c|Ã(λ)|2/λ2. The ESD is a characteristic of a single spectrum,
or equivalently a single shot in a pulsed system. The power spectral
density (PSD), i.e., the ESD per time instead of per shot, is given by
PSD = frepESD, where frep is the seed laser repetition rate.

C.4 Fourier Transform in Matlab

When a function is sampled, and known function values are separated by
a constant amount ∆t (or ∆ω), the continues FTs are replaced by DFTs.
The sampling causes the following substitutions to be made, dt → ∆t (or
dω → ∆ω) and

∫

→∑

so that

f̃(ωk) =

∫

f(t)eiωktdt ≈
∑

n

fne
iωktn∆t = f̃k for k, n = 1, . . . , N

(C.4.1)

i.e., the k’th point in the vector f̃k is an approximation of the value
f̃(ω = ωk) of the continues FT.

The DFT implemented by default in Matlab is known as the fast
Fourier transform (FFT), with function names fft(), and ifft() for in-
verse Fourier Transform (iFT). By definition they are given by [97]

Xk =

N
∑

j=1

xje
−

2πi(j−1)(k−1)
N and xj =

1

N

N
∑

k=1

Xke
2πi(j−1)(k−1)

N (C.4.2)
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respectively, where j and k are summation variables and N is the number
of samples in the vectors xj and Xk. The DFT-algorithms have implicit
periodic boundary conditions, i.e, the k = n + N ’th (j = n + N ’th)
point is the same as the k = n’th (j = n’th), where n is some integer
in the range from 1 to N , which can be realized by insertion. These
boundary conditions can cause cyclic effects in the calculation domain
during solution of the GNLSE.

Because Eq. (C.4.2) differ slightly from the sum in Eq. (C.4.1) that
approximates the continues FT used here, an implementation of Matlab’s
DFTs, that cause output to be directly comparable to results from the
continuous FT, require a few manipulations:

1. The sign convention in Eq. (2.3.2) is opposite of the one imple-
mented by Matlab. Strictly speaking this is a pedantic concern,
and not so significant, but can be overcome by using ifft() for FT
and fft() for iFT.

2. The normalization by the number of samples N in the last expres-
sion in Eq. (C.4.2) should be replaced by proper normalization with
2π.

3. The end result should be correctly scaled with the sample spacing
∆t (∆ω) for FT (iFT).

In a hybrid formulation, that mixes Matlab-syntax and regular math
slightly, the above points are summarized as

f̃ = ifft(f)N∆t and f = fft(f̃)
∆ω

2π
(C.4.3)

where f (f̃) is the vector for FT (iFT).

A final word of notice; by inserting j = 1 (k = 1) in Eq. (C.4.2),
it is seen that the first element of the vector for FT (iFT) corresponds
to the ω = 0 (t = 0) -component. This means that when arranging a
vector for FT the first element must be the element corresponding to
t = 0 (ω = 0). If a vector is transformed in Matlab, and the first element
does not correspond to t = 0 (ω = 0), the result will be imposed with
a phase factor corresponding to the displacement. This is realized from
the following calculation, illustrating the FT of a function with a time
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domain displacement,

∫

f(t− t0)e
iωtdt =

∫

f(q)eiω(q+t0)dq

= eiωt0
∫

f(q)eiωqdq = eiωt0 f̃(ω). (C.4.4)

A similar phase factor will be imposed on the iFT of a vector with a
frequency domain displacement. It is usually for rearranging vectors, with
the purpose of bringing the t = 0 (ω = 0) element into the first slot of the
vector before transforming it, that one uses Matlab-functions fftshift()
and ifftshift().

C.4.1 Making the Time and Frequency Axes

When finding the FT of a discrete signal, where samples are spaced by
∆t, a corresponding discrete grid of frequencies must be calculated to
ensure a correct spectral representation of a FT. This section describes
how.

The normalized frequencies corresponding to a DFT, u, given by

u =
ω

ωs
=

ω∆t

2π
(C.4.5)

are imposed with the requirement |u| ≤ 1/2 [98]. In the above expression
ωs = 2πFs, where Fs = 1/∆t is the sampling frequency, and ω is the
physical frequency. This gives a bandwidth of uB = 1 or ωB = ωs.
With N samples, the normalized frequency step is ∆u = 1/N , while the
physical angular frequency separation becomes

∆ω =
ωB

N
=

2πFs

N
=

2π

N∆t
. (C.4.6)

The N normalized frequencies defining the axis, are then placed equidis-
tantly from u = −1/2 in increments of ∆u. The physical axis is then
obtained from multiplication by ωB = N∆ω. All in all, one ends with
the general definition of a zero-centered axis (the N/2 + 1’th element is
zero), here in Matlab-notation:

x = -(N/2):(N/2-1)* dx;

where x can be any of the axes variables needed. Notice, that N/2 is an
integer, if one takes N = 2k, with positive integer k. This is a wise choice
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because Matlab will pad a vector for FT with zeros until nearest larger 2k

number of samples. Notice, that the definition above is zero-centered, and
must be rearranged using fftshift() (or ifftshift()) before issuing
the DFT or the phase mentioned in Eq. (C.4.4) will be imposed on the
result.

C.4.2 Using the Provided Matlab Functions

In sections C.4.3 and C.4.4 are provided two Matlab-functions that per-
form a DFT on samples from a continues function and scale the results, so
they are comparable to the expected result from FT of a continues func-
tion. The functions take a zero-centered axis-vector, and corresponding
function values, and return the correctly scaled FT (iFT). If need be, the
functions will also return the corresponding axis for the FT (iFT). The
performance of the functions are illustrated in Fig. C.1, where a Gaus-
sian and sech function (see Eqns. (C.1.3) and (C.1.8)) are defined in the
time domain, transformed to the frequency domain and transformed back
again. The data shown can be generated by running:

t0_g = 1; t0_s = 1/2* t0_g ;P0 = 1;Nt = 2^8; Tp = 20;dt = Tp/Nt;

t = (-(Nt /2):( Nt/2-1)).’ * dt;

y_analy = sqrt (P0) * exp(-t.^2/(2* t0_g ^2));

y2_analy = sqrt (P0)*sech (t/t0_s );

[y_tilde omega] = funcAgrawalFT (t,y_analy);

y2_tilde = funcAgrawalFT (t,y2_analy );

y_tilde_analy = sqrt (2*pi*P0)*t0_g *exp(-( omega*t0_g ).^2/2);

y2_tilde_analy = pi*sqrt (P0)*t0_s *sech (omega*pi*t0_s /2);

y = funcAgrawaliFT (omega ,y_tilde );

y2 = funcAgrawaliFT (omega ,y2_tilde );
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Figure C.1: Left: Gaussian and sech functions given by (C.1.3) and (C.1.8)
plotted along with results of F−1F {f(t)} = f(t) from Matlab. Right: Expected
analytical results from (C.1.4) and (C.1.10) and results of F {f(t)} from Matlab.
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C.4.3 funcAgrawalFT.m

1 function [f_tilde , omega]= funcAgrawalFT (t,f)

2
3 %%% Function for performing the Fourier Transform (FT)

according to

4 %%% the definition of the continues FT in in this work .

5
6 Nt=length(t); % Number of points on time grid

7 Dt=abs(t(2)-t(1)); % Time step

8
9 Domega =2*pi/( Nt*Dt); % Angular freq . step .

10 omega=(-( Nt /2) :(Nt/2-1)).’* Domega; % Angular freq . axis

11
12
13 f= fftshift (f); % manipulating position of t=0- element

14 f_tilde =ifft (f)*Nt*Dt; % Performing transform and scaling

15 f_tilde =ifftshift (f_tilde); % re -manipulating position of

omega = 0-element

16
17 end

C.4.4 funcAgrawaliFT.m

1 function [f, t]= funcAgrawaliFT (omega ,f_tilde )

2
3 %%% Function for performing the inverse Fourier Transform (FT

)

4 %%% according to the definition of the continues FT in this

work .

5
6 Nomega=length(omega); % length of signal

7 Domega=abs(omega(2) -omega (1)); % anuglar freq . step

8
9 Dt =2* pi/( Nomega*Domega); % time step

10 t=(-( Nomega /2) :( Nomega /2-1)).’*Dt; % time axis

11
12
13 f_tilde =fftshift (f_tilde); % Manipulating position of DC -

element

14 f_tilde =fft(f_tilde )*Domega /(2* pi); % Performing transform

15 f= ifftshift (f_tilde ); % Re - manipulating position of DC -

element

16
17 end
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Appendix D

Expansion Frequency and
Pseudo Frequency Axis

In the literature it is often times found that the expansion frequency
ω0 of the calculation domain used in solving the generalized nonlinear
Schrödinger equation (GNLSE), coincides with the frequency of the pump
ωp [6, 14]. In this appendix it is investigated why ωp is not always use-
ful as the expansion frequency, and it is reviewed, how to determine an
expansion frequency that is always useful.

D.1 Identical Expansion and Pump Frequency

Firstly, the expansion frequency ω0 is the center or mean frequency of the
calculation domain, or equivalently, it is the zero-frequency component of
the pseudo frequency axis Ω, because of the definition Ω = ω−ω0, where
ω is the physical angular frequency. When solving the GNLSE, Fourier
transforms (FTs) are performed between the retarded time frame T and
pseudo frequency Ω (see appendix E page 123). A pulse envelope, e.g.,
defined as in (C.1.3) and used as initial condition for solving the GNLSE,
has a spectrum given by Eq. (C.1.4), and repeated here

A =
√

P0e
− T2

2t20 ⇒ Ã(Ω) =
√

2πP0t0e
−

(Ωt0)
2

2 . (D.1.1)

It is clearly seen that the spectral maximum is at Ω = 0 or ω = ω0, and
so, if one has defined the calculation domain with ω0 = ωp, the spectrum
peaks at ωp and it is correctly placed on the pseudo frequency axis directly
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from its FT. A requirement on the calculation domain however, must be,
that the smallest frequency ωmin is positive. This means that

ω0 =
ωmax + ωmin

2
⇒ 0 < ωmin = 2ω0 − ωmax ⇒

ωmax < 2ω0 (D.1.2)

and thus, if ω0 = ωp and one has a pump wavelength of, e.g., λp =
2πc/ωp = 2 µm then the calculation domain can never stretch below
λp/2 = 1 µm. A priori, one can easily expect broad band supercontinuum
(SC) generated by a pump at λp = 2 µm to stretch below λmin = 1 µm,
and thus one cannot always allow a calculation domain with ω0 = ωp.

D.2 Non-identical Expansion and Pump

Frequency

Another, and more general approach to finding an expansion frequency
ω0, than just taking ω0 = ωp as outlined above, is to define a desired
wavelength range for the calculation domain at the onset of a simula-
tion, and letting this determine the expansion frequency. Such a proce-
dure is highly intuitive and also practical, because the linear propagation
properties of the fiber under investigation is often only known in a finite
wavelength range, and the calculation domain should be contained in this
range of known properties. Fig. D.1 illustrates how the conversion from
a physical wavelength window to the pseudo frequency axis is performed,
while ensuring purely positive physical frequencies (if λmax > λmin > 0).
Generally this procedure will lead to ω0 6= ωp.

As in the last section, however, the FT of the initial condition, e.g.,
given by (D.1.1), returns a pulse with an energy spectral density (ESD)
maximum at ω0, which is now different from the desired pump frequency
ωp. To correct this, so the ESD maximum of the initial condition is
positioned correctly at the pump frequency on the pseudo frequency axis,
a chirp must be added to it, according to the frequency domain analogue
of the rule in Eq. (C.4.4). The situation is illustrated in Fig. D.1 where
an initial condition is translated from the center on the pseudo frequency
axis and to Ω = −(ω0 − ωp).
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Figure D.1: Illustration of the relation between the wavelength and the pseudo
frequency axes with bandwidth ΩB = ωmax − ωmin.
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Appendix E

Why the Pump Frequency
Appears in the Linear
Operator

At a first glance when inspecting the generalized nonlinear Schrödinger
equation (GNLSE) (Eq. (2.3.5)) and corresponding definition of the linear
operator (Eq. (2.3.8))

˜̂
L(ω) = i {β(ω)− [β(ω0) + β1(ωp)(ω − ω0)]} −

α(ω)

2

it seems that the pump frequency ωp appears out of place in a Taylor-
series expansion

β(ω)− [β(ω0) + β1(ω0)(ω − ω0)] =
∑

k≥2

βk(ω0)

k!
(ω − ω0)

k with βk =
dβ

dω

of the propagation constant β. The statement in Eq. (2.3.8), however,
is correct, and in this appendix, I give a short derivation of why this is
the case. It must be noted here, that the expansion frequency ω0 is the
mean frequency in the calculation domain (see appendix D page 119),
and in this work, it is defined from the wavelength window desired in a
given simulation, while the pump frequency ωp is physically determined
by whatever pump source is investigated.
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˜̂
L

E.1 The Retarded Time Frame

A comprehensive way to see how the pump frequency ωp enters the linear
operator in the GNLSE (Eq. (2.3.5)), is to follow the derivation for the
frequency domain electric field envelope Ã(z, ω) found in [6]. Starting
from Eq. (2.3.22) in [6], we have

∂Ã

∂z
= i [β(ω)− β0] Ã+ i∆βÃ (E.1.1)

where β0 = β(ω0) and ∆β is a term that will become the nonlinear oper-
ator [6]. The term i[β − β0] accounts for the phase change accumulated
during propagation caused by dispersion, and will become the linear op-
erator. In this derivation, attenuation is ignored entirely, and this can be
done without loss of generality. Furthermore, also the nonlinear effects
can be ignored without loss of generality, and this amounts to ∆β = 0
(γ = 0). With ∆β = 0 Eq. (E.1.1) accounts only for dispersion induced
changes to Ã, during propagation.

The propagation constant β(ω) can be Taylor-expanded around any
arbitrary ω0 by

β(ω) = β0 +
∑

k≥1

Ωk

k!

dkβ

dωk

∣

∣

∣

∣

ω0

(E.1.2)

where Ω = ω − ω0. Inserting this Taylor-expansion in (E.1.1), and
performing a Fourier transform (FT) to the time domain, using that
Ωk → (i∂/∂t)k (see Eqs. (C.2.2) and (C.2.3)), then

∂A

∂z
= i

[

β0 + iβ1(ω0)
∂

∂t
− β2(ω0)

2

∂2

∂t2
−

i
β3(ω0)

3!

∂3

∂t3
+ . . .− β0

]

A. (E.1.3)

Introducing the coordinate transform

Z = z ⇒ ∂Z = ∂z, and

T = t− z

s
⇒ ∂T = ∂t, and ∂T = −∂z

s
(E.1.4)

where s is some arbitrary velocity, signifying the speed of the moving time
window T , will give

∂A

∂z
=

∂A

∂Z

∂Z

∂z
+

∂A

∂T

∂T

∂z
=

∂A

∂Z
− 1

s

∂A

∂T
(E.1.5)
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by using the chain rule. For notational convenience the substitution
Z → z is made, i.e., lower case z is considered the longitudinal spatial
coordinate. Inserting in (E.1.3) one gets

∂A

∂z
− 1

s

∂A

∂T
= i

[

β0 + iβ1(ω0)
∂

∂T
− β2(ω0)

2

∂2

∂T 2
+ . . .− β0

]

A. (E.1.6)

Going back to the frequency domain (notice, that now T (and not t) is
transformed into Ω), then

∂Ã

∂z
+

iΩ

s
Ã = i

[

β0 + β1(ω0)Ω +
β2(ω0)

2
Ω2 + . . .− β0

]

Ã. (E.1.7)

All but the last term in the parentheses above is the Taylor-expansion of
β from Eq. (E.1.2), and thus

∂Ã

∂z
= i

[

β(ω)−
(

β0 +
Ω

s

)]

Ã. (E.1.8)

Before solving Eq. (E.1.8), one may chose an arbitrary propagation-speed
s, for the reference frame T , but if the scope of solving it, is to observe
a meaningful result for the pulse development, one must take it to be at
least approximately equal to the speed the pulse envelope travels down the
fiber. A way to ensure the reference frame T moves with approximately
this speed, is to use the group velocity at the pump frequency, so

s = vg =
1

β1(ωp)
(E.1.9)

since this is the speed the light pulse will travel, at least initially, until
significant spectral broadening sets in. So then, finally

∂Ã

∂z
= i {β(ω)− [β(ω0) + β1(ωp)(ω − ω0)]} Ã. (E.1.10)

It has now been illustrated why ωp appears in the
˜̂
L operator (Eq. (2.3.8)).

It appears here, to account for the propagation speed of the retarded
time frame T and not because only the k ≥ 2 terms of the Taylor-
expansion (E.1.2) are needed in linear operator for the GNLSE. In the
case where one deliberately chooses ω0 = ωp, then it turns out, that only
the k ≥ 2 terms are needed, but otherwise not. It is, however, not always
possible to have ω0 = ωp (see appendix D page 119).
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Notice, that results presented in the time frame of Eq. (E.1.4) with
s = vg(ωp), are all presented relative to the frequency component at the
pump frequency, and because of it, all illustrations in this work of a time
domain visualization are presented as a delay. This is a delay, that can
be both positive and negative.



Appendix F

Conserved Quantity in the
IAP GNLSE

It has been shown that the generalized nonlinear Schrödinger equation
(GNLSE) for the complex electric field envelope A(z, T ) conserves a quan-
tity called the photon number [36] when loss can be neglected and the

linear operator
˜̂
L is not a function of propagation distance (i.e., no fiber

taper etc.). The transformation into the interaction picture (IAP) and
changing the GNLSE to better include the frequency dependence of the
effective area as suggested in [17], warrants a correction to the usual def-
inition of the photon number. In this appendix an expression for the
photon number in the context of this modified version of the GNLSE in
the IAP is derived. This quantity is important because it is used to check,
if a GNLSE solver generates trustworthy results.

F.1 Deriving the Photon Number in the IAP
GNLSE

The IAP GNLSE is found in Eq. (2.3.5)

∂C̃I

∂z
= iγ̄e−z

˜̂
L

[

1 +
ω − ω0

ω0

]

F
{

C(T )

∫

R(T − T ′)|C(T ′)|2
}

(F.1.1)

with
˜̂
L and γ̄ defined in Eqs. (2.3.8) and (2.3.9) respectively. It can be

written as

∂C̃I

∂z
= ibe−z

˜̂
Lκg̃ (F.1.2)
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when the following abbreviations

g̃ = g̃(ω) = F
{

C(T )

∫

R(T − T ′)|C(T ′)|2
}

(F.1.3)

and

γ̄(ω)

[

1 +
ω − ω0

ω0

]

=
n2n0

c
√

Aeff(ω0)

ω

neff(ω)
√

Aeff(ω)
= bκ(ω) (F.1.4)

are used. Now starting from (F.1.1), multiplying on both sides by C̃∗
I and

adding the complex conjugate then

C̃∗
I

∂C̃I

∂z
+ c.c. = ibe−z

˜̂
LκC̃∗

I g̃ + c.c. ⇒

∂|C̃I |2
∂z

= ibκe−z(
˜̂
L+

˜̂
L∗)C̃∗g̃ + c.c. (F.1.5)

where it was used that ∂z|C̃I |2 = ∂z(C̃
∗
I C̃I) = C̃∗

I ∂zC̃I + C̃I∂zC̃
∗
I . Now

using
˜̂
L+

˜̂
L∗ = 2Re(

˜̂
L) then

∂|C̃I |2
∂z

= bκe−2zRe
˜̂
L
(

iC̃∗g̃ + c.c.
)

= ibκe−2zRe
˜̂
L
(

C̃∗g̃ − C̃g̃∗
)

. (F.1.6)

If loss can be neglected then Re(
˜̂
L) = 0 and thus, dividing by bκ(ω) and

integrating over angular frequency then

∂

∂z

∫ |C̃I |2
bκ

dω = i

∫

(

C̃∗g̃ − C̃g̃∗
)

dω. (F.1.7)

Next comes the calculation of the integrand on the right-hand side (RHS)
above. We start by considering the function g̃(ω) from (F.1.3) and ini-
tially look at the convolution. One has

conv =

∫

R(T − T ′)|C(T ′)|2dT ′

=

∫

dT ′ 1

2π

∫

R̃(ω1)e
−i(T−T ′)ω1dω1

1

2π

∫

C̃(ω2)e
−iω2T ′

dω2

×
[

1

2π

∫

C̃(ω3)e
−iT ′ω3dω3

]∗

(F.1.8)
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or

conv =
1

(2π)3

∫

dω1dω2dω3R̃(ω1)C̃(ω2)C̃
∗(ω3)e

−iω1T

∫

dT ′ei(ω1−[ω2−ω3])T ′

=
2π

(2π)3

∫

dω1dω2dω3R̃(ω1)C̃(ω2)C̃
∗(ω3)e

−iω1T δ(ω1 − [ω2 − ω3])

=
1

(2π)2

∫

dω2dω3R̃(ω2 − ω3)C̃(ω2)C̃
∗(ω3)e

−i(ω2−ω3)T (F.1.9)

where integration over T ′ was done, and where Dirac’s delta-function δ(ω)
was introduced (see Eq. (C.2.1) page 110) before integrating over ω1. The
time domain version of Eq. (F.1.3) is

g(T ) = C(T ) · conv =
conv

2π

∫

C̃(ω4)e
−iω4Tdω4

=
1

(2π)3

∫

dω2dω3dω4R̃(ω2 − ω3)Σe
−i(ω2−ω3+ω4)T (F.1.10)

where another abbreviation, Σ = Σ(ω2, ω3, ω4) = C̃(ω2)C̃
∗(ω3)C̃(ω4),

was made. Performing Fourier transform (FT) then

g̃(ω) =

∫

dTeiωT
1

(2π)3

∫

dω2dω3dω4R̃(ω2 − ω3)Σe
−i(ω2−ω3+ω4)T

=
1

(2π)3

∫

dω2dω3dω4R̃(ω2 − ω3)Σ

∫

dTei(ω−[ω2−ω3+ω4])T

=
1

(2π)2

∫

dω2dω3dω4R̃(ω2 − ω3)Σδ(ω − [ω2 − ω3 + ω4]) (F.1.11)

where integration over T was done in the last line. The δ-function can
be written as δ(ω3 − [ω2 + ω4 − ω]) and thus, by integration over ω3 one
will get

g̃(ω) =
1

(2π)2

∫

dω2dω4R̃(ω − ω4)Σ(ω2, ω2 + ω4 − ω, ω4) (F.1.12)

Multiplying by C̃∗(ω) and integrating over ω then

∫

dωC̃∗(ω)g̃(ω) =

1

(2π)2

∫

dωdω2dω4R̃(ω − ω4)C̃
∗(ω)C̃(ω2)×

C̃∗(ω2 + ω4 − ω)C̃(ω4). (F.1.13)
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The above expression corresponds to the first term on the RHS of equa-
tion. (F.1.7). From it one can also obtain the second term of (F.1.7) by
complex conjugation, so
∫

dωC̃(ω)g̃∗(ω) =

1

(2π)2

∫

dωdω2dω4R̃
∗(ω − ω4)C̃(ω)C̃∗(ω2)C̃(ω2 + ω4 − ω)C̃∗(ω4) =

1

(2π)2

∫

dωdω2dω4R̃
∗(−[ω4 − ω])C̃(ω)C̃∗(ω2)×

C̃(ω2 + ω4 − ω)C̃∗(ω4). (F.1.14)

Reality of R(T ) ensures that R∗(−ω) = R(ω) (see Eq. (C.2.5)) so

∫

dωC̃(ω)g̃∗(ω) =

1

(2π)2

∫

dωdω2dω4R̃(ω4 − ω)C̃(ω)C̃∗(ω2)×

C̃(ω2 + ω4 − ω)C̃∗(ω4). (F.1.15)

Now renaming the dummy-variables like ω4 ↔ ω,
∫

dωC̃(ω)g̃∗(ω) =

1

(2π)2

∫

dωdω2dω4R̃(ω − ω4)C̃
∗(ω)C̃∗(ω2)×

C̃(ω2 + ω − ω4)C̃(ω4) (F.1.16)

and defining ω5 = ω2 + ω − ω4 so ω2 = ω5 + ω4 − ω and dω5 = dω2, then
∫

dωC̃(ω)g̃∗(ω) =

1

(2π)2

∫

dωdω4dω5R̃(ω − ω4)C̃
∗(ω)C̃(ω5)×

C̃∗(ω5 + ω4 − ω)C̃(ω4). (F.1.17)

Consequently Eq. (F.1.13) and (F.1.17) are identical (make the final in-
tegration variable renaming ω5 → ω2 to make it explicit). By Eq. (F.1.7)
it then follows that

∂

∂z

∫ |C̃I |2
bκ

dω = 0. (F.1.18)
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so

PN (z) =

∫ |C̃I |2
bκ

dω =
c
√

Aeff(ω0)

n2n0

∫

neff(ω)
√

Aeff(ω)
|C̃I |2
ω

dω (F.1.19)

is a constant. The quantity in Eq. (F.1.19) is the ’IAP GNLSE with fre-
quency dependent effective area as in [17]’-analogue of the photon number
introduced in [36]. It can be used as a check on an implementation of
a IAP GNLSE-solver by defining the photon number error

Err(z) =

∣

∣

∣

∣

PN (z)− PN (0)

PN (0)

∣

∣

∣

∣

(F.1.20)

and observing that it stays small over the entire length of propagation in

a simulation ignoring loss and with z-independent
˜̂
L.
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Appendix G

Obtaining Material
Response from Raman Gain
Measurement

This Ph.D.-work is on uncharted territories for this department in the
sense that it is the first Ph.D.-work to incorporate multiple soft-glass
materials like ZBLAN, tellurite or chalcogenide in a solver for the gen-
eralized nonlinear Schrödinger equation (GNLSE). Predictions of super-
continuum generation (SCG) by solution of the GNLSE, requires certain
input, among which, is the response function of the optical fiber material.
The response function R = R(T ) must include both the instantaneous
electronic response and the delayed (Raman) response. The response
function can be deduced from a measurement of the Raman gain profile
for the material, and in this appendix, focus is on how to get from a
measurement of the Raman gain profile, and to a functional form of the
response function R(T ) that can be input to the GNLSE.

G.1 The Math: From Measurement to

Response Function

The Raman gain profile g′R(Ω) (with unit of (Wm)−1) is related to the
imaginary part of the Fourier transform (FT) of the delayed response
function h̃R(Ω) by [6]

g′R(Ω) = 2γfRIm[h̃R(Ω)] (G.1.1)

133



134 Obtaining R(T ) from Measurement

where γ = n2ω
R
p /(cAeff ) is the nonlinear coefficient and fR is the frac-

tional Raman contribution introduced in [69]. In the expression for γ,
ωR
p is the pump frequency used during measurement of the Raman gain

profile and Aeff is the effective area of the fiber mode at this particular
frequency. The FTs used here are defined in Eq. (2.3.2). It must be noted,
that the material response hR(T ) must be a real function, and from FT
theory, it can be shown that mathematically this means h̃R(Ω) = h̃∗R(−Ω)
(see Eq. (C.2.5)), which amounts to the real part of h̃R(Ω) being even,
while the imaginary part is odd. Thus g′R(Ω) from Eq. (G.1.1) is mathe-
matically an odd function. The FT of Eq. (G.1.1) is

∫ ∞

−∞
Im[h̃R(Ω)]e

−iΩTdΩ =
1

2γfR

∫ ∞

−∞
g′R(Ω)e

−iΩTdΩ. (G.1.2)

Using Im[z] = (z − z∗)/(2i),

1

2i

∫ ∞

−∞

(

h̃R(Ω)− h̃∗R(Ω)
)

e−iΩTdΩ =

1

2γfR

∫ ∞

−∞
g′R(Ω) [cos(ΩT )− i sin(ΩT )] dΩ. (G.1.3)

Because g′R(Ω) is odd, one gets

1

2i

∫ ∞

−∞

(

h̃R(Ω)− h̃∗R(Ω)
)

e−iΩTdΩ =
−2i

2γfR

∫ ∞

0
g′R(Ω) sin(ΩT )dΩ ⇒

∫ ∞

−∞

(

h̃R(Ω)− h̃∗R(Ω)
)

e−iΩTdΩ =

2

γfR

∫ ∞

0
g′R(Ω) sin(ΩT )dΩ. (G.1.4)

Rewriting the left-hand side (LHS) above by using the definition of the FTs
we get
∫ ∞

−∞

(

h̃R(Ω)− h̃∗R(Ω)
)

e−iΩTdΩ = 2πhR(T )−
[
∫ ∞

−∞
h̃R(Ω)e

−iΩ(−T )dΩ

]∗

= 2π [hR(T )− h∗R(−T )]

= 2π [hR(T )− hR(−T )] . (G.1.5)

The response function must be causal, on top of being real, and thus one
can conclude from above that for T > 0 we have

2π [hR(T )− hR(−T )] = 2π[hR(T )− 0] = 2πhR(T ). (G.1.6)
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Combining Eq. (G.1.6) and Eq. (G.1.4) one gets

hR(T ) =
1

πγfR

∫ ∞

0
g′R(Ω) sin(ΩT )dΩ, T > 0. (G.1.7)

Furthermore, the causality also dictates that hR(T ) = 0 for T < 0 and
we must demand that hR(T ) is continuous so that hR(0) = 0. All in all
this can be summarized by

hR(T ) =
θ(T )

πγfR

∫ ∞

0
g′R(Ω) sin(ΩT )dΩ, −∞ < T < ∞ (G.1.8)

where θ(T ) is the Heaviside step function. By inserting the expression for
γ and introducing the modal gain gR = g′RAeff (with unit m/W), then

hR(T ) =
cθ(T )

πn2ωR
p fR

∫ ∞

0
gR(Ω) sin(ΩT )dΩ. (G.1.9)

The fractional Raman contribution fR is introduced as a normalization
of the delayed response function and found by requiring that

∫

hR(T )dT = 1 or equivalently,

fR =
c

πn2ωR
p

∫ ∞

0

[
∫ ∞

0
gR(Ω) sin(ΩT )dΩ

]

dT. (G.1.10)

The full material response is then [6]

R(T ) = (1− fR)δ(T ) + fRhR(T ) or

R̃(Ω) = 1− fR + fRh̃R(Ω). (G.1.11)

G.1.1 Material Response of ZBLAN

To demonstrate the procedure outlined above, a conversion from measure-
ment to response function is provided here. Our collaborators at Aarhus
University (AU) have measured the Raman gain profile in a ZBLAN step-
index fiber (SIF) with core diameter 2a = 10.7 µm and a numerical
aperture (NA) of 0.2. The measurement was done with a pump wave-
length of λR

p = 2πc/ωR
p = 1650 nm, and the remaining experimental

details can be found in [59]. A fit to the measured Raman gain gR(Ω) is
also found here, and it is

gR(Ω) = a1e
−

(Ω/(2π)−ν1)
2

2w2
1 + a2e

−
(Ω/(2π)−ν2)

2

2w2
2 (G.1.12)
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Ref. a1 a2 ν1 ν2 w1 w2 fR
[10−11 cm/W] [THz] [THz]

[59] 0.54 0.25 17.4 12.4 0.68 3.5 0.062

Table G.1: Parameters for gain curve fit given by Eq. (G.1.12).

with parameters given in Table G.1. The Gaussian fit is shown in solid
black in the left panel of Fig. G.1 where dots mark the data points mea-
sured at AU. Processing the measured gain profile by using Eqs (G.1.9)
and (G.1.10) finds fR = 0.062 and obtains the FT pair hR(T ) ↔ h̃R(Ω),
defining the full material response function through Eq. (G.1.11), which
is plotted in the right panel of Fig. G.1.
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Figure G.1: Left: Raman gain measurement (dots) from AU and fitted curve
(solid) given by Eq. (G.1.12) [59]. Right: Time domain delayed response hR(T )
(top) and frequency response h̃R(Ω) (bottom) as function of Stokes shift.



List of Acronyms

AU Aarhus University

CW continues wave

DFT discrete Fourier transform

DIRCM directional infrared counter measures

DTU Technical University of Denmark

EDFA erbium doped fiber amplifier

Er erbium

ESD energy spectral density

FEM finite element method

FROG frequency resolved optical gating

FFT fast Fourier transform

FT Fourier transform

FWHM full-width-at-half-maximum

FWM four-wave mixing

Ge germanium

GNLSE generalized nonlinear Schrödinger equation
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GVD group-velocity dispersion

IAP interaction picture

iFT inverse Fourier Transform

IR infrared

LHS left-hand side

LIDAR light detection and ranging

MFD mode-field diameter

MI modulation instability

NA numerical aperture

NLSE nonlinear Schrödinger equation

NLSM nonlinear soliton matching

OPPM one-photon-per-mode

PBG photonic bandgap

PCF photonic crystal fiber

Pr praseodymium

PSD power spectral density

QCL quantum cascade laser

RHS right-hand side

SC supercontinuum

S sulfur

SCG supercontinuum generation

Se selenium
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SIF step-index fiber

SMF single mode fiber

SPM self-phase modulation

SSFM split-step Fourier method

SSFS soliton self-frequency shift

Tm thulium

TPA two-photon absorption

UV ultraviolet

Yb ytterbium

ZBLAN ZrF4BaF2LaF3AlF3NaF

ZD zero dispersion

ZDW zero dispersion wavelength
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