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  When an external tone is presented in proximity to the frequency of a spontaneous otoacoustic emission (SOAE), the SOAE typically
synchronizes to the external tone, a phenomenon known as "entrainment". As the tone moves further away from the SOAE frequency, beating
patterns between the SOAE and the pure tone occur (Long, Hear. Res. 119, 1998). This study investigated perceptual consequences of SOAE
beating and entrainment on the frequency difference limen (FDL), which has been found to improve near an SOAE. SOAE entrainment
patterns were obtained for six subjects with a strong SOAE in the ipsilateral ear and no SOAE in the corresponding frequency range of the
contralateral ear. Hearing thresholds and FDLs were measured ipsi- and contralaterally for nine frequencies covering the entrainment and
beating regions of the SOAE. FDLs systematically improved in the entrainment region, worsened when beating occurred, and improved again
for frequencies further away from the SOAE. No improvement in FDL was found in any of the contralateral ears tested, suggesting that the
effect is of peripheral, rather than of central, origin. The results contradict an earlier hypothesis stating that FDL performance near SOAE
frequencies is governed by a central oversensitivity to the SOAE frequency.
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INTRODUCTION

The existence of sounds originating in the inner ear, known as otoacoustic emissions (OAEs), was predicted by 
Gold (1948) based on the argument that the cochlea was not simply a passive system, but would spontaneously 
produce sounds due to active feedback mechanisms, a prediction later confirmed by Kemp (1978). OAEs can be 
recorded in at least one third of human ears in the absence of external acoustic stimulation (Probst et al., 1991). Such 
spontaneous OAEs (SOAEs) are narrow-band, pure-tone-like sounds, thought to be generated by low-level 
spontaneous hair-cell activity producing a standing wave in the cochlea, and are transmitted via the ossicular chain 
and the tympanic membrane towards the ear canal, where they can be recorded (Kemp, 2008). Although SOAEs are 
not known to serve any functional purpose, there is evidence that they affect the perception of external sounds.

Specifically, Köhler and Fritze (1994) found that the perceived pitch of pure tones close in frequency to an 
SOAE was shifted in the emission ear compared to the pitch of the same pure tones presented in the opposite ear 
containing no SOAE, with upward and downward pitch shifts above and below the SOAE frequency, respectively. 
The same authors reported having observed poorer frequency discrimination at and around the SOAE frequency 
than in frequency regions without SOAE. In contrast, Norena et al. (2002) found that pure-tone frequency 
discrimination systematically improved near an SOAE frequency, such that reduced frequency difference limens 
(FDLs) were observed for monaural stimulation of the emission ear, but also of the contralateral ear containing no 
SOAE. Due to these similar variations in FDL ipsilaterally and contralaterally to the emission ear, Norena et al.
(2002) argued that the observed effect was of a central origin, possibly due to prolonged ongoing stimulation of 
auditory nerve cells tuned to the SOAE frequency throughout life, which might lead to an overrepresentation of that 
frequency at a cortical level and thus facilitate discrimination.

In addition to this suggestion of a central plasticity effect, there is strong evidence that the peripheral interaction 
of SOAEs with external tones is consistent with changes in the perceived quality of pure tones close in frequency to 
an SOAE (e.g., Zurek,1981; Long,1998). Long and Tubis (1988) and Long (1998) recorded ear-canal sound pressure 
fluctuations as a pure tone was swept past an SOAE and observed level-dependent beating patterns between the
SOAE and the external tone. While clear level fluctuations were observed when the tone frequency was sufficiently 
remote from the SOAE frequency, this beating disappeared as the tone approached the SOAE, indicating a 
synchronization of the emission to the tone frequency, a phenomenon known as “entrainment”. Such entrainment 
patterns were consistent with near-threshold pure tones being perceived as “cricket-like” or “rough” in the region of 
beating with the SOAE, while this roughness sensation disappeared and the stimulus quality was tone-like again in 
the entrainment region (Fig. 6 in Long and Tubis, 1988).

In the present study, it was hypothesized that this correspondence between the peripheral interaction of SOAEs 
with external tones and the perceived tonal quality of such tones may be responsible for the variations in FDLs 
observed in the vicinity of SOAEs. If so, the influence of SOAEs on frequency discrimination may be partly of 
peripheral origin and not reflect purely central mechanisms, as argued by Norena et al. (2002). The aims were to (1) 
clarify the conflicting literature reports of elevated vs reduced FDLs around SOAEs, (2) confirm the presence of 
FDL variations in both the ipsilateral and the contralateral ear, and (3) investigate whether FDLs are consistent with 
the beating and entrainment patterns measured at a similar sensation level (SL) in individual subjects.

Using a method similar to that of Long (1998), SOAE entrainment patterns were measured in subjects with a 
clearly identifiable SOAE in one ear and no SOAE in the same frequency range in the opposite ear. Individual
frequency ranges for entrainment and beating for a swept tone at approximately 10 dB SL were then determined, and 
9 test frequencies chosen such that they covered the spectral ranges of entrainment and beating at different rates.
Absolute hearing thresholds (HTs) and FDLs for pure tones at 10 dB SL were then determined at all test frequencies 
in the two ears of the same subjects. If frequency-discrimination performance follows the changes in tonal quality 
observed by Long and Tubis (1988), higher FDLs would be expected in regions of perceivable beating than in the 
entrainment region, and FDLs may decrease again for tone frequencies remote from the SOAE. The details of the 
experimental methods are presented below, followed by the objective and subjective results and a discussion of 
these. In the following, the terms “ipsilateral” and “contralateral” always refer to the ear with the SOAE of interest 
and to the opposite non-emission ear, respectively.
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METHODS

Subjects and Experimental Setup

Thirty subjects were screened for the presence of SOAEs. Six subjects with no reported history of hearing 
difficulties (3 females, ages 24-30 yrs) who had SOAE amplitudes larger than 15 dB above the noise floor and no 
SOAE within a ±100-Hz range in the contralateral ear were selected. All measurements took place inside an IEC 
soundproof and electromagnetically shielded booth. The subjects were seated in a comfortable leaning chair which 
enabled support for the head to reduce noise from movement, and were instructed to remain as quiet as possible
during the measurements. A PC with MATLAB software served as the main platform, with an ASIO sound driver 
and an RME Fireface 800 soundcard for the physical input and output. The RME output was fed into a 2-channel
Etymotic Research ER-10B+ low-noise microphone system via a Tucker Davis Technologies HB7 headphone 
driver. For the OAE measurements, the recorded signal from the ER-10B+ microphone was preamplified (+40 dB)
then passed through a Rockland Model 852 bandpass filter (0.6-5 kHz) and fed into the RME input. The sampling 
frequency was 48 kHz. The system was calibrated using a B&K 4157 ear simulator with a B&K 2669 Falcon Range 
½� microphone preamplifier, a B&K 2636 sound-level meter, and a B&K 4230 calibrator. The measurement and 
analysis methods described below were implemented in MATLAB using the pawavplay software for playback and 
recording. The same equipment was used for objective and behavioral measurements. For the latter, the listeners 
reported their answers via a computer keyboard and were provided visual feedback via a computer screen. The 
monitor was turned off and disconnected from the system during all objective measurements to prevent
electromagnetic interference. All measurements were performed in two sessions on separate days, one for all 
ipsilateral measurements, and one for all contralateral measurements. For each subject, the measurements took place 
in the same order as described below. The duration of the ipsi- and contralateral sessions was about 4.5 and 2.5 
hours, respectively. As SOAEs are known to drift in level and frequency up to 30 min after a probe is inserted into 
or removed from the ear canal (Whitehead, 1991), the subjects kept the ER-10B+ probe or an identical dummy 
probe inside the ipsilateral ear canal throughout the first measurement session, also during breaks.

SOAE Frequency and Level

The SOAE spectrum was first measured in both ears. Prior to this, a 120-s long control recording in the presence 
of a 1-kHz pure-tone at 15 dB SPL was performed to ensure that the levels determined from the measurements were 
accurate. Subsequently, 180-s recordings were obtained without stimulation to obtain the emission spectra. The ipsi-
and contralateral spectra were analyzed and the SOAE center frequency, F0, and level, L0, determined by applying a
power spectrum estimation (PSE) procedure to the recorded ear-canal sound pressure. The PSE method used here 
was based on the Welch method and similar to that used by Talmadge et al. (1993). The discrete time domain signal 
was first divided into segments of 1-s duration and 50% overlap. Artifact rejection was then performed to improve 
the signal-to-noise ratio by ranking segments with respect to peak-amplitude excursion and discarding a percentage
of the highest ranking segments. The subject-dependent percentage of discarded segments varied from 10-40% and 
was selected such that no peak excursions were observable in the remaining segments. Windowing followed by a 
fast Fourier transform were then applied to each segment. The segments were then added and rescaled with a factor 
inversely proportional to the power of the window, to compensate for changes in amplitude due to windowing. The
SOAE level L0 was defined as the spectral peak-amplitude of the SOAE.

Entrainment Patterns

The variations in temporal pressure were recorded in the ipsilateral ear canal while presenting a 60-s ascending
sweep around F0 (±50 Hz). The measured sound pressure was bandpass filtered with a center frequency of F0 and a 
subject-dependent bandwidth between 30 and 60 Hz, chosen such that the entrainment and beating regions were 
visually identifiable. Fullwave rectification was then applied and the temporal envelope was extracted using lowpass 
filtering (20-Hz cutoff). This resulted in a pattern of pressure fluctuations as a function of time, i.e., as the 
instantaneous frequency of the swept tone is increased. The procedure was repeated for sweep levels between -10 
dB and +15 dB relative to L0, in steps of 5 dB. The range of sweep levels generating detectable temporal variations 
was subject dependent, such that between 4 and 6 of these 5-dB steps were measured in each subject.

After the temporal entrainment patterns were obtained, the SOAE measurement in the ipsilateral ear was 
repeated in order to check whether the emission had drifted in frequency and level due to the presence of the probe 
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in the ear canal (Whitehead, 1991). If so, F0 and L0 were adjusted for use in all following measurements, and the 
SOAE frequency and level were assumed to be stable from that point.

Hearing Thresholds

Absolute hearing thresholds (HTs) were measured in the ipsilateral ear using the adaptive single-interval up-
down method (Lecluyse and Meddis, 2009). In this procedure, a single interval containing two pure tones at the 
tested frequency is presented to the subject, the second tone always being 10 dB lower in level than the first tone. 
The task of the subject is to indicate the number of tones heard in each trial, after which the level of the two tones is 
varied adaptively. The 500-ms tones were separated by a 500-ms silent gap and gated with 50-ms on- and offset
ramps. Stepsizes of 10, 6, and 2 dB were used with a total of 7 reversals, providing a threshold accuracy of 2 dB 
(Lecluyse and Meddis, 2009). Two repetitions of the procedure were performed for each test frequency, and the 
final HT was defined as the average threshold over these two repetitions.

Entrainment and Beating Regions

For a given subject, the HT at F0 was determined first, and the entrainment pattern measured for the closest
sweep level to 10 dB SL at F0 was identified. The spectral widths of the entrainment regions below and above F0,
��E- ���� ��E+, were then determined graphically by estimating the frequencies of transition between full
entrainment and intermittent beating. The remaining test frequencies F-4, F-3, F-2, F-1, F1, F2, F3, and F4, were 
calculated by subtracting and adding fixed proportions px of ��E- ������E+, respectively, to F0, such that Fx = F0 �
px��E- for x < 0 and Fx = F0+px��E+ for x > 0. These proportions px were set to 0.75, 3.5, 7, and 14 for |x| equal to 1, 
2, 3, and 4, respectively, such that F-1, F0, and F1 fell in the entrainment region, while perceivable beating was 
expected to occur at F-3, F-2, F2, and F3, and reduced interaction with the SOAE occurred at F-4 and F4. Once the test 
frequencies were determined, HTs were measured at all 9 frequencies with the method described above.

The presence of entrainment at each test frequency Fx was then also determined spectrally by repeating the 
SOAE measurement for 120 s in the presence of a 10-dB-SL pure-tone stimulus at Fx. If the level or frequency of the 
SOAE was affected by the presence of the external tone, this would confirm that the emission was entrained or 
partially entrained. In the case of complete entrainment, the SOAE would not be distinguishable from the external 
tone in the measured spectrum. If the SOAE remained unaffected, this would indicate that Fx lies outside the 
entrainment region. This power-spectrum verification was performed with pure tones at each test frequency Fx. The 
SOAE was also remeasured (without stimulation) to verify that it had remained stable in level and frequency.

Frequency Difference Limens

FDLs were measured as a percentage of Fx with a two-interval, two-alternative, forced-choice paradigm and a 
one-up, two-down procedure tracking the 70.7% correct point of the psychometric function (Levitt, 1971). In each 
trial, two 500-ms tones with frequencies Flow and Fhigh, logarithmically equidistant from Fx, were presented, such that
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The presentation order of the two tones, separated by a 250-ms silent gap and gated with 20-ms onset and offset 
ramps, was random. The task of the subject was to identify which of the first or second tone was higher in 
frequency. Responses were given by pressing the “1” or “2” key on a computer keyboard, and visual feedback was 
provided following each trial. 
�����
���������������������
��������������������	�����4% ����	���� initially divided 
by a factor of 4 after two consecutive correct responses, and multiplied by the same factor after each incorrect 
response. This factor was reduced to 2 and ���after the second and the fourth reversal, respectively, after which 6
reversals with this final stepsize were obtained. The threshold was defined as the geometric mean of all points over 
these last 6 reversals. The absolute presentation levels of Flow and Fhigh were frequency-dependent such that they 
always corresponded to 10 dB SL according to a linear interpolation of the measured HTs between the 9 test 
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frequencies Fx. Each listener performed one measurement block for each value of Fx and repeated the experiment 4 
times. The final FDL for each subject was determined by averaging the last 3 repetitions.

Contralateral Measurements

The contralateral measurements were carried out in a second experimental session. As for the ipsilateral 
conditions, the emission spectrum was remeasured in both ears and the frequency and amplitude of the SOAE 
determined, to check whether F0 and L0 had shifted compared to the first session. HTs and FDLs at the same test 
frequencies Fx as in the ipsilateral ear were then measured with the same procedure as described above.

RESULTS

Objective Results: SOAE Characteristics

SOAE Frequency and Level

The frequencies F0 and levels L0 of the SOAEs of interest for each subject are given in Table 1. The values 
measured at the beginning of the experimental session are indicated in brackets in addition to the stabilized values 
obtained about 30 min after probe insertion. A slight drift in frequency and/or level was observed in most subjects,
typically downwards in frequency, as reported by Whitehead (1991). Figure 1(a) shows the ipsilateral (black curve) 
and contralateral (green curve) SOAE spectra for one example subject (S1). The bottom panel shows a close-up of 
these two spectra around F0 and the ipsilateral spectrum measured 30 min after probe insertion (red dashed curve).

TABLE 1. SOAE frequencies (F0) and levels (L0) for each of the six subjects, measured about 30 min after probe 
insertion as well as at the beginning of the experimental session (in brackets). The width of the estimated entrainment 
region at 10 dB SL below (��E-) and above (��E+) the SOAE frequency are also shown.

S1 S2 S3 S4 S5 S6
F0 (Hz) 1241 (1242) 4091 (4095) 3009 (3012) 1440 (1439) 1965 (1967) 2068 (2068)
L0 (dB SPL) 20.1 (19.9) 14.5 (14.2) 6.5 (6.2) 7.4 (8.2) 2.8 (3.7) 9.4 (7.0)
��E- (Hz) 5.5 27.0 5.8 6.2 14.0 4.5
��E+ (Hz) 3.8 35.0 7.0 5.6 8.5 4.0
F-4 (Hz) 1164 3713 2896 1353 1771 2005
F-3 (Hz) 1203 3902 2952 1397 1869 2037
F-2 (Hz) 1222 3997 2981 1418 1918 2052
F-1 (Hz) 1237 4071 3003 1435 1957 2065
F1 (Hz) 1244 4117 3017 1444 1973 2071
F2 (Hz) 1254 4214 3044 1460 1997 2082
F3 (Hz) 1268 4336 3079 1479 2027 2096
F4 (Hz) 1294 4581 3148 1518 2086 2124

Entrainment and Beating Regions

Figure 1(b) shows the temporal entrainment patterns obtained in subject S1 as an external tone was swept around 
F0 at different levels relative to L0. As observed by Long and Tubis (1988) and Long (1998), ear-canal pressure 
fluctuations occurred when the frequency of the external tone was sufficiently remote from F0, while this beating 
pattern disappeared as the frequency of the external tone approached F0, indicating synchronization of the SOAE 
with the external tone. The width of the latter entrainment region was found to increase with presentation level in all 
subjects, consistent with the observations of Long and Tubis (1988) and Long (1998). After measurement of the 
subjects’ HT at F0, the entrainment patterns corresponding to 10 dB SL were selected and the individual widths of 
the corresponding entrainment regions ���������E-!��������������E+) F0 were estimated. For the example of subject 
S1 shown in Fig. 1(b), the measured HT at F0 was 7.6 dB SPL, i.e., 12.5 dB below L0, such that 10 dB SL 
corresponded to a level of -2.5 dB relative to L0. The width of the entrainment region was thus determined visually 
using the -5 dB entrainment pattern (Fig. 1(b), red arrows). These estimated values as well as the derived test 
frequencies Fx are specified in Table 1 for all subjects. The total width of the entrainment region ��E-+��E+ ranged 
from 0.4% to 1.5% of F0, with a general trend of increasing width with F0.
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FIGURE 1. (a) Top panel: Broadband SOAE spectra in the ipsilateral (Ipsi, black curve) and contralateral (Contra, green curve) 
ear of subject S1. Bottom panel: Close-ups on the spectra of the SOAEs of interest for the same subject, measured in the 
ipsilateral ear at the beginning of the experimental session (Ipsi:Pre, black solid curve) and 30 minutes later (Ipsi:Post, red dashed 
curve), as well as in the contralateral ear (Contra, solid green curve). (b) SOAE entrainment patterns measured in the same 
subject with linear sweeps in level steps of 5 dB relative to the SOAE level. Patterns are displaced by 20 dB on the ordinate axis 
for better visualization. The red arrows indicate the estimated boundaries of the entrainment region for the pattern measured at a 
level closest to 10 dB SL.

The SOAE levels measured in the presence of 10-dB-SL external tones at Fx are shown in Fig. 2 for each 
individual subject (top panels, crosses). The presence of entrainment, reflected by a drop in level of the SOAE 
compared to absent stimulation (triangles), was confirmed at F-1 and F1 in all subjects. Although the Fx values were 
chosen such that Fx ��������������������
�������������������������"#"�$����substantial reductions in SOAE level were 
also observed at F2 for subjects S1 and S4, and up to |x| = 3 for subject S2, indicating a wider spectral range of 
entrainment than expected in these subjects.

Subjective Results: Absolute Thresholds and Frequency Difference Limens

Absolute Hearing Thresholds

The mean individual HTs are shown in Fig. 2 (top panels, circles) for the ipsilateral (solid black curves) and 
contralateral (dashed red curve) ear. Two-way ANOVA statistics revealed significant effects of Fx [F(8,40)=3.83,
p=0.002] and subject [F(5,40)=7.14, p=0.0001] on HTs in the ipsilateral ear, while there was no effect of Fx
[F(8,40)=0.68, p=0.704] and a significant effect of subject [F(5,40)=0.68, p<0.0001] in the contralateral ear. Post 
hoc multiple comparisons using Tukey’s honestly significant difference criterion indicated that ipsilateral HTs only 
differed significantly between F0 and F-3 [95% CI: 1.72–11.54] and between F0 and F4 [95% CI: 1.07–10.89]. This is 
consistent with the lower absolute thresholds typically found around SOAE frequencies (e.g., Schloth, 1983).

Frequency Difference Limens

The individual FDLs are shown in Fig. 2 (bottom panels) for the ipsilateral (solid black curves) and contralateral 
(dashed red curve) ear. For each subject, the geometric mean and standard deviation over the last 3 measurement 
blocks are shown. In all subjects, the ipsilateral FDLs were lowest around the SOAE frequency and increased at 
frequencies further away from F0. These individual patterns were largely consistent with the presence of entrainment 
estimated from the level drift of the SOAE in the presence of external tones, with lower FDLs in regions of complete 
entrainment and elevated FDLs when the entrainment was partial or absent (compare FDLs in bottom panel to 
crosses in top panel for each subject). In contrast to the “U” or “V” shape of the FDL results observed ipsilaterally, 
the contralateral FDLs did not show a clear dependence on Fx in any of the subjects.

Figure 3 shows the mean FDLs over all subjects, measured ipsilaterally (solid black curve) and contralaterally 
(dashed red curve) to the SOAE at each of the 9 test frequencies Fx. For the ipsilateral conditions, a repeated-
measures two-way ANOVA on the log-transformed FDLs revealed significant main effects of Fx [F(8,108)=26.59,
p<0.0001] and subject [F(5,108)=7.52, p<0.0001], as well as a significant interaction between Fx and subject 

(b)(a)
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[F(40,108)=3.68, p<0.0001]. For the contralateral conditions, the same analysis showed no significant main effects 
of Fx [F(8,108)=1.94, p=0.061] or subject [F(5,108)=1.74, p=0.131]. Post hoc multiple comparisons using Tukey’s 
honestly significant difference criterion confirmed that none of the contralateral FDLs differed significantly from 
one another. However, the same comparisons between ipsilateral FDLs obtained at the SOAE frequency (F0) and in 
the regions of strongest beating (F-3, F-2, F2, and F3) indicated that the FDLs were significantly elevated at all of 
these frequencies compared to F0 [95% CIs: 0.59–1.09 (F-3); 0.52–1.04 (F-2); 0.28–0.80 (F2); 0.58–1.10 (F3)].

A comparison of ipsilateral and contralateral FDLs using uncorrected double-tailed paired t-tests indicated that 
these differed significantly at F-2 (p=0.008), F0 (p=0.036), and F1 (p=0.047). Finally, the mean log-transformed 
FDLs were not found to significantly correlate with mean HTs (Spearman’s �=0.22, p=0.104).

FIGURE 2. Individual objective and subjective results as a function of test frequency Fx. Top panels: For each subject, the pure-
tone hearing thresholds measured ipsilaterally (solid black curve) and contralaterally (dashed red curve) to the emission ear are 
shown relative to the level of the SOAE of interest L0, indicated by the triangle. Crosses indicate the SOAE level in the presence 
of an external pure tone at 10 dB SL at Fx. The noise floor (dashed black line) corresponds to about -14 dB SPL. Bottom panels:
The FDLs measured ipsilaterally (solid black curve) and contralaterally (dashed red curve) to the SOAE in the same subjects are 
plotted as a proportion of Fx. The geometric means and standard deviations over 3 measurement blocks are shown.

DISCUSSION

The existence of a link between perceptual changes in frequency discrimination and the interaction of SOAEs 
with external tones was investigated by comparing objective measurements of SOAE entrainment patterns to 
behavioral FDLs in the same group of subjects. It was found that (1) FDLs in the emission ear were always reduced 
near the SOAE frequency, (2) this effect was specific to the emission ear, with contralateral FDLs remaining 
unaffected by the presence of an SOAE in the opposite ear, and (3) the individual variations in FDL around the 
SOAE frequency were consistent with the subjects’ entrainment patterns, with reduced frequency discrimination in 
the region of strongest beating between the external tone and the SOAE. These findings argue for a peripheral
origin, at least in part, for the observed subjective changes in pitch perception around SOAE frequencies, due to the 
non-linear interaction of SOAEs with external tones in the cochlea.
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FIGURE 3. Average FDLs measured ipsilaterally (solid black curve) and contralaterally (dashed red curve) to the SOAE at nine 
test frequencies around the SOAE frequency F0. The means and standard deviations over 6 subjects are shown.

The reduction in ipsilateral FDLs near SOAEs is consistent with the trend observed by Norena et al. (2002), and 
in conflict with the reports of Köhler and Fritze (1994) that monaural and binaural frequency discrimination, 
measured at 60 dB(A) and ±30 Hz around the SOAE, is poorer near the emission frequency. A direct comparison 
with the latter results is difficult since the authors did not show the data, and their experiments were performed at 
higher levels than in the present study. However, if the pitch of pure tones in the close vicinity to SOAEs is shifted 
away from the SOAE, as shown by Köhler and Fritze (1994), one could actually expect an improvement in 
frequency discrimination at F0, due to the enhancement of the pitch separation between tones on each side of F0.
Such an improvement was observed by Norena et al. (2002) and confirmed by the present results. Although the 
present FDLs were generally higher than those obtained by Norena et al. (2002), this was expected due to the 
difference in presentation level between the two studies (30 vs 10 dB SL). FDLs are indeed known to improve with 
level (Wier et al., 1977) and the measured FDLs are in good agreement with the data of Wier et al. for 10 dB SL.

The absence of a dependence of the contralateral FDLs on Fx in the present study contrasts with the results of 
Norena et al. (2002) and does not confirm their hypothesis of a central effect of neural reorganization due to the 
presence of an SOAE. The use of a higher SL in their study, and of the same spacing between test frequencies for all 
subjects despite widely spread SOAE frequencies, might play a role in this discrepancy. First, a much broader 
entrainment region would be expected at higher SLs (e.g., Long and Tubis, 1988; Long, 1998), such that the 
frequency range tested by Norena et al. (2002) might not have been wide enough to observe elevated FDLs due to 
beating between the SOAE and the external tones. Furthermore, the perceptual effect of beating should be weaker 
for higher SLs, as the beating amplitude is inversely proportional to the difference in level between the two tones.
Therefore, if the perceived beating affects frequency discrimination, this should have a more adverse effect at lower 
SLs. These last two aspects are consistent with the present findings of much higher FDLs in regions of strong 
���������'*?!��
����
�����������������@J� obtained by Norena et al. ('QXY?). The same authors also argued that 
contralateral presentation of a continuous pure tone at 30 dB SL produced a similar effect on FDLs to that of an 
ipsilateral SOAE. However, these observed trends were not supported by statistical significance. Further 
investigation is thus needed to determine whether lower FDLs can be obtained due to the presentation of a 
contralateral tone. At this stage, the role of central plasticity effects remains uncertain, although it is possible that 
such central effects only become observable for tone levels higher than 10 dB SL.

Overall, ipsilateral FDLs were lower than contralateral FDLs in the SOAE entrainment region. If contralateral 
FDLs are considered as the “baseline” performance in the absence of perturbation from a neighboring SOAE, this 
corresponds to an actual improvement in frequency discrimination near the SOAE, in addition to the observed 
worsening at more remote “beating” frequencies. A first possible explanation could be the lower HTs typically 
observed near SOAEs (e.g., Schloth, 1983; Long and Tubis, 1988), and the absence of detailed HT fine-structure 
measurements in the present study. However, it was ensured that all tones were presented at similar SLs via HT 
interpolation, and the lack of correlation between FDLs and HTs does not favor this explanation. Alternatively, the 
pitch shifts reported by Köhler and Fritze (1994), provided they only occur in the emission ear, may be responsible 
for this increase in performance.

Despite the clear correspondence observed between individual entrainment regions and frequency-discrimination 
performance, the frequency and level drifts of SOAEs over time (e.g., Whitehead, 1991), as well as the variations in 
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HT across frequency, imposed limitations on how accurately the regions of entrainment and beating could be 
determined in relation to the tones presented in the FDL experiment. Although care was taken to readjust F0 and L0
after probe insertion and to spectrally verify the presence of entrainment, the individual “U” or “V” trend in FDLs as 
a function of Fx was not always centered on F0 as intended, thus complicating the interpretation of average results.
This is partly due to the fact that the FDL measurements were performed at the same SL for each Fx value, while the 
corresponding entrainment region was estimated according to 10 dB SL relative to F0 only, making it likely for the 
actual entrainment regions for test frequencies away from F0 to be wider than the estimated ��E- and ��E+. The 
choice of measuring at a fixed SL was made here to avoid a possible confound of known FDL variations with SL 
(Wier et al., 1977). This should be seen as a compromise, as the alternative of using of a fixed level relative to L0
might have made it easier to ensure that each Fx value fell into the desired region, but would have made the FDL 
measurement subject to changes in SL with Fx.

Finally, it was assumed here that the sensation of roughness induced by the beating between the SOAE and the 
external tone was responsible for elevated FDLs. Although all subjects reported that the tonal quality of the stimuli 
differed between trials, consistent with the “cricket-like” nature of pure tones interacting with an SOAE in the 
beating region (Long and Tubis, 1988), these subjective changes in tonality were not tracked individually and in a 
systematic manner as a function of the frequency and level of the external tone. A more thorough investigation of 
the relationship between these changes in tonal quality and frequency-discrimination performance at different SLs, 
and of the pitch shifts induced by SOAEs, may clarify the validity of this assumption, and shed light on the 
perceptual consequences of SOAEs at low vs moderate levels.
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