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Abstract: We report on a novel method for optical modulation format recognition based on 

Stokes parameters and variational expectation maximization algorithm. Discrimination among six 

different pol-muxed coherent modulation formats is successfully demonstrated in simulation and 

experiment. 
OCIS codes: (060.1660) Coherent communications; (060.4080) Modulation 

1. Introduction 

Transponders and networks offering flexibility by adaptation of the modulation format are currently under 
intensified research and even available commercially [1]. In general case, it cannot be guaranteed any longer that 
signals arriving at a specific receiver unit will have the same, known in advance, modulation format. Adaptation of 
the transmitter may be performed on-the-fly and this creates a need for complementary techniques on the receiver 
side. Modulation format recognition (MFR) [2] is essential to ensure that signals are properly demodulated 
regardless of the modulation used by the transmitter. This is one of the enabling methods for a software defined 
receiver (SDR) and is implemented in a digital signal processing (DSP) circuit of a digital coherent receiver. 

The topic of MFR has been well explored for radio communications [3]. Nonetheless, MFR for fiber optic 
communications still remains underdeveloped. In one paper, k-means algorithm is used, which, however, requires 
carrier and phase recovery prior to modulation classification [4]. In another publication, artificial neural network that 
needs prior training are used [5]. 

In this paper we propose a novel MFR method based on Stokes space measurements and variational Bayesian 
expectation maximization (VBEM) algorithm [6]. It is a significant improvement over the constellation analysis-
based techniques, such as k-means (comp. Fig. 1) and allows for MFR at a considerably earlier stage, enabling 
optimization of follow-up DSP algorithms depending on the detected modulation format. One example might be a 
decision directed equalization and carrier recovery for which the knowledge of the ideal constellation is essential. 
The method is insensitive to polarization mixing, carrier frequency offset and phase offset and does not require 
training. We perform numerical and experimental validation and report on a successful modulation classification by 
discriminating from a possible set of BPSK, QPSK, 8-PSK, 8-QAM, 12-QAM and 16-QAM modulations. The 
method is targeted at digital coherent receivers; nonetheless, it may be employed in any receiver capable of 
measuring Stokes parameters. 
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Fig. 1. Placement of the proposed MFR block in the receivers’ DSP chain and comparison to another MFR method based on k-means [4]. 

2. Proposed MFR technique 

Assuming x and y are two received orthogonal complex optical fields, the Stokes parameters are given as 
22

0 yxS  , 
22

1 yxS  ,  yxS  22 ,  yxS  23 . Points inside a 3-dimensional (3D) sphere of the 

Stokes space are triplets (S1,S2,S3) obtained by transforming the received signal samples according to those 
equations. Stokes parameters of any polarization division multiplexed (PDM) coherent optical modulation format 
are bounded by a lens shape contained within the sphere [7]. Each modulation format has a different signature in the 
Stokes space. Signatures of PDM modulation formats under consideration – {BPSK, QPSK, 8-PSK, 8-QAM, 
12-QAM, 16-QAM} – are shown in Fig 3. Those modulation formats result in, respectively, Ndet = {2,4,8,16,32,60} 
clusters (point clouds) in the Stokes space. This feature is used to discriminate between different modulation formats 
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and ultimately perform MFR. By applying VBEM for Gaussian mixture models (GMM) [6] it is possible to 
determine the number of clusters. The expectation maximization algorithm iteratively finds maximum likelihood for 
parameters of probability distributions created by transformation of the signal to the Stokes space. Since GMM was 
used, the set of parameters to optimize were means and covariances of 3D Gaussian distributions. It is necessary to 
perform this step as polarization mixing may lead to arbitrary rotation of the received signature around the origin of 
the Stokes space [7]. A variational treatment is necessary in order to discover the actual number of clusters of the 
mixture. The model is initialized with a large number of clusters (Ninit = 924) that well exceeds the actual number to 

be detected (max(Ndet) = 60 for 16-QAM). The concentration parameters k of the Dirichlet distribution for each 
cluster k = 0…N−1 are in the beginning the same, meaning that each cluster has the same importance. After iterating 
the model, the concentration parameters are updated with only a few of them having significant values – denoting 
the ‘surviving’ clusters. The remaining clusters are either negligibly small or nonexistent in the posterior. The 
concentration parameters were used to construct a following cost function jN, defined as  
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1   and normalized cost function 
N NNN jjJ . The 

normalized cost function sums up to one over all N and may be interpreted as a probability that the investigated data 
form N distinct clusters in the Stokes space. Since N is a bijective function of the modulation formats from among 
which discrimination is made, unambiguous modulation classification can be performed. 

3. Simulation and experiment setup 

To demonstrate the feasibility of our approach a numerical simulation is performed involving all modulation formats 
from among which discrimination can be made. 10

4
∙log2M points, where M is the modulation order, of a 10 Gbaud 

PDM signal were received through an additive white Gaussian noise channel. Noise power was varied to maintain 
signal-to-noise ratio (SNR) at a level of 30 dB for all modulation formats. Next, a carrier frequency offset and phase 
offset is applied. Finally VBEM algorithm is run and the modulation format is recognized. 
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Fig. 2. Experimental setup. PPG: pulse patter generator, ECL: external cavity laser, PC: polarization controller, EDFA: erbium-doped fiber 

amplifier, VOA: variable optical attenuator, OBPF: optical bandpass filter, LO: local oscillator. 

The proposed idea was subsequently validated in an experiment. The employed experimental setup, including 
reconfigurable PDM 16-QAM and PDM QPSK generation stage at 10 Gbaud, is presented in Fig. 2. 100 kHz-
linewidth laser centered at 1550.116 nm was used as a carrier signal and passed to an optical I/Q modulator. The I/Q 
modulator was driven with either 4-level or 2-level electrical signal, depending on whether /D output of a 10 Gb/s 
pulse pattern generator (PPG) was, respectively, enabled or disabled. In the optical domain this resulted in 16-QAM 
or QPSK signals, later polarization multiplexed to create PDM 16-QAM at 80 Gb/s or PDM QPSK at 40 Gb/s. The 
signal was received back-to-back and amplified spontaneous emission (ASE) noise was added by an ASE noise 
stage. Optical SNR of 27 dB for 16-QAM and 19 dB for QPSK was set. At the receiver side, the signal was filtered 
by a 0.33 nm-broad optical bandpass filter (OBPF) to remove excess of ASE noise before digitization. 
A preamplifier and variable optical attenuator (VOA) was used in order to keep the power entering the front-end of a 
coherent receiver at a constant level, in the optimal operating point. Another 100 kHz-linewidth laser, offset by 
several hundred MHz from the carrier wavelength was used as a local oscillator signal (LO) and supplied to the 
coherent receiver. Electrical outputs of the coherent receiver were sampled at 40 GSa/s with a 13 GHz-bandwidth 
digital storage oscilloscope (DSO). Traces acquired from the DSO were processed offline by a set of SDR DSP 
algorithms capable of demodulating both 16-QAM and QPSK. VBEM was then run after digital resampling (Fig. 1). 

4. Results 

Fig. 3 show the outcome of VBEM with points belonging to each discovered cluster plotted in a different color. 
Stokes space plots and corresponding recovered constellations are shown in Fig. 3(a-f) for simulated cases and in 
Fig. 3(g-h) for experimental measurements. Fig. 4 shows the value of normalized cost functions for: (a) simulations 
and (b) measurements. Modulation formats among which discrimination was performed are on the horizontal axis. 
Each color denotes a different case in which the actual modulation format to be detected is defined in the legend. 
Bar height denotes value of the normalized cost function J, i.e. the measure of how certain the detection is. The 
recognition is performed by finding N for which J attains its maximum. Bars that indicate successful classification 



are marked by arrows. The results presented in Fig. 4 demonstrated that all modulation format classifications were 
performed successfully. The cost function for 16-QAM peaks around 0.8 while for other modulation formats around 
0.5. This follows from the definition of the cost function and its slow decay as modulations with N higher than the 
actual are tested. 

   
(a) PDM BPSK, 2 clusters/2 points 

   
(b) PDM QPSK, 4 clusters/4 points 

   
(c) PDM 8-PSK, 8 clusters/8 points 

   
(d) PDM 8-QAM, 16 clusters/8 points 

   
(e) PDM 12-QAM, 32 clusters/12 points 

   
(f) PDM 16-QAM, 60 clusters/16 points 

 

   
(g) experimental PDM QPSK 

  

   
(h) experimental PDM 16-QAM 

 

Fig. 3. Simulation (a-f) and experimental data (g-h) for different modulation formats. Stokes space representation of the signal with the number of 
clusters (left) and corresponding recovered constellations with the modulation order (right) are shown. 
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Fig. 4. Normalized cost function for (a) numerical simulation data and (b) experimental data. Arrows indicate bars that should be the tallest if classification 

was successful. It is shown that all investigated cases were successfully classified. 

5. Summary 

In this paper we propose a novel modulation format recognition method from Stokes space parameters using VBEM 
algorithm. The method is insensitive to polarization mixing, carrier frequency offset and phase offset and does not 
require training. The technique was used to successfully discriminate between PDM BPSK, QPSK, 8-PSK, 8-QAM, 
12-QAM and 16-QAM in numerical simulation and recognize 16-QAM and QPSK from experimental data. The 
technique can be applied in any receiver capable of measuring Stokes parameters. 
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