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Amplification of realistic Schrodinger-cat-state-like states by homodyne heralding
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We present a scheme for the amplification of Schrodinger cat states that collapses two smaller states onto
their constructive interference via a homodyne projection. We analyze the performance of the amplification in
terms of fidelity and success rate when the input consists of either exact coherent state superpositions or of
photon-subtracted squeezed vacua. The impact of imprecise homodyne detection and of impure squeezing is
quantified. We also assess the scalability of iterated amplifications.

DOI: 10.1103/PhysRevA.87.043826

I. INTRODUCTION

Coherent state superpositions, or optical Schrodinger cat
states, are widely recognized as promising resources in
quantum information [1-5], quantum metrology [6-8], and
fundamental tests [9-12]. In the near-orthogonal basis of
coherent states (y|—y) = e’zyz, two particular instances for
these states are

lks(y)) = ; vy £1=v), (M
V2 £ 2e 2

where the sign (£) of the superposition refers to the even
and odd cat state, respectively. These states exhibit quasiprob-
ability distributions in phase space which are distinctly
nonclassical. This makes them all the more challenging
to generate deterministically as that would require strong
Kerr-type nonlinearities [13-15]. One has then to resort
to heralding techniques which, though probabilistic, need
only linear optics and projective measurements [16]. These
state-engineering schemes are nonetheless approximative and
present a limitation in the fidelity they produce with ideal
cat states. Photon subtraction of the squeezed vacuum, for
example, is a well-established method to generate approxi-
mations of small-amplitude cat states, sometimes colloquially
referred to as Schrodinger kittens [17-21]. Even in the best
experimental conditions, the fidelity between the photon-
subtracted squeezed vacuum (PSSV) and an actual odd cat
state |k_(y)) degrades markedly for y > 1.2 [22]. Yet, for
these states to be reliable resources in quantum computation,
their fidelity with cat states at least as large as y = 1.2 needs
to be maintained at near-unit fidelity [3,23].

Single-photon subtraction is only one example of several
measurement-induced schemes which have been proposed
to generate small-amplitude cat states [20,24-29]. However,
none of these schemes can produce arbitrarily large cat
states in a single run. Ways to get around this issue have
been devised using the recursive amplification of small,
approximate cat states [30,31]. For example, it was suggested
in [32] that interference among a supply of delocalized single
photons followed by homodyne heralding would generate
large entangled cat states. These proposals have in common
that they rely on the coherent mixing of two small cat states,
whereupon a projective measurement collapses one of the two
outputs onto a constructive interference of the inputs—hence
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the amplification. Here, we shall pursue the same idea but make
use solely of homodyne heralding for its relative simplicity
and high quantum efficiency. We also demonstrate that the
acceptance window of homodyne heralding can be widened to
increase the success rate of the amplification while at the same
time maintaining a satisfactory fidelity at the output.

The outline of this article is as follows. In Sec. I we review
the generation of odd small-amplitude cat states from the
squeezed vacuum. The output is compared to the ideal odd
cat state and the effects of impure squeezing are illustrated. In
Sec. Il we present the amplification scheme in the case of ideal
input cat states and model the effect of a wide homodyning
window. Section IV then considers the amplification of the
more realistic PSSV. The impact of both impure squeezing
and wide postselection is illustrated. In Sec. V, we return to
the idealized case of ideal homodyning and pure squeezing to
consider how our scheme scales with iterated amplifications.

II. APPROXIMATION OF SMALL ODD CAT STATES

In this section, we shall briefly review the generation of
odd small-amplitude cat states from the photon subtraction of
the squeezed vacuum and analyze its performance in the face
of impure squeezing. The basic setup is depicted in Fig. 1.
The original proposal of Dakna et al. [17] required that the
photon subtraction be performed by photon-number-resolving
detectors. However, as is done in most practical schemes
[18,19,21], we shall assume that the postselection is a binary
detection of either zero photons or at least one photon, as
would be allowed for by an avalanche photodiode (APD).
The modeling of such an “on-off” post-selection operation is
presented in Appendix A 3.

Quantum inefficiencies and dark counts are two nuisances
inherent to photodetection which should be reckoned with.
Whereas the former merely affects the success probability of
the scheme, the latter contaminates the output with a squeezed-
vacuum component which weakens the nonclassicality of the
output. An equally detrimental effect is the impurity of the
squeezed vacuum. We shall not treat quantum inefficiencies
and dark counts here as they have already been covered in [16]
in the context of cat-state amplification. We will, however,
look at the fidelity response to the amplitude and impurity of
squeezing.

©2013 American Physical Society
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FIG. 1. (Color online) Setup for the generation of approximate
small-amplitude odd cat states. A squeezed vacuum, represented here
by the pumping of a x2 nonlinear medium, is partially reflected onto
an “on-off” photon detector such as an avalanche photodiode (APD).
Upon the reflection of at least one photon from the squeezed vacuum,
a state that likens the squeezed single photon is prepared in the limit
of unit transmission 7 — 1.

A. Fidelity of the output for pure squeezing

Let us assume from now on that the squeezed vacuum
is pure and antisqueezed in the x quadrature. That is, if we
denote the squeezing relative to the shot-noise variance by &
(in dB), then &, = —£&, > 0, where the subscript labels the
measured quadrature.! The fidelity of the PSSV state with
an ideal cat state |[k_(«)) then depends on the squeezing &
and the transmission 7 of the subtraction beam splitter.” The
effect of these parameters is illustrated in Fig. 2 where we
can see that the fidelity is optimized for low squeezing and
near-unit beam-splitter transmission 77 — 1. For any given
input squeezing, there corresponds a finite amplitude « of
the target cat state with which the output has a maximized
fidelity. For example, a squeezing of, say, 3 dB is optimal for
producing an approximation to a cat state of size o = 1.0.
A complementary investigation of PSSV states that looked
at nonclassicality as the main figure of merit (as opposed to
fidelity) is given by Kim et al. in [33].

In order to assess the performance of the PSSV generation,
it is most instructive to restrict ourselves to the maximal
fidelity achievable with any target cat state of size «. This
fidelity optimum is traced by the ridge of Fig. 2 (top) and
its o dependence is reproduced in Fig. 2 (bottom) along with
the corresponding success rate. For example, if one wants to
produce an approximate odd cat state of size o = 1.5, the
required squeezing should be & ~ 5.2 dB for a fidelity of at
most 95.4% and a success probability of 0.4%.

As far as the success probability is concerned, it can be
increased at the expense of fidelity by increasing the incidence
of photons on the APD via stronger squeezing or weaker beam-
splitter transmission.

'For simplicity, we shall refer to both squeezing and antisqueezing
as squeezing &. The difference between the two is made only by the
sign of &.

The transmission of the subtraction beam splitter does not affect
just the success probability of the scheme, but also the fidelity of
the output state. This is because we are using an on-off postselection
where we assume that by setting 7 — 1, only one photon will makes
its way to the APD. A lower transmission would furthermore inflict
higher loss of the initial squeezed state.
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FIG. 2. (Color online) Top: Contour plot of the fidelity of the
PSSV state with |[k_(«)) given an input squeezing &, between 0
and 15 dB. Bottom: Maximum achievable fidelity of the PSSV with
|k_(a)) (black) and corresponding success probability as a function
of « (gray). In both cases, the transmission of the subtraction beam
splitter is 99%.

B. Impact of impure squeezing

In any real-world experiment, noise will inevitably inflate
the variance of the squeezed vacuum in either quadrature.
This impurity has been explained as stemming from losses
or from multimode parametric down-conversion [34] whereby
the photons triggering the postselection belong to a different
spatial or frequency mode than the heralded state. Impure
squeezing may originate in the down-converter itself or,
more generally, at any point in the setup where vacuum
contamination or modal mismatch could take place, including
at the detectors (e.g., via quantum inefficiencies). Regardless
of its root causes, we shall wrap these impurities into a single
parameter € relating the squeezing £ in dB of the x and p
quadratures,

Sx = _Gép’ )

whereby pure squeezing corresponds to € = 1. As derived in
Appendix A 1, the purity of the squeezed vacuum is given by

P = 10—(1/20)(1—6)€p_ (3)

Note that the Heisenberg uncertainty relation imposes that
e>1.

The impact of impurity on fidelity is plotted in Fig. 3 where
we set the squeezing at —3.0 dB and adjust the antisqueezing
according to four different settings of purity. The immediate
observation is that a decrease of 10% in purity, from 100% to
90%, corresponding to an increase of antisqueezing to +3.9 dB
from +3.0 dB, leads to a drop of the maximum fidelity of
nearly 32%.

043826-2
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FIG. 3. (Color online) Fidelity between an ideal cat state |x_(c))
and the small-amplitude cat states obtained fromthe squeezed vacuum
&, = —3 dB at four squeezing purities P (marked in decreasing
darkness of gray): 100%, 90%, 80%, and 70%. The Wigner functions
of the PSSVs corresponding to these four purities are shown at the
top. As a reference for what the “ideal” output ought to look like, the
Wigner function of the state |[«_(1.06)), which has the highest fidelity
with the PSSV obtained from pure squeezing, is shown at the bottom.
The transmission of the subtraction beam splitter is set at 99%.

III. AMPLIFICATION OF IDEAL ODD CAT STATES

In Fig. 4 we present our amplification setup: Two identical
cat states are mixed on a balanced beam splitter, whereupon
one of the ensuing modes heralds the amplified output based on
the measurement of x quadratures around x = 0. The scenario
where the inputs are idealized cat states of opposite parity has
been outlined by Takeoka and Sasaki in [31]. We will however
look at the more practical case where the inputs have identical

parity.

L.O.
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FIG. 4. (Color online) Setup for the amplification of two ideal
Schrodinger cat states into a larger even cat state. The two inputs
are mixed on a symmetric beam splitter and one of the outputs is
projected onto an x quadrature window of width AQ around xy = 0
by an otherwise ideal homodyne detector. Inset: Wave functions (x|0)
(solid curve) and (x|« (2)) (dashed curve) of the vacuum and of an
even cat state of size @ = 2, respectively. The two functions are best
distinguished at x = 0 where their overlap is minimized.
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Let us briefly run through the evolution of the state in this
setup. We can readily see that the state emerging from the first
balanced beam splitter contains an even cat state of amplitude
V2 times larger:

e (@) ® lkex(@)) = |i4(V20)) ® 10) £ 10) ® |y (v/2a0)).
4)

If, by measuring one of the modes, we can postselect |0) from
|K+(«/§Ol)), then the other mode will collapse onto the desired
amplified state |K+(«/§a)). The accuracy of this discrimination
is of course limited by the overlap of the vacuum with the cat
state (0|k4(+v/2)), which is however negligible for o > 0.
Based on the wave function profiles of the vacuum and the cat
state, we can see that homodyne measurement of the x =0
quadrature is indeed a good way to discriminate the two states
asitis where their overlap is minimized (see the inset of Fig. 4).
The ambiguity of the discrimination is quantified in §A 2.

Applying the homodyne projection |x, = 0)(x, = 0| on the
second mode of (4), we are left with

e |V 2a) 4 |—v2a) £ 2¢72|0)
2 /cosh(2a?) + e~2* + 2e— '

The fidelity of this state with an ideal even cat state of size

Bis

[Vour) = (&)

| cosh(v2aB) + ¢~ |2
cosh(2a?) + e—2¢° £ 2¢—*"

In practice, a valid output is heralded whenever the homodyne
detector records a state whose x quadrature lies within a
window AQ around x =0 where AQ will be expressed
in shot-noise units (SNUs).> We keep track of such a
postselection window because no practical homodyning device
has enough resolution to truly project onto an exact quadrature
|q0) {(qo|. Experimentally, such a precise projection would not
be desirable either for it would lead to very small success
probabilities. A compromise is therefore to allow a finite
postselection range. A full model of this realistic “wide”
homodyning is presented in Appendix A 4.

From now on, we shall consider only odd cat inputs
to the amplification setup. (The next section deals with
approximations to odd-cat-state inputs, namely, PSSVs.) A
contour plot of the fidelity between an even cat state of
size B and the amplified state from two odd cat states of
size « is shown in Fig. 5 for a homodyning window of 1
SNU. The +/2 amplification factor that was also witnessed
in earlier schemes [30,31,35] is recognizable as the slope g
where the fidelity is optimized. The bend of this optimum
crest for o < 1 arises from the vacuum component which
“survives” the postselection but vanishes from the output state
|You) for larger . This feature is in a sense a manifestation
of the discreteness of photon numbers for weak coherent
states. As can be seen from (5), the output consists of an
even cat state minus a vacuum. For @« — 0, this “subtraction”

F = sech(B%) (6)

3By shot-noise unit, we mean the standard deviation of shot noise
in phase space. By setting /i = 1, this implies 1 SNU = 1/+/2 (in
absolute units of phase-space quadrature).
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FIG. 5. (Color online) Contour plot of the fidelity between an
even cat of size B and the amplification obtained from two odd cats
of size . The post-selection window is set to 1 SNU.

of the vacuum component yields a state whose two-photon
component has a relatively higher weight than in any even cat
state of size 8 <« 1. The proportionality in amplitude between
input and amplified cat states thus breaks down, and it is instead
|B &~ 1)—of all even cat states—that exhibits the best fidelity
with the output.

Just as in Fig. 2 for the PSSV state, it is informative to look
at the mapping between input and output parameters which
optimizes fidelity. This is shown in Fig. 6 where the optimal
input-state amplitude is plotted as a function of the amplitude
B of the target state |k (8)). For example, if one wants to
produce an even cat state of size § = 2, then an input odd cat

AQ=1SNU
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= Fidelity i
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O 04 R

i i i i
0.5 1 15 2 2.5 3

FIG. 6. Top: Maximum fidelity (black) and corresponding suc-
cess probability (gray) of the amplified output with respect to an even
cat state of size 8. Bottom: Amplitude « of the input required to obtain
the maximum fidelity of the output with an even cat state of size .
The dotted line marks the +/2 amplification factor. The homodyne
postselection window is 1 SNU wide.
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Fidelity (solid)
Success (dashed)

0.5 1 15 2 25 3 3.5 4
§
[—aQ-0——aQ=1——aQ=2 — Q=4 AQ=8]

FIG. 7. Solid curves: Fidelity between an even cat state of size
B = v/2a and the output of mixing two odd cat states of size « for five
homodyning widths AQ (in SNUs). Dashed curves: Corresponding
success probabilities. (The curve for AQ — 0 is zero throughout
since the probability of picking out the exact x = 0 quadrature is
vanishingly small.) The shading of the curves is lightened with larger
homodyning windows.

state of size @ = 1.4 is required. The fidelity of the output with
|k (B = 2)) will be nearly 100% and the success probability
of the operation about 20%. As discussed above, the flat
plateau for 8 < 1 corresponds to the range where the vacuum
component that filtered through the postselection becomes
predominant. The consequence is that the single-photon “cat
state” |[k_(a¢ — 0)) & |1) becomes the only input to optimize
outputs of target size 8 € [0,1].

To assess the robustness of the amplification scheme to
the homodyning width A Q, Fig. 7 plots the fidelity between
the output produced from two odd cat states |«_(«)) and an
even cat state |k (8 = V2a)) given different homodyning
windows. The fidelity curve for exact homodyning AQ — 0is
also plotted as a reference. It can be seen that the amplification
is vulnerable only to A Q for small inputs. Beyond a target size
of B ~ 3.5, homodyning widths of up to 8 SNUs hardly have
any effect on the fidelity. From an experimental point of view,
this robustness of the homodyning postselection allows one
to reach higher success probabilities without compromising
fidelity. For example, by sending in two odd cat states of
size o = 2.5, one of every two homodyne measurements will
successfully herald an even cat of size B = /2 x 2.5~ 3.5
with a fidelity of nearly 100%.

For another perspective on the dependence of fidelity on
homodyning width, let us consider the amplification of two
odd cat states of a fixed size « = 1. The decrease in fidelity
of the output with an even cat state of size 8 = /2 is traced
in Fig. 8. Also shown are three sample Wigner profiles of the
output, which display a clear degradation of the negativity as
A Q increases.

The simulations presented above, as well as all other
numerical results in this article are arrived at by a generic
method of simulating linear transformation and projective
measurements of states consisting of Gaussian superpositions
(see Appendix A 3).

043826-4
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FIG. 8. (Color online) Fidelity of the state amplified from two
cat states of size @ = 1 with an even cat of size 8 = «/i for a
homodyning window A Q € [0,15] SNUs. The decrease in fidelity
for wider homodyning windows is understandable from the increased
overlap between the vacuum and the cat state, as illustrated in the inset
of Fig. 4. The Wigner profile of the output is shown for three sample
values of AQ at 1, 5, and 10 SNUs, respectively.

IV. AMPLIFICATION OF APPROXIMATE SMALL
CAT STATES

In this section, we consider the more realistic case where
PSSVs are amplified, i.e., the inputs to Fig. 4 are the outputs
of Fig. 1. In Fig. 9, the fidelity profile with an even cat state
of size B is plotted with respect to the input (pure) squeezing
for AQ =1 SNU and T = 95%. The contour lines of PSSV
generation are overlaid to visualize the amplification, i.e., the

T=95% AQ=1SNU

0 25 5 75 10 125 15
x-squeezing [dB]

FIG. 9. (Color online) Contour plot of the fidelity between an
even cat state |«_(fB)) and the amplified PSSV obtained from
an antisqueezing &, between 0 and 15 dB. The transmission of
the subtraction beam splitter is 95%. The contour lines of PSSV
generation fidelity are overlaid to better visualize the shift in target
amplitude 8 resulting from the amplification. The blank vertical stripe
for &, < 0.8 dB is a region where numeric underflow is too frequent
to produce reliable data. (This is because the normalization factor
which enters in the fidelity is itself inversely proportional to the
success probability. The latter tends to negligible values for small
squeezing.)
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FIG. 10. Top: Dependence of the effective size o of the PSSV-
state input on the target size 8 of the output such that the fidelity
of the output with |« (8)) is maximized. The dotted line marks the
«/B = 1/+/2 amplification ratio. The subtraction beam splitter for the
PSSV generation is set to 95% and the homodyning window to 1 SNU.
Middle: Pure squeezing required of the input in order to achieve the
maximal fidelity with an even cat state of size §. Bottom: Maximum
fidelity obtainable at the output with an even cat state of size B
(dashed black), along with the corresponding success probability of
the amplification (dashed gray). Also shown is the maximum fidelity
of the required input PSSV with an odd cat state of size « (solid black),
and the success probability of the PSSV generation (solid gray). (In
all three graphs, the finer dash-dotted lines refer to the results of Lund
et al. in [30], with, in the bottom graph, the black and gray shadings
representing fidelity and success probability, respectively.)

shift of the high-fidelity area upwards to larger values of S—cf.
Fig. 2.

In order to assess the performance of the amplification
scheme, we shall set a target even cat state of amplitude 8
and retrace the quantum circuit to see what input squeezing
is necessary to achieve the highest fidelity with |« (8)) at the
output. This is shown in Fig. 10, along with the dependence
of the success probability and fidelity on 8, as well as the size
a of the odd cat state that best matches the input PSSV. Let
us assume, for instance, that we want to produce an even cat
state of size § = 1.5. The required squeezing for the PSSV
will then be around 2.9 dB, corresponding to a fidelity of
96.4% with an odd cat state of size o =~ 1.0. The output,
however, will have a fidelity of 92.6% with |k (8 = 1.5))
and the success probability of the amplification will be 20%
(notwithstanding the success probability of 0.6% required to
produce the “offline” PSSV).

Note that the solid curves in the first two plots of Fig. 10
only start at 8 & 1.2. This is because below that threshold,

043826-5
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the optimal squeezing lies in a numerically unstable region
marked the blank band in Fig. 9.

A first-hand observation to be drawn from Fig. 10 is the
similarity it shows with Fig. 6 for small target cat-state sizes.
Both scenarios with ideal cat states and PSSV inputs start
out with a fidelity around 30%—-35% which then increases to
over 90% for target cat states of size 8 ~ 1.5. Beyond this
point, however, the performance of PSSV amplification starts
to degrade, whereas that of ideal cat states can be pursued
to indefinitely large target sizes while retaining unit fidelity.
One conclusion is therefore that the approximation of cat states
from PSSVs can be used to generate amplified states of sizes up
to B = 1.5 with practically the same fidelity as if one used ideal
odd cat states as inputs. On the other hand, both Figs. 6 and 10
exhibit the plateau in optimal input cat-state size—or in the
case of PSSVs, effective cat-state size—which we discussed in
the previous section. In that region, 8 € [0,1], the ideal input
cat states or PSSVs cease to have any dependence on the target
size B and discrete states, namely, single photons, become the
optimal input state.

In addition to simulating our own amplification scheme,
we have overlaid as finer dash-dotted curves the results of
Lund, Jeong, Ralph, and Kim, which we shall refer to as
the LJRK scheme [30]. Instead of using homodyning, they
mix the heralding arm with a coherent state on a balanced
beam splitter such that both emerging modes contain at least
one photon if the heralded mode is amplified. In contrast to
the homodyne method, the LJRK projection is unambiguous
as it does not yield any residual vacuum component, unlike
in (5). This explains why the fidelity in the LJIRK scheme
remains quasi-ideal for low target sizes 8. Beyond 8 = 1.5,

AQ=1SNU T=95%

|| — Fidelity
0.8H Success

60 64 68 72 76 80 84 88 92 96 100
Purity [%]
P=100% T=95%

0.6 T

0.4}
0.2+ - Fidelity H
Success
0 Il Il Il Il Il Il Il T

5 6 7 8 9

0 1 2 3 4
AQ [units of SNU]

FIG. 11. Robustness of the PSSV amplification to squeezing
impurity (top) and homodyning width (bottom). The fidelity with
an even cat state of size § = 1.5 and the success probability of the
amplification (assuming offline PSSVs) are plotted in black and gray,
respectively. The transmission of the subtraction beam splitter from
which the small-amplitude cat states are generated is 95% and the
antisqueezing in p is fixed, §, = —2.9. [This squeezing is chosen
such that the fidelity with |« (8 = 1.5)) is maximized in the case of
pure squeezing and AQ = 1 SNU—cf. the middle plot of Fig. 10.]
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however, both methods are comparable in terms of fidelity and
amplification factor. The homodyne method offers nonetheless
experimental advantages over the photon detection of LIRK
in that it does not suffer as much of quantum inefficiency
or electronic noise. In particular, the need for coincident
detection of photons in the LJRK scheme suppresses the
success probability by the square of the quantum inefficiency.
(The dash-dotted curve in Fig. 10 assumes ideal quantum
efficiency.)

If one assumes ideal quantum efficiencies at the detectors,
the two main nuisances in the performance of the amplification
scheme are (i) the impurity P of squeezing and (ii) the width
A Q of the homodyning detection. To visualize the robustness
of the scheme to these two factors, let us choose an optimal
input squeezing with a target even cat state of size, say, 8 =
1.5. From Fig. 10, this corresponds to &£, = —2.9 dB for a
fidelity of 92.6% and a success probability (assuming offline
PSSVs) of 20%. From this reference point, the trend of fidelity
and success probability on varying either P or AQ is plotted
in Fig. 11. Recall that, by convention, we model a decrease of
purity by an increase in antisqueezing (&,) while maintaining
squeezing proper (&) fixed.

V. SCALABILITY

As was shown in the previous section, we are bound by
a trade-off between amplification and fidelity. That is, if the
output fidelity is to be kept high, one has to work with smaller
small-amplitude cat states to begin with, and thus cannot reach
higher amplitudes (cf. Fig. 10). A high fidelity can, however,
be achieved with larger states if we cascade the setups into a
complete binary tree. We shall discuss the scalability of such
a recursive amplification in the case of perfect homodyning
(AQ — 0) and pure squeezing (¢ = 1), both for ideal input
cat states and for PSSV inputs.

Let us describe each iteration stage k as the amplification
of two identical wave functions ¢i(x;) and @i(x;) into a
larger state ¢y(x;) where mode 2 has been postselected by
homodyning. This iteration step is given by

@r(x1)@r(x2) = {50:50 beam splitting}

- () ()

— {projection on |x; = 0){x, = 0]} @)

SEINE)

2 X1
Qry1(x1) o @ <E)

where the initial wave function ¢y is that of the inputs. It can
be obtained from the one-variable analog of (A16). In the case
of input PSSVs, this involves the highly unbalanced mixing
of two vacua, one of which is squeezed, and—ideally—a one-
photon projector ¢;y. That is,

o0
‘PO(XI) = YI"HHI/ §05‘|0)(ﬁ)ﬁ — 41— T)Cz)
“1J—00
x ooy (VT—Txi + VT x)gfyy () dxa. (8)
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FIG. 12. Maximum fidelity (squares) and corresponding effective
size B (disks) of the output as a function of the number of iterations.
The inputs to the first iteration are an ideal odd cat state of size @ = 1
(black) or a PSSV squeezed by 3 dB (gray).

Since we only want to investigate how scaling behaves,
however, we shall simplify the PSSV by a squeezed single
photon,

V2 IEP

lim go(x) = (1811) = —7=mxe™ 2 ()

where s = 105/ is the factor by which the quadrature phase
space is rescaled as a consequence of the pure squeezing (i.e.,
x — sxand p — p/s).

The wave function of the state at the kth iteration is given
in closed form by

1
0u(¥) = 100 27, (10)

where

o0 1/2
Aﬂ“::{/ ¢$(2kﬂx)¢4 (11)

is the normalization factor.

Figure 12 tracks both the amplitude and the fidelity of
the outputs as a function of the number of iterations k. As
already expected from (10), the output amplitude grows as

«/Ek. This does not imply, however, that iterations could be
carried out indefinitely. For the particular choice of initial
conditions plotted, o = 1 for the cat state or 3 dB of squeezing
for the PSSV, the fidelity drops below 90% at the fifth iteration.
This shortcoming of recursive amplifications is due to the
nonunitarity of the amplification in the coherent-state basis.
Looking back at the idealized case of (5), we see that the
amplification is not a straightforward mapping of a cat state
onto a larger one, but instead introduces an extra vacuum term.
This vacuum, which arises from the intrinsic ambiguity of the
homodyne projection, is also amplified along with the cat state.
Even if one does start the first iteration with an ideal cat state,
any subsequent iteration k will inherit this vacuum component,
which in turn will contaminate the following step k + 1 with
additional terms orthogonal to an even cat state.
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FIG. 13. (Color online) Success probability of iterated amplifica-
tions for an input cat state |k_(o = 1)) as well as for various input
PSSVs with squeezing & € {0.5,1,2,3,6,9} dB.

The success rate of iterated amplifications is the main issue
facing scalability. As shown in Fig. 13, the scheme exhibits
a sharp drop in the success probability with the increasing
number k of iterations. Another obvious overhead is the
number of input states which grows as 2.

VI. CONCLUSION

We have presented an amplification protocol for cat states
that is based on imprecise homodyne measurement. The
performance of the scheme was assessed in terms of fidelity
and success rate and illustrated by an optimized relation
between the target size S and the input size o of the cat
states involved. Given that ideal cat states are challenging
to produce, we also presented how the amplification behaves
with approximations to cat states, namely, photon-subtracted
squeezed vacuum. Here again, we determined the optimal
relation between the input squeezing and the effective size
of the output. The purity of squeezing at the input was
determined to be crucial in achieving a high fidelity at the
output. The amplification was, however, relatively robust
to imprecise homodyne thresholding, thereby allowing an
increase in success probability.

The recursive application of the amplification protocol is
then simulated in the idealized case of exact homodyning
and pure squeezing. Although the amplification factor does

grow as \/ik with the number k of recursions, the output
fidelity eventually degrades due to the nonunitarity of the
amplification. One is therefore constrained to a finite number
of recursions where the state is amplified while at the same
time retaining a high fidelity.

We saw in Sec. IV that target cat-state sizes § = 1.5 can
be reached with fidelities up to 93% if one uses PSSVs
obtained from a 5% tapped-off squeezed vacuum. (If one
assumes ideally squeezed single photons, that fidelity can even
increase to 98%; cf. the first iteration in Fig. 12. For higher
iterations of the amplification, amplitudes of 8 ~ 3 can be
obtained while maintaining fidelity around 98%.) Although
such approximate states may not permit fault-tolerant quantum
computation, they nonetheless allow for proof-of-principle
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experiments that require effective cat-state sizes larger than
those of basic PSSVs. For instance, our amplification protocol
can find uses in teleportation [36] or some demonstrations of
quantum gates [5,37]. The question of whether the amplified
states can be harnessed for any particular use in quantum
information will require a feasibility study of its own that
pays particular attention to the trade-off between target sizes
and fidelities.

Let us conclude with a final note on the practical challenges
to our protocol. In addition to the issues proper to PSSV
preparation (and already discussed in [19-21,24,25]), the key
challenge facing the amplification protocol is phase stability.
This arises because the pairs of interfering PSSVs need to
be synchronous, thereby leading to very small success rates.
This is to be factored on top of the already small success rate
of an otherwise ideal postselection (Fig. 13). Small success
rates are compensated for by running the experiment over a
larger batch of input states. However, this in turns requires that
the relative phases—of the two interfering PSSVs and of the
local oscillator—be kept stable for protracted periods using a
particularly reliable locking system.

APPENDIX: MATHEMATICAL DERIVATIONS

1. Expression for the purity of the squeezed vacuum

Let the variance of the vacuum phase-space distribution
be labeled by Vj. As will be discussed more formally in
Appendix A 3, the squeezing operation along a quadrature
g consists of a rescaling of phase space ¢ — s,q where
sq = +/V4/ Vo such that the new variance along g is V,. The
relationship between the dimensionless rescaling factor s, and
the squeezing &, (in decibels) is given by

V,
g, = 10log,, 7‘; =20log,ys, & 5, = 10%/2°. (A1)
The purity of a state of Wigner function W is given by

P =2rm / W2dxdp, (A2)

and the Wigner function of a squeezed vacuum state $|0) is

1 —(x/s:)2—(p/s,)*
W (x.p) = ———e /o= (rnr, (A3)

SxSp

The purity of the squeezed vacuum can therefore be shown
to be

1
P= —= 10~ 1/20)(E:+5p) (Ad)
xSp

2. Error in the discrimination between the vacuum and a cat
state with a homodyne projector

As mentioned in Sec. III, the purpose of the homodyne
measurement is to collapse the output state onto an even
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FIG. 14. (Color online) Probability P of mistaking an even cat
state of size B8 for a vacuum state as a function of the quadrature
acceptance window A Q.

cat state upon the detection of vacuum; cf. Eq. (4) and
the inset of Fig. 4. The projector for this measurement
is
A HD 750
I}, :/ [x) (x| dx. (AS)
,%AQ

Due to the intrinsic overlap of the wave functions of |0) and
[y (@), f[ff)? can act only as an approximate discriminator
between them. In addition, the finite width of the quadrature-
selection window introduces an approximation of its own.
The error in the discrimination, namely, the probability of
mistaking an even cat state for the vacuum is given by

Pk (B))

Pery = s A6
P(lx+(B))) + P(]0)) (A0)

where P(|ly)) = Tr{I1i’|y)(y]} and |y) € {l0),lc(B)}.
Figure 14 shows that the discrimination is best achieved
for small AQ and large §. The asymptotic convergence to
Py = 0.5 atlarge A Q or small 8 indicates a complete lack of
discrimination between the states: They become equally likely
to be inferred by the homodyne projector.

3. Linear transformations and measurements with Gaussian
states and operations

In this section, we shall present the calculational tools we
have used to perform our simulations. All the quantum states
and operations involved in this article are made up of Gaussian
superpositions in the Wigner picture. That is, any state p or
measurement operator [1 can be written in the Wigner picture
as a function

W(x,p) =Y Gix,p), (A7)
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where G is a Gaussian function in both quadratures,

G(x,p) = goexp(gix* + g2x + g3xp + gap” + g5p + £6),
(A8)

with constant coefficients g, € C : k € {0, ...,6} and g;,g4 €
R~. For example, a cat state is made up of four such
Gaussians,

4
Wi (x,p) = Z GPx,p.y), (A9)
j=1
where
) =X TP iy
G ,p))=——"—"—""5"—", Al0a
Ki(x p) 2]1_(_872}/2 :F 1) ( )
@) =X —r' =2 2ivp
G )=, A10b
i (X P) e 1) ( )
3 —x2—p* 4242y x—2y?
G(x,p) = , Al0c
o (X, p) (e 1) ( )
e—xz—pz—Zﬁyx—Zyz
G (x,p) = (A10d)

2n(—e~ 2 F 1)’

whereas the APD operation [1APD) = f — 0)(0] is made up
of only two Gaussians,

2
Wyapp (x, p) = Z G papp,j (X, p),

(A1)
j=1
where
1
G papp,)) (X, p) = pr (Al12a)
G gapp2 (X, p) = —;efxsz’z. (A12b)

If we now assume that all transformations undergone by
the state p prior to measurement are linear, as is the case in
the setups presented in this article, then the generic Gaussian
form (AS) is conserved and only the quadrature vector

g =1.p1, ... xn.pn)’ (A13)

of the N modes involved is transformed by a linear mapping

qg—>A-q, (A14)
where the 2N x 2N matrix A is determined by the linear
assemblage of passive elements making up the circuit, e.g.,
beam splitters, phase shifters, squeezers, etc.

Consider the generic quantum circuit depicted in Fig. 15

where once again we have only Gaussian states and operators
as defined by (A7) and (A8). The effect of a re-scaled
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FIG. 15. (Color online) Sketch of a black box quantum circuit
made up of N =15 input modes, M =4 measurement modes,
and N — M =1 output modes. Each state occupying mode k is
represented by a Wigner function W®. The input [T Wi is mapped
according to (A15) into a linearly transformed state ]_[flv Wi which
is then projected onto a “measurement state” [ Wlﬁ;").

quadrature space (Al4) on a given Wigner function is
equivalent to leaving the space unchanged while submitting
the function to the inverse transformation. We shall label the
transformed multimode Wigner function by a tilde such that
the mapping (A14) yields

W(@) — WA™'g) = W) (AL5)
If we now apply the measurement operators over M <

N modes, the output over the remaining N—M modes is
given by

N M
77(n) (m)
Wi = [ [T TTWg dvadpn  (a16

where the superscript denotes the kth mode.

Note that the number of output modes equals the number
of input modes N minus the number of measured modes
M. If M = N, then there is no output state and the inner
product (A16) leaves us with a scalar representing the success
probability—or norm—of the projection of input states onto
the measurement operators. Alternatively, this number could
be interpreted as the fidelity between the overall states at either
side of the diagram in Fig. 15.

The rationale for (A16) is valid regardless of whether
the Wigner functions are Gaussian superpositions: From a
mathematical standpoint, projective measurements are inner
products between the measured state and the measuring oper-
ator. In functional analysis, this translates to an integral of the
product of two states—the measured and the measuring state—
over the entire phase space of measurement. The simplicity that
comes from using (A16) with Gaussian superpositions is due
to the fact that products and integrals of Gaussians are also
still Gaussian.

4. Wide homodyne measurement

A homodyne measurement corresponds to a projection on a
given quadrature |go){qo| where |qo) = cos 8|xg) + sinb|py).
This projector, when applied to a state whose Wigner function
is W(x,p), “picks out” the cross section along ¢go to yield a
probability density. Such a projection is given in the quadrature
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basis by

Man(g0) = 190} {qol, (A17)

which, in the Wigner representation, would most appropriately
be given by the Dirac § function

Whp(qo0) = 8(q — q0)- (A18)

If we choose for simplicity that gy = xg, then the projection
operation (A16) onto some state W(x, p) yields

f fR W(x. p) Win(go) dx dp

:// W(x,p)§(x — xo)dxdp
R

= W(xo.p) = P(xo). (A19)

Intuitively, the probability of measuring exactly the quadrature
qo should be vanishingly small. Yet P(x() has a finite value
since it is a probability density. To model the more realistic
scenario where homodyne detection has a given resolution
bandwidth Ag around the measured value gy, an interval
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projector is more appropriate:

L a0+
HHD(qo,Aq)zf lg){qldq (A20)
a5
or, in Wigner representation,
Whp (g0, Aq)
1 qo+% / /
=5 . 8¢ —q)dq
T Jgg-5t
_ ! ® —l—lA ® 1A
o 6161026] 616]0261,
(A21)

where © is the Heaviside step function. Note how (A21) does
not fit the Gaussian form of (A8). For calculational ease, the
wide homodyning operation is therefore best performed last
so as to maintain the convenient Gaussianity of the quantum
states as long as possible.

In the limiting case of ideal homodyning, AQ — 0, we
expect (A18) and (A21) to yield the same result.
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