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Summary (English)

This thesis develops a unified framework wherein to specify, verify and optimise
stochastic business processes.

This framework provides for the modelling of business processes via a math-
ematical structure which captures business processes as a series of connected
activities. This structure is extended with stochastic branching, message passing
and reward annotations which allow for the modelling of resources consumed
during the execution of a business process. Further, it is shown how this structure
can be used to formalise the established business process modelling language
Business Process Model and Notation (BPMN).

The automated analysis of business processes is done by means of quantitative
probabilistic model checking which allows verification of validation and perfor-
mance properties through use of an algorithm for the translation of business
process models into a format amenable to model checking. This allows for a rich
set of both qualitative and quantitative properties of a business process to be
precisely determined in an automated fashion directly from the model of the
business process.

A number of advanced applications of this framework are presented which allow
for automated fault tree analysis and the automated optimisation of business
processes by means of an evolutionary algorithm.

This work is motivated by problems that stem from the healthcare sector, and
examples encountered in this field are used to illustrate these developments.
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Summary (Danish)

Denne afhandling udvikler et forenet framework til at specificere, kontrollere og
optimere stokastiske forretningsprocesser.

Dette framework giver mulighed for modellering af forretningsprocesser via en
matematisk struktur, der indfanger forretningsprocesser som en række forbund-
ne aktiviteter. Denne struktur er udvidet med stokastisk forgrening, besked
overførelse og belønningsannotationer, der giver mulighed for modellering af
ressourcerne forbrugt i løbet af udførelsen af en forretningsproces. Endvidere
er det vist, hvordan denne struktur kan bruges til at formalisere det etablerede
forretningsmodelleringssprog Business Process Model and Notation (BPMN).

Den automatiserede analyse af forretningsprocesser sker ved hjælp af kvantitativ
probabilistisk model checking, som åbner mulighed for kontrol af validerings-og
styrkemæssige egenskaber ved brug af en algoritme til oversættelse af forretnings-
processmodeller til et format hvor model checking teknikker kan anvendes. Dette
giver mulighed for at et rigt sæt af både kvalitative og kvantitative egenskaber
for en forretningsproces kan bestemmes præcist i en automatiseret måde direkte
fra modellen af forretningsprocessen.

En række avancerede anvendelser af dette framework præsenteres som giver
mulighed for automatiseret fault tree analyse og automatiseret optimering af
forretningsprocesser ved hjælp af en evolutionær algoritme.

Dette arbejde er motiveret af problemer, der stammer fra sundhedssektoren, og
eksempler fra dette område anvendes til at illustrere denne udvikling.
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Chapter 1

Introduction

“This is no defeatism...The declaration of our own nature and the
attempt to build up an enclave of organization in the face of nature’s
overwhelming tendency to disorder is an insolence against the gods
and the iron necessity that they impose. Here lies tragedy, but here
lies glory too...” (Norbert Wiener 1948)
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2 Introduction

Overview

This chapter states the objectives for the thesis, introduces the motivating context
of robot assisted workflows in hospital environments, and provides an overview
of the structure of this thesis.

1.1 Motivation

The original motivation for this project stems from a problem in the healthcare
sector.

A significant proportion of the treatment performed in modern hospitals relies on
the adaptive application of various intravenous medicines, which are mostly in
liquid form and prepared in central pharmacies serving a number of departments.
Strict safety requirements mean that the process of preparation is labour intensive.
Nevertheless, with human actors they still remain error-prone [52], [128].

The management of hospital pharmacy operations is often not able to efficiently
deliver medications. Current product preparation workflows rely on manual
processing, which is often compromised by poor inventory management [79],
[128]. Pharmacies tend to employ production techniques abandoned by other
industries; including duplicating inventory, inflexible batch processing, and over
production where doses are often prepared in anticipation of a need that may
not be realised. These processes contribute to waste, as sometimes doses go
missing, or there are attempts to improve the delivery times by having redundant
distributed inventories to avoid transport issues [136]. Standard doses are used,
rather than patient specific supplies which level work load and solve distribution
delay concerns [128].

This situation has become increasingly untenable, and a solution has been
sought by the introduction of automation into the medication management and
dispensing processes. Initial deployments have delivered significant improvements
in specific pharmacy tasks by improving the quality of care through dramatically
increased safety for both staff and patients [67], [212]. New pharmacy capabilities
such as customised medicine have also become feasible [67].

Robotic intravenous drug preparation systems are used by hospital pharmacies
to automatically and accurately prepare IV syringes and bags. An example of
such a system is shown in Figure 1.1. This system consists of a robotic arm inside
a clean-room environment which moves drugs, syringes and IV bags between
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separate stations. The stations perform steps in the preparation of drugs such as
filling syringes, mixing/diluting drugs, and heating drugs. The system takes in
standard syringes, IV bags, and vials of drugs and produces ready-to-use labelled
doses of drugs. The automation of the repetitive and complex tasks involved in
drug preparation reduces the incidence of errors and contamination [67], [128].

A fundamental prerequisite is that the system meets regulatory requirements for
safety, while improving the efficiency and effectiveness of the pharmacy within
a hospital. This is very important when preparing chemotherapeutic drugs as
the system provides significantly increased safety for the technician, who could
be endangered when preparing these drugs. Such systems also need to operate
within a strict performance profile because the chemotherapeutic versions of
these drugs can have very short half-lives.

This technology, however, has been disruptive in the traditional pharmacy
environment and customers have not been aware of how best to integrate this
product into their existing business processes. A system such as that illustrated
in Figure 1.1 consists of many interacting, distributed elements subject to
real time constraints and with behaviours that may be stochastic in nature.
The environment in which a medical robot operates is also stochastic and
subject to quantitative resource constraints. In this environment the product is
integrated into current business processes in an extremely conservative fashion.
The approach is often to simply swap out an existing pharmacy with the new
automated solution, which does not achieve the full gains that the technology
potentially enables.

This thesis presents examples, drawn from the experiences of a commercial
vendor trying to solve the problem of safely realising the full efficiency gains
that are expected by integrating robotics into a hospital environment. The main
reason for employing this environment to demonstrate the ideas in this thesis, is
that business process modelling has seen wide adoption in this sector [237], [249].
To place the examples and developments presented in this thesis in context, the
specific problems faced by this partner are briefly described below.

A simple example of the type of problems faced by the commercial vendor
producing automated intravenous drug preparation systems, was that current
standard hospital practice involves producing a large batch of drugs in the
morning, which are then stored and administered during the day according
to the patient’s treatment plan. Should a patient’s condition change, any
drugs prepared for that patient are destroyed, leading to substantial waste [67].
However, the automated system’s fast and safe processing of drugs enables the
adoption of just-in-time production [263], where drugs are prepared on an as-
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Figure 1.1: Interior of an automated fluid drug preparation system. The
central robot arm moves materials between various processing stations.

needed basis just prior to use. Discovering that the system enables this change in
a business process was non-obvious, and motivates the search for an automated
way to discover configurations which fully realise potential efficiency gains.

Ensuring that these systems make efficient use of resources and perform in such a
way so as not to violate any established safety standards or regulatory guidelines
is paramount, as situations may well be encountered where faults can lead to
the loss of human life. Faults may be complex in nature and systems may not
halt their operations when a fault has occurred, leading to further complexity
in the analysis of such systems. The earlier it is possible to anticipate and
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counterbalance the risks present in a new business process then the greater the
benefit of a formal modelling approach. Design time support for the analysis of
hospital operations, and how they would be affected by the introduction of new
systems, is essential to make efficient use of these systems. However, such an
analysis must be able to validate safety properties, performance properties, and
provide support to adjust current operations to find the optimal way to employ
the new system.

In the healthcare sector in many jurisdictions a fault tree analysis [97] is frequently
a regulatory requirement when introducing a new device into a medical workflow.
Hence being able to automatically generate fault trees at an early stage in the
business processes development can help identify possible complex faults before
a process is employed, thus leading to increased safety and reducing time and
cost needed to construct dependable business processes. Further, automated
optimisation of business processes early on in their development can help keep
individual processes simple and ensure that deployed processes are more efficient.
However, it should be stressed that these needs not only exist at design time
but that fault tree analysis and optimisation can be useful throughout the
development of a business process.

Unfortunately the specific examples originally used to develop the ideas pre-
sented in this thesis can not be included due to commercial concerns of the
partner company Intelligent Hospital Systems. However, the examples given
are representative of the models encountered in developing this framework. In
Section 9.3 of Chapter 9 the scalability of the techniques developed is examined
for a range of randomly generated models.

1.2 Objectives of the Thesis

The main objective of this thesis is to determine:

How to specify, verify and optimise stochastic business
processes within a unified design time framework.

Based on the motivating context of Section 1.1, there is a need for a rich mod-
elling formalism which can allow for describing processes with a combination
of stochastic and non-deterministic behaviour, and which can account for re-
sources consumed during execution of the process. These requirements motivate
Objective 1.
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Central to the work of this thesis is enabling the application of the powerful
technique of quantitative probabilistic model checking to the analysis of business
processes of the type described in Section 1.1. Useful analysis of such processes
most be able to account for both functional and non-functional requirements of
a process and as such this motivates Objective 2. Finally, it is a requirement of
the partner company to perform a number of specific analyses of new business
processes, motivated by the need to comply with regulatory requirements and as
part of building the case for efficiency gains. These requirements are expressed
as Objective 3.

A more extensive statement of the objectives is as follows:

1. Modelling: To develop a formalism for the specification of business
processes which is able to address their complexities and can be formally
analysed. This formalism should:

(a) Allow for the modelling of both non-determinism and probabilistic
decision points.

(b) Allow for modelling numerical data and resources associated with a
business process.

(c) By means of the imposition of structural semantics serve as a basis
for the formalisation of an established business process modelling
language which is familiar to business practitioners.

2. Analysis: To develop a method of analysis for systems of business pro-
cesses which allows for automated formal mathematical verification of:

(a) Functional safety properties which assert that the system always stays
within some allowed region, such as defined by regulatory requirements,
of business processes.

(b) Non functional qualities of business processes such as timing properties
or the determination of resources consumed by business processes.

(c) Probability bounds on functional and non-functional properties for
business processes which exhibit stochastic behaviour.

3. Extended Analysis: To employ the developed verification technique to
allow for construction of advanced design time analysis techniques for
business processes, which specifically allow for:

(a) Automatic synthesis of execution schedules for business processes
which are subject to combined functional and non-functional require-
ments.

(b) The generation of industry standard fault trees which can assist in the
analysis of the effects of combined faults within a business processes.

(c) The optimisation of existing business processes.
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This set of objectives is addressed through a framework for the analysis and
optimisation of business processes using quantitative model checking methods.
This framework can be viewed as a implementation of, and at times, an alternative
approach to, the ideas of Business Process Management (BPM) (described in
Section 2.2). This framework allows for the sophisticated analysis of business
processes already in the design phase, including quantitative and stochastic
properties. This in turn has the potential to enable optimisation of business
processes by using quantitative data, from for example equipment specifications,
industry standards or common practice without the need for data mining event
logs which characterizes the traditional BPM approach, potentially allowing
more safe and efficient processes to be deployed at the outset.

The extent to which the thesis meets these goals is evaluated in Section 10.2.

1.3 Organisation of the Thesis

The structure of this thesis reflects the approach taken to meet these objectives,
and is illustrated in Figure 1.2. In this figure the lightest grey boxes represent
foundational material only briefly covered here so as to establish context, but not
explained in depth. The darker boxes indicate areas where the thesis contains
more original work. The black boxes represent advanced applications of these
ideas and are the culmination of the work in this thesis.

The chapters of this thesis contain the following material:

Chapter 1 Introduction:
This chapter states the objectives for the thesis and introduces the moti-
vating context of robot assisted workflows in hospital environments and
provides an overview of the structure of this thesis.

Chapter 2 Business Processes:
This chapter defines business processes and discusses their complexities.
The approach of business process management is introduced to place the
developments of this thesis in a management engineering theory context.
An overview of the main approaches to modelling business processes is
provided and a set of requirements for the modelling of business pro-
cesses within the motivating context are given. An overview of established
business process modelling languages is presented and the choice of the
Business Process Model and Notation (BPMN) [207] language as a suitable
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SBOAT
(Chapter 9)
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(Chapter 8)
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(Chapter 3)
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(Chapter 4)
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Model Checking
(Chapter 4)

Graph Process Models
(Chapter 3)

Model Checking
(Chapter 4)

Business Process Management
(Chapter 2)

Formal Methods
(Chapter 4)

Figure 1.2: Overview of the structure of the thesis.

modelling language to employ as a basis for further development in this
thesis.

Chapter 3 Modelling Business Processes:
This chapter defines the formalism of process graphs that allow for the
modelling of business processes as a graph representing sequences of tasks.
This structure is extended to allow for the modelling of probabilistic and
non-deterministic branching, in line with Objective 1a. Objective 1b is
met by defining quantitative data annotations for both nodes and vertices
of a process graph. It is shown how these can be combined to approximate
the accumulation of stochastic rewards given by an arbitrary continuous
distribution. The synchronization of separate models is addressed by means
of a message passing mechanism.
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Process graphs are then employed as a basis for defining a notation and
structural semantics for a central fragment of the BPMN [207] modelling
language which meets Objective 1. The approach taken is to partition
the nodes that form a process graph and then impose a set of structural
semantic rules which exclude, from the perspective of modelling business
processes, ill-formed graphs. Note that in this chapter the focus is on
defining a notation for description of business processes with a minimum
of semantic interpretation imposed upon the notation. However, a basis
denotational semantics for process graphs in terms of execution traces is
defined. The developments in this chapter are illustrated with an example
drawn from the scenario described in Section 1.1.

Chapter 4 Formal Methods:
This chapter provides a brief overview of the main formal verification
approaches for stochastic systems. These approaches are evaluated and
the choice of model checking for analysis of business processes is justified.
The dominant software tools for quantitative model checking are reviewed.
Discussion of their key strengths and weaknesses motivate the choice of the
Probabilistic Symbolic Model Checker (PRISM) model checker to perform
analysis of business processes.

Chapter 5 Analysing Business Processes:
Objectives 2a-2c are addressed in this chapter. An algorithm is developed
for the translation of process graph based BPMN models into PRISM mod-
els, and the algorithm’s termination and complexity bounds are detailed.
Pre- and post- processing steps that enhance the precision of the analysis
and which allow for bounded rewards values are presented. In this chapter
a semantic interpretation is imposed on the execution of BPMN models by
the PRISM model checker, the ramifications of this interpretation and how
it differs from what is defined in the BPMN execution semantics is discussed.

The application of this analysis approach is illustrated using the example
introduced in Chapter 3, where a range of properties are verified, and
provisioning of resources is demonstrated.

Chapter 6 Schedule Generation:
This chapter demonstrated how the analysis can be used to synthesise a
schedule for the execution of a business process, subject to both functional
and non-functional requirements, which addresses Objective 3a.

Chapter 7 Fault Tree Generation:
In this chapter, Objective 3b is addressed by further extending the process
graph formalism introduced in Chapter 3 to include states that capture
fail-stop and fail-continue behaviour. The injection of fault states is defined,
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and an algorithm is presented which employs the methods of Chapter 5
for the automatic generation of industry standard fault trees from fault-
annotated models. This chapter also shows how the value of reward values
can be calculated as annotations at points of failure, and builds a fault
tree which includes the mean values of properties of interest at fault states.
A limited example of fault tree analysis is used to illustrate this work.

Chapter 8 Optimisation of Business Processes:
The chapter discusses the automated optimisation of business processes,
which permits the improvement of existing processes or the effective integra-
tion of new technology into an existing process, as required by Objective 3c.
This is approached by defining a structure for expressing the optimization
goals for a business process as a set of weighted analyses of properties of
interest in a business process. This structure is used to construct a fitness
score for a given business process with regard to the optimisation goals.
The same ideas are employed to express the core functional requirements
for a business process which must not be violated by an optimised variant.

An algorithm for the optimisation of business processes is then presented.
This algorithm allows for an evolution-like process to be applied to a
business process to arrive at a configuration that is well-suited to achieving
optimal values of the properties of interest. The algorithm takes an existing
business process and a set of optimisation goals and functional requirements,
and produces an improved business process in the same process graph
formalism as the input business model. The iterative algorithm generates
variants of an existing business process, and, at each iteration, determines
if they meet the functional requirements. If they do, and a higher fitness
score is achieved, then this generation is used as the basis for the next
iteration. Finally, some of the core parameters of this process are discussed.

Chapter 9 SBOAT:
This chapter introduces a prototype software tool, called SBOAT for
Stochastic BPMN Optimisation and Analysis Tool, which provides an
implementation of the ideas presented in this thesis. The main elements are
a GUI for the modelling of workflows in the developed fragment of BPMN
and implementations of the verification and analysis techniques developed.
Within SBOAT, properties of interest are specified using the temporal
logic Probabilistic Computation Tree Logic (PCTL) and employ stochastic
model checking, by means of the model checker PRISM, to compute their
exact values as described in the previous chapters.
SBOAT is employed to explore the scalability of the approach to business
process analysis and optimisation. The chapter will conclude with a discus-
sion of the tool’s practical applicability and need for further development.
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Chapter 10 Conclusions:
This chapter concludes the thesis and provides a brief summary of the main
contributions of this work. The main strengths of the developed approach
are discussed, together with areas that need further refinement. During
this discussion some possibilities for further development of this framework
are identified. Some final remarks address the broader perspectives of the
work presented.

Appendix A Quantitative Model Checking Theory:
This appendix provides as formal foundational description of quantitative
model checking is given with a focus on PCTL checking of Markov Decision
processes.
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Chapter 2

Business Processes

“Being good in business is the most fascinating kind of art. Making
money is art and working is art and good business is the best art.”

(Andy Warhol 1975)
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Overview

This chapter introduces concepts from the management engineering of business
processes and discusses their complexities. The approach of business process
management places the ideas of this thesis in a management engineering theory
context. An overview of the goals of business process modelling is presented
along with a discussion of the main approaches to modelling business processes.
This discussion is employed to motivate the definition of a set of requirements
for a suitable modelling language for modelling the type of workflows which are
the focus of this thesis.

The challenges with business processes and business process modelling in this
context were first presented in [10], and later developed in [11], and subsequently
refined in [14]. A number of issues in production processes where explored in [1].

2.1 Business Processes

A wide range of frameworks for the description of the behaviour of organisations
has been proposed. A significant majority of these fundamentally view organ-
isations as activity systems [65], [297]. First described by Porter in 1985, the
concept of activities and its use in understanding competitive advantage [229]
has become the dominant approach to understanding organisational behaviour.
Later, Porter noted that the competitiveness of a specific business strategy rests
on the uniqueness of these activities, and on the deliberate choice of different
sets of activities to deliver a unique mix of value propositions [228].

According to Porter, positioning choices determine the specific set of activities an
organisation performs and how they relate to one another. Since discrete activities
often influence one another, a system level approach is implicit in the activities
view of organisational behaviour which emphasizes their interdependence and
gives rise to the notion of fit among activities [227]. Three categories of non-
mutually-exclusive fit have been described. First category fit is consistency
between each activity and strategy. Consistency ensures that the competitive
advantage arising from activities accumulates, and does not erode or cancel
out [227]. Second category fit occurs when activities are mutually reinforcing.
Here activities are complements, so that the marginal value of one activity
increases as the other activity is increased [189]. Finally, third category fit goes
beyond activity reinforcement to produce global optimization, a system-level
type of fit, which optimizes the entire set of activities to eliminate redundancies
and minimize waste [227].
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The related concept of workflow has existed for a long time. The origins of this
concept can be traced back at least as far as Smith’sWealth of Nations [266] which
introduced, in 1776, the first ideas of the division of labour in manufacturing.

Originally, one person would make one item from beginning to end in a cottage
industry situation. Later, when factories became the norm, employing many
people who all made items from beginning to end proved time-consuming and
inefficient. Gilbreth’s paper [113] Process Charts - first steps to finding the one
best way to do work is credited with addressing this and developing the first
method for documenting process flow, where a workflow is a specific sequence of
actions intended to achieve one or more objectives. These objectives are typically
presented within frameworks which dictate the behaviour of organisations in
the form of a business model [65], [297]. This motivates the choice of activities
performed and how they are combined to execute a given strategy.

Although business models and workflows have been integral to trading and eco-
nomic behaviour since pre-classical times, their formalisation has only relatively
recently given rise to the concept of business processes. The definition of what
constitutes a business process is a subject of debate, and over the past century
a wide range of definitions has been proposed [176]. However, the consensus
is that a business process is a series of related activities aimed at executing
the components of a business model in a measurable manner. The notion of
measurable quantities associated with the activities is the main distinction
from a workflow, although the terms are frequently used interchangeably and a
consistent terminology has never been established [65], [176].

This thesis considers business processes as a market-centred description of an
organisation’s activities, implemented as information processes and/or material
processes. A business process is considered to be engineered to fulfil a business
task, and involves a mix of coordinated information and material workflows.

2.1.1 Business Process Challenges

Modern enterprises exist within complex networks which need to adapt to a con-
stantly changing environment. The architecture of an enterprise is the organizing
logic of the individual business processes which make up its operations [250].
In the case of industries which create complex products or provide complex
services, such as producing highly engineered products or addressing extremely
dynamic customer needs, the strategy and consequently the business processes
of these enterprises often exhibits a high degree of complexity. In these environ-
ments creation of dependable, yet efficient, business processes poses a significant
challenge.
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Processes are executed within networks of other processes and interact with
these external processes. This synchronisation between processes effectively
defines a combined process, often of far greater complexity than the individual
component processes. This behaviour, however, is essential in business processes,
as the value which is normally added by a business process arises primarily
through the coordination of separate contributions, for example in organizing
multiple contributions to the preparation of a quotation. This complexity makes
traditional manual verification difficult and error prone, with a classic example
being the failure of business processes in the Barings Bank debate [158]. The
233-year-old UK Barings Bank went bankrupt in February, 1994 after it sustained
losses of $1.4 billion, incurred in a matter of days by a single young futures
trader, Nicholas Leeson, in the Singapore branch. Inadequate process controls
and other business process failures meant that Leeson’s unauthorized futures
trading went undetected by the headquarters until the very end.

Real-world processes add further complexity because processes may interact
with elements outside the processes’ control and whose behaviour is unknown.
This motivates the need for probabilistic decision points in the modelling of
business processes; because the outcomes of complex decisions within a process
can appear random and/or not possible to predict in advance. This complexity
is an inevitable consequence of business processes’ existence in the physical
world where many material processes, such as casting metal or performing a
measurement, ultimately rest upon quantum mechanics and have an inherently
stochastic nature. In such a stochastic system, characterising properties such
as the number of items that remain in a queue or the resources consumed per
job done will require answers in terms of probabilities. For example, a business
process which consumes various resources in a metal casting process has key
stochastic characteristics such as the mean consumption of resources per item
cast.

Many business processes make use of various limited resources such as stock levels,
time, or available liquidity, and the accurate provisioning of these resources is the
key to their safe and efficient execution. An essential activity in efforts to develop
such systems that integrate with their environments is constructing formal
models of the processes involved. Currently, tools that support such activities
simply allow for modelling such systems, with even the most sophisticated just
performing basic simulation of the execution of business processes to determine
future stock levels. Simulation, however, does not provide verification, and the
properties which can be analysed, and the accuracy of the analysis, are limited.

The predominant approach to developing business processes is firstly to develop
conceptual process models, which are used for development of an implementation,
typically involving a mix of automated and manual processes. This approach
normally leads to a design where the process is analysed to see if it meets its
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goals, and any adjustments needed can be done before a costly implementation.
Typically the design is desired to conform with complex categories of properties
such as:

• Validation properties: testing whether the business process behaves as
expected in a given context; e.g. does this financial process comply with
the Sarbanes–Oxley act?

• Performance properties: evaluating the ability to meet requirements
with respect to throughput times, service levels, and resource utilization
or other quantitative factors; e.g. how long does it take to deliver a package?

• Stochastic properties: evaluating the probability of behaviour within
the system; e.g. is there a greater than 98% chance the package will be
delivered in 3 days?

There is substantial evidence [99], [108], [283] that being able to determine such
properties and their exact quantitative values early in the design phase can result
in smoother integration, accurate provisioning to meet service level agreements,
and significant cost savings. Safety critical processes frequently combine the
need for proof that safety properties are kept while simultaneously requiring
a specific performance profile. Many business processes make use of various
limited resources such as stock levels, or time, and the accurate provisioning of
these resources can increase their safe and efficient execution.

The improvement of business processes is another task that is typically done
by hand, where improved configurations are found by a process of trial and
error, often taking many years to arrive at an optimal practice. In many cases,
determining the optimal way to restructure a process, for example due to changing
market conditions such as the introduction of new disruptive technology [112], or
the merger of two companies, is unclear. The naive approach of simply replacing
one function in an established business process with a new technology does not
usually lead to maximal gains. This approach also means that the potential
opportunities such changes in business processes can provide, for example the
possibility of creating radically new ways of doing business, is often overlooked.

Being the first to fully realise the beneficial possibilities of these advances, and
adopting the radically improved business processes which they allow, can be the
key to a competitive advantage. For example, Toyota is widely viewed as being
the first to truly realise the revolutionary benefits of IT-based inventory control
and the consequent Just-In-Time production workflows it enabled [263], [288].
However, it is arguable that the technologies that enabled this advance were in
place several decades before.
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Finally, the trend towards using visual diagrams to model business processes
has mostly neglected formal models which would allow effective quantitative
analysis [278]. Instead, this trend means that analysts tend to focus solely on
the qualitative behaviour of business processes.

2.2 Business Process Management

In recent years the adoption of a range of different process management ap-
proaches such as Lean Management [288], Activity-based Costing [61], [273],
Total Quality Management [146], Business Process Re-engineering [126] and
Process Innovation [87] has culminated in the approach of Business Process
Management (BPM). Arising from a view of business processes as a set of
competitive assets to be managed, it is a discipline that combines knowledge
from information technology and from the management sciences and applies
this to operational business processes [19], [276]. Determining the right level
of investment in the resources needed, proper performance monitoring of the
process, sound maintenance of the process, and management of the process life
cycle can maximize operational performance.

This field has received considerable attention in recent years due to its potential
for significantly increasing productivity and decreasing costs. However, perhaps
because it is cross-disciplinary, BPM practice and research is fraught with a
lack of universal terminologies [19], [134], [185] and terms are used loosely to
represent distinct scope and feature differences [134]. Moreover, today there
is an abundance of BPM systems, which are generic software systems that are
driven by explicit process designs to enact and manage operational business
processes [276], but all employ slightly different approaches. However, its leading
proponent van der Aalst [276], has advocated for a consensus that business
process management is defined as:

Supporting business processes using methods, techniques and software
to design, enact, control and analyse operational processes involving
humans, organizations, applications, documents and other sources of
information.

The specific details of how the BPM approach is implemented in organisations
vary widely, but in general, the main stages are:

1. Goal Identification: A specific aim for the set of business processes to
be managed within an organisation is identified. Ideally, these goals should
be defined so as to be measurable such that the effect of changes to the
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underlying business processes can be expressed in terms of the formulated
goals. Crucially, this step involves the formulation of a set of business goals,
e.g. “Improve delivery times” or “reduce medication errors”. This stage is
a manual step and typically involves meetings and discussions in order for
a business analyst to fully grasp the requirements of the BPM process.

2. Business process modelling: Once a clear set of goals has been formu-
lated, a model is constructed using a business process modelling language.
The purpose of this stage is to design processes which meet the defined
goals. BPM suggests a number of approaches to doing this, but normally
this step is achieved by manual modification.

3. Implementation: In this stage the designed processes are implemented
within the organisation. A key feature of a number of process modelling
languages is that they allow for automatic translation into executable
code which manages the business process. For example, in the case of
Business Process Model and Notation (BPMN) diagrams, tools allow the
translation into executable web service business process execution language
(WS-BPEL) [211] code, which defines web services employed to perform a
business process.

The BPM paradigm evolved from Hammer’s [126] and Davenport’s [87] Business
Process Re-Engineering (BPR) concept of process innovation through radical
change of existing business processes. However, it became apparent that business
processes could not be designed to work correctly the first time. Therefore, as
BPM was developed as a process of iterative, and incremental adjustment of
business processes became its focus. The fine-tuning of business processes is
done through the BPM life cycle which, as defined by van der Aalst [19], involves
three key activities illustrated in Figure 2.1.

In Figure 2.1 the (re)design phase, a process model is designed. This model is
transformed into a running system in the implementation/configuration phase.
If the model is already formalised, this phase may be very short; however, in the
case of an informal model this may require substantial effort. After the system
supports the designed processes, the run & adjust phase starts. The process is
not redesigned and no new software is created; only predefined controls are used
to adapt or reconfigure the process.

Central to the adjustment of a process is the analysis of an existing process.
Figure 2.1 illustrates in which phases the two standard types of business process
analysis occur. In standard BPM, while the system is running, event data is
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Figure 2.1: The BPM development approach system life-cycle (source [19]).

collected, and this data is used as the basis for process improvement, e.g., to
discover bottlenecks, waste, and deviations. This is input for the redesign phase,
where a process is then manually altered to account for these issues.

A classic example of the benefits BPM aims to provide is described by Ko [159]:

Consider the work of a typical design engineer in a company. We
cannot measure value-added productivity just by looking at what he
or she does. One has to follow the flow of information as the design
evolves into the finished product. At certain points in time, tests
or analyses are conducted that help engineers make decisions. The
trouble is that these results of tests and analyses sit and wait in
an information warehouse (inventory) until someone picks them up.
Following this, the results could go through several more people and
departments, adding to the delay. One can easily see that the problem
is not unlike traditional batch-and-queue manufacturing, and that the
answer is flow.
The ideal workflow, processing a customer order as though it were
the only order, pre-supposes a continuous flow of information and
materials. Although a one-piece order is idealistic, small lots are
not. In small lot manufacturing, by keeping the processes close
together, the materials keep moving, and waste is minimized. Toyota
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identified seven non-value-adding wastes: Over-production, Waiting,
Unnecessary transport, Excess inventory, Defects, Unused employee
creativity and Motion.
As a result, no one produces anything before it is needed by the next
person or step in the process (i.e., no waiting, minimum overpro-
duction and transport/movement). Where idealized one-piece flow is
not possible, inventory buffers are judiciously introduced (no excess
inventory). This is Toyota’s secret, which enables its engineers to
make a car in one year, when its competitors take two.

2.3 Describing Business Processes

Although in smaller enterprises business processes may be ad hoc and never run
the same way twice, once an organisation has reached sufficient size it is common
practice to attempt to formally define the steps taken to achieve a given objective.
Typically, companies will formally define their business processes when a process
is repeated and of high value. Processes such as insurance claims handling, loan
processing, or manufacturing tend to fall into this category. Formally describing
business processes saves companies time and money, and running a process the
same way each time maintains quality levels, as well as safety guarantees and
can ensure regulatory compliance. It is a central step in the application of BPM
methods.

A number of different abstract representations of business processes have been
proposed. The construction of these representations has come to be known as
business process modelling. In this approach, organisations are encouraged to
think in processes instead of functions and procedures. The idea is to look at
chains of actions in the organisations as opposed to individual actions, with the
key element being the sequencing and control flow of actions.

The term business process modelling itself was coined in the 1960s in the field of
systems engineering by Williams in his 1967 article Business process modelling
improves administrative control [285] His idea was that techniques for obtaining
a better understanding of physical control systems could be used in a similar
way for business processes. However, the underlying techniques of business
process modelling themselves are commonly considered to have originated from
Gilbreth’s seminal 1921 paper [113] Process Charts - first steps to finding the
one best way to do work which is credited with developing the first method for
formally documenting process flow. Considerable development has since taken
place which allows additional features to be added to these models, crucially
data flow [32] and various logics for complex branching [183].
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Business process modelling is useful for three basic reasons, which may in turn
support several business goals [213]:

1. Describing a process: A process is modelled so as to describe it. We
could have different target audiences for these descriptions, for instance,
humans, in which case understandability is important [213], or machines,
in which case formality is important.

2. Analysing a process: Process analysis consists of assessing the prop-
erties of a process. Process re-engineering and improvement relies on an
analysis of existing processes to identify redundant or sub-optimal steps.
A formally described process can automatically be verified with regard to
both structural properties such as coupling and cohesion [221] and dynamic
properties such as the absence of deadlocks, liveness properties, etc.

3. Enacting a process: Ultimately the purpose of a business process is to
be enacted, for simulation purposes or to provide some level of support
for process execution. This support can take different forms: reacting to
events triggered by the execution of the process, checking that specific
constraints are satisfied or driving the execution of the process [84]. Again
a formal description is required to ensure that an unambiguous translation
can be made from a process model to enacted process.

2.3.1 Classifying Business Process Modelling Languages

There is a large and diverse range of different approaches to modelling business
processes, Vergidis, Tiwari and Majeed propose a classification of the main
approaches. This classification considers their structural characteristics and their
capabilities for analysis and optimisation [278]. These approaches fall into one
of three main categories shown in Figure 2.2 with key representative examples is
shown in each of the sets.

Diagrammatic models involve business process models that sketch a business
process using visual diagrams. These are derived directly from Gilbreth’s original
flowchart concept [113]. These simplistic diagrams depict a business process,
frequently without employing a specific standardised notation and are useful for
fast and informal process representation, but they lack the necessary semantics
to support complex constructs. Since then, the main contribution in this area
has been to standardise the notation of these models as typified by the Unified
Modelling Language (UML).

Business process modelling benefited from standardized diagrammatic approaches
as this approach was still relatively easy to use. However, these models can be
misinterpreted as there is no way to ensure consistency across models, and they
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Figure 2.2: Classification of the current main business process modelling
languages.

can not be translated into executable systems, or rigorously analysed. Typically,
analysis consists solely of the inspection of diagrams and the conclusions are
heavily dependent upon the skills of the analyst.

Mathematical models correspond to models in which all the elements have a
formal mathematical underpinning. In their purest form these approaches are in
essence derived directly from the ideas presented by Tony Hoare in his 1978 paper
Communicating sequential processes [137], [138], and are effectively algebraic
systems for reasoning about concurrent systems. An advantage of formal models
is that they can be verified mathematically, and can be checked for consistency
and other properties. However, their complexity does not make them usable
within the business community where only highly skilled analysts can comprehend
these descriptions.

Petri-nets [220] are an example of a formal modelling technique that combines a
visual representation using standard notation with an underlying mathematical
representation, but even this involves considerable complexity and has not seen
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widespread adoption in the business community. In general, building a formal
business process model can prove much more complex and demanding compared
to purely diagrammatic techniques, and this has limited the adoption of using
mathematical models for the modelling of business processes.

Finally, the third category is business process languages which specifically support
business process modelling and frequently also support process execution. Here
the modelling formalism is developed expressly to describe business processes
and typically attempt a degree of formalisation in an attempt to retain the
consistency and potential for further analysis of mathematical models, but
reduce the complexity. These are context-specific languages aimed mostly at
modelling business processes and are usually designed so that an executable
system can be generated from them.

2.3.2 The Main Business Process Languages

The different mathematical models presented in the classification of approaches
to modelling business processes, shown in Figure 2.2, are Turing complete and
as such each language has the same formal expressibility. Diagrammatic models
without a formal basis, while often appealing in their simplicity and often widely
used in practice, do not allow for automatic verification or automated enactment
of processes as their precise meaning is left undefined. Business process languages
seek to bridge this gap and aim to allow, to varying degrees, both the description,
analysis and enactment of business processes.

Mathematical models are clearly capable of describing business processes but
these general formalisms are challenging to employ. Dedicated business process
languages are predominantly developed with a focus on suitability [154] which is
an informal notion of expressiveness which takes the modelling effort into account.
Frequently the main approach to reduce the modelling effort required is to allow
modelling by diagrammatic means and has come to dominate practical business
process modelling. Today (2013) the dominant business processes languages
are: UML, BPMN, and Yet Another Workflow Language (YAWL), all of which
have a graphical notation. Furthermore, these languages frequently claim to
have a formal basis and therefore allow for automated analysis and enactment of
business processes.



2.3 Describing Business Processes 25

2.3.2.1 Unified Modelling Language (UML)

UML [208] was originally developed by Booch, Jacobson and Rumbaugh at
Rational Software in the 1990s [125]. UML become managed by the Object
Management Group (OMG) in 1997, and is still managed by this group today. In
2000 the UML was accepted by the International Organization for Standardization
(ISO) as industry standard for modelling software-intensive systems and is today
standardized according to ISO/IEC. The current version is UML 2.4.1 which
was published by the OMG in August 2011.

UML has become a standard language for the modelling of software requirements
and design. UML includes a set of graphic notation techniques to create visual
models of object-oriented software-intensive systems which offer a standard way
to visualize a system’s architectural blueprints. It combines techniques from data
modelling (entity relationship diagrams), business modelling (work flows), object
modelling, and component modelling. While primarily designed for modelling
software systems, it can also be used for business process modelling. Business
process modelling is primarily done by constructing activity diagrams which
visualize workflows as sequences of actions to be performed including control
flow and data flow. The semantics of business processes defined in this fashion
are based on token flow and tokens may also be employed to model data flow.
Organizational structures can be accounted for by means of class diagrams and
these can in turn be related back to the activity diagrams which capture workflow
by means of activity partition and swim lane mechanisms.

Business process models built in UML are not executable and are mostly used for
design, analysis, or documentation purposes. However, UML models may support
process enactment by functioning as a set of requirements for development of
specific atomic actions which form part of a business process. However, UML
has in all versions lacked a precise semantics [101], [243] which hinders both
enactment and rigorous analysis of models. In addition it should be noted that
UML is an extremely verbose and complex standard and that in all versions
a large number of practical problems in employing this approach have been
encountered [106], [264].

UML’s lack of semantic precision has been addressed by many researchers. A
first approach to the formalisation of UML was done by Lilius and Paltor [175].
This begins with a formalisation of the structure of a UML state machine
as a tree of states. They employ this formalisation for the construction of
a transition selection algorithm that enables a system to run to completion.
This first approach provides a foundation for many future developments, but
is limited by a requirement that systems run to completion to enable their
formalisation. In the case when a deadlock or race condition occurs, naive
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application of this formalisation approach is not possible. Work by Eshuis [98]
performs formalisation by means of hyper-graphs and allows the imposition
of semantics by the model checker NuSMV [74]. In this work, the focus is on
refinement where the verification of requirements for a UML model, expressed
as a simpler UML model, is confirmed by NuSMV. This excellent work produces
a sound formalisation amenable to formal verification however the treatment of
rewards and stochastic behaviour is not accounted for and not readily supported
by the underlying NuSMV tool.

Accounting for quantitative properties of UML models was initiated by Canevet et.
al. [66] who employed the Performance Evaluation Process Algebra (PEPA) [135]
stochastic process algebra as an intermediate language in the performance analysis
process, and this dictates the semantics imposed on UML. This approach allow
for quantitative verification but is limited by the performance of the PEPA tool.
Improved quantitative verification which also allows for modelling stochastic
properties is developed by Jansen et. al. [148]. This work formalises UML
Statecharts which are extended with probabilities and adds data (in the form
of rewards) to a UML model. This framework makes it possible to analyse the
resources consumed by a system.

2.3.2.2 Business Process Model and Notation (BPMN)

BPMN [207] has been developed as a dedicated language for the modelling of
business processes. Designed by the Business Process Management Initiative
(BPMI) which released BPMN 1.0 in May 2004. BPMI merged with the OMG in
2005 and this organisation has since maintained it, releasing the current version
2.0 of BPMN in 2011.

BPMN is intended to be a standard for business process modelling that provides
a graphical notation for specifying business processes in the form of Business
Process Diagram (BPD), based on a flowcharting technique similar to activity
diagrams in the UML. The objective of BPMN is to support business process
management, for both technical users and business users, by providing a notation
that is intuitive to business users, yet able to represent complex process semantics.
As such the The primary goal of BPMN is to provide a standard notation readily
understandable by all business stakeholders. The notation inherits and combines
elements from a number of previously proposed notations for business process
modelling, including the XML Process Definition Language (XPDL) [291] and
the Activity Diagrams component of the UML [208].
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The BPMN language itself is extremely circuitous, and contains 116 inter-
definable constructs. These cover a wide range of cases but most practical use of
BPMN does not make use of the vast majority of elements. In fact a large study
of real-world BPMN usage [193], [238] found that “the average BPMN model
uses < 20% of the available vocabulary” and more than 70% of models surveyed
consisted of only eight core elements. Instead of defining a core of independent
constructs in terms of which other constructs can be defined, as demonstrated
for BPMN 1.0 in [56]. The fuzzy overlapping of different constructs prevents
clear descriptions of individual constructs in one place within the standard
and makes their comprehension unnecessarily complicated by forcing the reader
to simultaneously and repeatedly consider multiple sections of the standard
document.

In practice the standard, as formulated in [207], appears not to be implementable
due to the numerous details of its execution semantics which are expressed with
insufficient precision. Indeed the BPMN standard explicitly states that “the
execution semantics are described informally (textually), and this is based on prior
research involving the formalization of execution semantics using mathematical
formalisms.” [207, page 445]. The shortcomings of these semantics have been
observed, for all BPMN versions, by various authors [54]–[56], [72], [88], [92],
[120], [193], [238], [240], [242], [280], [287], [289], [295] (this list is not exhaustive).

This lack of semantic precision has led to a diversity of implementations of BPMN
concepts which typically realize only subsets of the standard and which are often
only partially compatible with each other. The BPMN specification includes an
informal and partial mapping [207, page 445] from BPMN to Business Process
Execution Language (BPEL) 1.1 [211]. A more detailed mapping of BPMN to
BPEL, such as [215], has been implemented in a number of tools. However, the
development of these tools has exposed fundamental differences between BPMN
and BPEL [242], which make it very difficult, and in some cases impossible, to
generate human-readable BPEL code from BPMN models. Even more difficult
is the problem of BPMN-to-BPEL round-trip engineering: generating BPEL
code from BPMN diagrams and maintaining the original BPMN model and the
generated BPEL code synchronized, in the sense that any modification to one is
propagated to the other.

Fundamentally BPMN lacks a general notion of state and as a consequence, the
specification of relevant data-dependent execution conditions are only poorly
supported. This makes the data management of an executable BPMN version
compiler-dependent and not portable. For example, data objects, which are
associated with activities or sequence flow, are used only informally, in particular
with underspecified assumptions on the input/output selection at task nodes or
sequence flows. This additionally makes any sort of quantitative formal analysis
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of standard BPMN impossible. However, the standardisation of BPMN has lead
to its widespread use by business practitioners and consequently there have been
a number of attempts to provide a formalisation of its semantics.

Wong and Gibbons [289] take an abstraction refinement approach to the formal-
isation of a subset of BPMN models as Communicating Sequential Processes
(CSP) process-algebraic expressions. Their work expresses the syntax of BPMN
in the Z notation [267]. They proceed to define a semantic function which takes
a syntactic description of a BPMN diagram and returns a CSP process that
models the behaviour of that diagram as the parallel composition of processes
corresponding to the states of the diagram. The semantics they impose abstracts
the internal flow of individual task states, and models the sequence of task
initialisations and terminations within a business process. This work is extremely
thorough with regard to constructing a formal translation from BPMN to CSP,
and the specific semantic interpretation forced upon BPMN models and the
resulting CSP models produced are very circuitous. While they are theoretically
amenable to formal analysis, in practice the verbosity of the generated models
makes it computationally expensive to perform analysis. Probabilistic properties
and rewards are not supported, and while variants of CSP exist that support
these features, considerable reworking of their approach would be needed to
account for these.

Work by Ouyang et al. [215], presents an approach to BPMN formalisation
by mapping BPMN’s graph oriented structure to BPEL, which is a mainly
block-structured language. This approach focuses on dealing with the problem
that graph-oriented process definition languages allow parallelism and other
constructs such as deferred choice which can complicate their mapping to a block
structure. In a similar way to Wong and Gibbon’s approach, the mapping which
was developed focuses on the sequencing of tasks and functions by decomposing
a BPMN model into components and mapping these to fixed blocks of BPEL
code. While this work focuses on BPMN to BPEL conversion, the approach is
intended to be generalised to the mapping of any graph-based language to a
block-based language. Although this approach is readily comprehensible, the
lack of a full decomposition down to individual BPMN elements does limit the
fit between BPMN models and the generated BPEL models, which frequently
become digressive as a result. The overall approach, however, is excellent,
and of particular note is that this approach avoids imposing further semantic
interpretation on BPMN by focusing solely on mapping to BPEL and allowing
the semantics of BPEL to determine the execution of a BPMN model. However,
stochastic elements and rewards are not addressed.

Dijkmana and Dumas, working with Ouyang [88], have repeated this control-flow
focused approach in developing a mapping from BPMN to Petri-nets. Akin
to the previously described work of Ouyang, this also takes a component-wise
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approach to mapping, with similar limitations. A key contribution here is the
comprehensive identification of specific areas where the BPMN specification is
lacking. However, a limitation of this approach is the restriction that the mapping
is to plain Petri-nets, due to the need to clearly define source components for
translation. Jian-Hong et. al. [295] attempt to extend their work to perform
translation into YAWL and this allows for more flexible synchronization between
components. However, in both cases, the limitations on the nets prevent the
addition of rewards and stochastic behaviour and are poorly suited to capturing
real-world processes.

An approach by Prandi et al. [230] does provide for BPMN models which support
rewards and probabilistic elements. This effort involves conversion of BPMN
models into a model expressed in the Calculus for Orchestration of Web Services
(COWS) [173], which is converted into a model that can be analysed using
a model checker. It suffers, however, from poorly defined semantics for the
translation from BPMN to COWS, and many corner cases are left undefined.

An approach by Nicolae et. al.[200] attempts to formalise BPMN by mapping,
via a pattern matching approach, to UML models. Additionally, the Object
Management Group has in June 2013 released a UML Profile for BPMN 2
Processes [209], which provides a “conceptual mapping” from BPMN models
to UML models. While these mappings highlight the correspondence between
UML and BPMN and do improve the possibilities for the interchange between
users of business process models, they do not provide semantic clarity to UML
(described in Section 2.3.2.1).

2.3.2.3 Yet Another Workflow Language (YAWL)

YAWL [23] is a workflow language developed by Hofstede, and van der Aalst,
in 2005. This business process modelling language is intended to be a language
which exhibits a large degree of suitability [154] with a set of 126 workflow
patterns [24] also collected by Hofstede and van der Aalst. A workflow pattern is
defined as “the abstraction from a concrete form which keeps recurring in specific
non-arbitrary contexts” [246]. As such, the YAWL language is a “reference
implementation” [139, page 11] of these workflow patterns. The language is
supported by a software system [20] which is available as Open Source software.

Observing that Petri nets [220] came close to supporting most of the Workflow
Patterns, the designers of YAWL decided to take Petri nets as a starting point
and to extend this formalism with three main constructs, namely inclusive OR-
joins, cancellation sets, and multi-instance activities. These three concepts are
aimed at supporting five of the collected workflow patterns that were not already
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directly supported in Petri nets, namely synchronizing merges, the discriminator,
N-out-of-M joins, multiple instance with no a priori runtime knowledge and
cancel case. In addition, YAWL adds some syntactical elements to Petri nets in
order to more suitably capture other workflow patterns such as simple choice
(XOR-split), simple merge (XOR-join), and multiple choice (OR-split). Some
of the extensions that were added to Petri nets to achieve this, were difficult or
even impossible to re-encode back into plain Petri nets [23]. As a result, the
original formal semantics of YAWL is defined as a Labelled transition system
and not in terms of Petri nets.

The motivation for the choice of constructs in the YAWL language is driven
by a of collection workflow patterns [24]. However, the selection of patterns
seem to be chosen without a deductive or statistical underpinning to validate
the pattern selection, indeed it is conceded that for the original 20 workflow
patterns “the selection of these patterns was done in an ad-hoc manner and the
description of the patterns in natural language has been rather ambiguous” [196,
page 1]. Indeed without a set of clear criteria for what qualifies as a pattern
a steady growth in the underlying workflow patterns can be observed starting
with 20 workflow patterns in 2003 [24], reaching 43 patterns in 2006 [255] and in
2010 expanding to 126 patterns (including data and resource perspectives) [139].
Additionally, a number of patterns are not of a fundamental character but can
instead be constructed from a smaller set of simpler patterns, for example it has
been shown that the 43 patterns from [255] can be defined by parametrizing 8
precisely defined abstract models which represent well-known, basis, sequential
or concurrent programming constructs [53]. It should be noted that the workflow
patterns as presented in [24] are described using natural language and lack
unambiguous definition. The “rather ambitious” character is conceded in [196,
page 1] and given as motivation for formalisation of the patterns which this
paper admittedly leaves “incomplete”.

YAWL can be seen as another attempt to formalise this set of workflow patterns
by constructing a semantics based upon coloured petri-nets [149]. Given that
YAWL is based upon Petri-nets, the foundational paper [23] does succeed in
providing a formal mathematical basis for modelling the control-flow perspective
(a perspective abstracted from data and communication) of business processes.
Later work has extended YAWL in the form of newYAWL [252], [254] to also
cover data and resource perspectives of a business process. This work has allowed
for the semantics of YAWL to be formally defined by means of Coloured Petri
Net [294]. However, this formalisation is extremely complex with the resultant
Coloured Petri net model for newYAWL’s semantics being “55 distinct pages
of CPN diagrams and encompasses 480 places, 138 transitions and in excess
of 1500 lines of ML code” [252, page 17]. A semantic model of this size has
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some limitations and “Perhaps the most significant of these is that the scale
and complexity of the model obviates any serious attempts at verification” [252,
page 18].

2.4 Requirements for a Business Process Lan-
guage

Fundamentally, a business process language must describe the control-flow
structure of a business process. The overall requirements determined by the
industrial partner are described in 1.2 as Objective 1. Further discussion
of the objective led to the industrial partner developing a list of modelling
language requirements shown in table 2.1. The motivation for these additional
requirements in a medical context are discussed below.

Summary of requirements for a BPM language for IHS

Requirement 1 Be able to model non-deterministic control flow alongside
probabilistic control flow.

Requirement 2 Able to model the use of medical resources, including
more general quantities such as time and money.

Requirement 3 Usable with limited technical training which is able to
abstract the essential elements of a medical workflow in a
concise manner.

Requirement 4 Amiable to formal mathematical verification such that
errors can be detected at design time.

Table 2.1: Core BPMN Requirements

Medical workflows of the type described in the motivating context Section 1.1
involve the description of both people, medical devices and their interactions.
These frequently exhibit a well-defined control-flow structure. Medical activities
often involve performing actions where a range of possible responses can be
expected from the patient, frequently due to the vast variation and complexity
of human physiology. Medical knowledge is therefore frequently expressed in
probabilistic terms, e.g. cancer of form X when treated with form Y has a 20%
chance of remission, 25% chance of death and a remaining 55% chance of being
ineffective. When no probabilities are known, a probabilistic process can be
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viewed as being a non-deterministic process. Therefore probabilistic models
have an expressive limit as non-deterministic models, this is frequently the case
in medicine probabilities of specific outcomes are yet to be determined or may
be invalid in a specific context. In addition the human element in practising
medicine is inherently non-deterministic and actors involved in these processes
will make choices which cannot be determined before execution of the process.
This is the motivation behind Objective 1a of this thesis, and requires a formalism
which is able to model both non-determinism and probabilistic choice.

Medical workflows also make use of valuable resources which due to legal and
financial constraints must be carefully accounted for. The variety of resources
consumed ranges from tangible assesses such as drugs and costs to more abstract
notions such as time and quality. This gives rise to Objective 1b which requires
a mechanism which can account for arbitrary numerical data throughout the
process.

In addition, the designers of these workflows will frequently be medical adminis-
trators without formal training in mathematical analysis techniques and therefore
a method is required that allows for the easy description of workflows without
excessive notation or complex structural semantic rules. This requires that
the language has a small number of constructs and a straightforward notation.
Ideally this notation should be graphical and seem familiar to practitioners
with some knowledge of business process modelling. Objective 1c expresses this
requirement. Furthermore, a suitable level of abstraction must be chosen as the
specific implementation of medical workflow may vary between industry and even
within the same medical environment a wide range of different implementations
may exist, e.g. in one case messages may be sent electronically between actors
in a medical workflow and in another environment messages may take the form
of face-to-face communication. Employing the workflow patterns of [24] as the
base for choosing constructs for a modelling language lacks a deductive basis for
their selection. In this work the statistical study of [193] informs the choice of
elements to include in a modelling language. The overall idea is to employ the
elements determined to be the most commonly used in [193]. Complex models
are then built by composing these simple elements to build larger structures.
The aim being to allow development of libraries of common medical workflows
each composed of simple base elements.

Medical workflows frequently have high-stakes outcomes and therefore it is
crucial they are understood already at design time, e.g. when designing a
medical robot it is desirable to determine the expected impact it will have
on an existing or new workflow before it is deployed. Given that workflows
may execute for a long time and may take actions that cannot be undone in
a simple manner, it is essential to detect errors at design time. Therefore the
chosen formalism should permit processes to be formally analysed, optimised



2.4 Requirements for a Business Process Language 33

and readily employed and communicated by business practitioners. This implies
that a formalism is needed which has a sound semantic basis, and of the main
established business process languages none have a workable formal semantics
which enable automatic verification. Consequently, it is not clear how the set of
possible processes allowed by each of these languages should be unambiguously
interpreted and therefore automatic verification cannot be performed. While
YAWL does have a formal semantics it is of little use to a practitioner who wishes
to understand the semantics of YAWL as it is almost impossible to consult the
enormous semantics [294] to answer questions about the language and it does
not allow formal verification.

The various attempts to provide these established business process languages
with a formal semantics discussed in Sections 2.3.2.1 to 2.3.2.3 all lack support
for practical verification which takes advantage of the advanced features of the
current theory of process models and making these applicable to formal analysis
and verification tools. Many formalisations, such as [200], [209], [215] simply
provide mappings between one business process modelling language and another.
While those that are based on Petri-nets such as in [88] or [252] have limited tool
support, with the state-of-art of these tools [29], [281] only allowing specification
of properties using CTL or LTL-like logics and not accounting for stochastic or
quantitative properties.

Of particular note is the approach by Prandi et al. [230] to translating BPMN
processes into stochastic COWS models, which does allow for quantitative
analysis of BPMN via the powerful model checking tool PRISM [217]. However,
the addition of stochastic and quantitative properties to the model are introduced
only after translation into COWS and this prevents their addition by business
practitioners working in BPMN .

UML has seen a number of complete tool chains produced which allow for formal
analysis [66], [98] and even stochastic and quantitative properties have been
accounted for by Jansen et. al. in [148]. However, the suitability of UML as a
language for the modelling of business processes is debatable [54], [253]. Further,
the focus of the formalisation efforts has been on the state-charts component of
UML and not the suggested combination of activity and class diagrams suggested
for business process modelling.
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2.5 Chapter Summary

This chapter has discussed the main concepts of business processes and established
a definition of them which fundamentally views business processes as sets of
connected activities. Further, it has briefly described how the organisation of
these activities defines the performance of an enterprise. The emerging approach
of business process management and the state of the art of methods employed by
this approach in the BPM life-cycle is outlined to place the later developments
in context. A categorization and overview of the main approaches to business
process modelling along with the strengths and limitations of current approaches
in terms of support for formal verification and suitability for modelling medical
workflows was presented. This analysis motivates the development of a business
process modelling formalism presented in the following chapter.
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Overview

This chapter defines the syntax and static semantics of a formalisation for the
modelling of business processes based on the requirements described in Sec-
tion 2.4. This Chapter employs graphs as the starting mathematical concept
from which to develop a modelling language for the description of the control-flow
structure of a wide range of business processes. This structure is extended to
account for the stochastic nature of real-world processes, in line with Objective
1a. The requirements for a business process modelling language described in
section 2.4 also require the ability to account for numerical data, typically re-
sources consumed during the execution of the business process. This requirement
expressed by Objective 1b is met by defining quantitative data annotations for
both specific states of the business process and transitions between them. Using
Business Process Model and Notation (BPMN) as a basis, a Core fragment is
defined and given a formal denotational semantics.

The formalisation of BPMN that this chapter describes was first presented in [11],
with a refined version appearing in [14], with a final complete formulation being
made in [12].

3.1 Approach

The focus of this chapter is to define a syntax, a denotational semantics and
structural semantics for the description of business processes. Based on the notion
that a business process can be understood as sets of connected activities a starting
point of directed graphs is employed to develop a modelling language. These
process graphs allow for the expression of the control-flow structure of business
processes. Based upon this foundation, a fragment of the BPMN modelling
language is used a basis to construct a formal business process modelling language,
Core BPMN with a denotational semantics described in Section 3.5.

The central idea in this chapter is do develop a minimal set of constructs which
can be combined to capture complex business workflows. This is motivated by
the observation [193] that only a small amount of the constructs in BPMN are
actually used by business practitioners when modelling languages. Moreover,
studies by Mendling, Reijers and van der Aalst in 2010 [186] and by Mendling in
2009 [187] have established a set of rules for process modelling with a view to
improving model quality and supporting formal verification. These rules known
as the 7PMG guidelines [186] are shown in Table 3.1 and these have informed the
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approach to the formalisation of BPMN presented in this chapter. In particular
the decision to keep a minimal set of constructs (Guideline 7PMG-G1) and
the decision to exclude the OR control flow element (Guideline 7PMG-G5).

7PMG Modelling Guidelines

7PMG-G1 Use as few elements in the model as possible

7PMG-G2 Minimize the routing paths per element

7PMG-G3 Use one start and one end event

7PMG-G4 Model as structured as possible

7PMG-G5 Avoid OR routing elements

7PMG-G6 Use verb-object activity labels

7PMG-G7 Decompose a model with more than 50 elements

Table 3.1: 7PMG Modelling Guidelines [186]

Extensions to the formalism of process graphs are then developed which allow
for stochastic branching via a Markov decision process style semantics and data
annotations on both states and transitions in the business process. Composition-
ality of models is achieved through a message passing synchronisation mechanism.
This Chapter also shows how this process graph formalism can be instantiated
to capture the established language of the BPMN [207].

The modelling of resources used during execution of a business process is devel-
oped as an additional extension to the concept of process graphs. This extension
allows for positive real numbers to be associated with transitions or states in
the process graph which in turn can be used to model the use of resources
associated with the given task or transition. Note that depletion of resources
can be captured by using a positive real number to express the resources used.

A method for the modular development of business processes is introduced in the
form of a message passing semantics which allows for the invocation of separate
process graphs. In essence this message passing serves simply to combine separate
process graphs by means of a separate set of transitions and does not introduce
a fundamentally different mechanism than the basic control-flow of an existing
business process.



38 Modelling Business Processes

This chapter seeks to establish a formal syntax for a modelling language suited to
describing the type of workflows introduced in Section 1.1. Therefore the notion
of process graphs is exploited to describe a subset of the most commonly used
constructs of the BPMN language. The choice of employing the core control-flow
constructs from BPMN as opposed to other modelling notations is based on
BPMN being an established standard by the Object Management Group (OMG);
an international, open membership, not-for-profit computer industry standards
consortium [207]. In addition, while no single modelling language has come
to dominate real-world business process modelling, BPMN does appear to be
employed in the largest share of the most widely used business process modelling
tools [193], [194], [239], [241]. In the context of this thesis, it is also important
that BPMN is a a modelling language for which there is specific medical industry
support [237], [249] and which the industrial partner company was familiar with.

It should be stressed that this chapter seeks primarily to define a syntax for
process graphs and their extensions to cover the core constructs of BPMN. A
denotational semantics is presented in Section 3.5 as an aid to modelling business
processes. However as this work is concerned with the analysis of business
processes the execution semantics of models is imposed when they are analysed
in Section 4.5.2 as the totality of possible executions.

3.2 Process Graphs

The main abstraction on which business processes will be modelled is connected
directed graphs. Graphs represent the control flow structure of business processes
where nodes represent tasks and edges indicate the order in which the individual
tasks of a business process are performed. Here a task is an abstraction of a piece
of work which is to be performed as part of a business process. Definition 3.1
captures this sequencing of tasks within a well-defined mathematical structure.

Definition 3.1 (Process Graph)
A process graph is a tuple P = (N,F , n0) where N is a set of nodes representing
tasks, of which n0 ∈ N is an initial state, and the flow relation F ⊆ N×N is a
relation which expresses the ordering of tasks in a process.

Definition 3.1 allows for the expression of the control flow in a business process
as a directed graph consisting of nodes N and edges F . Nodes represent basic
elements of a business process such as activities performed and decisions made.
A unique node n0 is defined as an initial state of a business process.
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Flows are links between nodes which express the relationship of one node to
another, typically expressing the simple ordering in which elements of a business
process are performed, although they may also capture message passing. An
example of a business process modelled as a process graph is shown in Figure 3.1.
In this figure a process of inspecting a medical drug before use is modelled; note
how it includes both non-determinism (as shown in the grey coloured node)
and that flows may allow execution to jump to previous states thereby allowing
recursion, as highlighted by the dotted flow in Figure 3.1.

Collect
drug

Inspect
drug

Drug
Approved Use Drug Patient

Treated

Drug not
fit for use

Note
problem

[Rproblem]

c1

[Rtreated]

c2

Figure 3.1: Annotated process graph model of a simple medical process.

To enable the formal analysis and the extension of this model of business processes,
Definition 3.2 introduces a function which assigns labels to flows in a process
model P .

Definition 3.2 (Flow Labelling)
Given a process graph P = (N,F) and L a set of unique labels, lab : F → L is a
labelling function which assigns labels l ∈ L to flows f ∈ F , such that lab(f) = l.

For the example in Figure 3.1, the flows from the grey “Inspect drug” node are
labelled c1 and c2 respectively.

To describe the sets of nodes connected by flows in the directed graph formed by
P , the following definitions are employed:
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Definition 3.3 (Successor Nodes)
Given a process graph P = (N,F), the successor (output) nodes of n ∈ N are
given by the function

out(n) = {x ∈ N|nFx}

Definition 3.4 (Predecessor Nodes)
Given a process graph P = (N,F), the successor (input) nodes of n ∈ N are
given by the function

in(n) = {x ∈ N|xFn}

3.2.1 Process Synchronisation

To manage the complexity of large business processes it is useful to construct
the model by composing several smaller sub-models. Typically these sub-models
will capture a specific role within an organisation but the decomposition can also
be based on the location of operations or project phases. The central concept is
that these processes orchestrate their individual actions so as to achieve the goal
of the super-process, i.e. the larger business process which they are combined to
describe. This approach is in line with the view of understanding the behaviour
of organisations as activity systems [65].

A business process is essentially an abstraction of the actual work done in an
organisation. Being able to compose a process from separate sub-processes
greatly aids modelling because a large scale abstract model can first be built
which coordinates separate processes, and later the individual sub-processes can
be detailed. The complexity introduced by modelling large systems in this fashion
rests on the coordination of these activities, a problem which is at the heart of
informatics [191]. Further, the 7PMG guidelines [186] recommendation 7PMG-
G7 suggests that models with more than 50 elements should be decomposed
and as such a mechanism is required to achieve this.

Within process graphs, a natural approach is to enable orchestration by means
of message passing. Here, messages are abstract notations associated with the
transfer of any kind of signals between separate processes, and do not necessarily
take the form of traditional messages. For example, a doctor receiving drugs
from a pharmacy process could be modelled as the passing of a message between
the pharmacy and doctor processes, as shown in Figure 3.2.
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Prepare
Dugs

Collect
Drugs

Next Task

Use Drugs

Pool A

Pool B
Drugs Sent
(Message)

Figure 3.2: Message Passing Example

Many process calculi use message passing as an underlying mechanism for
communication. For example, in the Calculus of Communicating Systems
(CCS) [191] an action and a matching co-action together form a joined action,
known as a synchronisation. Synchronisation in CCS is atomic and takes the
form of a unique internal action that can be ignored by an external observer.
Therefore, message passing is a synchronous event and for two communicating
processes to proceed in their execution they must both be in a state where
a message transmission (action) and message reception (co-action) are both
enabled.

While CCS has extensively inspired the development of process graphs the
synchronous communication of CCS is poorly suited to modelling business
processes where messages may be sent to a different process graphs, modelling
separate business processes, and a number of tasks may be performed after a
message has been sent without requiring a return message. In practice most
interacting business processes will both transmit and receive messages, however
these events are independent and individually each takes the form shown in
Figure 3.2.

In the case shown in Figure 3.2 the sending of drugs from business process Pool
A to Pool B does not prevent Pool A from continuing execution. The receiving
process, Pool B, requires the receipt of drugs before being able to proceed
execution as indicated by the symbol between Collect Drugs and Use Drugs
in Figure 3.2. However in Pool A messages are sent and execution may then
proceed regardless of weather Pool B is ready to receive a message. Messages
which are sent when the receiving process is not in a state waiting for a message
are lost. Hence, if the receiving process later is in a state where a message must
be received it must wait until a new message is sent.
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This behaviour is a partially-blocking asynchronous means of communication
where execution of a process halts when waiting for a message, but is able to
continue execution when emitting a message. For example, in Figure 3.2 the
tasks in Pool A may continue to execute regardless of the state of Pool B. This
style of asynchronous synchronisation introduces non-determinism where the
next event in the execution of a CCS model may be emission of a message
followed by execution within the sending process graph, or the message may be
received and proceeded by the execution of a task within the receiving process.

Formally Definition 3.5 introduces a message passing mechanism for process
graphs:

Definition 3.5 (Synchronisation arc)
Given process graphs P1 = (N1,F1) and P2 = (N2,F2), a synchronization
arc is defined as a relationM ⊆ N1 ×N2 which for n ∈ N1, m ∈ N2 and the
relation nMm expresses that a message is passed from node n in process graph
P1 to node m in process graph P2.

In this chapter Definition 3.5 defines a syntactic element intended for the mod-
elling of processes. In Section 3.5 an denotational semantic interpretation of
message flows for an extension of process graphs will be formally developed in
the form of a traces model allowing for the execution of communicating busi-
ness processes. Further, in Section 4.5.2 the extended semantics imposed when
performing an analysis of the business processes is discussed.

3.2.2 Stochastic Branching

Real-world business processes exhibit stochastic behaviour. This behaviour
arises because of the underlying stochastic nature of physical processes, or the
unpredictable nature of human behaviour. The source of non-determinism in
real-world processes is frequently due to the fact that errors are possible, but
some business processes may include inherently stochastic elements.

An example of basic non-determinism can be a process that involved a doctor
administering a drug to the patient. Until the drug is prepared it is simply not
possible to determine if the drug is fit for use. Only at the point when the drug
is prepared would a decision be made, and in each case the flow would branch
with one set of actions done in the case of a good drug, and one in the case
of a bad drug. This type of non-determinism is shown in Figure 3.1 where the
inspect drug node (marked in grey) is linked by the flow relation F to more than
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one subsequent node. Here, the flow of the business process depends on some
external condition, c1 (the doctor determines that the drug is ok) or c2 (the
doctor determines the drug is not fit for use), a decision which is not under the
control of the process. Crucially, this non-deterministic behaviour may result in
recursion where the flow of a process returns to an earlier state, as illustrated by
the dotted line in Figure 3.1. The recursive nature of business processes is a key
source of their complexity and makes their analysis challenging.

In this case, however, a second level of complexity is introduced because the
doctor may have made a mistake in his determination of the condition of the drug.
Typically, in a business process it is necessary to capture this type of uncertainty,
and this motivates the introduction of intention preserving stochastic decision
points where a decision is made which will have an unknown outcome from
a limited range of outcomes. Including this behaviour in models of business
processes is essential to be able to design processes which are efficient in the real
world.

This need can be addressed through probability annotations (l, p) at decision
points in a process graph, which dictate that the choice of transition from a
decision point is made by first non-deterministically selecting a label l, and then
performing a probabilistic choice according to different probabilities p associated
with a specific label l. This behaviour preserves the choice of the actor in the
business process while also allowing for stochastic behaviour, and is illustrated
in Figure 3.3.

· · · Inspect
Drug

Not fit
for use
(Type A)

Not fit
for use
(Type B)

Not fit
for use
(Type C)

Approved
(good,p1)

(bad,p2) (bad,p3) (bad,p4)

Figure 3.3: Illustration of intention preserving stochastic branching.

The behaviour depicted in Figure 3.3 essentially exhibits the stochastic seman-
tics of a Markov Decision Process (MDP) [282], which provide an established
mathematical framework for modelling this type of behaviour, which makes such
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behaviour in a business process suited to formal analysis. Flows in a process
graph will be assigned intentional preserving stochastic semantics by the following
definitions:

Definition 3.6 (Flow Probability Function)
Given a process graph P = (N,F), a decision point probability function is a
partial function P : F ×L→ [0, 1] which for a given node n ∈ N and label l ∈ L
assigns probabilities to all outgoing sequence flows f = (n, x) ∈ F such that:∑

∀x∈out(n)

P((n, x), l) = 1

In practice, when the drug is deemed not fit for use the probabilistic choice of
subsequent steps is based on observations of the frequency of various categories
of fault. Well established methods in business process management allow for the
determination of these frequencies (e.g. time-motion studies [270]).

3.2.3 Modelling Resources

When constructing models of business processes, the capacity to include numerical
data greatly expands what can be deduced from a model. These additions are
commonly known as rewards (or costs) [282], terms first introduced in connection
with the development of Markov Models. In the business process domain the term
resources is typically used to capture cases when a limited number of resources
(people, systems, machines, etc.) are available to execute a process. These
annotations must be relatively uncomplicated so that a business analyst can add
them to a model in the graphical paradigm which dominates the modelling of
business processes. However, most graphical paradigms neglect the inclusion of
data in models [23], [207], [208] in a fashion that allows effective quantitative
analysis [278], and instead focus only on their qualitative behaviour.

The term reward is somewhat misleading because there is no practical distinction
between costs and rewards, and these annotated values can be used to keep track
of whichever quantities may be of interest in a process. In this thesis, rewards
(or costs) are added by associating real values with certain states or transitions
of the process graph. This addition of reward annotations allows for reasoning
not just about the qualitative behaviour of a business process, but also about a
wider range of quantitative system measures.

A key benefit of including quantitative data in models, is to allow for the
determination of bounds on the performance properties of such systems [142],
which facilitates the early identification and exclusion of inefficient designs. There
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is substantial evidence [108], [283] that being able to catch flaws and determine the
performance properties of business processes early in their design phase can result
in smoother integration, precise provisioning to meet service level agreements,
and significant cost savings. For example, it is possible to compute properties
such as mean time to job completion, expected power consumption, or worst-case
mean time to recovery from any failure state. Further, by parametrising certain
data elements associated with actions in a business process, it becomes possible,
by means of quantitative formal analysis techniques, to automatically evaluate
these properties for a range of values of a given parameter and determine system
behaviour when limited resources are expended.

Definition 3.7 captures the notion that certain nodes have some reward or cost
associated with being in the corresponding state in a business process task.

Definition 3.7 (Node Reward Function)
Given a node n ∈ N within a process graph P = (N,F), the node reward
function is a partial function RN : N→ R≥0.

It should be noted that Definition 3.7 defines a partial function, allowing the
convenience of not defining rewards for all nodes. However, a total function can
be obtained if one considers the reward function, R as mapping nodes for which
node rewards are undefined to 0. An example of such a node reward annotated
to a process graph is the annotation [Rproblem] seen in Figure 3.1 which records
that an additional problem has occurred.

Definition 3.8 captures the notion that a reward is accumulated when transitioning
between states.

Definition 3.8 (Flow Reward Function)
Given a flow n (n1, n2) ∈ F within a process graph P = (N,F), the flow reward
function is a partial function RF : N×N→ R≥0.

An example of such a node reward annotated to a process graph is the annotation
[Rtreated] seen in Figure 3.1, where it is used to record the treatment of a patient.

As many reward structures as desired can be associated with a given process
graph, so that a single node or flow may have multiple separate numerical
properties which are incremented when they are encountered. The flexibility
to associate rewards with either nodes or flows makes modelling conceptually
simpler, and allows for capturing unique cases which is not possible using node
rewards.
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In particular, flow rewards can be combined with probabilistic choice as defined in
Section 3.2.2 to approximate the probabilistic accumulation of rewards according
to an arbitrary probability distribution. For a discrete probabilistic reward
distribution, this can be done by constructing flows f sharing a fixed label l for
every sample in the distribution of the reward, and associating each flow f ∈ f
with the corresponding probability and value of the reward for that sample by
means of Pf,l and RF .

This idea can be extended to continuous distributions by discretizing the dis-
tribution probability density function by taking means of binning samples that
correspond to intervals from the distribution of reward values. Hence, given
interval n of reward distribution D with bounds ln and un the probability and
associated reward value of an approximating flow fn is given as:

pn = PrD[ln < X < un]

and

rn = 1
2(un − ln).

A useful technique for the binning of an arbitrary continuous distribution has
been developed by Shimazaki and Shinomoto [262]. This technique determines
the optimal bin width, for a chosen number of bins, so as to minimise the error
between the constructed histogram and the underlying distribution. The error
is estimated from the data itself such that if the underlying distribution is not
known, as might be the case when a model is being constructed based on data
observed from experiment, this method can still be applied.

Application of this approach to allow for the construction of reward flows which
approximate a continuous distribution is illustrated in Figure 3.4. Here a reward
structure is constructed which models the time between two steps in a process
where the time taken is known to be given by a Weibull distribution [216]. A
number of bins n, corresponding the number of flows to be used to approximate
the distribution, is chosen and a set of samples of the distribution are determined.
The method of Shimazaki and Shinomoto [262] is then employed to determine
the optimal bin width as shown in Figure 3.4(a). The probabilities pn and reward
values rn for each flow fn can thus be determined as illustrated in Figure 3.4(b).

In Section 5.3.2 a method for automatically adjusting the number of bins used
depending on the required accuracy of quantitative verification property is
presented.



3.2 Process Graphs 47

(a) Observed distribution

Node A Node B

(l, p1)[r1]

...

(l, pn)[rn]

(b) Resultant transitions

Figure 3.4: Illustration of the approximation of a stochastic continuously
distributed reward by means of binning. l is a common label shared by all
transitions.

The parametrisation of reward structures is a further possible model annotation.
Here, a reward annotation [rn] is appended with an associated upper bound un
such that the full annotation appears as [rn : un]. The semantic effect of this is
discussed when dealing with the analysis of models in Section 5.3.1.

Finally, it is feasible that the restriction that the reward must be a positive real
number and that it will be monotonically increasing during system execution
can be loosened. A discussion of this is provided in Chapter 10, although no
real-world models encountered have required this feature.
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3.3 Business Process Model and Notation

Business process modelling as a discipline has traditionally suffered from a
proliferation of process definition languages based on similar, but subtly different,
concepts and constructs. After numerous attempts, standardization efforts have
converged towards the BPMN language [207], which is intended for modelling
business processes primarily during the analysis and design phases. It has
emerged as a standard notation for capturing business processes, especially at
the level of domain analysis and high-level systems design [71].

This section will extend the formalism of process graphs to capture the syntax
and structural semantics of a subset of the BPMN language. The motivation
for constructing a formalised variant of the BPMN language is based on the
discussion in Section 2.4 and the following considerations:

1. BPMN has been established as a standard by the OMG and a considerable
number of tutorials and guidebooks are available to assist practitioners in
constructing models. Fundamentally, BPMN is a graphical notation for
specifying business processes, with the stated primary goal of providing
a notation that is readily understandable by all business users. BPMN’s
ability to serve as a standardized bridge between business process design and
implementation has lead to widespread adoption, and it is now considered
a rising industry standard [71].

2. The industrial partner in this PhD project has chosen to employ BPMN
to model a number of workflows in the healthcare domain of the type
described in Section 1.1.

3. BPMN has seen widespread adoption in the healthcare industry [237],
[249], where the language design goals have made it relatively easy for
hospital management to describe and communicate hospital workflows.
Specific case studies [234], [235], [248] have underlined this by developing
models of various complex hospital workflows rapidly and allowing manual
restructuring of process flows.

4. Statistical observations [193] suggest that a core set of elements are over-
whelmingly the ones that are actually employed in real-world business
process modelling.

As described in the discussion of BPMN in Section 2.3.2.2, the language is
a graphical notation only, and while the BPMN specification [207] provides
extensive syntactic rules, the execution semantics of BPMN are “described
informally (textually)” [207, page 425], leaving open to interpretation a number
of issues such as the treatment of deadlocks and race conditions. The loosely
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defined execution semantics of BPMN have motivated the development of a
range of formalised semantics mostly with the ultimate aim of allowing some
sort of automated formal analysis.

However, as noted in Section 2.3.2.2, none of the identified approaches to the
formalisation of BPMN [88], [173], [200], [215], [230], [289], [295] are suited
for use in the quantitative analysis of systems which have been extended to
accommodate stochastic elements. The formalism of process graphs allows for
the creation of an extension to construct a formal model of the core subset of
BPMN through the inclusion of a set of structural semantic rules.

3.3.1 Core BPMN

The current version of BPMN, version 2.0, permits models to consist of a
wide range of nearly 100 graphical elements, covering the description of many
categories of tasks, events, errors, areas of responsibility, and general annotations.
A large study of real-world BPMN usage [193], [238] found that the frequency of
BPMN construct usage follows a broadly exponential distribution, as shown in
Figure 3.5. The most used subset, which the authors labelled the core subset of
BPMN, consists of only eight elements, and indeed more than 70% of models
surveyed consisted only of these elements.

In spite of this vast range of graphical objects, there are essentially only two
fundamental categories of object in BPMN, nodes and flows. It is therefore
natural to extend process graphs (Definition 3.1) to capture the notation of
BPMN models. Given a process graph P1 = (N,F), the various possible nodes
of Core BPMN models can be mapped to subsets of N that cover the different
categories of nodes that form Core BPMN. The sequence flows of a Core BPMN
model can be mapped directly to flow relations F of a process graph. Likewise,
message passing between pools in a Core BPMN model can be captured by
the synchronisation arcs for process graphs defined in Definition 3.5. Finally
Core BPMN makes use of Pools, a structural element which helps organise
nodes within BPMN model by grouping nodes into sets and can be captured by
functions assigning membership of nodes to a set.

The elements of Core BPMN are shown in Figure 3.6.

Tasks shown in Figure 3.6(a) are subsets of the nodes of a process graph, and
are the basic actions done as part of a given business process, e.g. “sending
a letter” or “administering a drug”. The set of all tasks of a core BPMN
model is denoted by T.
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Figure 3.5: Real world usage of BPMN constructs (source [193]).

Start/End Events shown in Figure 3.6(b) and Figure 3.6(c) respectively, are
subsets of the nodes of a process graph and are the points at which a
business process starts or stops. These can be considered as a special type
of task which have the property that they have respectively no incoming or
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Figure 3.6: Core BPMN elements.

outgoing sequence flows. The sets of start and end events are denoted by
E ⊆ ES and EE, where the disjoint sets ES and EE respectively represent
start and end events. In terms of modelling business processes, these are
organisational elements in BPMN and do not reflect actual steps of a
business process.

Exclusive Decision Gateways shown in Figure 3.6(d) are also subsets of the
nodes of a process graph, and are elements which model decision points in
a business process at which one of a number of possible actions are chosen,
as illustrated in Figure 3.7(c). According to the BPMN specification: “a
decision can be thought of as a question that is asked at a particular
point in the process. The question has a defined set of alternative answers.
Each answer is associated with a conditional expression that is associ-
ated with a Gateway’s outgoing Sequence Flows.” [207, page 290]. The
set of exclusive decision gateways of a core BPMN model is denoted by GD.

Parallel Gateways shown in Figure 3.6(e), are subsets of the nodes of a pro-
cess graph and are used to create (fork) or combine (merge) parallel flows.
These can take the possible forms shown in Figure 3.7(a) and Figure 3.7(b)
respectively, i.e. either merging a number of sequence flows or splitting
a single sequence flow into multiple flows. Specifically the BPMN spec-
ification states that: “a parallel gateway creates parallel paths without
checking any conditions; each outgoing sequence flow receives a token upon
execution of this gateway. For incoming flows, the Parallel Gateway will
wait for all incoming flows before triggering the flow through its outgoing
sequence flows.” [207, page 294]. The set of all gateways of a core BPMN
model is denoted by G = GM ∪GF ∪GD where GM, GF and GD are
disjoint sets of merge-, fork- and the previously defined decision- gateways.
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Sequence Flows shown in Figure 3.6(f), are subsets of the flows of a process
graph, and are used to model the sequence in which tasks are performed.
Visually, a sequence flow links one BPMN element to another. The set of
all sequence flows of a core BPMN model is denoted by S.

Message Flows shown in Figure 3.6(g), are synchronisation arcs between pro-
cess graphs, and are employed to pass messages between separate processes.
This is achieved by means of synchronisation in the fashion described
in Section 3.2.1. The set of all message flows of a core BPMN model is
denoted byM.

Pools shown in Figure 3.6(h), are organisational elements which denote that
what is contained within such an element is part of a single set of activities
performed by a chosen entity. These are not directly mapped to process
graphs but can be expressed as functions which partition the set of nodes
of a process graph. The set of pools is denoted by P.

The process of modelling a workflow in BPMN involves composing a number
of BPMN elements into a Business Process Diagram (BPD). The intention is
that a business process diagram captures the complete workflow of a business
process, with separate sub-components of a workflow organised into separate
pools. A BPD is formally defined here as a simple partition of a process graph
with synchronisation arcs as defined in Definition 3.1, with the straightforward
addition of a function to capture pools.

Definition 3.9 (Core BPD)
A core BPD is an extended process graph tuple BPD = (N,F ,P, pool,L, lab)
where N ⊆ T ∪E ∪G, is a set of nodes composed of the following disjoint sets:

• Tasks T, are the basic actions performed as part of a business process.
• Events E ⊆ ES ∪ EE, where the disjoint sets ES and EE respectively

represent start and end events.
• Gateways G ⊆ GD ∪GF ∪GM, where the disjoint sets GD, GF and GM

respectively represent exclusive decision gateways, parallel fork gateways,
and parallel merge gateways.

F ⊆ S ∪M is a set of flow relations, where sequence flows S ⊆ N×N relate
nodes to each other and message passingM ⊆ T×GM is a relation between
tasks and parallel merge gateways. P ⊂ P(N) is a set of disjoint pools and
pool : N → P maps nodes to a pool p ∈ P. L is a set of unique labels and
lab : F → L is a labelling function which assigns labels to flows.
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(a) Parallel process fork
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(b) Parallel process merge
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Condition 2

Condition n

(c) Exclusive decision gateways

Figure 3.7: General forms of gateway (branch) constructs in core BPMN.

3.3.2 Structural Semantic Rules for Core BPMN Models

Because BPMN lacks a formal semantics and since a key objective of this thesis
is to perform formal analysis of BPMN models, a set of structural semantic rules
(well-formedness conditions) are imposed so as to impose the minimum semantic
interpretation necessary to determine the control flow of a BPD. In most cases, no
more semantic interpretation is added than explicitly given in the standard [207].
The details of the execution semantics of BPMN models are explored in Chapter 5.
It should be noted that the approach taken here to imposing structural semantics
is similar to the approach of Wong and Gibbons [289] and Ouyang et al. [215].

The definition of a BPD given in Definition 3.9 models business processes by
using elements of S to define a directed graph with nodes which are elements
of N, with elements ofM used to connect separate process graphs. However,
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Definition 3.9 allows for graphs which are unconnected, do not have start or end
elements, and are free-form or have various other properties which deviate from
the BPMN standard.

However, the structural semantics of BPMN is not entirely undefined and the
standard does provide some constraints. To ensure that a BPD complies with
the BPMN standard [207] and describes a meaningful business process, a set of
structural semantic rules are imposed which enforce restrictions on connecting
elements, pool boundaries, and message passing. These are intended to impose
no more semantic interpretation than is implied by the standard, and are only
required to be able to determine the control flow of a model. These conditions
are defined using the functions from Definitions 3.2 to 3.4, and the functions
defined in Definition 3.10 and Definition 3.11 :

Definition 3.10 (Pool Contents)
Given a BPD, the nodes contained within a given pool p ∈ P are given by the
function:

contents(p) = {n ∈ N|pool(n) = p}

Definition 3.11 (Path Contents)
Given a BPD, the nodes contained within a given path between nodes a and b
are given by the path contents function:

path(a, b) = {n ∈ N|aS∗n ∧ nS∗b}

where S∗ is the reflexive transitive closure of S

Using these definitions, the following conditions are imposed on a structurally
sound BPD and are discussed below:
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Definition 3.12 (Structurally Sound Core BPD)
A BPD is structurally sound if the following conditions hold:

E1 ∀e ∈ ES : in(e) = ∅ ∧ |out(e)| = 1
E2 ∀e ∈ EE : |in(e)| = 1 ∧ out(e) = ∅
T1 ∀t ∈ T : |out(t)| = 1
G1 ∀g ∈ GD : |in(g)| = 1 ∧ |out(g)| ≥ 2
G2 ∀g ∈ GD : ∀t ∈ out(g) : lab(t) 6= ⊥
G3 ∀g ∈ GF : |in(g)| = 1 ∧ |out(g)| ≥ 2
G4 ∀g ∈ GM : |in(g)| ≥ 2 ∧ |out(g)| = 1
G5 ∀(s, e) ∈ ES ×EE :

|{g ∈ GF|g ∈ path(s, e)}| = |{g ∈ GM|g ∈ path(s, e)}|
P1 ∀n ∈ N : ∃p ∈ P : pool(n) = p
P2 ∀n ∈ N : pool(n) = p1 ∧ pool(n) = p2 =⇒ p1 = p2
P3 ∀p ∈ P : |contents(p) ∩ES| = 1
P4 ∀p ∈ P : ∀n ∈ contents(p) : ∃(s, e) ∈ ES ×EE : sS∗n ∧ nS∗e
S1 ∀(n1, n2) ∈ N×N : n1Sn2 =⇒ pool(n1) = pool(n2)
M1 ∀(n1, n2) ∈ N×N : n1Mn2 =⇒ pool(n1) 6= pool(n2)
M2 ∀(n1, n2) ∈ N×N : n1Mn2 =⇒ (n1 ∈ T) ∧ (n2 ∈ GM)

where S∗ is the reflexive transitive closure of S.

E1 and E2 impose the restriction on start and end events that they respectively
do not have in or out flows, and that they are followed or respectively preceded by
a single node. These restrictions are in line with the notational requirements [207,
pages 238, 246] and the stated semantics of BPMN [207, pages 439-444].

T1 ensures that tasks do not branch process sequence flow, although the semantics
of BPMN imply that tasks may in fact branch process flow. This mechanism is
described in terms of implicit gateways [207, page 427]. T1 therefore effectively
expresses a restriction on BPMN models that ensures that branching must
be made explicit by means of gateways, hence this restriction does not limit
the expressiveness of structurally sound core BPDs relative to the full BPMN
semantics, but simply makes it slightly more verbose. While implicit gateways can
be made automatically explicit by means of a preprocessing step when analysing
models; this is in line with the 7PMG guideline 7PMG-G4 of ensuring that
models are well structured to force a modeller to make the behaviour explicit.

In structurally sound core BPDs, exclusive decision gateways take the general
form shown in Figure 3.7(c) and the choice of a resultant path depends on an
external condition. G1 ensures that exclusive decision gateways only have a
single inflow and that they must have multiple outflows. This behaviour is a
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restriction of the full BPMN semantics which allows for multiple inflows [207,
page 435]. The motivation for this restriction is to simplify the analysis performed
in Chapter 5. However, multiple inflow gateways can be simulated in structurally
sound core BPDs by using a dummy task prior to the gateway to gather incoming
flows. G2 ensures that the outflows of a decision gateway are labelled, which is
implied by the BPMN standard.

A2

A1 B1

B2

Dummy

Figure 3.8: Simulation of a gateway (decision or parallelising) which allows
an arbitrary number of in- and out- flows, using multiple structurally
sound core BPMN gateways and a dummy state.

Parallel fork and merge gateways have, in core BPDs, the general forms shown
in Figures 3.7(a) and 3.7(b) respectively. G3 ensures that parallel fork gateways
have a single inflow and multiple outflows, while conversely G4 ensures parallel
merge gateways only have a single outflow and multiple inflows. These rules
are restrictions of the full BPMN standard [207, page 434] which allow a single
parallel gateway to have multiple in- and out- flows. The restrictions are again
made to simplify the analysis developed in Chapter 5; however, it should be
noted that they can be avoided by adding a dummy task between merging and
forking gateways to simulate gateways which have both multiple in- and out-
flows, as illustrated by Figure 3.8.

G5 expresses the requirement that parallel blocks are properly nested. This
means that an inclusive gateway only merges sequence flows originated by another
inclusive forking gateway and that there is an one-to-one correspondence between
the forking and the merging inclusive gateways. Further this implies that the
cardinality of the set GF∪GM is an even number. The concept of proper nesting
is illustrated in fig. 3.9, where examples of both properly and improperly nested
gateways are shown. However, requirement G5 is not explicitly made in the
BPMN standard, and as such this rule is a further restriction of the standard.
This requirement has also been imposed by Aalst [17] who coined the term
well-structuredness in context of employing workflow nets [18] to model BPMN
processes. Here well-structuredness denotes that “A model is well-structured if
the split/join constructions are properly nested” and is a requirement to allow
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their formal analysis. In addition, the work of Kiepuszewski et. al. [155] suggests
methods to redesign improperly nested models to arrive at well-structured
equivalents for a large number of cases.

· · · · · ·A

B

C1

C2

D

(a) Properly Nested

· · · · · ·A

B

C1

C2

D

(b) Improperly Nested

Figure 3.9: Illustration of proper nesting, model (a) features properly nested
parallel control flow blocks, whereas model (b) features a jump out of the
inner control structure (dashed elements) thus violating structural
semantic rule G5.

P1 ensures that all nodes are contained within a pool, and P2 ensures that no
node can be a member of more than one pool. P3 ensures that each pool only
contains one start event, and P4 ensures that all nodes within a given pool lie
on a path of sequence flows from a start to an end event. All of these conditions
are strictly in line with the BPMN standard [207, pages 22-25].

In addition, S1 and M1 ensure that messages passed between nodes always
cross a pool boundary and that sequence flows do not cross pool boundaries,
matching the BPMN standard [207, page 120].
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The definition of a BPD given here for Core BPMN requires messages to be
passed from a task to a parallel merge gateway. This is not in line with the BPMN
standard, but the implied semantics and examples in the standard suggest that
a message must be received before further progression of the receiving process is
possible. For this reason, messages are required to be linked to parallel merge
gateways to make this behaviour explicit.

As the most commonly used core fragment of BPMN does not include the
interaction node [193], the constraint M2 ensures that messages are passed from
tasks, within a pool, to parallel merge gateways, in a different pool. This is not
in line with the BPMN standard, but the implied semantics and examples in
the standard suggest that a message must be received before further progression
of the receiving process is possible. For this reason, messages are required to
be linked to parallel merge gateways to make this behaviour explicit. Note
that the construction of Core BPMN as an extension of process graphs allows
the asynchronous synchronization mechanism developed in Section 3.2.1 to be
employed directly.

It should be noted that the approach to message passing in the BPMN standard
makes use of the separate mechanisms of either a message catch event, a direct
connection to a task or a message which can be passed to a pool as a whole. The
motivation for introducing the simplified message passing used in Core BPMN
in this thesis is that it simplifies the subsequent analysis and reduces the number
of constructs used to model processes, making this modelling formalism easier to
use for practitioners. Further, note that the definition of a BPD given here does
not differentiate between initiating and non-initiating messages, as required in
the full BPMN standard. Again, this choice is made to keep the language simple
and allow messages to provide a formal synchronization mechanism as defined in
Definition 3.5.

A further structural semantic rule imposed on business processes is that sequence
flows may not intersect.

Definition 3.13 (Prevention of non-deterministic parallelism)
A BPD is a structurally sound stochastic Core BPD if parallelism is not used
to implement choice, i.e. there are no intersecting sequence flows in the BPD.

This restriction prevents cases such as the one illustrated in Figure 3.10 where
the flows between parallel merging and forking gateways connect to separate
nested blocks, allowing infinite recursion. While the BPMN standard does not
appear to forbid this construct, this behaviour is not required for modelling real
world business processes and a number of other approaches of formal analysis of
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BPMN do require such a restriction. Of particular note is the work of Aalst [17]
on workflow nets where crossover points, termed handles in the context of Petri-
nets, are disallowed due to the authors opinion that parallelism should not be
employed to implement choices. Further it should be noted that a goal for BPMN
[207, page 1] is the possibility for conversion into executable Business Process
Execution Language (BPEL) processes. However, BPEL [211] models have the
restriction that they are only well-structured if points of crossover are not present.
Finally work by Gruhn and Laue [121] on developing complexity metrics for
business processes suggests a considerable increase in model complexity when
cross-over points are allowed and a considerable number of business process
models which exhibit points of cross-over contained errors. Hence this restriction
helps ensure that Core BPMN models are in line with the 7PMG guideline
7PMG-G4 of ensuring that models are well structured.

· · · · · ·

A1

A2

B1

B2

C1

C2

D1

D2

Figure 3.10: Illustration of the crossover problem for nested parallel Core
BPMN processes, which leads to infinite recursion. Note that this model
can not be restructured so as to avoid the transitions from B2 and C1
intersecting.

Overall, the negative effects of the restrictions placed upon Core BPMN in
comparison with the full BPMN language are very limited. They primarily
serve the purpose of making models more explicit, through restrictions on the
branching of sequence flows as well as limiting in- and out- flows of gateways.
Compared to the full BPMN language these restrictions only have the effect
of making models more circuitous and any full BPMN language process that
only makes use of the constructs of Core BPMN can be converted into a Core
BPMN process through the modifications presented in this section. With respect
to the restrictions on the cross-over of sequence flows and the requirement for
proper nesting Core BPMN does limit the range of possible models that can be
constructed. However, this is in line with various modelling guidelines and is
common in most formal approaches to business process analysis. While it seems
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to be the case that such models frequently are constructed in error [121], [122]
a limited number do describe meaningful business processes and it should be
stressed that these specific cases cannot be modelled in Core BPMN. However,
it has not been the case working with our industrial partner that any business
workflows were encountered which could not be modelled with Core BPMN.

3.3.3 Extending Core BPMN

This section presents some extensions of the Core BPMN language made possible
by the construction of BPDs as restrictions upon process graphs. These allow
for the modelling of systems with features that go beyond what is possible with
traditional BPMN. These extensions are strict extensions to Core BPMN. As
such, no alteration of the existing Core BPMN elements defined in Section 3.3.1,
or the structural semantics of core BPMN defined in Section 3.3.2, or even the
full BPMN language, is required to add these features, only annotations to a
BPD are required.

To enable stochastic branching, the extension to process graphs described in
Section 3.2.2 is adopted. BPMN already makes use of external conditions on
decision gateways to select the outgoing flow from a decision point. The outcome
of these decisions is modelled by the set L, and assigned to specific flows by
the function lab introduced in Definition 3.2. This extension is explicitly part
of the BPD and not the process graph. This means that Definition 3.6 can be
instantiated for BPDs as a restricted version of the original definition:

Definition 3.14 (BPD Gateway Flow Probability Function)
Given a BPD, a decision gateway probability function is a partial function
P : S ×L→ [0, 1] which for a node g ∈ GD and label l ∈ L, assigns probabilities
to all outgoing sequence flows (g, x), such that for a given l:∑

∀x∈out(g)

P((g, x), l) = 1

The structural soundness condition G2 ensures that all outflows of a decision
gateway are labelled. Note that different outflows may have the same label.
Definition 3.14 ensures that all decision gateways have an associated probability
and that the sum of all probabilities for a given label l is 1. Figure 3.11 illustrates
the application of P to a decision gateway g.
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· · · (l1, p2)

(l1, p1)

(l3, p3)

g

A

B

C

Figure 3.11: Assignment of label probability pairs to a decision gateway. Here
application of P requires p1 + p2 = 1 and p3 = 1.

Note that the function defined above is a partial function and some sequence
flows may not have associated probabilities. Moreover, for the purposes of this
framework, probabilities are only allowed to be attached to decision gateways,
as these points are the only meaningful places to speak about probabilistic
transitions. Hence, in this framework when a decision gateway occurs there must
be an associated probability, even if it is 1.0. This is done by introducing two
additional structural soundness conditions:

Definition 3.15 (Structurally Sound Stochastic Core BPD)
A BPD is a structurally sound stochastic Core BPD if it is structurally sound
and the following additional conditions hold:

X1 ∀g ∈ GD : ∀n ∈ out(g) : P(gSn) is defined.
X2 ∀m ∈ N \GD : ∀n ∈ N : P(mSn) is undefined.

It should be noted that in a practical implementation of this modelling approach
it is convenient to omit probabilities of 1.0 on flows when modelling and have
these added automatically as a preprocessing step before analysis.

A key benefit of including quantitative data in models is to allow for the de-
termination of bounds on the performance properties of such systems [142], as
this facilitates the early identification and exclusion of inefficient designs. To
enable reward annotations for Core BPDs, Definition 3.7 and Definition 3.8 are
employed, directly as defined for process graphs, to add the needed annotations.
Additionally, parametrised reward structures can be added simply by including a
bound in the same fashion as for process graphs. As many rewards as desired can
be associated with a given BPD, so that a single node or flow may have multiple
different numerical properties which are incremented when they are encountered.
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The flexibility to associate rewards with either nodes or flows makes modelling
conceptually simpler, and, as shown in Section 3.2.3, allows for capturing unique
cases which could not be captured with the other type of reward.

3.3.4 Excluded constructs

Because of the very basic nature of the elements of Core BPMN, it is believed [56]
that most of the individual elements of the entire BPMN language for private
(non-communicating) processes can be simulated by combining several Core
BPMN elements. However, there are some elements of the full BPMN language
which can not be directly captured by means of process graphs. The most
noteworthy of these will be discussed below.

The full BPMN language allows for abstraction of business processes where
elements of a model are undefined. An example of this in the BPMN standard
is the notion of public and private processes shown in Figure 3.12. Here a fully
defined public process (Doctor) is shown interacting with an abstracted process
(Patient) where only the pool containing the process is defined. Clearly processes
for which an explicit definition does not exist can not be reasoned about formally
and therefore this capability has been excluded from the formalised Core BPMN
language.

Figure 3.12: Example of an abstracted BPMN process, source [207, page 24].

Furthermore, a number of annotational elements have been excluded from the
description of Core BPMN. These elements, such as groups [207, page 68] or text
annotations [207, page 71], can be included in Core BPMN models. However,
these elements add no semantic detail to a BPMN model and as such no further
treatment is made of these elements when models are analysed.
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Of particular note, in terms of excluded constructs, are two types of gateways
which pose unique problems when attempting formal analysis. The first of these
is the complex gateway [207, page 295] which is a control flow element which
allows for arbitrary logic to be executed based on the inputs from one or more
inflows and producing outputs on one or more outflows. Formal analysis of
this construct is extremely challenging due to the possibility for arbitrary logic
to be executed in determining control flows. Similar to the problem with the
abstraction of processes, any approach to formalising this gateway would in turn
require the formalisation of any possible process embedded in the gateway.

Secondly, the inclusive gateway [207, page 292] is perhaps the key construct
which is excluded from this formalisation of the BPMN language. This gateway
exist in two forms, a diverging and converging form. The diverging form allows
all outgoing flows for which a condition is satisfied to be invoked in parallel,
distinguishing it from the exclusive decision gateway where it is required that only
one of the outgoing flows is chosen. The motivation for excluding the diverging
version of the inclusive gateway is that it can be readily simulated by means of
a combination of parallel forks and exclusive decision gateways, as illustrated
in fig. 3.13. Therefore the inclusion of this construct would needlessly bloat
the number of constructs in Stochastic Core BPMN, violating recommendation
7PMG-G1 of the 7PMG guidelines [186].

· · ·
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C
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b

c

(a) Divergent inclusive gateway

· · · · · ·

A

B

C

¬a

a

¬b

b

¬c

c

(b) Equivalent Core BPMN process

Figure 3.13: Simulation of a divergent inclusive gateway (a) by means of Core
BPMN constructs (b).
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Convergent inclusive gateways, also known as inclusive OR joins, have been stud-
ied in a number of contexts including Event-driven Process Chain (EPC)s [122],
BPMN [72], [92], [100] and Yet Another Workflow Language (YAWL) [292].
Inclusion of these gateways present a more complex problem in that the specifi-
cation of their semantics includes a non-trivial and non-local backwards search
of the flow graph of the BPD [72], [100], due to the requirement that all tokens
that can be “expected” to arrive at the gateway must arrive before execution
can continue.

However, work by Favre and Völzer [100] has characterised the possibilities for
replacing convergent inclusive gateways with combinations of exclusive decision
and parallel gateways. They identify three categories of convergent inclusive
gateway usage which may be either locally replaced, non-locally replaced or
which can not be replaced at all. For both the local- and non-local- replacement
cases they also provide polynomial time algorithms for both the identification and
replacement of convergent inclusive gateways. For the final class of irreplaceable
convergent inclusive gateways they provide a proof of the impossibility of their
replacement. It should be noted that these replacement techniques do not alter
the soundness of the process, i.e., they cannot introduce or fix a control-flow
error.

It should be noted that the semantics of BPMN 2.0 have changed to prevent
use of convergent inclusive gateways leading to deadlock in the case of the so
called vicious circle example. First identified by Kindler et al. in the context of
EPCs [27], this is a class of situations in which two inclusive gateways depend
on each other cyclically. However, in spite of these changes the vicious circle
example may still exhibit race-conditions in BPMN 2.0 [72].

The excluded constructs described in this section do impose a limit on the
range of models which can be constructed in Core BPMN relative to the full
BPMN language. However, only a subset of possible uses of convergent inclusive
gateways prevent employing a preprocessing step to replace non-Core BPMN
elements. Further, it should be noted that 7PMG Guideline 7PMG-G5 suggests
that process modellers seek to avoid the inclusive OR-join. While no data exists
specifically on OR-join usage in BPMN models, in the case of Event Driven
Process Chains, 67% of models in a large survey [122] did not make use of
OR-joins at all. Of the remainder that did use inclusive OR-joins, 62% of joins
could be locally replaced. For the remaining set of 57 OR-joins 45 could be
non-locally replaced and a further 10 were on closer inspection found to be faulty
models. In fact in this study only 2 models, out of an original set of 285 models,
remained where an OR-join was necessary. This raises the question of to what
extent there is real-world demand for convergent inclusive gateways (OR-joins).
Crucially the core BPMN set presented in this thesis has been found adequate
to model the type of processes described in Section 1.1.
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3.4 BPMN Modelling Example

To demonstrate a complete structurally sound (well-formed) core BPMN model
extended with stochastic non-determinism and rewards, a simplified example of a
business process describing the medical assessment and treatment of a patient is
used. This business process is shown as a BPD in Figure 3.14, and is an example
of the collaboration pattern of BPMN models.

Figure 3.14: Core BPMN model of a collaborative medical workflow of a
doctor ordering drugs from a pharmacy, extended with stochastic
non-determinism and rewards.

In this example, the BPD contains two pools representing the roles of a medical
doctor and a pharmacist supplying drugs to the doctor respectively. The BPD
is a structurally sound stochastic Core BPD with reward elements.

The doctor begins his workflow from the start event of the doctor pool, by briefing
a patient. This task is annotated with a reward which records 2 minutes of time
spent on this task on each visit to this state. After this stage, the sequence
flow indicates that a parallel fork is made and two sets of tasks are performed
simultaneously: the assessment of the patient and subsequent scanning. While
this is happening, the doctor reads the patient’s medical history. The sequence
flow is merged again once both sets of tasks are completed (parallel sub-flows).
Following this, the doctor always chooses, in this simple example, to request a
drug to treat the patient and passes a message to the pharmacist. The actions
are annotated with time rewards and a separate reward structure which records
the number of times a medical scanning device has been used.
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Meanwhile, the pharmacist process has progressed from its start event to prepar-
ing the lab, and is now waiting for a message from the doctor requesting a drug.
When this message is received, the pharmacist makes a non-deterministic, but
not probabilistic decision, to prepare one of three drugs: A, B, or C based on
the message received from the doctor. In each case, the transition representing
preparation of the drug is annotated with a reward expressing the time taken
to prepare that drug. Having prepared the chosen drug, he then sends a new
message to the doctor which represents passing the drug to the doctor. Having
dispatched the drug, the pharmacist then logs that the drug has been used, an
action which has multiple reward structures which capture the time taken and
the use of a unit of stored drugs. In this case the combined storage of drugs is
limited to 10 units (regardless of the choice of type of drug), and this is indicated
in the associated annotation.

The drugs sent by the pharmacist allow the doctor process to progress, and the
doctor next prepares the drugs for administration to the patient. During the
preparation of the drug the doctor checks if the drugs are fit for use, and at this
stage a non-deterministic decision, depending on a factor outside the control of
the business process, is made by the doctor to either treat the patient or resolve
that a bad dose of drugs has been sent. Note that at this point two steps take
place as dictated by the gateway’s flow probability function; a choice is made by
the doctor between treating the patient or declaring that the prepared drug is
bad and not fit for use as dictated by the labels of the outflows of the gateway.
Following this choice there are various probabilistic outcomes of the decision
made. In the case of a bad dose, there is a probability of 1.0 that the doctor
process loops back to the earlier task where he requests a new dose. In the case
when the doctor chooses to treat the patient, the application of drugs has a
probability of 0.8 of being successful, and if it is not, with 0.2 probability the
patient incurred a complication which is also modelled by a reward. When not
successful, and after a 30 minute wait (reward) for adverse reactions, the process
loops back to a previous state and, in this example, the doctor eventually tries
administering the drug again.

After preparing each drug the pharmacist makes an exclusive choice between
staying at work or going home, and in the case when the pharmacist stays at
work, the process loops back to a state where the pharmacist is ready to receive
another drug order.
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3.5 Denotational semantics of Core BPMN

This section provides an denotational semantics for Core BPMN as a formaliza-
tion of the meaning of business processes described by means of Core BPMN
models. A traces model is used to define the meaning of a process graph as the
set of sequences of events (traces) that the process can be observed to perform.

This approach is inspired by the model of trace semantics developed for Commu-
nicating Sequential Processes (CSP) by Tony Hoare in [137], [138]. In this model
a process is taken to denote a set of communication traces, built from events
which represent abstract records of communication. A trace here represents a
partial history of the communication sequence occurring when a process interacts
with its environment; since communication is synchronized an input or output
event really stands for a potential for communication. And since traces record a
partial behaviour it is natural to work with (non-empty) prefix-closed sets of
traces.

A Core BPMN trace as defined in Definition 3.16 describes one specific possible
sequence of execution of a BPMN process. The trace is a sequential record of all
the events occurring during the course of the execution of the business process
up to some moment in time, i.e. all nodes traversed during the execution of
a BPD. A trace of the behaviour of a process is a finite sequence of symbols
recording.

The trace takes the form of a sequence of tasks and syntactic Core BPMN events
that the process can be observed to perform. All events are recorded and can be
considered as being recorded by a perfect observer who sees all events. If the
observer sees multiple events happening simultaneously, he or she is permitted
to write down the events in an arbitrary order.

When constructing a trace based model of the execution of Core BPMN models,
the notion of sub-processes is convenient. Here sub-processes are partitions of a
larger BPD as illustrated in Figures 3.16 and 3.17, which highlight the selection
of two sub-processes from a BPD. Sub-processes are partitions of a larger BPD
and therefore will not conform to the structural semantic constraints defined
in Definition 3.12. Hence sub-processes are not in themselves BPDs, but will
exhibit the same control flow behaviour required of a BPD.
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The set of traces for a specific BPD is constructed compositionally, by the
recursive application of the traces function to each element of a BPD as dictated
by the sequence- and message- flow relations S andM. In Definition 3.16 the
recursive application of traces to unwind a BPD can succinctly be constructed
by means of a lambda expression [73].

Definition 3.16 (Process Traces)
Given a core BPMN BPD BPD = (N,F) and A ⊂ BPD a subprocees of the
BPD, the function traces(BPD) ⊆ Σ∗ is defined as:

traces(xSA) = {LFP(λA.x a traces(A))}
traces(xMA) = {LFP(λA.x a traces(A))}

where Σ∗ is the set of all possible finite sequences of elements of N, LFP denotes
a least fixed point computation, and a denotes the concatenation of sequences.

The specific elements of a BPD are addressed as follows:

The generation of traces for the simple case of sequential execution of tasks is
shown in Figure 3.15. In this case a trace simply consists of the sequence of
tasks executed. Note that this process contains start and end events which are
treated in the same fashion as tasks.

s t1 · · · t2 e

Figure 3.15: Illustration of trace construction for a BPMN BPDs featuring
sequential tasks.

Formally the following rules are applied to generate the traces for start, end and
task elements prefixed a sub-process A:

1. Start elements: s ∈ Es : traces(sSA) = {< s >a x|x ∈ traces(A)}
2. End elements: e ∈ Ee : traces(e) = {< e >}
3. Task elements: t ∈ T : traces(tSA) = {< t >a x|x ∈ traces(A)}

Applying rules 1, 2 and 3 to the entire model shown, X, in Figure 3.15 thus
yields the trace

traces(X) = {< s, t1 >a x a< t2, e > |x ∈ traces(· · · )}
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The case of generating traces for BPMN models that feature non-determinism
in the form of exclusive decision gateways is handled by generating the trace for
each possible sequence of events from a exclusive decision gateway. Each possible
execution path is denoted as an ordered sequence of events and multiple traces
are generated at each exclusive decision gateway corresponding to the different
execution paths from the gateway. Formally this trace construction is given by
the following rule:

4. Exclusive Decision Gateways (denoted ⊗) for sub-processes A1 to An
connected as sequence flows from an exclusive decision gateway gd produce
the following traces:

traces
(
⊗gd

(A1, . . . , An)
)

=
n⋃
i=1

{
< gd >a x|x ∈ traces(Ai)

}

An example of the general form of the employment of an exclusive decision
gateway is shown in Figure 3.16. In this figure a decision gateway allows for a
choice between two possible paths.

· · ·

a1 a2 · · ·

b1 b2 · · ·

Sub-process A

Sub-process B
gd

Figure 3.16: Illustration of trace construction for BPMN BPDs featuring
non-determinism (exclusive decision gateway).

In Figure 3.16 the traces for the entire model shown, X, when the trace con-
struction rule 4 is applied are:

traces(X) ={x a< gd >a y|x ∈ traces(· · · ) ∧ y ∈ traces(A)}
∪ {x a< gd >a y|x ∈ traces(· · · ) ∧ y ∈ traces(B)}

Addressing the case of generating traces for cases of concurrency and recursion
requires the introduction of an interleaving operator. Formally the interleaving
of sub-processes is defined as:
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Definition 3.17 (Interleaving)
Given a core BPMN BPD and with chosen sub-processes A1, . . . , An with traces
traces(Ai) =< ai,1, ai,2, . . . >. The interleaving function Inter produces all
possible elements of traces(Ai) for all i that respect the individual partial ordering
of traces(Ai).

Definition 3.17 produces traces from both sub-processes that are arbitrarily
interleaved in time. For example the interleaving of two sub-processes X and
Y for which traces(X) =< x1, x2 > and traces(Y ) =< y1, y2 > produce the
following set of traces:

Inter
(
traces(X), traces(Y )

)
={

< x1, x2, y1, y2 >,< x1, y1, x2, y2 >,< x1, y1, y2, x2 >,
< y1, x1, x2, y2 >,< y1, x1, y2, x2 >,< y1, y2, x1, x2 >

}

In the BPMN [207] standard the operational semantics for the parallel execution
of processes is largely undefined. The approach taken in this thesis with regard to
concurrency allows execution to produce all possible interleavings of concurrent
events. The motivation for this choice is driven by Objective 2a where safety
properties of a business model are of interest. By considering all possible
interleavings the maximum model with regard to possible executions is explored,
ensuring the detection of all possible safety violations.

The case of generating traces for a BPMN BPD featuring concurrent (parallel)
behaviour involves the interleaving of the traces of all sub-processes executed in
parallel. Formally this is given by the following rule:

5. Parallel regions (denoted©q ) encompassing separate sub-processes
A1, . . . , An, between a pair of fork and merge gateways gf and gm produce
the following traces

traces
(
©q

(gf ,gm)
(A1, . . . , An)

)
=⋃

x∈Inter
(

traces(A1),...,traces(An)
){< gf >a x a< gm >}
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· · ·1 · · ·2

a1 a2 · · ·

b1 b2 · · ·

Sub-process A

Sub-process B
gf gm

Figure 3.17: Illustration of trace construction for BPMN BPDs featuring
concurrency (parallel fork and merge gateways).

Applying rule 5 to the entire model, X, shown in Figure 3.17 yields the following
traces:

traces(X) =
⋃

x∈Inter
(

traces(A),traces(B)
)
{

p a< gf >a x a< gm >a q |
p ∈ traces(· · ·1) ∧ q ∈ traces(· · ·2)

}

As defined in Definition 3.16 producing traces for BPMN BPDs incorporating
recursion requires the recursive application of the traces. Hence, recursion in
BPMN models produces traces of infinite length as the tasks which are performed
recursively will be repeated. This is formally expressed using the following rule:

6. Recursion For a process X containing a sub-process A, which is invoked
recursively, the following traces are produced:

traces(X) =
⋃
n∈N

{[
x a< gd > |x ∈ traces(A)

]n}

Where [·]n denotes n iterations of concatenation.

· · ·3a1 · · ·2· · ·1

Sub-process A
gd

Figure 3.18: Illustration of trace construction for a BPMN model featuring
recursion.
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In the example model shown, X, in Figure 3.18 when applying rule 6 the following
traces are produced:

traces(X) =
⋃
x∈N

{
p a (< a1 >a q a< gd >)n a r |

p ∈ traces(· · ·1) ∧ q ∈ traces(· · ·2) ∧ r ∈ traces(· · ·3)

}

The least fixed point computation LFP of Definition 3.16 admits infinite chains
and therefore may not terminate. These infinite traces reflect the possibility
of an arbitrary number of iterations of the recursive region of a BPD. In the
analysis of Core BPMN models driven by Objective 2a where safety properties
of a business model are of interest, will include an arbitrarily large, but finite,
number of iterations before the recursion region is exited. Hence allowing the
maximal behaviour of recursive behaviour to be explored with respect to safety
properties.

The synchronisation between BPMN models is catered for in the BPMN stan-
dard [207, pages 43,93,120]. However, the description of synchronisation (message
passing) requires a number of additional syntactic elements solely employed to
describe synchronisation. In addition standard BPMN does not provide an un-
ambiguous description of the execution semantics of message passing. Therefore,
the synchronisation (message passing) mechanism of process graphs described in
Section 3.2.1 is employed as the semantic interpretation imposed during analysis.
In this asynchronous setting, input and output are not treated symmetrically:
output actions can occur without requiring the participation of another process.
However, a process wishing to perform an input action must wait, if necessary,
until the relevant message is emitted from an external process (pool).

An illustration of the execution semantics of message passing for Core BPMN
models is shown in Figure 3.19. In this figure a task in sub-process X passes
a message to a merge gateway in sub-process Y and may later receive another
message from sub-process Y . Transitions out of sub-sub-process B1 require the
reception of a message before proceeding. However the progression of sub-process
X from ax to sub-sub-process A2 has no execution restrictions.

Formally, message passing (denoted →) is addressed by the following rule:

7. Message flows where sub-process X = · · · , an, · · · , ax, · · · , am, · · · trans-
mits a message to sub-process Y = · · · , bn, · · · , bx, · · · , bm, · · · in sub-
process B. Here we define sub-sub-processes: A1 = · · · , an, . . ., A2 =
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· · · an · · · · · · am · · ·ax

· · · bn · · · · · · bm · · ·

Sub-process X

Sub-process Y

Sub-Sub-process A1 Sub-Sub-process A2

bx

Sub-Sub-process B1 Sub-Sub-process B2

Figure 3.19: Trace decomposition for message passing between pools A and B.

. . . , am, . . . B1 = . . . , bn, . . . and B2 = . . . , bm, . . ..

traces(X → Y ) =
x a< ax >a y |

x ∈ Inter
(
traces(A1), traces(B1)

)
∧y ∈ Inter

(
traces(A2), {< bx >a t|t ∈ traces(B2)}

)


All traces of Core BPMN BPDs have the following properties given in Defini-
tion 3.18:

Definition 3.18 (Trace Properties)
Given a core BPMN BPD BPD = (N,F), the set of traces of traces(BPD) has
the following properties:

1. 〈〉 ∈ traces (BPD)
2. s1 a s2 ∈ traces (BPD) =⇒ s1 ∈ traces (BPD)

Definition 3.18 implies that the set of traces for a given Core BPMN BPD
BPD is non-empty as it always contains the empty trace 〈〉. In addition, if
a concatenated sequence s1 a s2 is an element of traces(BPD) then s1 is an
element of traces(BPD), i.e. traces(BPD) is prefix-closed.

Two BPDs P1 and P2 are considered trace equivalent if

traces(P1) ∼= traces(P2)
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that is to say to an external observer both processes may be observed to execute
the same tasks in the same order. Note that two BPDs being trace equivalent
does not imply that P1 and P2 are identical, but that to an external observer
they will be seen to have the same behaviour.

Core BPMN is a stochastic model of business process execution. Therefore each
trace, of finite length, has a particular chance of occurring. The probability P
of an element of a trace, given the probability P of an individual state, can be
compositionally constructed using the following rules:

1. P(<>) = 1
2. P(< a >a T ) = P (a) · P(T )

Likewise the expectancy of trace E, given the expectancy E of an individual
state, can be compositionally constructed using the following rules:

1. E(<>) = 1
2. E(< a >a T ) = E(a) · E(T )

Note that infinite sequences of events are possible in a Core BPMN BPD due to
recursion. In these cases the probability and expectancy of any specific trace is
0.

Note that during the analysis of BPMN BPDs an imposed semantics given
in Section 4.5.2 is applied where all possible traces are explored as a single
statespace.

3.6 Chapter Summary

This chapter defined the formalism of process graphs and defined a notation
for synchronization between process graphs. Process graphs were extended
to include stochastic behaviour and rewards. A denotational semantics was
defined for process graphs based on ideas from CSP. Placing restrictions upon
process graphs, by means of a set of structural semantic rules, allowed for the
formalisation of the most commonly used elements of the BPMN language. This
formalisation allowed for BPMN to be extended with stochastic behaviour and
rewards and hence amenable to quantitative analysis. Finally an denotational,
trace based, semantics was developed for Core BPMN.
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An example inspired by the motivating problem from Section 1.1 was presented
in this extended formalised variant of BPMN and was annotated with stochastic
branching and a variety of rewards to illustrate the developments of this chapter.
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Chapter 4

Formal Methods

“We argue that proof construction is unnecessary in the case of finite
state concurrent systems and can be replaced by a model-theoretic
approach which will mechanically determine if the system meets a
specification expressed in propositional temporal logic. The global
state graph of the concurrent systems can be viewed as a finite Kripke
structure and an efficient algorithm can be given to determine whether
a structure is a model of a particular formula (i.e. to determine if
the program meets its specification).” (Edmund M. Clarke 1981)
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Overview

This chapter provides a brief overview of the main formal methods approaches
in informatics. These approaches are surveyed and their key strengths and
weakness identified. This leads to the choice of model checking as the approach
to employ for the analysis of the type of stochastic business processes considered
in this thesis. The main current quantitative model checking software tools
are reviewed. Discussion of their key capabilities motivates the choice of the
Probabilistic Symbolic Model Checker (PRISM) model checker to perform this
analysis. A formal description of the PRISM modelling and query languages
are given, along with a description of the semantics imposed on a model when
analysed by PRISM.

A formal foundational description of quantitative stochastic model checking
is given in Appendix A. A number of issues described in relation to formal
verification were presented in [9].

4.1 Formal Methods

The proliferation of complex systems in all aspects of our lives places an increasing
importance on the need for them to function correctly. The conventional method
of checking that a system behaves as intended, testing it on a representative
set of scenarios, is often inadequate in the face of the increasing complexity of
these systems. Today, the main serious approaches to addressing the challenge of
constructing and verifying properties of systems are commonly known as formal
methods, which is simply the application of mathematics, specifically formal logic,
to the design and analysis of systems.

In general, the application of formal methods aims to provide a mathematical
proof of properties of interest on an abstract mathematical model of the system.
The correspondence between the formal model and the nature of the system, at
least for the properties being proven, is intended to be guaranteed by construction.
However, assumptions about the system’s environment are hard to formulate
explicitly, and there will always be cases when a system is deployed in an
environment for which it was not originally designed. As such formal methods
will never provide a route to make systems 100% secure, but they can be seen as
the best known approach to verify the properties of system models.
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The following subsections provide a brief description of each of the main categories
of formal methods approaches to the verification of systems. This motivates
the choice of model checking as the formal method to employ to analyse and
verify Stochastic Core Business Process Model and Notation (BPMN) models of
business processes in line with objectives 2a, 2b and 2c.

4.1.1 Theorem proving

Automated theorem proving is concerned with the mechanization of formal
reasoning following the laws of logic. In essence this approach seeks to emulates
human mathematicians by constructing a proof, given some underlying logic, by
means of various deductive rules.

The roots of this approach go back to the end of the previous century when
Frege developed his Begriffsschrift 1 the first comprehensive effort to develop a
formal language suitable as a foundation for mathematics. However, Bertrand
Russell discovered a paradox which showed that Frege’s system was inconsis-
tent and hence the truth of any proposition can be derived in it. To remedy
this Russell then devised his own system based on a type theory and he and
Whitehead demonstrated in their seminal work Principia Mathematica how this
could serve as a formal foundation of mathematics. Later, Hilbert developed a
simpler alternative, the predicate calculus. From these developments first-order
logic emerged as an analysis of the most fundamental basis for the notion of
mathematical proof and rose to become the dominant mathematical paradigm
of the 20th century, the first-order system. This system emerged as the logic
that is necessary and sufficient for codifying mathematical proofs, axiomatizing
mathematical theories, and studying their metatheory. [102]

These developments were reformulated and extended by Gentzen in the first
half of the twentieth century into a system of natural deduction where the
meaning of each logical connective is explained via inference rules which was
to be a seminal development in this field. While Gentzen was motivated by a
desire to establish the consistency of number theory, he was unable to prove the
needed cut elimination theorem directly for natural deduction. For this reason
he introduced an alternative system, the sequent calculus and showed that it
derives the same theorems as natural deduction. He proceeded to prove the cut
elimination theorem for both classical and intuitionistic logic. This is widely
regarded as the first consistency proof for a formal logical system [42], following
this he proceeded to establish that all true propositions in the sequent calculus

1Literally translated as “concept notation” and presented as “a formula language, modelled
on that of arithmetic, of pure thought”.
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could be proven according to a simple strategy i.e. that the system was complete.
The sequent calculus is widely considered the first deductive system that was
found to be sound and complete [102].

Fundamentally Automated theorem proving seeks to solve the problem automati-
cally determining whether a set of axioms logically imply a hypothesis. Formally
this can be expressed as follows:

Definition 4.1 (Theorem Proving Problem)
Given a set axioms A = a1, . . . , an and a hypothesis H the model checking
problem is to determine if:

A |= H

where the satisfaction relation |= is defined in a formal mathematical logic.

This problem can be viewed as a search and the strategies employed by automated
deduction systems are either directly based on or can be derived from Gentzen’s
sequent calculus. Automated deduction approaches can be broadly classified
as either working backwards from a proposed theorem toward the axioms, or
forward from the axioms toward the theorem. Among the backward searching
procedures are tableaux, connection methods, matrix methods and some forms of
resolution. The most common forward searching methods are classical resolution
and the inverse method [132]. However, many modern theorem proving tools,
such as VAMPIRE [245], seek to combine both forward and backward seeking
approaches.

The prominence of resolution in both forward and backward approach is no
accident, this was an approach introduced by John Alan Robinson in 1965 and
represented a major leap forward in the state of the art of theorem proving.
Resolution is a rule of inference leading to a refutation theorem-proving technique
for sentences in propositional logic and first-order logic. In other words, iteratively
applying the resolution rule in a suitable way allows for telling whether a
propositional formula is satisfiable and for proving that a first-order formula is
unsatisfiable; this method may prove the satisfiability of a first-order satisfiable
formula, but not always, as it is the case for all methods for first-order logic.
This limitation in constructing proofs for first-order logic, and other logics of
equivalent or greater expressibility, can be explained by Gödel’s incompleteness
theorems [42] that establish inherent limitations of all but the most trivial
axiomatic systems capable of performing arithmetic.

The first incompleteness theorem states that no consistent system of axioms
whose theorems can be listed by an “effective procedure” is capable of proving
all truths about the relations of the natural numbers (arithmetic). For any such
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system, there will always be statements about the natural numbers that are true,
but that are unprovable within the system. The second incompleteness theorem,
an extension of the first, shows that such a system cannot demonstrate its own
consistency. As such Gödel’s incompleteness theorems provide a fundamental
limit to what can be achieved in theorem proving. Tarski’s undefinability
theorem, stated and proved by Tarski in 1936, further limits what can be proven,
by showing that truth in the standard model of a system cannot be defined
within the system [42]. Additionally, the Church–Turing thesis [42] places
further limitations on what can be achieved by automated theorem proving. In
simple terms, the Church–Turing thesis states that a function is algorithmically
computable if and only if it is computable by a Turing machine. Hence there
may be situations where automated theorem proving may be attempting to
establish results that are undecidable or which are beyond calculation by means
of a Turing machine (computer).

In practical terms an ideal theorem prover would be able to verify properties such
as proving for the program shown in fig. 4.1 that the boolean data type vaild
never takes on the value of true. However, this would be equivalent to proving
Fermat’s Last Theorem, which is a highly complex mathematical proof [284]
that was only constructed after more than three centuries of effort. Currently
such proofs are completely beyond what can be achieved with automated (or
assisted) theorem proving. As a proof has been constructed for this theorem we
know that the limiting results of Gödel, Tarski and Church–Turing do not apply.
However, here the limitation is simply the length of the proof and the infinite
search space of possible deductions in number theory.

// Determines if Fermat’s Last Theorem is true for a power p
boolean Fermat(int p){

int a← 1
boolean valid = false
while (¬valid)

for (int b← 1,b++,b ≤ a)
for (int c← 1,c++,c ≤ (a + b)){

if (ap + bp = cp) then
valid = true

a← a + 1
}

return valid
}

Figure 4.1: Example of a program which can not be verified for p ≥ 3.
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When employing theorem proving a choice must be made as to the logic within
which theorem proving will be attempted. For the historical reasons mention
above and despite being only semi-decidable, first-order logic is by far the most
mature sub-field of theorem proving. In addition, it should be noted that first
order logic can encode any Turing-computable problem, while having a well-
defined, widely understood and even intuitive semantics. Many other logics
can be reasonably, in the sense that well developed methods exist for doing so,
translated to first-order logic. Further, reasoning about it has been found to be
highly automatable, in theorem proving terms. This is due to a number of sound
and complete calculi for proof searches in existence [132] and the development
of search procedures which are reasonably efficient. In general first order logic
has come to dominate theorem proving as it strikes a powerful balance between
expressiveness and automatability.

Despite the many years of development of automated theorem proving techniques
the fundamental problem of theorem proving is that from a computational point
of view the search performed by theorem proving in first order logic is done over
an infinite search space. This means that searches cannot be performed naively
by an exhaustive search but must make use of various heuristics to be able to
efficiently compute a path to a proof. Fundamentally, the central problem of
how to search for a proof, by coupling a chosen inference system with a search
plan to form a theorem-proving strategy has not been resolved in a fashion that
allows for efficient general purpose theorem proving [51].

Despite the development of a number of highly sophisticated automated theorem
proving systems, the state of the art in the form of Coq [45], Isabelle [206]
and VAMPIRE [245], which has won the world cup in first order theorem
proving twenty seven times [163], are still quite limited in what they are able
to prove, frequently requiring human assistance to produce even simple proofs.
In particular in the domain of proving properties of stochastic systems theorem
provers have had limited development and no significant result, as in proving
previously unknown theorems, has been achieved. Indeed, most well-established
automated theorem proving tools do not even feature axiomatisations of the
necessary measure theory which underpins probability theory.

Automated theorem proving tools also have some fundamental limitations in
terms of usability. Constructing the required models of both the implementation
of - and the specification for - a system to be verified in formal first order logic
makes employing this approach a major challenge. When constructing these
models it is necessary to make explicit many detailed assumptions and handle
all special cases explicitly. This is shown by the extensive development of the
Thousands of Problems for Theorem Provers (TPTF) language [269] for problem
specification and associated library of standard problems. This format, which is
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now well-established as the standard input for automate theorem proving tools,
is a highly explicit block structured language into which translating graph-based
models, such as those of stochastic Core BPMN, is extremely challenging.

In addition, when employing automated theorem proving to verify properties of a
system it should be noted that a full specification for the system is required and
any change to the specification will require constructing an entirely new proof in
which it may not be possible to reuse the previous proof. Finally, when theorem
proving fails it is likely not to be the case that a counterexample can be found.
Frequently theorem proving may halt when a counterexample has been found
for a sub-goal, but this may merely imply that the theorem prover is pursuing
a bad proof strategy. Finally, it should be noted that the proofs generated by
an automated theorem prover due to the need to address all assumptions and
special cases can be extremely verbose and the proof often lack an underlying
structure, making even the atypical case of a short proof difficult to understand.

In summary, as a method for the analysis and verification of business process
formally defined as described is Chapter 3, automated theorem proving has the
following key properties:

Main Strengths:

• Possible to specify any property expressible in first order logic.
• Verification result is a formal mathematical proof.

Main weaknesses:

• Limiting results in logic (Gödel, Tarski and Church-Turing results imply
that not even elementary number theory can be done completely automat-
ically).

• Computationally expensive to verify properties (often requires human
assistance).

• Difficult to specify properties for verification (Need to make many hidden
assumptions explicit).

• A full specification must be formulated (adding verification properties may
require entirely new proof strategies).

• Lack of support for verification of stochastic properties (a large number of
additional axioms would be needed).

• Lack of counterexamples generated when a verification property does not
hold.

• Mapping Core BPMN Business Process Diagrams (BPDs) to a provable
model format (.e.g. TPTP) is difficult.
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• Automatically generated proofs may be very large (and consequently
difficult to understand).

4.1.2 Static Analysis

The technique of static analysis is a varied set of approaches to deriving a
safe and computable approximation of the dynamically arising behaviour in an
executable system. The key insight of static analysis is that the behaviours of the
system can be abstracted into a decidable over- or under- approximation which
preserves the specific properties of interest in an abstract version of the system.
Specifically, static analysis techniques seek to determine properties that apply
to all possible execution paths of the system by exploring all possible paths of
execution in an abstract version of the system. More formally the static analysis
problem can be defined as:

Definition 4.2 (Static Analysis Problem)
Given a modelM with a semantics of execution, and φ a property of interest, the
static analysis problem is to determine an abstraction A of M which preserves φ
and determines if execution of A satisfies φ. This can be expressed as determining
if

M |=A φ

where the satisfaction relation |=A is defined as the property φ being present in
an abstraction of M .

The goal of static analysis is to derive a computable semantic interpretation at
some point. For instance, one may choose to represent the state of a computer
program manipulating integer variables by forgetting the actual values of the
variables and only keeping their signs (+, − or 0). For some elementary opera-
tions, such as multiplication, such an abstraction does not lose any precision:
to get the sign of a product, it is sufficient to know the sign of the operands.
For some other operations, the abstraction may lose precision: for instance, it is
impossible to know the sign of a sum whose operands are respectively positive
and negative.

This approach is fundamentally limited by Rice’s theorem which states that, for
any non-trivial property of partial functions, there is no general and effective
method to decide whether an algorithm computes a partial function with that
property [141]. Where non-trivial means there exists both a partial function
that has a given property and one that does not. Static analysis seeks to
sidestep the limitations imposed by Rice’s theorem by providing approximate
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answers to non-trivial questions about executable systems. This approximation
is conservative, meaning that the answers only err to one side; analyses either
determine if a property may (when over-approximation is employed) or must
(when under-approximation is employed) be true for a given executable system
as illustrated in Figure 4.2.

Underapproximate
(Complete Analysis)

All Actual System
Behaviours

Over approximate
(Sound Analysis)

Figure 4.2: Illustration of the abstraction of system behaviour in static
analysis.

In Figure 4.2 it can be seen how a sound static analysis over-approximates the
behaviours of the system. A sound static analyser is guaranteed to identify all
violations of a property φ , but may also report some false alarms, or violations
of φ that cannot actually occur. A complete static analysis under-approximates
the behaviours of the program. Any violation of a property φ reported by a
complete static analyser corresponds to an actual violation of φ , but there is
no guarantee that all actual violations of φ will be reported. Note that when a
sound static analyser reports no errors, the system is guaranteed not to violate
φ. This is a powerful guarantee. As a result, most static analysis tools choose to
be sound rather than complete.
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The development of static analysis dates back to the very earliest compiler
development [37] where limited computing power made producing optimal code
essential. Here, the original domain in which static analysis was employed, the
function was to extract information from programs to facilitate the construction
of compilers capable of generating optimal code. The term optimal in this context
could entail removing redundant computations or moving loop invariant compu-
tations out of loops or any of a wide range of programme optimisations. A wide
range of ideas arose from these explorations including symbolic execution [157]
and static type checking [222].

A number of the, initially practical, techniques of static analysis were refined and
placed on a more formal basis allowing some of them to be applied to a wider class
of models than traditional computer programs [202]. This was achieved through
a number of disparate developments. In 1972 Kildall developed a lattice-theoretic
foundation of data-flow analysis [156]. This allowed for gathering information
about the possible set of values calculated at various points in a computer
program by means of efficient fixpoint computations. A system’s control flow
graph is used to determine those parts of a system to which a particular value
assigned to a variable might propagate. The analysis is performed by setting up
data-flow equations for each node of the control flow graph and solving them by
repeatedly calculating the output from the input locally at each node until the
whole system stabilizes, i.e. it reaches a fixpoint.

Cousot in 1977 [81] established the relation of static analysis to general system
analysis in the form of abstract interpretation. This development provided a
general method for constructing abstracted operators approximating the seman-
tics of the concrete system in a safe fashion within a chosen abstract domain.
Abstract interpretation thus allows reasoning about a system through semantics
linked by relations of abstraction, where those abstractions typically are in the
form of Galois connections or insertions constructed so that a given property of
interest that is present in the concrete system is ensured to be preserved in the
abstract domain.

It is generally the technique of abstract interpretation that forms the basis for
the application of static analysis techniques outside the traditional complier
domain [202] and a wide range of domains have been explored. These domains
include more abstract areas such as developing abstract interpretation based
static analysis frameworks for process calculi such as Calculus of Communicat-
ing Systems (CCS) [205], the µ−calculus [124] or Interactive Markov Chains
(IMC) [265]. However, practical applications have also been found outside soft-
ware verification such as investigation of models of biological systems [203], [223]
or validating security protocols [49], [130], [201].
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In abstract interpretation, the collecting semantics of a system is expressed as a
least fix-point of a set of equations. The equations are solved over some abstract
domain that captures the property of interest to be analysed. Typically, the
equations are solved iteratively; that is, successive approximations of the solution
are computed until a fixpoint is reached. However, for many useful abstract
domains, such chains can be either infinite or too long to let the analysis be
efficient. To make use of these domains, abstract interpretation theory provides
widening operators, that attempt to predict the fix-point based on the sequence
of approximations computed on earlier iterations of the analysis on a complete
lattice. The degradation of precision of the solution obtained by widening can
be partly restored by further applying a narrowing operator [82]. However,
application of these operations, which is typically necessary when analysing large
systems, may produce very large intervals when analysing quantitative properties
of interest.

An illustration of ideas of abstract interpretation could be to determine some
specific information about a system. Imagine one had a room full of people and
one wished to determine “is there a person of age n in the room”, keeping a list
of all names and dates of births is unnecessary. We may safely and without loss
of precision restrict ourselves to keeping a list of the people’s ages. If this is too
large to handle, we might keep only the age of the youngest m and oldest person
M . If n is strictly lower than m or strictly higher than M , then we may safely
respond that no such participant was present. Otherwise, we may only be able
to say that we do not know.

It is entirely natural that static analysis should be a major consumer of, as well
as a testbed and an inspiration for, ideas in semantics because both fields are, at
their broadest, concerned with finding formal principles for reasoning about the
behaviour of systems. The major distinction is that static analyses are intended
to be implemented and must therefore be efficiently computable. By contrast
the study of semantics is generally interested in modelling systems as accurately
as possible and in proving rather more complex program properties than are
considered in static analysis. As illustrated by Figure 4.3(b) the key limitation
of static analysis is that the analysis, a super-semantics of a specific semantic
system, which encapsulates an underlying system behaviour, is frequently forced
to no longer remain true to the underlying system behaviour so as to remain
computable. As opposed to employing an analysis technique where, such as what
is shown in Figure 4.3(a), the super-semantics perfectly matches the underlying
behaviour of a system.

The second key limitation of static analysis is that the key techniques of static
analysis do not provide a deductive method for constructing an abstract domain
which preserves the properties of interest. While there are a wide range of specific
examples of appropriate domains for the analysis for specific properties for specific
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(a) System execution (b) Static analysis

Figure 4.3: Semantic Approximation in Static Analysis

systems and there exists several ways to combine abstract domains to obtain
other more complex abstract domains, this is still a manual process. Further,
techniques for constructing analyses that can determine non-functional properties
or stochastic systems are immature and frequently lacking tool support.

The best established and most developed tools for static analysis, such as
Astrée [48], SLAM [40] and Polyspace [286], are all tied to specific computer
programming languages, predominantly C, C++, JAVA and C#. General
purpose tools which allow for analysis of abstract models such as those of
Stochastic Core BPMN, are immature and lack support for non-functional
properties or stochastic behaviour.

Main Strengths:

• Properties of systems can be efficiently computed, even for systems with
very large or even infinite numbers of states.

• Static analysis can provide unambiguous answers, e.g. when an over-
approximating analysis provides negative result.

Main weaknesses:

• An appropriate abstract domain must be manually defined for each analysis
and may not exist.

• Cases exist where an inconclusive result is given, i.e. an analysis may
return “maybe” (in practice frequently the case for stochastic properties).
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• Tool support is closely tied to specific semantic domain (typically estab-
lished programming languages). General purpose static analysis where
semantics can be arbitrarily defined do not exist.

• Extremely limited examples of analysis of stochastic systems.
• Analysis of quantitative properties may give very large intervals as results.

4.1.3 Model checking

The development of model checking was initially motivated by the problem of
employing mathematical logic to reason about programs in a fashion that did
not entail theorem proving. Due to the problems encountered when trying to
make theorem proving techniques scale up to large programs, model checking
sought to develop an approach that avoided the need for proofs.

The crucial innovation which made this work possible was the development by
Pnueli [226] of temporal logics, a formalism which extends propositional logic
with modal/temporal operators describing change over time. Central to this
development was the suggestion by Pnueli that this would be well suited to be
employed to reason about concurrent systems. Many correctness properties of
concurrent systems have a natural description in terms of temporal logic formulae
over computation trees, and the easy specification of requirements allowed the
effective analysis of complex properties such as invariant properties, liveness
properties, and properties of response to an action.

Emerson and Clarke proceed to show that correctness properties can be described
using computation trees and that from these descriptions fixpoint characteri-
zations can be generated [94]. They proceeded to give conditions on the form
of computation tree descriptions to ensure that a correctness property can be
characterized using continuous fixpoints. Independently Quielle and Sifakis
proposed essentially the same method [236] shortly after.

In the model checking approach to verification, the model constructed is employed
to identify the set of all possible future states that the system can be in, and
the transitions which can occur between these states. Given a specification
in temporal logic [75] which serves to identify the states of interest of the
system, automated verification can be performed. In their seminal paper, Clarke,
Emerson and Sistla [75] named this approach model checking and formulated
this as a general method for solving the following problem:
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Definition 4.3 (Model Checking Problem)
Given a structure M , a state s ∈M , and a temporal logic formula f , the model
checking problem is to determine:

M, s |= f

This can alternatively be formulated as: given M and f , calculate the set:

{s : M, s |= f}

Note that the model checking approach is closely bound to the model of interest,
even a slightly different model might produce a radically different statespace and
determining general theorems of a class of systems is beyond the scope of this
method. Further, this approach requires that a statespace can be constructed for
the system, which may not be possible in cases when a system has continuous
properties or where a clear notion of state does not exist.

Clarke, Emerson and Sistla proceed to address the model checking problem
by formulating the temporal logic Linear Temporal Logic (LTL), at the time
known as propositional temporal logic, to specify a formula of interest f . They
proceed to argue that concurrent programs M can be abstracted to finite state
synchronization skeletons, suppressing behaviour irrelevant to concurrency, and
provided an LTL model checking algorithm for these that runs in time O(|f | ·
|M |2) [75]. LTL was able to describe the properties of individual executions with
a semantics defined as a set of executions (traces). For each possible execution
of a system which equates to a sequence of events, and this is why it is named
“linear time”, the satisfiability is checked on the execution with no possibility of
switching to another execution path during the checking.

Computation Tree Logic (CTL) developed by Emerson and Clarke [95] provided
a different logic for reasoning about systems. CTL describes a branching-time
logic, meaning that its model of time is a tree-like structure in which the future
is not determined; there are different paths in the future, any one of which might
be an actual path that is realised. Model checking of CTL properties allowed
specifying a formula on all possible execution paths of a system where either all
possible runs (the A operator) or only one run (the E operator) are explored
when facing a branch.

The development by Hansson and Jonsson of Probabilistic Computation Tree
Logic (PCTL) [131] (essentially the same logic was also developed simultaneously
by Bianco and Alfaro [46]) provided a probabilistic extension of CTL with the key
addition of a probabilistic operator P (Definition A.8, page 253) and quantitative
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extensions of CTL’s A and E operators in the form of a reward operator R
(Definition A.4). PCTL* [46] further extends PCTL by subsuming LTL. This is
achieved by removing the need for a path formula to be immediately preceded by
the state operator P, this allows any LTL formula to also be a PCTL* formula.

The logic PCTL (and PCTL*) allowed for quantitative model checking which
extends the standard model checking approach to quantify probabilistic paths
through the statespace induced by a Markov Decision Process (MDP) (Defi-
nition A.5). In brief, this method operates by transforming an MDP into a
Discrete-time Markov Chain (DTMC) (definition A.1) by means of the generation
of adversaries (Definition A.6), which resolve non-deterministic choice in an
MDP thus reducing it to an induced DTMC (Definition A.7). The possible
paths through this induced DTMC are explored by means of the temporal logic
PCTL (Definition A.2), which is employed to specify specific properties and
paths of interest. Hence, in PCTL model checking the P and R operators, which
respectively evaluate probabilities and cumulative reward values, of specific paths
as measures over the space of all possible paths of an MDP. The full technical
details of this method are given in Appendix A.

Typically in model checking, the structures to be checked are hardware or
software systems, and the specification contains safety requirements such as
the absence of deadlocks and similar critical states that can cause the system
to crash. However, the flexibility of the general approach has allowed model
checking to be successfully applied to systems as diverse as:

Biological systems where the specification may express required physical prop-
erties of chemical interaction and these are found to agree with observed
biological data [133], [182].

Robotics [160] where foraging robot swarms are analysed to ensure properties
such as collision avoidance, timing of operations, and power consumption
are analysed using probabilistic model checking to verify that global swarm
behaviour will indeed function as required.

Sociology [110] where assumptions used in models of the voting patterns for
different ethnic groups in New York City, and of the effect of radon on
lung cancer in the United States, are checked to determine if they can be
falsified by the data upon which they are based.

Tool support for model checking is extensive with several examples of well
developed model checking tools which allow fully automated formal verification.
The most established of these are SPIN [140], PRISM [170], UPPAAL [43], and
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the Failures-Divergences Refinement (FDR) model checker [60]. As an example
of the real-world applicability of model checking, the FDR model checker was
used in 1996 [178] to discover a flaw in the Needham-Schroeder protocol [197]
which had remained undetected despite, extensive manual analysis, for 18 years.

The main caveat of this approach is that as more detail is added to a model the
resulting statespace, the set of all possible future states of a system, is prone to
combinatorial growth in size. As model checking typically performs an exhaustive
search of this statespace verification may become computationally challenging.
Known as the statespace explosion, this problem is the main limitation of model
checking. However, considerable progress in addressing this increase in complexity
has been made and these developments will be discussed in section 4.3.1.

A key strength of model checking is that it functions as a search of the statespace
implied by a system for states which satisfy specified properties and, if these
properties are violated, this method is able to produce a counterexample. This
is done in the form of a trace from the initial system state to the state that
violates the property being verified. Identifying the exact sequence of actions
which must occur for violation of a property to take place also provides useful
debugging information when designing business processes. Further, each search
of the statespace is unaffected by other searches, meaning that verification of each
property of interest can be performed as they are determined to be relevant. Only
if the model changes must new verification be performed whereas specification
changes only require re-verification of the changed parts of the specification.

Main Strengths:

• Model checking finite statespaces always yields a result.
• Verification inherently determines counter examples in cases when a prop-

erty is violated.
• Verification properties can be checked one-by-one without any dependencies

on other properties to be checked.

Main weaknesses:

• The statespace explosion problem limits the size of models which can be
verified.

• Checking only provides results for the specific model in question, no general
results are produced.

• Properties to be verified are restricted to temporal logics, which are not as
expressive as first order logic.

• Only systems which have a statespace representation can be verified.
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4.2 Formal Verification vs. Statistical Simula-
tion

An alternative approach to the verification of concurrent systems is to ap-
proximate their behaviour using statistical simulations, such as a Monte Carlo
simulation. In general, a statistical simulation works by employing a statistical
sampling scheme, where the problem is analysed using a set of randomly gener-
ated samples, and measuring what fraction of the random set satisfies a property,
in order to determine a property’s probability.

When used for analysis of a business process a simulation approach involves
developing a model which reflects the behaviour of a process, including the
data and resource information, and then performing simulation experiments to
better understand the effects of running that process. A number of simulation
approaches and corresponding tools have been developed:

• Protos [272] is a modelling and analysis tool developed by Pallas Athena
and it is mainly applied for the specification of in-house business processes.
Processes can be analysed with respect to data, user and control logic
perspectives with mean, 90% and 99% confidence intervals of utilization
rates, waiting times, service times, throughput times and costs.

• ARIS [258] is a professional tool for the dynamic analysis of business
processes. Implemented processes are instrumented and recorded in the
ARIS Toolset, then used as the input data for business process simulation.
The process modelling part supports the definition of business processes
represented in Event-driven Process Chains. The simulation results include
statistics on events, functions, resources, processes and costs.

• FileNet [199] is considered to be one of the leading commercial Business
Process Management (BPM) systems. Here a process structure is modelled
graphically and tasks are assigned to work queues. Simple arrival patterns
of cases are defined, i.e. a fixed number of cases arrive at fixed time points.
Historic execution arrival data can also be used. Other performance
characteristics can be added manually, but can only have constant values.
Both time and cost aspects are taken into account, but without fluctuations
because only constant performance measures are used in the simulation. It
is possible to create scenarios of a simulation model, but it is not possible
to change the process structure in the process simulator itself.
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The most prominent distinction between simulation-based verification and formal
verification is that the former requires input vectors and the latter does not. The
approach in simulation-based verification is first to generate input vectors, and
then to derive reference outputs. The thinking process is reversed in the formal
verification process. The user starts out by stating what output behaviour is
desirable, and then lets the formal checker prove or disprove it. Users do not
concern themselves with input stimuli at all.

Although statistical simulation can be useful in some cases, only formal verifica-
tion is complete, in the sense that it does not miss any point in the input space of
a problem. Statistical simulation can explore some situations, but cannot observe
all behaviours. Safety properties which guarantee that specific behaviour will
always, or, can never, occur need to be evaluated under all possible situations
which simply cannot be achieved by the simulation method.

The other key limitation is that simulations need to be executed for a certain
amount of time. Whereas verification by model checking is typically unbounded,
and can reason about the properties of infinite runs of a system.

4.3 The Choice of Model Checking

In this thesis quantitative stochastic model checking will be employed to analyse
and verify business process models of the type described in Section 2.4. This
choice is motivated by the following considerations:

1. Support for quantitative and stochastic properties: Model checking
provides native support for the verification of quantitative and stochastic
properties by means of the logic PCTL. In its extended form, PCTL*,
support is also available for verification of qualitative properties.

2. Model size: While models of business processes can exhibit considerable
complexity, their size is relatively modest compared to the complexity
of semiconductors [47], [78] or biological systems [133], for which model
checking has been successfully employed. Thus model checking is an
appropriate choice for models which contain considerably more complexity
than those produced by business processes.

3. Tool support: A wide range of model checking tools has been developed
with some of the most established tools having seen more than two decades
of development.
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4. Counterexample generation: Inherit to the model checking approach is
the generation of counter examples when verification properties are violated.
When providing design time support for developing business processes this
feedback can be extremely useful for debugging and improving processes.

5. Verification of partial specifications: Model checking does not require
a complete specification in order to perform verification. Properties can be
verified independently of each other as they are determined to be relevant
for the business process being developed. Once again, this is very useful
at design time where a full specification is unlikely to exist. Further, even
models for which a specific property can not be verified can still be analysed
for other properties.

While the range of properties that can be verified by means of model checking is
not as broad as what can be examined using theorem proving, the verification
possible is sufficient to analyse precisely those properties desired of business
processes. Further the production of counterexamples and support for partial ver-
ification are not traditionally possible in theorem proving. Finally, considerable
effort is involved to map a description of a business process in any of the common
business process languages into a structure that would be amiable to theorem
proving . Likewise encoding properties of interest, in particular quantitative
and stochastic properties, is considerably more complex in first order logic, most
commonly used by theorem provers, compared to expressing such properties
in PCTL. Examples of the complexity of model and property specification are
well illustrated by the size of models of real-world theorem proving projects
such as the formalisation of IEEE Floating Point Arithmetic [86] using coq
with a total size of 10000 lines of code for 60 definitions and 400 theorems, the
verification of a feedback control algorithm for a surgical robot [162] developed in
KeYmaeraD [225] involves 156,024 proof steps which are guided by a manually
created proof script, and a more extensive model in KeYmaeraD of the European
Train Control System cooperation protocol [224] has a total size of over 700MB
with 91% of the proof steps able to completed in a fully automatic fashion.

Static analysis is not an appealing approach for analysis of business processes.
While this approach involves more complexity in terms of model construction and
analysis specification, it is able to scale to considerable larger models than can be
tackled with model checking. However, no models encountered in working with
the industrial partner or observed in the literature [193], [238] are of sufficient
complexity to warrant this approach.

It should be stressed that the distinction between static analysis and model
checking is debatable and work by Nielson and Nielson [204] demonstrates how
model checking can be cast as static analysis of a modal logics. Conversely work
by Schmidt [259] suggests that data flow analysis is model checking of abstract
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interpretations. Combined, these efforts show a close relationship between static
analysis and model checking, to the extent that one may conjecture that they
are reducible to each other. However, for the purposes of this thesis they will be
treated as separate approaches with the key distinction being that static analysis
is performed on an abstract model of system, whereas model checking seeks to
explicitly examine the statespace directly arising from a model.

A key practical consideration in the choice to employ model checking is that
it can be automated. Model checking tools generally have a relatively modest
learning curve and are able to tackle models of substantial size with limited
manual intervention. Compared to well-established tools for theorem proving
which often requires considerable configuration to achieve effective results, model-
checking tools can be fully automated, allowing their use to be completely hidden
from an end-user. Static analysis tools are mostly focused on variation of specific
programming languages, in particular C, JAVA and C#. General purpose static
analysis tools, similar to theorem proving tools, require considerable manual
tuning to be employed effectively.

Being able to perform analysis without a deep understanding of the verification
process is essential if it is to be employed by business users. The methods
developed in this thesis only require specifications of desired properties for
BPMN, and no knowledge of the model checking process itself is required.

4.3.1 The Statespace explosion problem

For clarity in the context of this thesis a statespace will be defined as follows:

Definition 4.4 (Statespace)
The statespace of a discrete system is the set of all possible states of the system.
Each coordinate is a vector of state variable, and the values of all the state
variables completely describes the state of the system.

In Definition 4.4 each point in the statespace corresponds to a different state of
the system. For example a process recording the number of customers in a line
would have the statespace {0, 1, 2, 3, · · · }

The statespace explosion is the major problem in model checking. The number
of global states of a concurrent system with many processes can be enormous.
This problem bounds the time-complexity of model-checking algorithms, and
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is dependent on the property to be checked and on the size of the transition
system. Specifically, the maximal size of the statespace of a transition system
with S states and T transitions depends on the presence of:

• Parallelism When employing parallelism the statespace of a system is
built as the Cartesian product of the local statespaces Si of the components,
i.e. the statespace of the parallel composition of a system with n states
and a system with k states yields nk states. The parallel composition of
N components of size k produces kN states.

• Data variables In the case when all resources in a model checking problem
have a finite domain, e.g. are bounded integers, the number of states in the
statespaces grows exponentially in the number of variables in the system.
For N variables with a domain of k possible values for the number of states
likewise grows up to kN .

Complexity-theoretic arguments can be used to show that the problem is un-
avoidable in the worst case (assuming P is different from PSPACE). Fortunately,
steady progress has been made over the past 3 decades for special types of
systems that occur frequently in practice. In fact, the state explosion problem
has been the driving force behind much of the research in model checking and
the development of new model checkers. The following key statespace reduction
breakthroughs have been made:

Binary Decision Diagram (BDD) representations The main idea behind
symbolic model checking is to represent and manipulate a finite state-
transition system symbolically as a Boolean function. In particular, Ordered
Binary Decision Diagrams (OBDDs) [62] are a canonical form for Boolean
formulas that is often substantially more compact than conjunctive or
disjunctive normal form, and very efficient algorithms have been developed
for manipulating them. Because the symbolic representation captures some
of the regularity in the state space determined by circuits and protocols, it
is possible to verify systems many orders of magnitude larger than could
be handled by the explicit-state algorithms. With the new representation
for state-transition systems it has been possible to verify some examples
that had more than 1020 states [64]. Since then, various refinements of
the OBDD-based techniques have pushed the state count up to more than
10120 [190].

Partial order reduction One of the most successful techniques for model
checking asynchronous systems is the partial order reduction. This tech-
nique exploits the independence of concurrently executed events, where
two events are independent of each other when executing them in either
order results in the same global state. Hence they can be executed in
arbitrary order without affecting the outcome of the computation. This
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means that, in this case, it is possible to avoid exploring certain paths in
the state-transition system. Many specific implementations of these ideas
exist such as the persistent sets of Godefroid [116] or the stubborn sets of
Valmari [275]. While these differ on the actual details they contain many
similar ideas.

Symmetry Reduction The basic idea of exploiting symmetry is that given a
statespace and a symmetry group acting on the statespace that preserves
transition relations, the symmetry group can be employed to partition
the statespace into equivalence classes called orbits. A quotient model is
constructed that contains one or more representative from each orbit. This
partitioned statespace will in general, be much smaller than the original
statespace. First introduced by Clarke et. al. in 1996 [77], this technique
has seen extensive development and can be combined with BDDs to achieve
substantial reductions in their size.

CEGAR Counter example guided abstraction refinement attempts to prove
the properties on a system by first simplifying it. The approach begins
checking with a coarse (imprecise) abstraction of an model and iteratively
refines it [76]. When a violation (counterexample) is found, it is analysed
for feasibility (i.e., to determine if the violation genuine or the result of an
incomplete abstraction). If the violation is feasible, it is reported to the user;
if it is not, the proof of infeasibility is used to refine the abstraction, and
checking begins again. In general, the presence of spurious counterexamples
cannot be avoided, since the abstract model over-approximates the state
space of the concrete system. This is due to the loss of information caused
by the abstraction mapping. However, the state space of the abstract
system is usually much smaller than that of the concrete system, making
the abstract system amenable to model checking.

Bounded model checking Given a finite state-transition system, a tempo-
ral logic property, and a bound k, bounded model checking generates a
propositional formula that is satisfiable if and only if the property can be
disproved by a counterexample of length k [47]. This propositional formula
is then fed to a Boolean satisfiability (SAT) solver. If no counterexample
of length k is found, then the property is considered to hold. For safety
properties (i.e., checking whether a “bad” state is unreachable), it can be
shown that we only need to check counterexamples whose length is smaller
than the diameter of the system i.e. the smallest number of transitions to
reach all reachable states. Note, that this approach to model checking is
an approximate method and does not provide exact results.

Business processes, as formally defined in Chapter 3, have in this thesis been
constructed so as to limit their complexity and hence the size of their implied
statespace. Typical models of business processes consist only of hundreds
to hundreds of thousands of states producing state spaces which are quite
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manageable. They make limited use of parallelism mostly in the form of simple
message passing between separate processes. However, the approach to modelling
business processes does grows models statespace significantly in the case of
bounded rewards, when terminal states for reward exhaustion must be modelled
and are inherently bounded in scope. In this case the models will however exhibit
a large degree of symmetry and symmetry reduction techniques are able to reduce
the effective complexity of this to little more than an equivalent non-bounded
model. Note, that properties captured as rewards (Appendix A.4), such as time
or money spent, are evaluated as the statespace is traversed and do not add to
the size of the underlying statespace.

Scaling of the specific analysis methods presented in this thesis is explored in
Section 9.3.

4.4 Probabilistic Model Checking Tools

This section focuses on model checking tools which are suited to the analysis of
quantitative probabilistic systems. The basic operation of these tools is shown in
Figure 4.4. In general, the inputs (highlighted in light grey) are a probabilistic
model and a property specification defined in appropriate modelling languages.
The outputs (highlighted in dark grey) is either confirmation or the value of a
queried reward. In the case when a property is violated, most tools allow for a
counterexample to be provided.

Probability
Annotations

Reward
Structures

Probabilistic
Model Checker

Result (false)

Reward
(real value)

Result
(true/probability)

Counterexample

Figure 4.4: The basic design of quantitative probabilistic model checking tools.

There are currently four main well developed probabilistic model checking tools
in active development:
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1. PRISM [170] has been developed at the University of Oxford (UK). It is
a free and open source tool, distributed under the GNU General Public
License (GPL). The tool is developed using a combination of Java and
C++. Its user interface and parsers are written in Java.

2. Markov Reward Model Checker (MRMC) [151] Markov Reward Model
Checker has been developed at Aachen University (Germany). It is dis-
tributed under the GNU General Public License (GPL). MRMC is a
command-line-based tool, implemented in C and currently only supports
the Linux platform.

3. MOdest TOol EnviRonment (MOTOR) [50] has been developed at Saarland
University (Germany). It is distributed free of charge for non-commercial
use, and developed under a closed-source license. It is developed in C++
and provides a graphical user interface written in C#.

4. UPPAAL-SMC [63] The name of this tool is derived from the first three
letters of Uppsala University (UPP) and Aalborg University (AAL); while
SMC stands for the Statistical Model Checking extension of this tool. It is
developed in collaboration between these two universities and is distributed
free of charge for non-commercial use and developed under a closed-source
license. It is developed in C++ and provides a graphical user interface
written in Java.

In Chapter 3, the modelling of business processes in BPMN is achieved by
means of process graphs which are extended with both non-deterministic and
probabilistic behaviour, and annotated with rewards. This motivates the need
to employ a model checking tool which is able to operate on Markov decision
processes, or an extension of these. An overview of the capabilities of each of
these tools in terms of support for probabilistic models formalisms, property
specification logics, and rewards is shown in Table 4.1.

Tool Models Properties Rewards

PRISM DTMC, CTMC, MDP, PTA PCTL, CSL,
LTL, PCTL*

Yes

MRMC DTMC, CTMC PCTL, CSL Yes

MOTOR MODEST (MDP, DTMC, CTMC,
PTA, LTS, SHA)

(Special) Yes

UPPAAL-SMC PTA WMTL No

Table 4.1: Overview of the capabilities of the main quantitative probabilistic
model checking tools.
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From Table 4.1 it is clear that the main candidates for analysis of business pro-
cesses are PRISM and MOTOR. UPPAAL-SMC, while supporting Probabilistic
Timed Automata (PTA), an extension of Markov decision processes with clocks
and constraints on clocks, does not support rewards when analysing these models,
significantly reducing what can be learned about business processes from this
tool. MRMC does not support Markov decision processes and as such is not
suited.

MOTOR is a powerful and appealing tool, built on top of PRISM and based
upon the MoDeST (MOdeling and DEscription language for Stochastic Timed
systems) language. This language, in addition to being able to describe MDPs,
DTMCs and PTAs, is also able to describe stochastic hybrid automata (SHA),
which combine nondeterministic choices, continuous system dynamics, stochastic
decisions and timing, and real-time behaviour, including nondeterministic delays.
While powerful, this formalism is considerably more complex than a MDP, and
the additional features it provides are not relevant for the description of business
processes driven by the considerations in Section 1.1.

Due to the unsuitability of the previously mentioned tools and due to the generally
high-performance of PRISM, the PRISM model checker is a strong candidate
for a tool to be employed for the formal analysis of business processes. The
support for a wide range of temporal logics for property specification combined
with support for a wide range of Markov models including MDPs mean PRISM
is able to perform extensive analysis of business processes which exhibit both
nondeterminism and stochastic behaviour. Further PRISM supports a wide range
of methods to mitigate the statespace explosion problem allowing it, in general,
to tackle models of greater size than the competition. PRISM Is described in
more detail in the following section.

4.4.1 PRISM

First developed as part of his PhD Thesis by David Parker [218], the PRISM
tool has seen extensive development and has grown to be a very capable model
checker. A formal presentation of the general mathematical theory of how PRISM
operates is outlined in Appendix A.

PRISM is an open-source software tool which accepts probabilistic models written
in a textual PRISM modelling language based on Reactive Modules [30], a state-
based language using guarded commands. The three main model types supported
are DTMCs, MDPs and PTAs, and properties for their analysis can be specified
using the PRISM specification language which implements the probabilistic
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temporal logics, PCTL, Continuous Stochastic Logic (CSL) (for Continuous
Time Markov Chains (CTMCs), LTL and PCTL*. The architecture of PRISM
is shown in Figure 4.5.
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Figure 4.5: The architecture of the PRISM model checker. The tool itself is
shown within the dashed area (source [166]).

PRISM includes multiple model checking engines, several of which are based on
symbolic implementations (using binary decision diagrams and their extensions).
These can enable the probabilistic verification of models of up to 1010 states [169],
however the tool achieves optimal performance on models in the range of 104 to
108 states. To achieve this, PRISM offers the user a choice between the following
three data structures, with regard to MDPs, for model checking [166]:

1. Sparse Matrix This is an explicit representation of the statespace, and
can be a good option for smaller models where model checking takes a
long time. For larger models, however, memory usage quickly becomes
prohibitive. As a rule of thumb, the upper limit for this engine, in terms
of model sizes which can be handled, is about a factor of 100 less than the
hybrid engine.
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2. Multi-Terminal Binary Decision Diagrams (MTBDDs) are exten-
sions of BDDs which can encode quantitative data. This compact repre-
sentation is much more unpredictable in terms of performance but, when a
model exhibits a lot of structure and regularity, can be very effective. This
engine has been successfully applied to extremely large models (up to 1010

states), and can be used in cases where the other two engines cannot be
applied.

3. Hybrid The hybrid engine is enabled by default in PRISM. It uses a
combination of symbolic and explicit data structures as used in the Mul-
tiple Terminal Binary Decision Diagram (MTBDD) and sparse engines,
respectively. In general, it provides the best compromise between checking
time and memory usage. It almost always uses less memory than the sparse
engine, but is typically slightly slower. The size of model which can be
handled with this engine is quite predictable. The limiting factor in terms
of memory usage comes from the storage of 2-4 arrays (depending on the
computation being performed) of 8-byte values, one for each state in the
model.

All engines perform the same calculations; therefore the choice between MTBDD,
sparse matrix, or hybrid representations does not affect the results of the model
checking. The accuracy and the speed of convergence on a result depends on the
chosen iterative method to solve the systems of linear equations as described in
Appendices A.3 and A.7. PRISM offers a choice between several well established
methods:

• Gauss-Seidel (also backwards).
• Jacobi method.
• Jacobi Over Relaxation (JOR) (also backwards).
• Power iteration.
• Successive over-relaxation (SOR).

Common to all of these methods is the way that PRISM checks convergence,
i.e. decides when to terminate the iterative methods because the answers have
converged sufficiently. This is done by checking when the maximum difference
between elements in the solution vectors from successive iterations drops below
a given threshold. The default value for this threshold is 10−6, but it can be
altered. Also, the maximum number of iterations performed can be given an
upper limit in order to trap the cases when computation will not converge, here
the default limit is 10, 000.

A variety of advanced capabilities are also available:
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Simulation engine [171] A discrete-event simulation engine is included in
PRISM for debugging models and to support so-called statistical model
checking techniques.

Optimal adversary generation [171] PRISM’s MDP verification has the
ability to generate optimal adversaries. This means that, when PRISM
computes the minimum or maximum value for a probabilistic reachabil-
ity (or expected reward) property, it can also generate a resolution of
non-determinism in the model that produces it.

Furthermore, PRISM implements the following techniques, in addition to the
possible statespace representations, to further combat the statespace explosion
problem:

Symmetry Reduction PRISM employs component symmetry, in which any
pair from a set of symmetric components in a model can be exchanged
with no effect on the overall behaviour. Verification of a model can then be
employed on on a bi-similar quotient model which is, at the upper bound,
factorially smaller [90].

Partial order reduction PRISM combines the stubborn set approach and
probabilistic model checking [129]. PRISMadopts the weak stubborn set
method, instead of the well-known (strong) stubborn set, to obtain more
compact reduced models.

CEGAR A quantitative variant of CEGAR is implemented in PRISM in the
form of an extensible tool-kit, with support for multiple model types,
refinement strategies, and configurable optimisations [152]. Although these
require some manual tuning, they can greatly expand the complexity of
models that can be feasibly checked.

4.5 Using the PRISM Model Checker

The underlying theory of how the PRISM model checker performs model checking
of MDP structures is outlined in Appendix A. The basic design of the PRISM
model checker is described in Section 4.4.1. This section describes the PRISM
modelling and property specification languages. These are used as inputs to
the PRISM model checker and are the target of translation for stochastic Core
BPMN models.
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4.5.1 The PRISM Modelling Language

PRISM models are expressed in a guarded command language which is based
upon the formalism of reactive modules [30]. While PRISM supports a number
of different types of models, only the modelling of MDPs is considered here, due
the nature of the combination of probabilistic and non-deterministic branching
allowed by definition of exclusive gateways in Definition 3.14.

MDPs are defined in the PRISM modelling language by composing a number
separate of modules which interact with each other by means of message passing.
An individual module takes the following form [217]:

module
x : [0..n ] init 0;
[act ] guard → p_1 : update_1 +...+ p_n : update_n;
endmodule

The module ... endmodule construct defines a module which contains two parts:
variables and commands. The variables describe the possible states that the
module can be in, e.g. (x :[0..2] init 0) defines a variable x which ranges from
0 to 2 and starts with a value of 0.

Commands describe the behaviour of the modules, i.e. the way in which their
states change over time. Inside the command, the guard (guard) is a predicate
over all the variables in the model (including those belonging to other modules),
e.g. ((x=1)&(t!=3)). Following the guard, the command defines one or more
transitions (p_i :update_i), where each update describes a transition the module
may perform if the guard is true. A transition consists of one or more updates
(update_i) which are individually specified by giving the new values to the
variables of the module, and an associated probability (p_i), e.g. (0.2:(x’=2)).
Elements of the updates may be concatenated with & and each element must
be bracketed individually. If an update does not give a new value for a local
variable, the variable is assumed not to change.

A command may be prefixed by an action label inside square brackets, e.g.
([act]) which, in the style of many process algebras, is a synchronisation label,
allowing commands to be synchronised and which forces two or more modules
to make transitions simultaneously if the transition is enabled. By default,
all modules are composed in the style of standard Communicating Sequential
Processes (CSP) [138] parallel composition, i.e. modules synchronise over all
their common actions. However, it is possible to define precisely the way in
which the set of modules are composed in parallel. This is specified using the
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system ... endsystem construct, placed at the end of the model description,
which should contain a process-algebraic expression. This expression should
feature each module exactly once, and can use the following CSP based operators:

• M_1 || M_2 parallel composition of modules M1 and M2 synchronising on
only actions appearing in both M1 and M2 (the default behaviour).

• M1 |[a,b,...]| M2 restricted parallel composition of modules M1 and M2,
synchronising only on actions from the set {a, b,...}.

• M /{a, b,...} hiding of actions {a, b,...} in module M.
• M{a<-b,c<-d,...} renaming of actions a to b, c to d, etc. in module M.

When evaluating the expression, the hiding and renaming operators bind more
tightly than the three parallel composition operators. No other rules of precedence
are defined and parentheses should be used to specify the order in which modules
are composed.

Rewards are declared in a similar fashion to modules by the following construct:
rewards name
[act ] guard : reward
endrewards

Where name is a label for the reward structure, the body of the reward structure
is interpreted as the transitions from states which satisfy the guard guard (a
predicate over all the variables of the model) and are labelled with the action act

increment of the reward structure name with the positive real value of the reward
reward. If no action is specified, the reward is allocated in all states which satisfy
the guard. For example, the reward x=0 :100 would denote that in the state
when x is 0 the given reward is incremented by 100 and would correspond to
a node reward. States with an explicitly defined action label are employed to
identify transition rewards, where for example, the reward [treat]:1 within a
reward structure modelling drugs used in a medical process would denote that
transitions labelled [treat] will increment the reward structure by 1.

4.5.2 Semantics Imposed by PRISM

To perform analysis of stochastic core BPMN models, they must be mapped
to the PRISM modelling language which is, in essence, a representation of a
MDP [282]. However, the structure of the PRISM modelling language differs
significantly from the traditional graph-based representation of MDPs. Hence,
in the generation of the state space implied by the model, PRISM imposes
a semantic interpretation on the execution of a business process captured as
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a process graph. This effectively treats the input model as a discrete set of
states representing possible configurations of the system. Transitions in the
business process are modelled as probabilistic state transitions combined with
non-deterministic choices between several discrete probability distributions over
successor states from a given initial state.

PRISM is a tool which seeks to construct the entire statespace (i.e. all possible
reachable states) implied by a set of interacting modules. This is achieved
in broadly the same fashion defined for reactive modules [30] upon which the
PRISM modelling language is based. Here the semantics are not defined in a
compositional manner, i.e. by first giving the semantics of each module in the
system and then combining these results. The reason for this is that guards (and
updates) of one module are allowed to refer to the variables of other modules (and
indeed global variables). Instead, the semantics of a PRISM model are defined
by translating it’s set of modules into a single system module in a compositional
manner and then defining the semantics for the whole system through this single
module.

The process of constructing the master system module from its component
modules is by composition of the modules which are each defined by a reac-
tive modules [30] style process-algebraic expression, which can include parallel
composition of modules, action hiding and action renaming. Note that, in this
construction process, it is required that all updates of all commands have been
expanded to explicitly include all local variables of the module and all global
variables, even those that do not change.

Given modules M1 and M2 which interact via a set of partially common actions
A, the process of constructing the system model begins by addressing parallel
composition. Although there are three types of parallel composition, one need
only consider the case of restricted parallel composition of modules M1|[A]|M2
when M1 and M2 interact via some elements of A. This is due to the fact
that since M1 ‖ M2 is equivalent to M1|[∅]|M2 and M1 ‖ M2 is equivalent to
M1|[A1 ∪ A2]|M2 where Ai is is the set of actions that appear in module Mi.
The commands of the system module M = M1|[A]|M2 are constructed according
to the following rules:

1. For each of the commands:

[] g → p1 : u1 + . . .+ pn : un of M1

[] g → p1 : u1 + . . .+ pn : un of M2

Add:
[] g → p1 : u1 + . . .+ pn : un to M
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2. For each a /∈ A and each of the commands:

[a] g → p1 : u1 + . . .+ pn : un of M1

[a] g → p1 : u1 + . . .+ pn : un of M2

Add:
[a] g → p1 : u1 + . . .+ pn : un to M

3. For each a ∈ A and commands:

[a] g → p1 : u1 + . . .+ pn : un of M1

[a] g′ → p′1 : u′1 + . . .+ p′n : u′n of M2

Add:

[a] g & g′ → p1 ∗ p′1 : u1&u′1+ . . .+ pn ∗ p′1 : un&u′1
+ p1 ∗ p′2 : u1&u′2+ . . .+ pn ∗ p′2 : un&u′2

...
+ p1 ∗ p′n : u1&u′n+ . . .+ pn ∗ p′n : un&u′n to M

With regard to action hiding, the commands of M = M ′/A are constructed
according to the following steps:

1. For each command:

[] g → p1 : u1 + . . .+ pn : un of M ′

Add:
[] g → p1 : u1 + . . .+ pn : un to M

2. For each a /∈ A and command:

[a] g → p1 : u1 + . . .+ pn : un of M ′

Add:
[a] g → p1 : u1 + . . .+ pn : un to M

3. For each a ∈ A and command:

[a] g → p1 : u1 + . . .+ pn : un of M ′

Add:
[] g → p1 : u1 + . . .+ pn : un to M

Action renaming for the commands ofM = M ′{a1 ← b1, ..., am ← bm} is handled
as follows:
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1. For each command:

[] g → p1 : u1 + . . .+ pn : un of M ′

Add:
[] g → p1 : u1 + . . .+ pn : un to M

2. For each a /∈ {a1, ..., am} and command:

[a] g → p1 : u1 + . . .+ pn : un of M ′

Add:
[a] g → p1 : u1 + . . .+ pn : un to M

3. For each 1 ≤ i ≤ m and command:

[ai] g → p1 : u1 + . . .+ pn : un of M ′

Add:
[bi] g → p1 : u1 + . . .+ pn : un to M

Having defined the contents of system module by means of the previous con-
struction rules, the system module semantics can be defined, given:

• C a multiset of commands generated by the rules above.
• V = v1, ..., vm is the set of variables, both local and global, that appear in

the system description.

The state space of the system, which is equivalent to an MDP, is constructed in
the following fashion. A state is a tuple (x1, ..., xm) where xi is a value for the
variable vi. The set of all states S is therefore the set of all possible valuations
of the variables in V that are permissible by the system.

The set of initial states can be specified in one of two ways: either by giving an
initial value for each variable, or by assigning a predicate over variables (using the
[init ... endinit] construct). In the former case, S̄ = s̄ where s̄ = (x̄1, ..., x̄m)
and x̄i is a the initial value of the variable vi (if the initial value of a variable is
left unspecified, it is taken to be the minimum value of the variable’s range). In
the latter case, S̄ is the subset of states S which satisfy the predicate specified
in the [init ... endinit] construct.

The semantics for a single command of the system module can now be defined.
From this point, any action-labels assigned to commands in C can be ignored;
these were required only for the process-algebraic system module construction
and can be safely discarded. Hence, each command c ∈ C takes the form:
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[] g → p1 : u1 + . . .+ pn : un

Since the guard g is a predicate over the variables in V and each state of
the system is a valuation of these variables, a command c’s guard g defines
a subset of the global state space S i.e. Sc = {s ∈ S|s |= g}. Each update
uj of c corresponds to a transition that the system can make when in a state
s ∈ Sc. The transition is defined by giving the new value of each variable as
an expression. Hence, one can think of uj as a function uj : Sc → S. If uj is
(v′1 = expr1) ∧ . . . ∧ (v′m = exprm), then for each state s ∈ Sc:

uj(s) = (expr1(s) . . . exprm(s))

Using the probability value pj associated with each update uj , the command c
defines, for each s ∈ Sc, a function µc,s : S → R ≥ 0 where for each t ∈ S:

µc,s(t)
def=

∑
1≤j≤n∧uj(s)=t

pj (4.1)

Note that, for MDPs, the syntactic constraints placed on the constants pj mean
that the function µc,s is actually a probability distribution over S. One can now
define the transition probability function itself, namely the function Steps of an
MDP (see Definition A.5). This function Steps : S → 2Dist(S) is such that for
any s ∈ S:

Steps(s) = {µc,s|c ∈ C ∧ s ∈ Sc} (4.2)

The construction of system module and Steps the transition probability function
allows for determination of the entire statespace of a set of PRISM modules in
the form of an MDP by iterative application of µ to initial state of the model.

The translation of BPDs to PRISM code, described in Section 5.4 allows for
each state in the resulting PRISM statespace to correspond to a configuration of
Core BPMN model. Each statespace state will have associated values of reward
structures and a probability of being visited that correspond to a given Core
BPMN model configuration, after execution of a specific trace, as defined in
Section 3.5. Hence, a Core BPMN model which has, for example, executed trace
< A,B,A > would be denoted in the PRISM statespace as a unique state which is
reachable through states in the PRISM state space that correspond to executing
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first A then B and then returning to state A. This point in the statespace
would have associated variables V which denote the reward values associated
with this specific path. In addition the probabilities of arriving in a sate s
though possible paths to s can be determined by evaluating Steps(s). In total
the PRISM statespace records all possible configurations a Core BPMN model
can attain when executed. Note that the statespace optimisation techniques
described in Section 4.3.1, which are implemented in PRISM may compact this
statespace in various ways but will preserve the representation of evolution of
qualitative and quantitative properties of the model with respect to a specific
query of a model.

A key consequence of this approach to statespace generation is that in the
semantics imposed by PRISM, concurrent elements of a business process do not
execute synchronously, instead these transitions are instead arbitrarily interleaved
in time (in the style of CSP [138] parallel composition). PRISM will generate
all possible interleavings, as dictated by message passing, of separate BPDs and
all possible interleavings within each BPD of all Core BPMN elements between
parallel fork and merge gateways. An illustration of this interleaving behaviour
for the concurrent part of the Core BPMN example process given in Section 3.4
is shown in Figure 4.6.

· · · [Fork] [Merge] · · ·
Review

Assess

Assess

Scan

Review

Review

Scan

Figure 4.6: Illustration of interleaving semantics imposed by the PRISM
model checker (extract of the state space of the parallel processes of the
example from Section 3.4).

Note how the possible paths from the [fork] gateway to the [merge] gateway
cover all possible allowed interleavings of assessing and then scanning a patient,
and examining the patient’s medical record. This maximal interleaving ensures
that all possible execution paths are explored, but does not capture so called
“true concurrency”. This semantic distinction is expressed by Baeten [38] by
means of the the total order assumption which requires, for the assumption to
hold that “all execution sequences of observable actions or events are totally
ordered by precedence”. This assumption is shown by Baeten to be well suited
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to cases when an execution sequence is totally ordered by time and a totally
ordered set, such as the non-negative real numbers is employed to model the time
domain. Furthermore, when business processes are managed by BPM software,
this multitasking, or multiprocessing, is enabled by a software or hardware
scheduler. In this type of scheduling the actual execution semantics of a business
process will have the total order assumption imposed upon their execution. This
assumption ensures all execution sequences that will be possible in practice are
present in a model generated by PRISM. Therefore verification of a system
under the total order assumption closely matches its actual real world behaviour
and verification of systems under the total order assumption provides a strong
guarantee of their safety properties.

However, it is this interleaving behaviour which leads to the requirement that,
when evaluating performance properties in the form of probability and reward
queries, only upper or lower bounds on the expected values can be determined.
Note that in a system where there is no non-determinism and only probabilistic
behaviour, no interleaving behaviour is present and the bounds will converge, as
this case, in essence, reduces to DTMC model checking [39].

In addition, PRISM imposes a semantics which does not explicitly allow deadlock
states and, on execution, any model that features states which deadlock will have
an additional self-loop added to the state. The analysis of models for deadlock
states is possible, however, as the process of adding self-loops to deadlocking states
also marks them as originally producing deadlocks. The semantic interpretation
imposed on Core BPMN by PRISM with regard to deadlocks allows other parts
of a BPMN model to continue to execute and is, in the case of BPMN, in line with
the extensive work of Wong and Gibbons [289] when encountering a deadlock
or end event. The same behaviour is modelled here, and this would seem to
align with real-world cases where a single deadlocking process would not lead to
other business processes halting their execution, as they are not aware of other
processes’ deadlock condition.

Based on the mechanism of process graph synchronisation described Section 3.2.1,
and developed as the denotational execution semantics of Core BPMN in Sec-
tion 3.5 the semantics imposed during analysis of a Core BPMN model are the
totality of possible traces of the model. Hence the analysis treats synchronization
as the direct incorporation of processes which communicate with each other as a
single larger model, for which a full statespace is determined.

For the purpose of the analysis of Core BPMN models, it will be shown in
Section 5.4 how these can be translated into PRISM models. Hence the execution
semantics of Core BPMN models, as stated in Section 3.1, are defined through
this translation. While imposing a semantics on Core BPMN in this fashion may
seem somewhat convoluted it is motivated by two considerations. Firstly, as
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established in Section 2.3.2.2, the semantics of BPMN are poorly defined and this
approach allows great freedom in assigning a semantic understanding of models
and then consequently exploring the totality of the resulting execution through
model checking. Secondly, Objective 2 is to allow analysis of business process
models, which is enabled by this approach as it allows the effective checking of
safety properties through exploring all possible executions.

It should be noted, that the model checking approach examines all possible
executions by expanding all possible resolutions of non-determinism, as such
during the analysis stage non-determinism is resolved using all possible adversaries
as described in Appendix A.6.

4.5.3 PRISM Property Queries

PRISM’s property specification language, as it relates to MDPs, subsumes the
logics LTL [39] and PCTL [131] (detailed in Appendix A.2) in the form of
PCTL* [46]. In fact, PRISM also supports numerous additional customisations
and extensions of this logic. When performing analysis of an MDP using PRISM,
a statespace for the model in question is generated, and PRISM’s property
specifications are then used to define a query about states or paths of interest
within the statespace.

The P operator, as it relates to PCTL checking of MDPs, is formally defined in
Definition A.8. Its implementation in PRISM comes in two variants Pmin = n and
Pmax = n which denote respectively determining the lower or upper bounds of a
probabilistic query, determined by the resolution of non-determinism of the MDP.
If n ∈ [0, 1] is explicitly defined, the result of model checking is to determine if
the property ψ is true or false, i.e. P : ψ → {true, false}. However, n may be
defined as ? in which case PRISM determines a probability, i.e. P : ψ → [0, 1].

One of the most fundamental tasks when specifying properties of a model is to
identify particular states or sets of states with the PRISM statespace to which a
path, and associated probability bounds and reward values, can be determined.
For example, to verify a property such as the business process eventually terminate
successfully with probability 1, it is first necessary to identify the states of the
model which correspond to situations where the business process has terminated
successfully. In terms of the way temporal logics are usually presented, these
correspond to atomic propositions defined for MDPs in Definition A.5. In PRISM,
this is achieved simply by declaring an expression in the PRISM query language
which evaluates to a Boolean value, here traditional Boolean operators may be
used to combine expressions. This expression will typically contain references to
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variables (and constants) from the model to which it relates. The set of states
corresponding to this expression is those for which it evaluates to true. A state
expression is said to be satisfied in those states where it equates to true.

A practical extension of the PCTL language supported by PRISM is the use
of labels. These are a way of identifying sets of states that are of particular
interest. Labels can only be used when specifying properties but, for conve-
nience, can be defined in model files as well as property files. For example
the expression label "failure" = temp>100&alarm=false would identify a set
of states where the Boolean expression temp>100&alarm=false equates to true,
and these are identified by means of the label failure. Likewise formula expres-
sions can be used as shorthand for the evaluation mathematical expressions, e.g.
formula num_tokens = q1+q2+q3+q+q5 will evaluate the sum q1+q2+q3+q+q5
at any point it used in a query expression.

When employing the P operator, the PRISM property specification language
allows for the definition of paths by means of the PCTL path properties (see
Appendix A.2) to define a path to an identified set of states. A path formula to
these states is satisfied when the statespace contains such a path. In terms of
MDPs, PRISM allows for the use of the following path operators:

• Xa The next operator is a unary operator that specifies for a path that a
given property a holds in the path’s next state.

• aUb The binary until operator specifies that, for a given path, in some
state of the path, the property b is true and in all preceding states the
property a is true.

• Fa The unary eventually operator specifies that, for a given path, a even-
tually becomes true at some point along the path.

• Ga The unary always operator specifies that, for a given path, a is true in
all states along the path.

PRISM also supports probabilistic model checking of the temporal logic LTL
(as it is subsumed within PCTL*). LTL provides a richer set of path properties
for use with the P operator by permitting temporal operators to be combined.
Further, PRISM state and path identification expressions can combined in
arithmetic expressions and by means of traditional propositional logic operators
(negation, conjunction and disjunction), to allow more complex measures than
standard PCTL* to be expressed.

The other main PRISM MDP property query operator is the R operator which
is defined in the same way as the P operator in Definition A.8, with respect to
resolving the non-determinism of MDP as a DTMC [282], and determining the
accumulated reward value in the same fashion as the probability of a specified
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path. Again, the implementation in PRISM comes in two variants Rname
min and

Rname
max which denote the determination of the lower or upper bounds, determined

by the resolution of non-determinism of the MDP for a specific reward structure
denoted by name. For a given path ψ the reward operator is a mapping Rn :
ψ → {true, false} when n ∈ [0,∞[ and if n is defined as ? the mapping is to
Rn : ψ → [0,∞]. Due to the probabilistic nature of an MDP, the R operator
determines the bound on the expected value of a random variable associated
with a particular reward structure.

When performing R operator based queries of an MDP derived from a business
process, PRISM allows determining reachability reward properties. These asso-
ciate a reward with each path of a model, and refer to the rewards accumulated
along a path until a certain point is reached. This point is defined in the same
fashion as for the P operator by means of identifying states and the paths to
these states.

Examples of PRISM properties queries, that, for example, could relate to a
medical robot, are:

• For example, a boolean variable Contaminated, which could either be a
simple variable or a more complex expression over other state variables,
could describe whether a dose of drug is contaminated. A query of the
lower bound on the probability that the dose is contaminated is expressed
as:

Pmin = ?[F Contaminated]
• Consider a system comprising two components, A and B, each of which can

be contaminated independently. That the upper bound on the probability
that component B is contaminated before component A is less than 0.1
can be expressed as:

Pmax = 0.1[(!ContaminatedA) U ContaminatedB ]

• Determining the upper bound on the probability that the system globally
does not enter states defined as contaminated can be expressed as:

Pmax = ?[(G ¬ContaminatedA]

• This example represents determining the upper bound of the mean-time
to having a dose of drug ready, identified as the states DoseReady, of a
system with a defined time reward structure as:

Rtime
max = ?[F DoseReady]

Note, that here properties are used to reason about a best- or worst- case
scenario, which is typical of the type of query commonly performed business
process models at the design phase.



116 Formal Methods

Because model checking is exhaustive and computes exact answers, query values
are usually generated PRISM for all states of a model which are explored as part
of evaluating a query. Therefore once one query is computed subsequent queries
which can be resolved by only querying a subspace of statespace can be rapidly
resolved by a simple lookup of the cached results.

4.6 Chapter Summary

This chapter provides a brief overview of the main informatics-based approaches
to the formal verification of systems. The choice of model checking for analysis
of business processes is justified based on: the lack of a need for a complete
specification (properties can be verified individually), the fully automated nature
of model checking, powerful design time verification features and its ability to
address systems of none-trivial complexity. An overview of the main idea of model
checking is given and a survey of the specific quantitative probabilistic model
checking tools are presented. The PRISM modelling and property specification
languages are described, followed by an analysis of the semantic impact of using
PRISM to perform verification of a model.
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Analysing Business Processes

“Computers are useless. They can only give you answers.”
(Pablo Picasso 1968)
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Overview

This chapter addresses Objectives 2a, 2b and 2c. An algorithm is developed
for the translation of process graphs into models amenable to model checking
by means of th Probabilistic Symbolic Model Checker (PRISM) model checker
and the algorithm’s termination and complexity bounds are accounted for. Pre-
and post- processing steps that enhance the precision of the analysis and which
allow for bounded rewards values are presented. These allow computation of
a broad range of verification and performance properties. The application of
the analysis is illustrated using the example introduced in Section 3.4, where a
range of properties is verified and provisioning of resources is demonstrated. A
natural extension of this verification approach is presented where scheduling is
made possible means of exhaustive analysis of possible sequencing of actions in
a business process.

The algorithm for conversion of Stochastic Core Business Process Model and
Notation (BPMN) models into PRISM code was first sketched in [11], with
a refined version appearing in [14], and an improved formulation being made
in [12].

5.1 Related work

By employing formal methods to determine quantitative and qualitative prop-
erties of BPMN models, this work draws a comparison with a number of other
BPMN analysis techniques outlined below. The selection of analyses discussed
is not exhaustive, but covers the main approaches which have been widely
referenced in the literature.

5.1.1 Functional Analyses

In terms of the analysis of functional qualitative properties a wide range of
approaches have been developed for BPMN. These are predominantly focused
on the analysis of a limited sets of functional properties, such as proving the
absence of deadlocks.

The work of Ouyang et al. [214], [215] is the closest match to the type of
translation approach taken in this chapter. Here, translation of BPMN models
is done directly into the web-services orientated Business Process Execution
Language (BPEL) [211] by means of an algorithm similar to what is presented
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in this thesis. However, the approach by Ouyang et al. is intended to support
simulation through execution of the BPEL services with all the limitations,
detailed in section 4.2, that a simulation approach entails.

Dijkmana et. al. [88] have employed a very similar method to translate BPMN
models into Petri-nets, specifically the workflow nets of Aalst [18], which is
common to most Petri-net based analysis approaches. Analysis of the generated
models is performed by means of the ProM [91] tool which is limited to deter-
mining unreachable states (i.e., there are no tasks present in a model which can
potentially be executed) and detecting deadlocks. Further, this approach only
allows for limited scaling with the authors able to tackle models of up 40 nodes.

The work of Wong and Gibbons [289], employs the Failures-Divergences Refine-
ment (FDR) [60] for the analysis of BPMN. An interpretation of semantics of
BPMN are expressed using the Z notation [267] which in turn is translated into
Communicating Sequential Processes (CSP) [138] to allow for analysis by means
of the FDR model checker. The entire translation is extremely rigorous and
includes treatment of the inclusive-OR join construct of BPMN where Wong and
Gibbons characterize the inclusive gateway as accepting tokens on some subset
of the incoming sequence and then generating tokens on some subset of the
outgoing sequence. The use of the FDR model checker imposes the restriction
that business processes can only be verified for Computation Tree Logic (CTL)
and Linear Temporal Logic (LTL) properties, while quantitative properties can
not be examined. This is because FDR is technically a refinement checker, in
that it converts two CSP process expressions into Labelled Transition Systems
(LTSs), and then determines whether one of the processes is a refinement of
the other within some specified semantic model. No support for rewards or
probabilistic behaviour is included. Extension of Wong and Gibbons’ approach to
support these two elements would require the use of different variant of CSP and
a different model checker tool, requiring a complete reworking of their approach.

Puhlmann and Weske [233] present the foundations of a tool for static analysis of
BPMN process models. This tool, developed as a collection of scripts, relies on
a mapping from a subset of BPMN to π-calculus. However, this mapping only
covers a small subset of BPMN. Puhlmann and Weske proceed to show that the
π-calculus expressions produced by their tool can be used to check the soundness
of BPMN models using existing reasoning tools based on the π-calculus, in
particular they employ the Mobility Workbench [279], for deciding weak open
bisimulation equivalence on π-calculus processes. However experiments, by the
authors, show that this approach does not scale beyond relatively small BPMN
models of less than 10 nodes [88].
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The work of Awad et. al. [36] takes an approach to the verification where a
subset of CTL properties of business processes are analysed using the Petri-net
model-checker LoLA [260]. This analysis is achieved by converting BPMN models
into Petri-nets by means of the previously mentioned method of Dijkmana et.
al. [88], fundamentally relying on the workflow-net variant of Petri-nets. A novel
inclusion is the development of a visual specification language BPMN-Q for
the definition of CTL properties of interest. Unfortunately this visual language
restricts the possible CTL properties which be expressed limiting analysis to a
subset of CTL, with the choice of constructs motivated by a survey by Dwyer et.
al. [93] of commonly used patterns. However, a key advantage of this work is
that, by means of so called anti-patterns, counterexamples generated by model
checking can be employed to provide a complete determination of all points
in a model which violate a property of interest and these anti-patterns can be
mapped back to the source BPMN model to determine to source or sources of
a violation. Finally, it is not clear to what extent the Petri-net model-checker
LoLa, while featuring symmetry reduction and partial order reduced by means
of stubborn sets, is able to scale to handle large models. Work on the scaling
of this approach by Awad et. al. [33] is focused on analysing models of roughly
equivalent size, drawn from a repository of multiple separate models, where
only subgraphs of models are analysed, which clearly provides a speed up when
determining BPMN-Q queries, however in this case mapping results to source
BPMN models is not possible. Later work done by Awad with Sakr [35] focuses
on the scaling of the BPMN-Q approach when dealing with repositories and not
with models of increasing size. Further, stochastic and quantitative extensions
are not considered by Awad.

Ly et. al. [179] present another approach to the analysis of BPMN models.
Their SeaFlows framework provides a trace-based analysis of business process
models for static compliance validation. The set of verification properties which
can be determined are restricted to a subset of what can be described using
LTL. In earlier work by Ly et al. [180] a visual specification language known
as Compliance Rule Graphs is defined, simplifying the specification of these
properties. Stochastic and quantitative extensions would not seem to possible to
incorporate in this approach.

5.1.2 Non-Functional Analyses

A number of different approaches have been developed to analyse non-functional
properties of BPMN models. In particular there has been a focus on determining
timing properties of BPMN models. General quantitative analysis has only been
identified as being explored by Prandi et. al. [230].
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Later work by Wong and Gibbons [290] complements their previous work by
developing a CSP based semantics for BPMN. By employing an extension of
CSP which accounts for processes responsiveness, and an analysis technique that
addresses the of timing of processes in such a fashion that their previous FDR
based analysis is still possible. This impressive work allows for extensive analysis
of BPMN models, but still does not cover arbitrary quantitative properties or
stochastic behaviour.

Work by Ling and Schmidt in 2000 [177] present a time interval extension of
the workflow nets of van der Aalst [28] in terms of timed Petri-nets. Their
extension introduces a notion of safety in time which is analogous to the notion
of boundedness in Petri nets [220], using this notion they basically preserve the
original soundness theorems of workflows and the liveness theorems of Petri nets
in their timed workflow nets. However, their work only provides for placing
bounds on the total execution time for a processes and do not allow for analysis
of time intervals on a per state basic. Further, treatment of other quantitative
properties associated with a business process are only dealt with to a limited
degree and due to need to consider completion run times, and may not readily
extendible to other quantitative properties of interest.

Additionally Van der Aalst et al. [25] have developed another process execution
time prediction method based on process mining. This is done by examining
event logs from runs of an existing process to make predictions about the
completion time for future runs of the process. This approach could likely be
extended to examine other quantitative properties provided log data exists for
these properties. However, while this approach has tool support and has been
applied to real-life event logs, it does not provide predictive information about
expected behaviour of new processes at design time.

Work that combines both timing properties and stochastic behaviour, although
aimed strictly at predicting remaining process time, is presented by Rogge-Solti
and Weske [247]. They developed a method, using a simulation approach, as
opposed to analytical analysis, based on a stochastic Petri-net formalism built
upon workflow-nets, that allows for the time taken to perform a task to be given
by an arbitrary stochastic distribution. Analysis of these processes is handled
by means of Monte Carlo simulation techniques. Their work is focused on the
case when a process has already been implemented and data exists describing
the execution time of previous executions of a task. Given this an improved
prediction is then made for future execution time of this task.

Netjes et. al. have developed an approach [198] to determining the effect of
various allocation strategies for resources associated with BPMN processes, based
on a simulation approach. In this work each resource is assigned either to a single
role or are classed as generic and can be employed by task that requires resources.
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Here analysis is performed by means of the simulation in CPN tools [29] to
examine whether priority based allocation or random allocation makes optimal
use of the resources in question. However, the extension of models with resources
is a manual process with manual model modifications required to imposed their
depletion semantics, further the results are obtained by simulation as opposed
to analytic analysis.

While not directly working with PRISM, Hajo Reijers [244] in his PhD thesis
presents two analytical methods for performance evaluation of workflow nets.
Here a stochastic variant of workflow nets is studied in which processes have
access to an infinite amount of associated resources. Both performance evaluation
methods allow for computing throughput time bounds for a general class of
workflow nets. Further work focuses on the proper allocation of resources to
minimize the throughput time of the workflow. While extensive, this work lacks
the development of an end-to-end framework to practical PRISM analysis and
the range of quantitative properties which can be studied is limited to throughput
time and the effect of specific resource allocation strategies.

5.1.3 Stochastic Analyses

Analysis of BPMN models extended with stochastic properties has seen limited
development with only two approaches identified as dealing with general models
which exhibit both probabilistic and non-deterministic transitions.

Prandi et. al. [230] have identified PRISM as ideally suited to the analysis of
stochastic PRISM business processes. This effort involves conversion of PRISM
models into a model expressed in the Calculus for Orchestration of Web Services
(COWS) [232], which in turn is converted into a model that can be analysed
using PRISM [170]. This approach adds unnecessary complexity in that it is
possible to convert the notation of BPMN directly into the BPMN modelling
language, and then allow PRISM to impose a semantic interpretation (as detailed
in section 4.5.2) without the additional semantic restrictions of going via COWS.
Further, the translations PRISM to COWS and in particular from COWS to
PRISM is loosely defined and, in the form described by the authors, not amenable
to algorithmic translation. This approach, however, does allow the use of rewards.
Consequently, the PRISM model checker is potentially able to perform analysis
of both quantitative and stochastic properties of a business process. However,
details of how such properties will be included in the original BPMN models is
not described.
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Braghetto et al. [57], [58] provide a mapping from a BPMN Process diagram
to a Stochastic Automata Network (SAN), a compositionally built stochastic
model. Here probabilities are associated with all exclusive gateways in a fashion
similar to Definition 3.6. Furthermore, SAN models, once produced, can be
further annotated with rewards although this is a manual process. The main
contribution of this work is an algorithm that converts BPMN diagrams to
SAN models in the Performance Evaluation of Parallel Programs (PEPS) model
checker format. The model checker PEPS [59] is employed to provide numerical
evaluation of processes’ performance. However, the PEPS tool seems to have
seen limited development and does not yet support many techniques reducing
the statespaces of SAN models being analysed. Hence the size of models which
can be tackled by the tool in a practical setting are limited in size.

In particular, in the area of stochastic business processes and their analysis, only
limited results have been achieved. However, addressing stochastic behaviour is
essential if business processes are to model real-world behaviour. The analysis
approach developed here exploit the tight coupling between the modelling for-
malism developed in Chapter 3 and the analysis framework developed in this
chapter. This is achieved through the structure of Markov Decision Processes
(MDPs) which enable an effective representation of stochastic systems combined
with nondeterminism.

5.2 Analysis Design

The framework for the analysis of business processes presented in this thesis
makes use of the formalised models of business processes defined in Chapter 3.
The central goal of this chapter is to present a method to make them amenable to
mathematical analysis by means of the PRISM model checker tool as motivated
in Chapter 4.

The overall design of the analysis framework developed is shown in Figure 5.1.
In line with Objective 2 the goal is to develop an automated approach that is
readily usable to business practitioners. Specific details of this architecture are
presented in the following sections.

The only inputs required are the specification of a Core BPMN model anno-
tated with probabilities and reward structures where required, and one or more
Probabilistic Computation Tree Logic (PCTL) queries (each highlighted in grey).
Other than the limited inputs required of a business practitioner, the key strength
is the ability of parallelize the model checking of variants of a Core BPMN model.
While in the case of checking a single PCTL property only one instance of PRISM
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Figure 5.1: The overall approach taken to automated analysis of business
process modelled in Core BPMN models

is employed, when determining the properties of model for a range of possible
resource bounds or when exploring modified Core BPMN models as in the case
of the optimisation approach presented in Chapter 8.

The use of PRISM as the underlying model checker allows for highly efficient
statespace generation and exploration for Core BPMN models that are of a size
typical business for common business process models. Each PRISM execution
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allows the efficient exploration of the entire state space of a model and enables
the calculation of exact probabilities and reward values of properties of a business
process, as opposed to the approximate techniques that are typically used by
business simulation frameworks.

Here, the application of model checking methods to business processes allows for
establishing the certainty that a process exhibits, or does not exhibit, certain
properties, such as that it is deadlock free, in line with Objective 2a. Further,
the ability to query arbitrary quantitative properties, in line with Objective
2b allows one to perform provisioning where the effects of allocating specific
quantities of resources to a process can be explored. In all cases queries of the
model can account for their stochastic behaviour and determine probabilities in
line with Objective 2c.

An implementation of this framework is described in Chapter 9 and an evaluation
of its performance on a range of model sizes is detailed in Section 9.3.2.

The mapping of stochastic Core BPMN models to the input format used by the
PRISM model tool to describe MDPs fundamentally deals with a translation of
a graph based language into a block-structured language used by the PRISM
model, in a fashion inspired by the the approach of Ouyang et al. [214], [215].
As such this approach can be adapted to other fundamentally graph based
approaches such as Unified Modelling Language (UML) statecharts. In these
cases the formalism of process graphs provides the basis upon which a mapping to
a stochastic variant of the graph based language can be built and then formalised
by means of structural semantic rules, in a style similar to what is done for BPMN
in Chapter 3. Common to all of these graph based to block based approaches is
addressing parallelism which is the central source of complexity in this approach
to mapping models to a format amenable to model checking by PRISM.

5.3 Pre- and Post- Processing

When performing analysis of a model, a number of pre-processing steps are
performed to make effective use of bounded rewards, and to ensure that bounds
on resource limits lead to a state which captures exhaustion of the resource they
model. These pre-processing steps transform a given Core BPMN model into the
same model type and the output of pre-processing is still a Core BPMN model.
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Further, a combination of Pre- and Post- processing allows for adjusting the size
of bins used to express transition rewards modelled as samples from probability
distribution using the method of Shimazaki and Shinomoto [262] described in
Section 3.2.3.

When implementing this analysis framework, preprocessing is also the point at
which to check compliance of a Core BPMN model with the structural semantics
described in Section 3.3.2.

5.3.1 Bounded Rewards

Section 3.2.3 introduced the notion of bounded rewards. Recall that rewards
are defined for nodes in Definition 3.7 as monotonically increasing structures.
Hence, when adding an upper bound to a node reward annotation, the definitions
ensure that as a business process is executed, a bounded reward structure will
eventually reach its bound. In the preprocessing of bounded rewards, states are
added to the source model which capture a reward being exhausted.

At the state (node) ni at which the reward is incremented and the bound
declared, a transition is added to the point of exhaustion of the given reward
structure. Control flow at this point is described using PRISM action guards
which ensure that normal system execution takes place when the bound is not
met. A transition to the deadlocking reward exhaustion state is taken in the
case when a reward meets or exceeds a bound. This process is illustrated in
Figure 5.2.

· · · · · ·Log used drug
[1 Drug:10]

Drugs
Exhausted

State i−1 State i+1State i

State n+ 1

state=1 & drugs≥u

state=i & drugs<u

Figure 5.2: Reward exhaustion illustration drawn from the example in
Section 3.4.
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In Figure 5.2, it is assumed that all states of a source model have been enumerated
and n states have been found. An additional n+ 1 exhaustion state (recording
that drugs have been exhausted in Figure 5.2) is added to the model. When
translating a model into the PRISM modelling language, a new PRISM variable
vi which ranges from zero to the bound u is added to the module. For example,
drugs in the illustration in Figure 5.2. Transitions from state ni are defined
using the following function:

Definition 5.1 (Reward Exhaustion State Injection Function)
For a node n ∈ N in a process graph and a reward bound u ∈ R≥0 the partial
function W : N × R≥0 → (N ×N) adds a reward-exhaustion transition to a
progress graph as follows:

W(n, u) =
{
niFni+1 with guard state =i& reward <u
niFnn+1 with guard state =i& reward >=u (5.1)

When the pre-processed BPMN model is converted into the PRISM modelling
language the added guards are copied verbatim into the resulting PRISM code.

Many business processes make use of various limited resources such as stock
levels, or time. The accurate provisioning of these resources, in the form of
quantitative service analysis, can increase their safe and efficient execution. It
is frequently desirable to perform provisioning; where a model is analysed for
a range of bound values to determine an appropriate amount of a resource to
allocate to a business process so that it will operate within specific bounds. This
type of analysis is achieved in the framework at this preprocessing stage. When
a defined reward bound is encountered in the process of generating PRISM code,
separate models are generated for the range of values between 0 and the bound
u for the given reward. Here it is convenient to define a step size of different
reward bounds to test in the range 0 to u.

In terms of the analysis, the generation of a range of models for real world
examples can be large. However, the structure of the statespace enjoys a large
degree of symmetry, and symmetry reduction optimisations [167] implemented
in PRISM allow for a significant reduction in the complexity of each individual
model. An example of the generated state space for the BPMN example from
Section 3.4 is given in Figure 5.3.

In post-processing, the results for separate model checking runs of queries of
interest with different bound sizes are gathered together. It can be convenient
to impose a time bound on individual model checking runs and terminate those
that are taking too long, and then interpolate between obtained data points.
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Figure 5.3: Statespace for the example from Section 3.4 with drug stock
limited to 5, the triangles indicate states in which the patient is sent
home (367 states, 796 transitions).

Although these interpolated values may not capture the actual behaviour of the
system and in an implementation should be flagged as approximate values. This
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approach to implementation has utility as the benefits in terms of computation
speed can be useful when a quick estimate of the behaviour of a system is required.
A more comprehensive analysis with a larger, or entirely omitted bound, can
then be performed once a final complete analysis is required.

In the case when the PCTL query analyses a property which is not affected by
the reward bound, or where a model is defined in such a fashion that no possible
execution path exists in which the bounded reward is incremented, checking a
model for a range of reward bounds will produce the same answer to the PCTL
query for the full range of values. In the case of exploring probabilities, a query
with a fixed probability, or, a query over a unbounded reward structure, a fixed
value (including possibly ∞), will be returned for all reward bounds explored,
e.g. querying how long it takes to exhaust a supply of drugs which is never used
will return ∞ for all possible sizes of a drug store.

The performance of checking bounded rewards is explored in Section 9.3.1.

5.3.2 Transition Rewards Sampled from a Distribution

Section 3.2.3 introduced the notion that transition rewards can be used to
capture samples from a probability distribution. When performing analysis of
such structures it can be beneficial to discretize the distribution’s probability
density function by employing the technique of Shimazaki and Shinomoto [262]
for choosing an optimal bin sizes for taking a chosen number n of samples that
correspond to intervals from the space of possible reward values, i.e. pn =
Pr[an < X < bn] where an and bn are the bounds of the interval n. For example,
if the reward structure models the time between two steps in a process and is
normally distributed, a number of samples can be constructed which correspond
to some fraction of the distribution’s standard deviation.

For a fixed convergence value of PRISM’s PCTL checking algorithms, it can be
useful to refine the number of samples made from a distribution so as to improve
the accuracy of the results obtained. Here, a fixed number of samples are made,
and the values of queries of interest are then calculated. A second run is then
performed for an increased number of samples from a distribution. If the result
changes beyond a chosen parameter δ, this new model is used as the basis for the
next iteration of model checking until increasing the number of samples taken
does not produce a change greater than δ of the result of a query. The ability in
the design of the analysis to perform multiple model checking runs allows the
number of samples taken from each distribution to be explored in an efficient
manner.
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5.4 Translation to PRISM Models

The central idea of the translation algorithm is to identify sub-processes of the
source BPMN model, and then map these to modules of PRISM code so that the
encoding is compositional and will not impose further semantic interpretation
on a model than was originally defined. This mapping, which focuses on the
control flow structure of the model, involves the challenge of mapping a graph
based language to a block based language. In the case when BPEL is the target
language, a technique has been developed by Ouyang et. al. [214], [215]. The
overall approach of their work forms the basis for the developments presented
here.

For reasons of simplicity, only the translation of a single pool of a BPMN model
is considered here. Further pools can be translated by running the algorithm
again for any additional pools, although with a new set of module and variable
names for each iteration.

Translation is performed by means of two algorithms. The translation starts by
employing Algorithm 1 to build lists of pairs of linked nodes in the source model
at each level of nested parallel fork gateways. These pairs are stored in an array
MAP [d] which records which pairs of nodes are present at each level of fork
gateway depth d of the BPD pool. The corresponding fork and merge gateways
present at a given level are also present in both the level above and below the
fork depth, where in the containing level a fork gateway is linked directly to a
merge gateway.

Algorithm 1 takes as input a Core BPMN and only operates on the nodes of
the source model and not on its implied state space. Algorithm 1 proceeds as
follows: in lines 1 and 2, a counter d which records the current nesting depth is
initialised to zero (the starting nesting depth) and the start event is pushed to a
stack STATES of nodes to be processed. Lines 3 to 15 are a while loop during
which the nodes of a BPMN model are added to the array MAP[d]. Specifically,
a state n is popped off the stack (line 4) and added to a set V ISITED of visited
state (line 5). In line 6 the state to process is checked to see if it is a task,
start event, decision gateway or parallel join gateway. In the case when n is one
of these nodes, all nodes m in the set of successor nodes out(n) (where out is
as defined in Definition 3.3) are added as pairs (n,m) to the array of nodes in
MAP[d] at the current nesting depth d (line 8). Each m which is not already in
the set V ISITED is added to the V ISITED set (line 9) and these nodes (m)
are pushed onto the stack STATES of states to be explored (line 10). Next, in
line 11, a new stack of nodes SUBPROCESS is initialised. Then if node n is
a parallel forking gateway and not already in V ISITED (line 12) then a depth
first search is performed to find the matching parallel join gateway g to n (line
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Algorithm 1: Branch depth state grouping
Input: A well-formed BPD = (N,F ,P, pool,L, lab)
Output: MAP [d]

1 d← 0
2 STATES.push(es)
3 while STATES 6= ∅ do
4 n← STATES.pop()
5 VISITED← n
6 if (n ∈ T ∪ES ∪GD ∪GJ) then
7 forall the m ∈ out(n) do
8 MAP[d]← MAP[d] ∪ (n,m)
9 if (m /∈ VISITED) then

10 STATES.push(m)

11 SUBPROCESS← ∅
12 if (n ∈ GF ∧ n /∈ VISITED then
13 Depth first search for n’s matching g ∈ GJ
14 MAP[d]← MAP[d] ∪ (n, g)
15 SUBPROCESS← path(n, g)

16 if SUBPROCESS 6= ∅ then
17 d← d+ 1
18 STATES← SUBPROCESS
19 Goto line 3

13). Following this in line 14 the pair (n, g) is added to MAP[d] and in line 15 the
nodes in the path(n, g) (see Definition 3.11) are added to the SUBPROCESS
stack. If the SUBPROCESS stack is not empty then the depth counter is
incremented and (line 17) the SUBPROCESS stack replaces the STATES
stack (line 18)and in line 19 execution jumps to 3.

Algorithm 1 has an upper complexity bound of O(n2), where n is the number
of nodes in the source BPMN model. This upper bound corresponds to the
pathological case when a BPMN model consists of nothing but nested forking
gateways, within the limitations of the structural soundness conditions given.

With MAP [d] defined, the actual translation of a Core BPMN BPD to one, or
more, PRISM modules described in the PRISM modelling language is performed
by Algorithm 2.
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Algorithm 2: PRISM Module mapping
Input: MAP [] an array of sets of pairs of nodes at level of branching depth
Output: PRISM Module(s)

1 for (d← 0, MAP.length(), d++) do
2 Emit( module M_d )
3 forall the (x, y) ∈MAP [d] do
4 N ←< x, y|x /∈ N ∨ y /∈ N >

5 Emit( S_ d :[0.. N.length() ] init 0 )
6 l← 0
7 forall the (x, y) ∈MAP [d] do
8 if x ∈ T ∪ES ∪EE then
9 Emit( [ ]: s_d=N.pos(x)→1:S_d=N.pos(y) )

10 if x ∈ GD then
11 i← 0
12 forall the (z ∈ xSz) and (l∈ lab(z)) do
13 up_i ← P(((x, z), l) :S_d=N.pos(z)
14 i← i+ 1
15 forall the (l∈ lab(z)) do
16 Emit( [l]: S_d=N.pos(x)→ )
17 for (j, i, j++) do
18 Emit( +up_j )

19 if x ∈ GF then
20 Emit( [ll ]:S_d=N.pos(x)→1:S_d=N.pos(y) )
21 l← l + 1

22 Emit( endmodule )

Algorithm 2 takes as input theMAP [d] the array of pairs of nodes that are present
at each level of fork gateway depth d and outputs module blocks. Algorithm 2
loops through the elements of MAP [d] by depth d. Each iteration of the loop
emits a PRISM module and in line 2 the module header is output, denoted here
by an “Emit” command. Next, in lines 3 and 4 an ordered list N of the elements
of MAP [d] for the current loop iteration’s value of d. Line 5 emits a PRISM
state variable which ranges from 0 to the size of list N . In line 6 a label counter
is initialised to 0. Lines 7 to 20 are a loop through pairs of nodes (x, y) from
MAP [d] and emit appropriate PRISM language commands for each type of node.
If the first node x, in the pair (x, y), is a task, start- or end- node (line 8) then,
in line 9, a PRISM a command is emitted which captures the transition of state
variable sd, with probability 1, from the position of x in N to the position of y
in N . If node x is decision gateway (line 10), a counter i is initialised to 0 then,
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in line 13, all of the labelled transitions from x to nodes z produce updates to
states z with a transition probability dictated by the function P (Definition 3.14).
In lines 15 to 18 the separate update commands for a decision gateway are
combined into a single command. By construction of the first element of pairs
in MAP [d] are never merging gateways, so the final case of a parallel forking
gateway is dealt with in line 19. In this case when x is a parallel forking gateway
the node y, in the pair (x, y), with be the corresponding merge gateway at the
same nesting depth as the original fork. In line 20 a PRISM command is emitted
which is guarded by a new label ll encoding a transition to the corresponding
merge gateway y, following this, in line 21, the label counter is incremented.
Finally, in line 22 the end of PRISM module is declared.

Algorithm 2 simply loops through elements of MAP [] and hence has upper a
complexity bound of O(n), where n is the number of pairs in MAP [].

The combined effect of Algorithm 1 and Algorithm 2 is to traverse a Business
Process Diagram (BPD) and output PRISM code, arranged within module blocks,
for each BPD component that is encountered. Basic components (start, end,
tasks) are dealt with by outputting a transition to the unique next state. Decision
gateways employ the associated probabilities to define multiple transitions to
new states. The more complex case of parallel branch gateways makes use of
recursion, the main module will describe a transition from the branch point
to the merge point with guards placed on this transition that the generated
sub-processes describing the parallel section must have completed. Then the
same Algorithm 2 is applied to the sub-processes with guards generated so that
they can only start when the main module has reached the branch point. Finally,
the sub-processes are reset for a possible second iteration by requiring of the
merge gateway state, by means of guarded commands, that all sub-processes have
returned to their start state. Producing an interleaving semantics for concurrent
processes is described in Section 4.5.2.

This synchronisation between modules is fundamentally accounted for by gener-
ating appropriately named PRISM actions that enforce synchronisation between
modules. An illustration of this process for a simple pair of parallel fork and
merge gateways is shown in Figure 5.4(a), and the resulting three guarded
PRISM modules are shown in Figure 5.4(b). It should be noted that while
this synchronisation between sub modules is performed by means of PRISM
action labels, these are ultimately converted, due to the semantics imposed
by PRISM (See Section 4.5.2), into additional system module variables which
impose synchronisation be means of dedicated state variables.
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· · · · · ·A1
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(a) Parallel BPMN Process
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Guard1 = true (Guard2 && Guard3)?

Guard1? Guard2 = true

Guard1? Guard3 = true

(b) PRISM Modules

Figure 5.4: Algorithm 2’s approach to handling parallelism in a Core BPMN
model. Tasks B1,B2,C1,C2 will be executed after A1 in all possible
interleavings and then followed by the execution of A2.

Message passing between pools is addressed in a similar fashion to dealing with
sequence flows in a single pool. Message passing between models is addressed
once each pool has been translated. Appropriate synchronising PRISM ac-
tions between them are generated in the fashion shown in Figure 5.4(a) and
Figure 5.4(b) by means of appropriate PRISM synchronising actions.

In a practical implementation of Algorithm 1 and Algorithm 2 it is beneficial,
in terms of analysis, to include the names of tasks and pools in the resulting
PRISM code. Here it should be noted that labels are chosen so as not to conflict
with previously used labels.

The treatment of rewards has been omitted from Algorithm 2. The treatment
of rewards is addressed by simply mapping each reward structure to a PRISM
reward module with the rewards identified by a state for node rewards and by a
synchronisation action for flow rewards in line with Definitions 3.7 and 3.8.
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5.5 Analysis Example

To illustrate the application of the developments presented in this chapter,
consider the example from Section 3.4 of a doctor treating a patient by means
of drugs. Despite the example being conceptually simple, the resulting state
space, shown in Figure 5.5, exhibits greater complexity with 79 states and
172 transitions. Even in this simple example, the number of possible specific
situations in the business process that can arise, corresponding to individual
states in the state space, is non-trivial.

Nevertheless, the analysis described in this chapter can be employed to verify a
range of key properties of this business process. A simple qualitative property of
the example would be to verify that the a patient is eventually sent home. This
is captured in queries eqs. (5.2) and (5.3) using explicitly quantified queries over
the P operator:

Pmax≥ 1.0[F SendHome] = true (5.2)
Pmin≥ 1.0[F SendHome] = false (5.3)

A flaw in the design of this business process is revealed by query eq. (5.3)
returning a bound on the probability is not greater than or equal to 1. Hence
it is possible that after a patient receives the first dose of drug, the treatment
is not effective and the patient requires a second dose. However, in this case it
is possible that meanwhile the pharmacist has made a non-deterministic leave
decision and is not available to prepare the second dose. Consequently the
patient will not receive their, required, second dose. Note, how this statespace
can be matched to the trace semantics given for Core BPMN models, although
a number of intermediate states are added by the translation to PRISM the flaw
is preserved in the statespace of PRISM model. This fault can be corrected if
the pharmacist process is restricted so that he may not leave the hospital unless
a patient has been successfully treated, and the probability that a patient will
eventually be sent home will then have an upper and lower bound of 1.

While this example is of a modest size, it demonstrates the ability of a model
checking based framework to determine key properties of stochastic business
processes. The use of PCTL to express properties of interest allows for a rich logic
in which business process can be analysed for both by qualitative and quantitative
properties in line with Objectives 2a, 2b and 2c. A practical implementation
and the scalability of this approach will be examined in chapter 9.
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Figure 5.5: PRISM generated statespace for the example from Section 3.4 with
an unbound drug supply (79 states, 172 transitions).

For the rest of this example a version where this fault has been corrected is
considered. Correction can be performed by disallowing leave decision, for
example by setting its associated probability to 0.
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A common quantitative property that would be of interest to the designer of
such a process would be the mean time to complete treating a patient. For the
corrected process, this can be formulated using the R operator to determine
the lower and upper bounds, under resolution of non-determinism, in queries
eqs. (5.4) and (5.5):

Rtime
min = ?[F Done] = 44.99989 min (5.4)

Rtime
max = ?[F Done] = 54.99989 min (5.5)

Note in the results produced by queries in eqs. (5.4) and (5.5) are given to 5
significant digits, the precision of these results flows directly from the original
model (presented in Section 3.4) and highlight a key strength of model checking
in that the entire statespace is examined and hence exact results produced are
able to be produced. Although as with all model based techniques the accuracy
of the original model dictates the quality of results obtained.

The analysis methods presented in this chapter can be employed in a more
sophisticated fashion to help determine the provision of resources consumed as
part of executing a business process when the process is designed. In the example
key factors in ensuring safety would be the determination of the amount of drug
to stock and the minimum time before its exhaustion. Thus there would be a
low probability of it being exhausted during the patient’s treatment. Formally,
these properties can be expressed using the following queries for, respectively,
the probabilities queried by eqs. (5.6) and (5.7) and minimum time needed to
reach this state queried by eq. (5.8):

Pmax = ?[F NoDrug] (5.6)
Pmin = ?[F NoDrug] (5.7)
Rmin = ?[F NoDrug] (5.8)

This can be calculated by making use of the ability of the analysis framework
to generate a range of models for a bounded reward. In this case, the rewards
modelling the size of the drug stock in the model are bound to a fixed limit l,
and then calculating the values of queries in eqs. (5.6) and (5.7) for a range of
model variants with values of l from 0 (no store of drug) to 10 units of drug.
The results are shown in Figure 5.6.
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Figure 5.6: The upper and lower bounds on the probability of exhausting drug
stock and minimum time taken to do so for the example from Section 3.4
for a range of drug stores from 0 to 10.

Figure 5.6 presents an analysis of the effect of allocating various amounts of
resources to a business process and provides an assessment of both the probability
bounds that a given resource level will lead to resource exhaustion, but also the
non-functional property of the expected amount of time taken to reach such
states. In various jurisdictions, this type of provisioning analysis is frequently
part of regulatory requirements for the introduction of new medical technologies
and the ability to perform this in an exact and automated fashion has been of
considerable value to the project’s industrial partner.

5.6 Chapter Summary

This chapter presents the chosen method for analysis of business processes. The
PRISM modelling and property specification languages are described and an
algorithmic translation is presented for the conversion of Core BPMN models of
business processes into the PRISM modelling language.
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By adding bounds to reward structures it is shown how provision of limited
resources can be performed, along with verification of both functional and non-
functional properties of business processes. An example is given of this analysis
and the nature of the statespaces involved in this analysis are discussed.

Building upon the model checking approach to the analysis of business processes,
this chapter presents a method to determine an optimal schedule (defined as
a choice of actions to be performed in a business process so as to optimise
properties of interest) for the execution of a business process. The schedule
is created by means of the generation of adversaries which resolve points of
non-determinism in a business process such that specific PCTL queries obtain
their minimum or maximum value. As such the schedule generated can optimise
reward values while observing constraints which encode any required execution
properties.
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Chapter 6

Schedule Generation

“The only reason for time is so that everything doesn’t happen at
once” (Albert Einstein)
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Overview

This chapter demonstrates how the analysis can be used to synthesise a schedule
for the execution of a business process, subject to both functional and non-
functional requirements, which addresses Objective 3a.

The analysis technique to resolve scheduling problems were first presented in
[12]. Aspects of this work were also presented in [3], [8], [16].

6.1 Schedule Generation

When designing business processes there is a need to combine the verification
of safety properties with a specific performance profile. To achieve these goals,
business processes often require sophisticated execution schedules especially when
the system involves stochastic elements. Being able to synthesize a schedule
for the optimal execution of such systems early in their design phase allows
for accurate determination of how the system will be employed, in the form of
the sequence of actions performed at points of non-determinism in the business
process. This holds the potential for the early identification and exclusion of
inefficient designs, and suggests which patterns of execution are most likely
and should be focus of testing later in the business processes development. A
direct application of the analysis technique presented in this chapter is the
determination of such schedules, in line with the requirement of Objective 3a.

In a business context, a schedule is defined by Kotter [161] as: “A decision-
making function that plays an important role in most manufacturing and service
industries and often allows an organization to operate with a minimum of re-
sources. Scheduling is applied in procurement and production, in transportation
and distribution, and in information processing and communication. In manufac-
turing, the scheduling function coordinates the flow of parts and products through
the system, and balances the workload on machines and personnel, departments,
and the entire plant.”

Within this thesis a schedule will be defined as the sequence of actions to be
taken from an initial state in the system to obtain the optimum of one or more
quantitative properties associated with a model.

Model checkers have been used extensively to solve scheduling problems where
the basic common idea is to reformulate the static scheduling problem as a
reachability problem that can be subjected to model checking. A classic example
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of this approach is that of Ruys [256] who presents a method for determining
optimal schedules using the SPIN model checker [140]. Here costs are associated
with each step in the model and Linear Temporal Logic (LTL) formulas are used
to express possible paths through the model. A branch and bound approach [172]
is then employed to eliminate paths which exceed an already determined optimal
solution or which feature an invalid (deadlocking) solution. This approach is
effective in rapidly converging on an optimal schedule and can be extended to
account for costs, such as in the work of Behrmann et. al. [44] where priced
timed automata are analysed using the the UPPAAL model checker [43] to allow
for optimal scheduling over a number of monotonically increasing quantities
associated with a model.

While the traditional approach to employing model checking to solve scheduling
problems is mostly concerned with resolving all points of nondeterminism so as
to minimise or maximise one or more values of interest. However, the addition
of stochastic behaviour in a system of interest significantly complicates the
application of many traditional scheduling approaches. In this case a schedule is
potentially associated with many different executions, which must be all taken
into account in order when determining the effect of a specific sequence of actions
on the overall goal. Conceptually similar to the approach taken here is the work
of Giunchiglia and Traverso [115], where planning problems are seen as including
non-determinism not under the control of a planner, and a similar approach to
model checking business processes is developed here.

Within the analysis framework presented here, schedule generation is simply
another automatic analysis that can be performed once a business process
has been modelled. The approach taken to schedule generation is shown in
Figure 6.1, where the only additional information needed to generate a strategy
for a business process is a scheduling goal and a set of schedulable actions. The
result of schedule generation is a Discrete-time Markov Chain (DTMC) which
encodes the specific sequence of actions required to best approach the scheduling
goal. This DTMC is labelled so as to record the sequence of actions that a
schedule encodes and this can be mapped back to the original Core Business
Process Model and Notation (BPMN) model so as highlight the specific choices
needed to execute the optimal schedule.

Central to the approach taken here to schedule generation is to exploit the
generation of adversaries (see Appendix A.6), also known as strategies, inherent
in Markov Decision Process (MDP) model checking. The generation of optimal
adversaries in Probabilistic Symbolic Model Checker (PRISM) is determined
as part of computing a Probabilistic Computation Tree Logic (PCTL) query
for model and capture the specific choice of actions, resolutions to points of
nondeterminism, which ensure that a probability of reward query are maximised
or minimised. A novel feature, and recently implemented feature in PRISM, is
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Figure 6.1: Overview of the Core BPMN analysis framework approach to
schedule generation (grey boxes mark inputs needed, with dark grey being
the schedule goals and schedulable actions).

that multi-objective properties can defined for adversary generation [104], [105].
This allows a combination of reward and probability queries to be combined and
a single adversary generated which optimises all of these values. It should be
noted that PCTL queries can also encode required safety properties such that a
generated schedule will optimise the scheduling goals while excluding schedules
which violate a safety requirement.

6.1.1 Schedule Specification

Within this thesis a schedule is defined as the sequence of actions to be taken from
an initial state in the system to obtain the optimum of one or more quantitative
properties associated with a model. This can be combined with a set of constraints
on the process. These constraints would typically capture safety properties, but
can be freely defined using PCTL to express properties that must hold when
executing the strategy.

For example suppose one was considering a medical robot capable, by means of
making a non-deterministic choice, of producing either drug A, B or C. In the
case when three doses of drug A, two doses of drug B and one dose of drug C
are required. The possibilities for sequencing these actions are illustrated in in
Figure 6.2, where each possible schedule is a path from the root to a terminal
node.
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Figure 6.2: Illustration of the possible scheduling possibilities for a
combination of 3 dose of drug A, 2 doses of drug B and 1 doses of drug
C.

Determining an adversary, also known as a strategy, for a model with non-
deterministic choices as shown in Figure 6.2 determines the effect these possible
sequences of actions will have on the reward and probability values encoded in a
PCTL query of interest. As PRISM quantifies over all possible adversaries, i.e.
all possible resolutions of nondeterminism in the model it is ensured that there
exists within these possible resolutions a set of resolutions for which a models
associated reward and probability values which take on minimum or maximum
values. Given a desired set of scheduling goals, solving a scheduling problem
by means of model checking involves determining which schedule optimises the
chosen scheduling goals.

Adversary properties for a single objective are specified in the standard fashion
for PRISM property queries described in section 4.5.3. Multi-objective adversary
properties are specified in PRISM 4.1 by means of the multi(...) keyword. This
keyword allows for a comma separated list of separate queries to be defined and
may only be employed when specifying an adversary.

Queries may seek to determine the an adversary, e.g. in eq. (6.1), given an MDP
which adversary comes closest to achieving that with a probability of less than
0.3 a Load state is reached and that with a probability less than 0.1 an Error
state is reached.

multi(P< 0.3[F Load],P< 0.1[F Error]) (6.1)
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If a multi-objective property contains a single unbound ? objective then an
adversary is determined which , e.g. in eq. (6.2), given an MDP which adversary
achieves the minimum possible probability of reaching a Load state, for which
the probability of reaching Error is less than 0.1.

multi(Pmin=?[F Load],P< 0.1[F Error]) (6.2)

Finally a C operator is allowed in adversary generation which calculates the total
cumulative value of a reward structure in a multi-objective property query. This
value is the total of the reward value accumulated along all paths as opposed to
simply the a specific path of the adversary as is the case with the F operator.
For example eq. (6.3) expresses: which adversary ensures that the expected
cumulative value of the reward structure time is minimised while ensuring that
the expected cumulative value of reward structure energy is below 7.2.

multi(Rmin(time)=?[C],Rmin(energy)< 7.2[C]) (6.3)

Further, possibilities are for specification of multiple adversaries along with an
extensive description of the computation of adversaries is available in [105].

6.1.2 Schedule Generation

The adversary generation feature in PRISM produces an induced DTMC over
an MDP which optimises the properties of interest by appropriate resolution
of points of non-determinism in a model. This induced DTMC that equates to
evaluating the best- or worst-case choice of actions at all decision points that
satisfy a chosen PCTL constraint. Having produced such a DTMC the sequence
of actions present in the DTMC record the schedule and can readily be mapped
back to the source MDP to highlight the optimal schedule, this is described
in Section 9.3.3. In practice, the use of rewards allow for the determination of
ideal schedules with regard to resources consumed, such as, time or energy used,
and whereas multiple schedules may exist, quantitative MDP model checking
methods allow for the selection of one of the schedules which optimise rewards
of interest. At present internal optimisations within PRISM allow only one of
the optimal schedules to be returned.

The specific query to be produced to generate the possible schedules for a Core
BPMN process involve defining a multiset A of actions which must be performed
as part of the schedule, with multiple occurrences of the same element encoding
that the action must be performed multiple times. Combined with a possibly
empty PRISM PCTL query C encoding constraints on the strategy. Given A
and C, the schedule generation query is constructed using Algorithm 3.
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Algorithm 3: PCTL scheduling query generation.
Input: A set A of actions and a set C of constraints.
Output: A PCTL query Q.

1 forall the a ∈ A do
2 m← v(a) // where v(x) determines the multiplicity of x
3 if m > 1 then
4 for i← 0 to m do
5 Q← Q | a U // where | denotes concatenation

6 else
7 Q← Q | F a

8 Q← Q | ∧
9 forall the c ∈ C do

10 Q← Q | ∧ c
11 return Q

Algorithm 3 simply produces a PCTL query Q. When constructing Q each
element a ∈ A is combined using the PCTL until operators, if more than one
occurrence of a is present in A, and using the PCTL finally operator in the case
when a only occurs once. For each a each of the sub-queries are combined using
conjunction. Finally, each of the constraints c ∈ C are combined with Q by
means of conjunction. Note that Algorithm 3 omits the addition of square and
rounded brackets need to build PRISM queries and that in line 5 an additional
U must be omitted on the final run of the for loop.

The complexity of Algorithm 3 is O(nm) where n is the cardinality of A and m
is the is the cardinality of C.

Note that scheduling involves resolving all point of nondeterminism so actions
which could potentially be scheduled but which are not included in the set A,
i.e. A{, may, or may not, be included in the schedule, at any point, depending
on what produces the optimal adversary in terms of the scheduling constraints
constraints.

Having constructed Q a PRISM adversary generation query can be constructed
as follows:

multi( P1[Q], P2[Q], · · · , Pm[Q])
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where P1, P2, · · · , Pm are the PCTL reward or probability operators for which
the adversary is to be optimised with respect to.

In the case when three doses of drug A, two doses of drug B and one dose of
drug C are required, i.e. A = {a → 3, b → 2, C → 1}, combined with a safety
constraint F Fail X Reset, the combined query to minimise execution time and
cost, would take the form:

multi( Rmin(time)=?[(a U a U a) ∧ (b U b) ∧ (F c) ∧ (F Fail X Reset)], (6.4)
Rmin(cost)=?[(a U a U a) ∧ (b U b) ∧ (F c) ∧ (F Fail X Reset)] ) (6.5)

This query will ensure that optimal adversaries with respect to all possible
orderings of the actions which must be performed as part of the schedule
are generated. PRISM will produce one of the possible optimal adversaries
(schedules). Note that the set of operators P1, P2, · · · , Pm may only feature two
unbound operators (operators which make use of the ? symbol), due to current
implementation restrictions within PRISM. Further, in the case where multiple
schedules are equally optimal only one of the possible schedules will be returned.
Finally, in the case where no possible schedule exists PRISM will return an
empty (zero state) DTMC.

An examination of the performance of an implementation of this technique is
given in Section 9.3.3.

6.1.3 Scheduling Example

The example in Figure 6.3 illustrates a simplified scenario where a schedule must
be devised for the actions of a robot arm moving materials for preparing drugs
between different sub-components. This system consists of four processes, each
represented as an individual BPD pool. The pharmacy robot process drives
the operation of this system and makes a non-deterministic choice about which
drugs to manufacture. Manufacturing each drug involves specific sequences of
operations performed by separate sub components; each of these performs steps
which have delays that are stochastically chosen, and various steps are annotated
with rewards expressing the time and energy used.

Schedule generation requires a set of needed actions, A. In this example, suppose
the requirement was to produce two doses of A, one of B, and three of C. Note
that when using the Drug Heater device there is also a choice between low-power
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Figure 6.3: BPMN model of a drug preparation robot.

setting or normal power setting heating of the drug. These actions are not
included in the set A of schedulable actions, so these actions will be included in
the set A{ and may, or may not, be included depending on what produces the
optimal outcome in terms of the scheduling constraints constraints.

This relatively simple model produces a relatively large and complex statespace
as shown in Figure 6.4, where the ForceAtlas2 graph layout algorithm [111]
has been employed to generate a layout which highlights the nature of the
scheduling generation problem. Generating a schedule involves determining the
possible paths that satisfy Q, and adversary generation in effect filters the paths
of the statespace for elements which optimise the unbound queries of Q. In
Figure 6.4, the initial state is represented by the black dot, and the statespace is
characterised by three large loops which correspond to the manufacture of each
of the three drugs. The higher complexity of the manufacture of drug B is clear
in the larger number of nodes and transitions that form this loop.
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Figure 6.4: Generated scheduling statespace for the example from Figure 6.3
(Annotations removed, 3080 States, 10999 Transitions).

It terms of quantitative constraints it is desirable to generate a schedule under
the constraints that the accumulated value of the time and the energy rewards
for the chosen schedule, a path in the statespace, is the smallest possible, with
equal weight being given to minimising both rewards. This involves employing
the PCTL reward operator R to calculate the expected value of the time and
energy reward structures for the paths that form a schedule under consideration.
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An optimal schedule requires choosing the correct sequence of actions, marked
by black triangles in the statespace in Figure 6.4, to reach the scheduling goal.
For the specific order of drugs A = {A→ 2, B → 1, C → 3}, this would involve
interleaving, two loops through the DrugA, and one through the DrugB and
three through the DrugC sets of path loops.

Further, in this example an additional safety requirement can be considered,
namely, that there may never be any shaking taking place while a drug is being
loaded as this may lead to spillage of a drug. This type of constraint can be seen
as a filter on permissible paths in the statespace, excluding paths where both of
these properties are simultaneously. This safety constraint set C, is expressed in
PCTL as: C = {G!([Shake] ∧ [Load])}

In this case applying schedule generation procedure above, there exists a unique
schedule shown in Figure 6.5, with an expected mean time to completion of
37.4 minutes, using 98.3 kJ.

Figure 6.5: Gantt diagram of the generated minimal time/energy usage
schedule for the example from Figure 6.3 (Totals: 37.4 minutes, 98.3 kJ).

In this solution, the robot chooses to begin production by manufacturing 1 dose
of drug A and making use of the lower power heating setting in its production.
Once loading is complete for drug A, manufacture of drug C is started and
repeated until the loading of the 3rd dose of C. Then a second dose of A
is started, and 2.4 minutes (the mean time needed to load B) before this is
completed, production of B is started.
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6.2 Chapter Summary

Building upon the model checking approach to the analysis of business processes,
this Chapter presents a method to determine an optimal schedule (defined as
a choice of actions to be performed in a business process so as to optimise
properties of interest) for the execution of a business process. The schedule
is created by means of the generation of adversaries which resolve points of
non-determinism in a business process such that specific PCTL queries obtain
their minimum or maximum value. As such the schedule generated can optimise
reward values while observing constraints which encode any required execution
properties.
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Fault Tree Analysis

“Always acknowledge a fault. This will throw those in authority off
their guard and give you an opportunity to commit more.”

(Mark Twain 1872)
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Overview

In this chapter, Objective 3b is addressed by further extending the process
graph formalism introduced in Chapter 3 to include states that capture faults
which may or may not halt execution of a business processes. The injection of
fault states is defined, and an algorithm presented which employs the methods
of Chapter 5 for the automatic generation of fault trees from fault-annotated
models. It also shows how the value of reward structures can be calculated as
annotations at points of failure, defined as the combination of multiple faults,
and builds a fault tree which includes the expected values of properties of interest
at fault states.

The work included in this chapter was originally presented in [15] and extended
in [6]. Work on combining fault analysis with optimisation techniques in Chap-
ter 8 is presented in [2].

7.1 Errors, Faults and Failures

The Business Process Model and Notation (BPMN) standard features an error
handling mechanism, where an error is defined as [207, page 81]:

An error is generated when there is a critical problem in the processing of an
activity or when the execution of an operation failed.

When an explicit named error event is encountered in a standard BPMN Business
Process Diagram (BPD), process flow then switches to a named error catch
event that is then expected to handle the error. Process flow may then return
to either the original process flow or to a new point in the business process.
Alternatively, error handlers are attached to the boundaries of processes, and
when an unexpected unnamed error occurs this generic error handler is invoked to
return execution to a predictable state. This type of error handling mechanism
is similar to the common approach to error handling allowed in C++, C#,
Java or many other languages where code can be contained in a try block and
where catch blocks then handle either specific exception types or generic errors.
Resumption of normal execution can be performed by means of code in catch
blocks or, optionally in the case of for example C# or Java, by means of a
finally block.
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While this type of error handling is well established, the use of these constructs,
either in BPMN or common programming languages, requires the designer to
predict the failure specific sections of a business process or code. Once this has
been done, the handling of error is in essence simply a special case of a designed
process flow. However, the requirement remains that errors must be predicted
by a designer before error handlers can be defined to handle them.

In BPMN there has been some criticism of its poorly defined concurrency
behaviour [54], when combined with the error handling mechanism in BPMN
it would seem likely that multiple errors which occur in concurrent BPMN
processes lead to a system state that is completely undefined. However, this
case is particularly important as when multiple errors occur there is a chance
that these errors can combine to cause an error that might be considerably more
severe than if the each error occurred individually. For example, in a production
setting, concurrent faults allowing flammable gas to escape simultaneously with
a second fault producing an electrical spark may lead to a system state which is
much less desirable than if each error occurs separately. Frequently when such
severe faults occur the error handling mechanism for each individual may no
longer be operable (e.g. turning off the gas supply may not be possible once a
fire has started). Within BPMN, support for discovering such scenarios is not
readily dealt with by means of the existing error handling mechanism.

This type of combined error which can occur in concurrent processes is frequently
hard to predict [83], [97], [268] and is often the cause of severe, or even disastrous
failures. In this chapter a technique is proposed that employs the framework for
analysis of Core BPMN processes to help a designer predict possible combined
errors and determine quantitative properties of the process, such as time taken
or resources used, at these points of failure.

To distinguish these types of unexpected errors, which would not be caught by
the standard fault hander mechanism for expected BPMN errors, the term fault
will be used, which is defined for Core BPMN as follows:

Definition 7.1 (Core BPMN Fault)
A fault in a Core BPMN process, is an accidental condition that causes a specific
task to fail to perform its required function.

The crucial situation for which the work in this chapter provides design-time
support is the prediction of failures which are formally defined for Core BPMN
as:
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Definition 7.2 (Core BPMN Failure)
A failure in a Core BPMN BPD occurs when multiple faults combine so that an
entire BPD fails to perform its required function.

The key distinction between Definition 7.1 and Definition 7.2 is the scope of the
errors that occurs, faults are local errors in a business process while failures are
global errors in a business process.

The work of Van der Meulen [188] highlights the broad range of competing
definitions of terms such as faults, errors and failures. Core BPMN Definition 7.1
inspired by Institute of Electrical and Electronics Engineers Standard glossary of
software engineering terminology [31]. Furthermore, Definition 7.2 which defines
a failure for Core BPMN process is inspired by MIL-STD-721C [274], which is a
US military standard which defines terms for reliability and maintainability.

7.2 Fault Tree Analysis

Originally developed in 1962 at Bell Laboratories by H.A. Watson [96], Fault
Tree Analysis (FTA) has seen extensive refinement and widespread adoption
and is today considered a proven and accepted reliability engineering technique.
However, FTA of concurrent systems is labour-intensive, and requires a key
creative step where business analysts must imagine which undesirable events can
occur under which conditions [97]. FTA analysis is therefore often avoided early
in a system design due to the significant effort involved in performing the analysis
and ensuring its consistency with the system of interest, balanced against the
likelihood that changes will be made to the design. However, correcting problems
late in the development process can be costly, cause significant delays, and even
require complete system redesign.

Motivated by the type of system introduced in Section 1.1, regulatory approval
of these systems frequently requires the inclusion of an FTA covering the system
and its immediate environment. However, construction of these trees is time-
consuming and laborious with a new analysis being required whenever the system
is modified or it is somehow employed in a different environment than originally
intended. For this reason an automated means of generating fault trees was
desired and the results in this area are presented in this chapter in line with
Objective 3b.
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The international standard ISO13485 [143] specifies requirements for a quality
management system where an organization needs to demonstrate its ability to
provide medical devices and related services. Regulatory authorities worldwide
are tending to adopt ISO13485 in the hope of harmonizing requirements and
reducing some of the conflicting and different demands on manufacturers. Specif-
ically, in the context of the European directives for medical devices, ISO13485
certification is required for regulatory approval, likewise Canada, Australia and
a few other countries outside Europe require certification. However in the US
a separate Food and Drug Administration (FDA) standard 21CFR820 [103]
is required for regulatory approval. In both the case of ISO13485 and FDA-
21CFR820, performing fault tree analysis is one of the key suggested techniques
to gain certification. Furthermore, ISO14971 [144] sets out a set of voluntary
practices pertaining to risk management for medical device companies. A key
suggestion here is that employing fault tree analysis can reduce legal liability for
medical device manufacturers. Due to these requirements the industrial partner
in this project considered formal assistance in producing fault trees to be a key
requirement in a business process analysis framework (Objective 3b).

In essence FTA is a design time analysis that seeks to help deduce possible
causes of failures of a business process by suggesting possible causal chains of
combinations of multiple faults that would lead to failure [268]. The results are
typically represented pictorially in the form of a tree of fault modes for a given
system. Figure 7.1 illustrates an FTA ((a)) for a small business process ((b)).

As is seen in Figure 7.1(b), a fault tree is a logic diagram of separate individual
faults and their relationship in order to determine the probability of compound
faults occurring. In this example it is imagined that a failure to load the drug
correctly may lead to a spark and as the gas is flammable this leads to an
explosion, likewise if the chamber is not sealed or fails to be flushed after use,
the gas escapes the chamber and an explosion is also likely.

In Figure 7.1(b) the root node of a fault tree is a possible failure and each path
from a terminal node to the root describes a specific combination of faults that
could lead to failure. Within a fault tree every other level of the tree contains
combination operators which are expressed using logical operators (AND, OR,
etc.) which indicate how the named faults in the level below must combine to
contribute towards a failure.

FTA is fundamentally used to establish the pathway(s) to the root cause of a
failure and hence investigate or refine elements of a system so as to try and
mitigate or prevent failure. Repeated fault tree analysis is intended to help
minimise the causes of failure and check if intended improvements will fully
resolve the issue and not lead to other issues (i.e. solve one problem yet cause
a different problem). Fault Tree Analysis is an effective tool for evaluating
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Figure 7.1: Illustration of fault tree for a sterilising drug loader (a), where a
flammable gas is used to ensure sterility within a sealed chamber. The
fault tree analysis of this model (b), suggests a number of causal chains
which can lead to a failure (explosion).

how multiple factors affect a given issue and is considered useful both for risk
assessment, in developing monitoring programs and for directing component
testing [97], [268].

While typical manual FTA relies on an experts’ understanding of a process to
identify causal factors, the intention of automated fault tree analysis is to allow
system designers to focus only on modelling a system (as shown in Definition 7.1)
and imagining possible local faults that may occur during execution of the tasks
performed as part of a business process. The methods presented in this chapter
allow system designers to make such annotations directly to Core BPMN models
and then automatically perform FTA. The probability of failures (as defined in
Definition 7.2) occurring can then be automatically calculated based on both
the probability of individual faults occurring and inherently stochastic behaviour
that a business may exhibit in the course of its correct execution.

Automated FTA seeks to build maximal fault trees which include a wide range of
potential faults which may, or may not, be possible in a real system. Furthermore,
determining the value of reward structures at points of failure can guide testing
of such systems. It provides upper and lower bounds on time to failure or the
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amount of some resource that will be consumed by the time a failure occurs.
This can be useful in cases when some faults cannot be eliminated. A focus
can instead be made on ensuring failure happens as late, or early, as possible,
or alternatively ensure that resources consumed at the points of failure are
minimised.

7.3 Fault Tree Analysis via Model Checking

Ideally, safety engineering starts during the early design of a system. Even
at an early stage in the design process, business processes may exhibit a high
degree of complexity [251], and formal modelling of the system typically captures
the ideal, fault-free, conception of the system. At this early stage, an FTA
constructed for a business process is based on an informal description of the
underlying system [97], or requires modelling the system in a separate FTA
specific modelling language [41], [174]. This makes it difficult to check the
consistency of the analysis, because it is possible that causes are noted in the
tree which do not lead to the failure (incorrectness), or that some causes of
failure are overlooked (incompleteness).

Liggesmeyer and Rothfelder [174] coined the term formal risk analysis, when
they developed an approach for automatically generating a fault tree from finite
state machine-based descriptions of a system where the generated fault tree is
complete with respect to all failures assumed possible. In this chapter a similar
approach is presented that exploits the analysis defined in Chapter 5 to generate
fault trees which reflect the base stochastic behaviour of the system from the
generated statespace of a Core BPMN model as shown in Figure 7.2.

The design of the analysis is shown in Figure 7.2, the dark grey boxes are
the additional material that must be supplied by a user in addition to a Core
BPMN system model with annotations (light grey boxes). Fault state injection
is handled through functions which mark states in a Core BPMN model as
having the potential to exhibit a fault (Section 7.4). Note that these additions
are simply annotations to an existing model and require no structural changes
to the model. Reward structures are not strictly needed to simply perform a
qualitative FTA. However, if data is associated with a system model this can
readily be mapped to the resulting fault tree, which allows the expected values of
properties of interest, such as time, power usage or financial cost, to be included
in the fault tree.
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Figure 7.2: Overview of the Core BPMN analysis framework approach to fault
tree generation (grey boxes mark inputs needed, with dark grey being the
additional fault state injection).

A fault annotated model is then converted into a representation where fault
states are made explicit. Faults are defined in terms of standard Core BPMN
probabilistic gateways as defined in Definition 3.14 and standard Core BPMN task
elements. Hence, conversion to an explicit fault representation simply involves
replacing fault annotated states with fixed blocks of Core BPMN elements.

A key strength of this approach is that a statespace for the model, extended
with faults, need only be generated once. Following this, the computationally
most expensive step, any change in how faults are combined (dashed lines), only
requires performing new Probabilistic Computation Tree Logic (PCTL) queries
over the existing statespace. Only a change to which states are marked as having
the potential for fault requires new statespace generation. The ability to perform
multiple queries over a single statespace is the key to making this approach
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computationally feasible, by parallelising the checking of separate fault queries,
the main computational expense is statespace generation which must only be
performed once.

7.3.1 Related Work

The approach developed in this chapter enhances the original formal risk analysis
concept of [174] with direct translation from a business process modelling language
(Core BPMN) by allowing for the addition of data values at points of failure
in a fault tree. For the cost of a small amount of additional data added to
a workflow model, it becomes possible to automatically derive rich fault trees
with no further user interaction needed. Compared to the symbolic model
checking employed by Liggesmeyer and Rothfelder [174] the use of quantitative
probabilistic model checking allows for fault trees to be constructed where both
quantitative properties of the system at points of failure can be determined and
the inherent stochastic nature of the underlying system is accounted for when
determining the probabilities of failure.

Work by Banach and Bozzano [41] allows for the automated generation of fault
trees. However, their work focuses on digital circuits, which must be modelled in
a custom modelling language for automated generation to be possible. Further,
their work deals with digital circuits of an entirely deterministic nature which
does not feature stochastic behaviour. In order not to add a further source
of error, the models constructed by the framework presented in this thesis are
automatically translated into fault trees with no remodelling required.

Work by Thums and Schellhorn [271], and by Xiaocheng et. al. [109], employs
model checking to verify the correctness of an FTA and to perform model
checking of fault trees. In both cases model checking is used to determine the
feasibility of complex faults, described using Computation Tree Logic (CTL),
within large fault trees. However, in both cases, the source model for the FTA
requires custom modelling of the system of interest and does not incorporate the
use of rewards in the analysis.

An interesting approach, where fault trees are generated from Duration Calculus
(DC) [296] models via model checking is suggested by Schäfer [257] where fault
trees are generated from DC models. In his work a very restricted subset of
DC, known as DC implementables [210], is employed. This variant severely
restricts the use of negation, and therefore limits the type of system it can model.
However, the approach does provide a fully automated way of going from DC
models of a system to fault trees and a number of timing properties at points of
failure are accounted for.
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These last two approaches to fault tree construction are the most similar to
the approach developed in this thesis and as such the approach presented
does not fundamentally differ from the original approach of Liggesmeyer and
Rothfelder [174] but does provide significant enhancements by providing an
automated mapping from stochastic business processes to fault trees and including
quantitative properties in the resultant fault tree.

7.4 Modelling Faults

To allow for the automated generation of fault trees, process graphs are extended
to include two types of faults. These are known as fault-stop and fault-continue
faults. In terms of a Core BPMN model these take the form of annotations
which denote which type of fault can occur and its associated probability. The
semantic interpretation of these fault states is described in terms of Core BPMN
elements and described in the following subsections.

It may also be desirable to have a model of faulty decision gateways in a workflow
and this can be modelled simply by redefining gateway flow probability function
P associated with a gateway, to include a number of branching probabilities.

It should be noted that the types of faults modelled are intended to be introduced
at the design stage, before the development of mechanisms in a business process
that allow for corrective action or detection of faults has been initiated. Instead,
in line with the FTA paradigm, the intention is to explore the potential effects of
faults and how they might propagate and thereby help determine where detection
and corrective actions can be of most benefit.

7.4.1 Fault-Stop Faults

To ease the task of building fault-tolerant systems, most designers try to ensure
that a malfunctioning system halts before it can cause further damage. This
property is known as halt-on-failure [261] (not to be confused with the definition
of failure given in Definition 7.2) and is the main motivation for the fault-stop
model of faults. In next section Section 7.4.2 a broader category of faults are
introduced which model cases where a fault does not lead to an execution stop,
as such the fault-stop faults introduced here can be seen as a special case of the
faults in the next section.
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Formally the addition of fault-stop faults to Core BPMN processes is given in
Definition 7.3:

Definition 7.3 (Fault-Stop Task Fault Injection Function)
For a task tn ∈ T in a BPD, the partial function

9
E : T× [0, 1]→ (T×T)× [0, 1]

adds a fault-stop execution sequence to a BPD as follows:

9
E (tn, p) =

{
tn−1S

9
tn with probability p

tn−1Stn with probability 1− p
(7.1)

Application of Definition 7.3 to add fault-stop behaviour to a task is illustrated
in Figure 7.3. Here, after task tn−1 has been performed, then with a probability
of P9

tn
the task tn is not performed, and instead a transition tn−1S

9
tn, to a state

9
tn representing the process halting (deadlocking) during execution of tn is made.
The set of all fault-stop tasks is denoted as

9
T.

· · · tn−1 tn

9
tn

· · ·
1− P9

tn

P9
tn

Figure 7.3: Illustration of Fault-Stop behaviour in Core BPMN processes.

Fault-stop behaviour is frequently desirable in production systems as the halting
(deadlocking) behaviour should ensure that further damage does not occur and a
plan can be devised for recovery. However, for fault-stop behaviour to be feasible
it requires that faults can be detected, which may not be the case. Additionally,
in the case of concurrent systems, it may not be desirable to stop a process when
other processes depend on tasks which can still be executed correctly by the
faulty process.

Employing the denotational semantics model of business process execution from
Section 3.5 the trace produced by injection of a fault-stop fault is to truncate
the original non-faulty execution trace. Given a process modelling a sequence
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of tasks t1 → t2 → t3 with an execution trace < t1, t2, t3 > the application
of

y
E (t2, p) produces the trace < t1,

y
( t2) > with probability p and the trace

< t1, t2, t3 > with probability 1− p. Note that the execution halts only for the
execution of a single process (pool) and the trace sequence may subsequently
feature further events from other processes.

7.4.2 Fault-Continue Faults

Undetectable faults will be termed fault-continue faults. The behaviour of these
faults is such that a permanent fault has occurred, which will not be corrected
or even detected in the later execution of the business process. These faults
exhibit more complex behaviour in that a business process does not halt, and
execution of the business process proceeds, despite a fault occurring in a specific
task. Formally the addition of fault-continue faults to a Core BPMN model will
be described by means of Definition 7.4:

Definition 7.4 (Fault-Continue Task Fault Injection Function)
For a task tn ∈ T in a BPD, the partial function

y
E : T× [0, 1]→ (T×T)× (T×T)× [0, 1]

adds a fault-continue execution sequence to a BPD as follows:

y
E (tn, p) =

{
tn−1S

y
tnStn+1 with probability p

tn−1StnStn+1 with probability 1− p
(7.2)

Application of Definition 7.4 to add fault-continue behaviour to a task is shown
in Figure 7.4. In this case, after task tn−1 has been performed, then with
a probability of Py

tn
the task tn is not performed and instead a sequence of

transitions tn−1S
y
tnStn+1 passing through state

y
tn, representing the task being

performed in some faulty, but not deadlocking, fashion is performed. The set of
all fault-continue tasks is denoted as

y
T.

Employing the denotational semantics model of business process execution from
Section 3.5 the trace produced by injection of a fault-continue fault is a simple
change of the original non-faulty execution trace. Given a process modelling the
execution of sequence of tasks t1 → t2 → t3 with an execution trace < t1, t2, t3 >

the application of
y
E (t2, p) produces the trace < t1,

y
t2, t3 > with probability p
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Figure 7.4: Illustration of Fault-Continue behaviour in Core BPMN processes.

and the trace < t1, t2, t3 > with probability 1 − p. Thus, the introduction of
fault-continue faults produces additional traces for the execution of business
process but preserves the ordering of non-faulty events when executing a business
process. The small change in the trace of execution allows the same methods
developed in Section 5.4 to be employed to determine the total possible behaviour
of model in the same fashion as if the model did not contain faults.

7.5 Fault Tree Analysis in a Stochastic Setting

Traditionally fault trees are defined as illustrated in Figure 7.1(b) where each path
through a fault tree defines a combination of AND/OR dependencies which may
lead to additional faults as defined in Definition 7.1 or following Definition 7.2
complete system failures. In this setting the specific FTA probabilities for non-
terminal nodes can be derived from each terminal node by means of common
probability calculations (e.g. given faults A and B, P (A∨B) = P (A) + P (B)−
P (A ∧B)).

In the case of core BPMN, the probability of fault states occurring in a stochastic
Core BPMN BPD depends on the inherent stochastic structure of the existing
BPD where the occurrence of faults may require iterations of loops or the specific
interleaving experienced in concurrent parts of a BPD to arrive at combined
failure states. This means that a suitable FTA for a stochastic Core BPMN
model may be considerable more complex than traditional FTAs described in
Section 7.2. In this setting quantitative stochastic model checking provides an
ideal tool to determine the probabilities of arriving in combined fault states
within Core BPMN models. The resultant fault trees provide a convenient
symbolic representation of the combination of faults causing a failure as defined
in Definition 7.2, and they are represented as a parallel or sequential combination
of logical AND and OR gates.
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The total application of
9
E and

y
E produces the maximal set of possible fault

states, where all tasks can exhibit both fault-stop and fault-continue behaviour.
Such a total fault tree can be a useful starting point to help suggest all possible
routes to failure. Once this has been done it is beneficial to restrict the set of
tasks believed to be prone to failure to eliminate false-positive faults that the
designer knows are impossible in the business process. This can be achieved by
choosing to only apply

9
E or

y
E to specific tasks in a business process.

A maximal fault tree takes the general form shown in Figure 7.5. In such a fault
tree every possible combination of pre-conditions for every combined fault state
is represented. Note that this fault tree contains a large number of redundant
nodes, as elementary fault occurs n times as a leaf node, where n is the total
number of elementary faults. However, in practical use significant sections can
readily be removed during manual analysis as they may represent faults which
are improbable within the specific business process under consideration.

Note the following fairly common definition will be used to define the subset,
elements of the powerset of fixed size k of a set X as Pk(X) = {A ∈ P(X) :
|A| = k}.

In Figure 7.5 terminal nodes consist of individual states, which may be represented
more than once, which are then combined to construct every possible combination
of sub-sequences of individual faults. The top node is the ultimate failure state,
which is a combination of all possible faulty tasks, i.e. the largest element of the
powerset P(T) where T =

y
T ∪

9
T. The nodes in between capture every possible

OR-gated combination of sub-states that can lead to this failure condition. Each
level in a fault tree consists of all possible partitions of elements N of a node
above the size of |N | − 1 combined with the singleton element not included in
each partition.

It should be noted that within the fault tree various sub-states will be repeated
along different paths, but every sub-state will be an element of P(T). This, as
can be seen in Figure 7.5, allows substantial parts of the fault tree to be collapsed
and replaced by a pointer to an already computed sub-tree. This approach
avoids both unnecessary work in terms of the generation of annotations and
simplifying the structure to make it more readily comprehensible. In a practical
implementation, as presented in Chapter 9, an approach where the elements
presented can be expanded or collapsed makes the representation of the tree
considerably more compact.
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Figure 7.5: Illustration FTA generation by means of model checking using the
method in Algorithm 4 below. Grey text shows example fault states for
each node.

Producing a fault tree involves systematically building all possible chains of one
of more fault-continue faults that can occur in the business process, possibly
combined with a final fault-stop fault. It is therefore necessary to examine all
possible business processes’ executions.
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7.6 Generating Fault Trees for Core BPMN

Figure 7.5 defines the structure of a fault tree for a Stochastic Core BPMN
model. Such a tree can be dynamically constructed by means of an algorithm
such as seen in [80]. However, the complexity of tree generation is fundamental
to any fault tree construction and involves the computation of a powerset with a
well established complexity bound of O(2n), where n is the number of elements
in the set. Therefore in the following analysis of Algorithm 4 focus will be on
the complexity of the additional work needed to calculate node probabilities and
reward values.

Producing a fault tree involves systematically building all possible chains of one
of more fault-continue faults that can occur in the business process, possibly
combined with a final fault-stop fault. For a stochastic Core BPMN BPD,
annotated with rewards R and error annotations

y
T and

9
T, Algorithm 4 employs

the developed framework for the analysis of business processes to determine
quantitative values for nodes in the tree by means of executing PCTL queries.
Specifically, the values for probability and reward values for each node in a fault
tree is determined by Algorithm 4 in the following fashion:

In Algorithm 4 a fault tree is constructed by performing queries of the proba-
bilities and values of rewards of interest, in each possible fault, and combined
fault state, in P(T). Each of these calculations, both for probabilities and any
relevant reward structure, is then matched to the appropriate state or states,
represented by nodes within the fault tree. In lines 14 and 15 the index of node
is given as |q| which denotes a unique label generated from the states of a given
query q ∈ Q.

It should be noted that some combinations of faults within the maximal fault
tree will have a probability of 0 and it is convenient to omit such states from the
fault tree. When used, the bound c places a limit on the number of transitions of
the model to check; this is useful in cases where a model has the potential to have
an infinite loop and upper bounds of probabilities (using max query modifier)
produce infinities. As no business process can be expected to run forever this
allows a user to place limits on the expected number of execution steps that will
be performed in a business process.

Algorithm 4 is guaranteed to terminate as it operates over a finite set. It has a
complexity bound of O(2n), where n is the size of the set T which, while large,
is still feasible as all queries are performed on the same state space generated
by the Probabilistic Symbolic Model Checker (PRISM) model checker, and the
construction of the statespace by PRISM still dominates the computational
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Algorithm 4: BPMN Fault Tree Generation algorithm.

Input: Sets
y
T and

9
T, and a fault tree structure FT of nodes nx.

(An optional bound c on the depth of checking)
Output: A probability and reward annotated OR-Gated fault tree FT .

1 T← P(
y
T ∪

9
T) // Combine all fault states

2 Q← ∅ // Intialisation of Q
3 forall the t ∈ T do // For each element t in T
4 forall the s ∈ t do // Get the individual states s of each t
5 Q← Q ∨ s // Combine states s using OR-gates

6 forall the q ∈ Q do // Build PRISM queries based on q
7 p← Pmax=?[F<=c q] // Determine the state probability
8 if p > 0 then // If q is possible
9 R ← ∅ // Intialisation of R

10 forall the l ∈ Labels do
11 R ← R ∪ Rlmax=?[F q] // Determine reward upper bounds
12 R ← R ∪ Rlmin=?[F q] // Determine reward lower bounds

13 forall the n ∈ FT do
14 n|q| is associated with p // Assign probability to node
15 n|q| is associated with R // Assign rewards to node

16 return FT

burden of adding probabilities and reward values. Furthermore, note that this
complexity bound need not be in addition to the fault tree generation itself as
calculation of rewards and probabilities can be combined with tree construction.
Fundamentally however fault tree construction has large complexity and is best
suited to analysis of systems where only a small number of tasks are considered
as being able to exhibit a fault. Note that a fault tree is intended for use by a
business practitioner who must consider the real-world feasibility of proposed
faults and therefore is not commonly applied to systems which can exhibit a
large number of distinct faults.

The choice of gates to combine nodes is by default chosen to be OR gates, so as to
build a fault tree with the greatest likelihood of producing a failure. However, the
choice to combine separate fault states by means of OR-gates is only the default
combinator. In a practical implementation of these techniques, as presented
in Chapter 9, once an initial fault tree has been constructed it is possible to
select and modify gates to exhibit AND, OR or XOR behaviour. Once these
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changes have been made, Algorithm 4 is run again to compute new probability
and reward values, with the key change in line 5 being to choose the appropriate
∨ or ∧ operator.

The choice of OR as the default combinator is motivated by seeking to provide a
maximal fault tree where the minimal possible set of causes can lead to a failure
(i.e. only one fault at the base of a fault tree will propagate to become a failure).
It is the work of a business process designer to restrict the FTA produced by this
technique to more closely resemble the system of interest. However, the default
fault tree generated will be a superset of all the more restricted failure modes.

A practical implementation of this analysis is presented in Section 9.3.4.

7.7 Example

An example of a BPMN workflow that is simple enough, so that the generated
fault tree is not too large for presentation, is shown in figure 7.6.

In this example there are two BPMN pools, composed as a BPD modelling
a security camera and control centre which responds to images sent from the
camera. The camera process begins by entering a ready state and then proceeds
to perform a capture image task, which is annotated with reward structures to
indicate the time taken (60 seconds) and memory consumed (1 unit of memory).

After that, the camera analyses the image to determine if there is suspicious
activity. This process is similarly annotated with a time reward, but also marked
with a 0.3 probability of experiencing a fault-continue behaviour (indicated by
the + symbol), e.g. the image buffer could be corrupted. The camera process
proceeds to make a choice about whether the image is suspicious or not. If the
image is not suspicious, then, with a probability of 1, the camera process loops
back to the ready state. If the image is suspicious, a message is sent to the
control system, a task which may also be faulty.

The control system, after entering its ready state, will only progress to the receive
image state when an image has been received. The image is then reviewed by a
human operator who decides whether there is an actual problem. In the case
where there is a problem, a non-deterministic choice is made between calling a
guard or calling the police, with probabilities of 0.7 and 0.3, respectively. In the
case where a guard is sent there is a possibility of fault-stop behaviour, indicated
by the ! symbol, and an associated probability of 0.2 that the guard does not
respond to the call.



7.7 Example 171

Figure 7.6: BPMN model of a smart security system, which contains faults.

The fault annotations added to the model in Figure 7.6 can be seen, by definitions
Definitions 7.3 and 7.4, to add extra states and gateways to a Core BPMN model.
An explicit representation of these failure states in shown in Figure 7.7. This
illustrates the fashion in which fault annotations are added to the model in terms
of standard Core BPMN elements.

For this system, determining the fault tree of the possible combined faults that
could occur results in obtaining knowledge about how this system can fail to
maintain security. The fault tree shown in Figure 7.8 determines maximum
probabilities, the minimum time taken, and the expected amount of memory
used for every possible fault, and OR combined failure, that can potentially
arise.

The combination of failure probabilities combined with quantitative system
performance data determined by this analysis allows business process designers
to determine the impact specific tasks in a business process may have on the
overall system reliability. Faults in tasks which make a substantial contribution
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Figure 7.7: BPMN model of a smart security system, where fault states are
explicitly added (dot-dashed elements).

to the probability of failure can be identified and then altered to increase the
reliability of the business process. This can be achieved either by eliminating
the task, replacing the task with one that has a lower probability of encoring a
fault or restructuring the BPD so as to reduce a potential fault task’s impact
when it fails. Further, a fault tree can be crucial in deciding where to introduce
safeguards within a business process, while these safeguards may also have a
chance of incurring a fault, generating a new fault tree will help determine to
what extent they reduce the chance of failure.
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For the model shown in Figure 7.6, determining the fault tree of the possible
combined faults that could occur results in obtaining knowledge about how
this system can fail to maintain security. The fault tree shown in Figure 7.8
determines probabilities, the minimum time taken, and the expected amount of
memory used for every possible failure, and combination of failures, encoded in
the system model.

Note that the structure of the fault tree in Figure 7.8 is combined by OR-gates,
hence the probability of failures (i.e. notes where more than one fault is present)
increase along paths from the terminal nodes to the root node. However, the
probabilities do not increase in the set union fashion that is traditional for an
OR-gate (i.e. P (AorB) = P (A ∪ B) = P (A) + P (B) − P (A ∩ B)). Instead
probabilities depend on the underlying stochastic structure of the BPD. For
example, if one considers the failure state

y
AI,

y
SI,

9
SG, the probability of failure

is the same as for the root node failure
y
AI,

y
SI,

9
SG,

y
RI. This is due to the fact

that the missing fault
y
RI can earliest occur after the other three faults have

occurred. Hence, a designer has certain knowledge about the likely way a series
of faults will unfold to cause a failure. This information can be crucial when
choosing where in a system to implement countermeasures.

The quantitative data included in the fault tree in Figure 7.8 can help guide
testing as it suggests bounds on the expected time taken to reach a failure state.
This information can be used to experimentally verify if a failure proposed by
the FTA is actually realised in an implementation of the system.

7.8 Chapter Summary

In this chapter the concept of fault tree analysis is introduced and a mechanism is
defined for marking states as exhibiting fault-stop and fault-continue behaviour.
This allows for employing model checking for automatic generation of fault
trees by building PCTL queries determining the reachability of all fault and
combination of fault states. Simultaneously determining the values of reward
structures at the points of faults is readily possible. This automated approach to
fault tree analysis accounts for the underlying stochastic behaviour of a business
process and can be done directly from a model of a business process with the
only additional information needed being the definition of states that are likely
to exhibit a fault.
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Figure 7.8: Generated OR-gated fault tree for the example shown in
Figure 7.6.

y
AI denotes a fault-continue fault in the analyse image task,

y
SI a fault-continue fault in sending the image,

9
SG a fault-stop when

sending a guard and
y
RI denotes a fault-continue fault in reviewing an

image. (Grey states denote duplicates of existing states)
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“In the struggle for survival, the fittest win out at the expense of
their rivals because they succeed in adapting themselves best to their
environment.” (Charles Darwin 1859)
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Overview

This chapter addresses Objective 3c. A method for the automated optimisation
of business processes, which permits the effective integration of new technology
or the improvement of existing processes, is presented. Goals for optimisation
with respect to both functional and non-functional properties required of an
optimised business process can be specified. Using these goals, an algorithm is
presented which takes these goals and existing business processes as inputs to
produce an improved business process.

The algorithm is an iterative evolutionary algorithm which generates variants
of an existing business process, and, at each iteration, determines if they meet
the functional requirements. If a higher fitness score is achieved with respect to
the weighted non-functional properties, then this variant is used as the basis for
deriving the next generation of variants in the next iteration. The algorithm’s
core parameters and how they influence the process are discussed and a small
illustrative example is given.

The work in this chapter was originally presented in [13] and refined in [7].

8.1 Business Process Optimisation

Frank Gilbreth’s seminal 1921 paper [113] Process Charts - first steps to finding
the one best way to do work is credited with developing the first method for
documenting process flow. The later development of the ideas originating in
his paper have been crucial in informing today’s concept of Business Process
Modelling. However, developing business processes is today still predominantly
a manual activity. Business processes are analysed by hand and improved
configurations are found by a process of trial and error, often taking many years
to arrive at an optimal practice. Key factors which prevent the realisation of
optimal efficiency gains are: adapting to disruptive technology [112], resistance
to change[161], and a lack of understanding that, while possible, simply replacing
one function in an established workflow with a new technology does not lead to
maximal gains.

Pioneered by Hammer in 1990 [126] the dominant approach today to business
process improvement is that of Business Process Re-Engineering (BPR). This
approach focuses on the analysis and adjustment of workflows and business
processes within an organization. The BPR approach is aimed at helping organi-
zations fundamentally rethink how they do their work in order to dramatically



8.1 Business Process Optimisation 177

improve competitive advantage. A survey conducted a few years after the
BPR concept was introduced showed that as many as 60% of the Fortune 500
companies claimed to have initiated re-engineering efforts [127].

BPR emphasizes a holistic focus on business objectives and how processes are
related to them, encouraging full-scale recreation of processes rather than iterative
optimization of sub-processes [126]. Hammer’s central claim was that most of the
work being done does not add any value for customers, and this work should be
removed, not simply accelerated through automation. This statement implicitly
accused managers of having focused on the wrong issues, namely that technology
in general, and more specifically information technology, has been used primarily
for automating existing processes rather than using it as an enabler for making
non-value adding work obsolete.

The central idea of the BPR framework was therefore to perform an assessment
of mission and goals of an organisation and re-engineer an organization’s business
processes by decomposing them into specific activities which could be modelled,
measured and ultimately improved. The intention is that many business processes
can be completely redesigned or eliminated altogether, as an organization may
find that it is operating on questionable assumptions, particularly in terms of
the wants and needs of its customers. Only after the organization rethinks what
it should be doing, does it go on to decide how best to do it. The central aim
being to achieve dramatic improvements in critical performance measures, such
as cost, quality, service, and speed [89].

Re-engineering recognizes that an organization’s business processes are usually
fragmented into sub-processes and tasks that are carried out by several spe-
cialized functional areas within the organization. Often, no one is responsible
for the overall performance of the entire process. Re-engineering maintains
that optimizing the performance of sub-processes can result in some benefits,
but cannot yield dramatic improvements if the process itself is fundamentally
inefficient and outmoded. For that reason, re-engineering focuses on re-designing
the process as a whole in order to achieve the greatest possible benefits to the
organization and their customers. This drive for realizing dramatic improve-
ments by fundamentally re-thinking how the organization’s work should be done
distinguishes re-engineering from earlier process improvement efforts that focused
on specific functional improvements [89].

As the outside environment in which an organisation operates is subject to
continual change it is not sufficient to simply perform a single iteration of
a BPR. Therefore current BPR methodologies are instead focused on being
continually repeated in the form of the Business Process Re-engineering Life
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Cycle (PRLC) [123], illustrated in Figure 8.1. In this case the change performed
during each cycle is intended to be less radical than proposed in the original
formulation of the BPR framework.

Design To-Be

Test &
Implement
To-Be

Identify Processes

Review,
Update,

Analyse As-Is

Figure 8.1: PRLC: The business process re-engineering life cycle. (Source:
[123])

In Algorithm 4 the main steps of the process re-engineering life cycle are:

1. Design To-Be: In line with the overall BPR approach the first step is to
envision the desired improved situation.

2. Review, Update, Analyse As-Is: This step is concerned with analysing
the current situation and identifying the gap between the desired and the
current situation.

3. Identify Processes: This step is concerned with identifying the processes
that require modification in order to achieve the desired To-Be situation.

4. Test & Implement To-Be: The last step is concerned with testing and
implementing the modifications to the identified processes in order to
achieve the desired To-Be situation.

The BPR approach seeks to improve business processes and is a strictly manual
process, where the term improvement implies a qualitative approach of developing
an existing business process to a better version. In this chapter, the analysis
framework for Core Business Process Model and Notation (BPMN) models
established in Chapter 5 is extended to allow for optimization of Core BPMN
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models, here optimization refers to the automated improvement of business
processes using quantitative measures to evaluate the degree of improvement.
This approach greatly simplifies implementing a process re-engineering life cycle
as the automated optimisation can help guide the design of new processes by
suggesting new improved designs of an existing process.

A survey by Mansar and Reijers [181] conducted in 2003 of 24 UK and Dutch
companies which were BPR practitioners leads to the suggestion of a set of best
practices to be employed when implementing BPR in terms of trying to deliver
a process design that is in some sense superior to the existing one. These best
practices, shown in Table 8.1, motivate the design of the automated analysis
framework developed here.

The optimisation approach presented here allows for the optimisation of business
processes where the optimisation objectives are broadly defined. Specifically,
optimisation goals are defined using real-valued Probabilistic Computation Tree
Logic (PCTL) queries and model checking is employed to construct a weighted
fitness score for a given business process with respect to the optimisation goals.
The core functional requirements for an optimised variant of a business process
are similarly defined using PCTL queries, but with the difference that they are
required to return boolean values. Central to this approach is a convenient
representation and set of functions that modify Core BPMN models using
to introduce parallelism or perform resequencing, as suggested in Table 8.1.
This representation and associated modification functions are then used in an
evolutionary algorithm which produces an improved business process in the same
BPMN formalism as the input business model. The overall approach is shown in
Figure 8.2.

It should be noted that the improved model generated by the approach shown
in Figure 8.2 can then itself be used as the basis for further optimisation as
illustrated by the dashed line. In this case termination of the optimisation
process depends on a choice of how many generations of derived models ought to
be explored. Further, it should be noted that this approach can be parallellised
more than is illustrated in Figure 8.2 such that variant generation produces a
range of models which are checked in parallel for each iteration of the algorithm.
Finally, it should be noted that the variant generation step can be tuned to adjust
the relationship between the amount of crossover and mutation performed.
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Best Practice Usage Definition

Task Elimination 94% Eliminate unnecessary tasks from a
business

Integral Business Technology 94% Try to elevate physical constraints in
a business process by applying new
technology

Task Composition 89% Combine small tasks into composite
tasks and divide large tasks into work-
able smaller tasks

Parallelism 88% Consider whether tasks may be exe-
cuted in parallel

Specialist-generalist 88% Consider to make resources more spe-
cialised or more generalist

Resequencing 88% Move tasks to more appropriate posi-
tions in the sequence

Integration 76% Consider integration with a business
process of the customer or a supplier

Empower 76% Give workers most of the decision-
making authority and reduce middle
management

Numerical involvement 76% Minimise the number of departments,
groups and persons involved in a busi-
ness process

Order assignment 53% Let workers perform as many steps as
possible for single orders

Table 8.1: Definition and level of usage of BPR best practices amongst
practitioners (Source [181])

8.1.1 Related Work

Compared with the large number of proposed business process modelling tech-
niques and manual improvement methodology approaches a study by Vergidis et.
al. [278] concludes that business process optimization, in the automated sense,
has received relatively little coverage [278]

Awad et. al. [34] introduced a semi-automated approach to synthesizing process
templates out of compliance requirements expressed in linear temporal logic
(LTL). Based upon a tableau proof procedure for temporal logic, this work
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Figure 8.2: The overall approach taken to automated business process
optimisation.

generates process models that are synthesized from compliance rules such as the
Sarbanes-Oxley Act. Similar work by Goedertier and Vanthienen [117] developed
an algorithm to generate compliant sequence-flow-based process models that
can be used in business process design. The logic behind the obligations and
permissions is made explicit in the form of temporal deontic assignments. In
both cases the generated processes cannot be directly used for implementing a
business process, and serve merely as templates for a final process design.

A related approach to process model synthesis is work by Pešić et. al. [219] who
proposed a more declarative approach. Their DecSerFlow language, based on
LTL rather than a traditional imperative process modelling language, builds
models by specifying what should be done without specifying how it should
be done. This is done by exploiting the fact that for every LTL formula a
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Büchi automaton can be generated. However, these automata are not readily
understood by the business community and additional work remains to be done
to translate these automata back into business process models.

A data mining approach has been proposed by van der Aalst et. al. [26] with the
aim of deriving business models from workflow logs containing information about
a business process as it is being executed. Their method, termed workflow mining,
has a usably low complexity bound, but suffers from the need to extensively
instrument an existing business process so as to be able to generate workflow
logs. Further, problems of noisy log data and deriving more complex properties
than task ordering remain to be solved [21]. Finally, the resultant business model
takes the form of a Petri-net, a formalism also not commonly employed by the
business community.

In [22], van der Aalst and van der Hee present another approach to automating
BPR approach, where business processes are modelled as high-level Petri-net and
formal analysis techniques are applied to determine a number of performance
properties with the aim of optimising resource allocation. While this work
presents a powerful technique to allocate resources it does not restructure the
Petri-net model itself. Instead, the step of arriving at a “To-be” model from an
“As-is” model, shown in Figure 8.1, requires creative input from a business process
designer who must imagine how a model can be altered to further improve it.
Further, this work does not incorporate stochasticity, limiting its applicability
to real-world business processes.

An approach by Jaeger and Prakashby [147] does allow for automatic restructur-
ing of a business processes models where quantitative goals are used to guide
the search for improved models. Analysis of individual models is done by means
of simulation, and how quantitative properties are evaluated must be manually
defined. The search for improved business processes employs an artificial in-
telligence inspired approach where a number of heuristic functions are used to
make a guess at which modifications from a predefined set are likely to produce
improvements. While this work does not incorporate stochasticity, it does seem
to scale quite well and is able to output improved models, described using a
specially defined annotated flowchart notation that is also used as input.

A unique approach is taken by Kamrani et. al. [150] which allows optimizing a
BPMN business process model with the objective of finding the most beneficial
assignment of tasks to agents, without modifying the structure of the process itself.
However, only basic resequencing of the model is performed, the optimisation
goals are limited, and the measure of model suitability is only approximately
determined by simulation.
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An approach which makes use of a evolutionary algorithm approach is that
developed by Medeiros [184], where data mining event logs of executing business
process are used as input to a genetic algorithm which constructs workflow-net
models which are both complete (can reproduce all the behaviour in the log)
and precise (do not allow for extra behaviour that cannot be derived from the
event log). A key innovation of this work is the use of an adjacency style matrix
representation of the structure of the workflow net which is similar to what is
employed in this chapter. A key distinction between the analysis of this chapter
and the work of Medeiros is that the Core BPMN input language used here
allows for stochastic behaviour and the focus for this analysis is on design-time
optimisation of processes where event log data is not available.

8.2 Optimisation of Core BPMN models

In this chapter, optimisation of Core BPMN Business Process Diagrams (BPDs)
is inspired by the PRLC approach, shown in Figure 8.1, where the core concept
of iteratively improving processes is intended to performed in an automated
fashion. The crucial step of how to modify a process at each iteration is in turn
motivated by Table 8.1, where specifically resequencing and parallelisation are
chosen as the BPR practices which are most feasible for automated application.
The overall approach is shown in Figure 8.2 and is intended to mimic the
process of biological evolution. It employs a genotype-style representation of the
optimisation problem, variation and selection operators, a fitness function, and
can be formally classed as a evolutionary algorithm [118]. The initial seed from
which evolutionary development can be performed is assumed to be a model of
an existing initial manually constructed model of a new process.

The presentation of this optimisation approach will begin by presenting the
various functions which are employed in the evolutionary algorithm, which is
then presented in Section 8.2.6.

8.2.1 Model Checking Functions

The following two definitions express the application of model checking for the
specified path formulae of a Core BPMN BPD for a specific query target value,
and for an evaluation of an unspecified reward or probability bound by means of
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the ? notation which returns the calculated probability or reward value. Formally,
the evaluation of PCTL queries f, q ∈ Q with a specified target value (f case)
or quantitatively evaluated (q case) is defined as:

Definition 8.1 (Quantitative PCTL query evaluation)
Given a well-formed BPD and a PCTL* query q the function MC? : BPD×Q→
R

+ is defined as the quantitative model checking result of BPD for q, such that:

MC?(BPD, q) ∈
{

[0, 1] if q contains P
[0,∞[ if q contains R (8.1)

Definition 8.2 (Specific PCTL* query evaluation)
Given a well-formed BPD, a PCTL* query f and a specific query value n, the
function MCn : BPD×Q→ {true, false} performs model checking of the BPD
to determine if f is satisfied.

8.2.2 Optimisation Goals

To make it possible to combine multiple weighted objectives, and to have sets
of optimisation goals in which both rewards and event probabilities can be
expressed, an individual optimisation goal is defined as follows:

Definition 8.3 (Optimisation Goal Tuple)
A goal is a tuple G = (t, w, q), where t ∈ {min,max} denotes if the goal is to be
minimised or maximised, w ∈ R+ is a positive real-valued weight denoting the
relative importance of the goal, and q is a PRISM PCTL* query.

In practice, it is frequently desirable to optimise a business process with regard
to multiple quantitative properties and the set G is used to denote a set of
optimisation goal tuples. The quantitative PCTL* query evaluation function
defined in Definition 8.1 is employed in fitness scoring. For a set of optimisation
goal tuples G, the relative improvement of a new BPD BPD′ compared to the
existing BPD BPD is evaluated by using following function:
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Definition 8.4 (Optimisation Goals Scoring)
Given a well-formed BPD and a set G of optimisation goal tuples, the function
Score : BPD2 ×G→ R is defined as the model checking result of BPD for q,
such that:

Score(BPD,BPD′,G) =

∑
(t,w,q)∈G


w (MC?(BPD′, q)−MC?(BPD, q)) if type(q) = P ∧ t = max
w (MC?(BPD, q)−MC?(BPD′, q)) if type(q) = P ∧ t = min
w
(

MC?(BPD′,q)−MC?(BPD,q)
MC?(BPD,q)

)
if type(q) = R ∧ t = max

w
(

MC?(BPD,q)−MC?(BPD′,q)
MC?(BPD,q)

)
if type(q) = R ∧ t = min

(8.2)
where type : Q → {R,P} determines if a PCTL* query q ∈ Q is a reward or
probability based query.

8.2.3 Functional Requirements

Functional requirements allow the expression of properties which must hold for
any future business process BPD′ derived from a BPD. The set of functional
requirements for an optimised BPD is denoted by F. Like optimization goals,
functional requirements will be defined using PCTL* formulae. In this case,
however, it is required that probabilities or reward values within the query are
explicitly defined, such that the return value of the query is a boolean variable
as defined in Definition 8.2.

Definition 8.5 (Functional requirements check)
Given a well-formed BPD and a functional requirement f the function FCheck :
BPD× F→ {true, false} determines the BPD’s compliance with F as:

FCheck(BPD,F) =
∧
f∈F

MCn(f) (8.3)

Note that for must or must not criteria, P operators are defined with explicitly
defined probabilities of 1 or 0 respectively. This conjunctive normal form
of functional requirements can be efficiently checked in parallel with FCheck
returning false as soon as a requirement is encountered that MCn determines to
be false.
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8.2.4 Selection

A key step in development of an evolutionary algorithm is the selection of members
of a current generation used to derive the next generation. In Definition 8.6,
stochastic sampling with limited replacement is employed. In essence, each
member of a current generation is mapped to a contiguous segment of a line,
such that each individual’s segment is proportional in length to its fitness. A
random number is generated and an individual A whose segment spans the
random number is selected. This process is repeated to obtain a partner with
the restriction that if A is selected a new sample is chosen.

Definition 8.6 (Selection Function)
Given a set of BPDs BPD with fitness scores given by f : BPD→ R, a pair of
BPDs (BPDA, BPDB) is selected such that BPDA 6= BPDB with the following
probability:

P (BPDA ∈ BPD) = |f(BPDA)|∑
BPD∈BPD

|f(BPD)| (8.4)

8.2.5 Variant Generation

When generating variants, the traditional evolutionary algorithm approach
of constructing a separate genotype representation upon which to perform
modification of a BPD is employed. This approach allows the genotype structure
to closely reflect the phenotype structure, and encodings with this property are
believed to make the evolutionary algorithm more robust (i.e. reduce the
probability of fatal mutations), and also improve a system’s capacity for adaptive
evolution [118].

An adjacency matrix style representation MBPD for this genotype is used,
where the vectors vi,j store the reward structures associated with nodes n ∈ N
of the BPD. The phenotype is simply the BPD that is derived from this
representation.

MBPD =


N n1 n2 ··· nj

n1 0 v1,2 · · · v1,j
n2 v2,1 0 · · · v2,j
...

...
...

. . .
...

ni vi,1 vi,2 · · · 0

 (8.5)
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where

vi,j =
{

(pi,j , R1,i, · · · ) if ni links nj with probability pi,j
(0, 0, · · · ) otherwise (8.6)

This representation is somewhat similar to the approach of Medeiros [184], with
the matrix representing the causal relationship between elements in a business
process. However, the vectors also record quantitative data associated with each
state.

The function BPD2MBPD : BPD → MBPD maps a BPD to its adjacency
matrix style representation, and the MBPD2BPD : MBPD → BPD maps a
MBPD to a BPD. This is done using the well-established technique outlined
in [80] with complexity O(n) where n is the number of nodes in BPD.

8.2.5.1 Crossover

Crossover is a genetic operator that aims at recombining existing material in a
current population.

Instead of creating offspring by swapping information from two parents based
upon one or more points in a linear structure as in done in genetic algorithms [118],
a rectangular section of the matrix structure is selected at random. The approach
to crossover follows naturally from the structure of the genotype representation
presented in eq. (8.5). The result of the crossover is then created by using
information from inside a selection rectangle of one parent, and outside the
selection rectangle of the other parent, as illustrated in Figure 8.3.

Various possible optimisations when implementing Definition 8.7 are discussed
in Section 8.4.

Definition 8.7 (Crossover Operator)
Given a pair of BPDs (A,B) ∈ BPD with defined MBPD representations,
crossover is defined by Cross : (MBPD ×MBPD) → MBPD where C =
Cross(A,B) such that:

C[ri − rj ; cn − cm] = B[ri − rj ; cn − cm]

and
C\[ri − rj ; cn − cm] = A\[ri − rj ; cn − cm]

where the sub-matrix indices, ri, rj , cn, cm are randomly chosen between
[0,min(dim(A), dim(B))] such that (rj < ri) ∧ (cm < cn).
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Figure 8.3: Illustration of the crossover operator applied to MBPD
representation of a business process.

8.2.5.2 Mutation

The mutation operator aims at inserting new material in the current population.
Mutation is also an operator which is applied to the MBPD representation of a
BPD and is intended to complement the crossover operator by injecting small
local changes to a BPD. Mutation is defined so as to allow for considerable
variation of a source BPD.

Definition 8.8 (Mutation Operator)
Given a BPD, with a defined MBPD representation and mutation rates
rresequence, rparallelize ∈ [0, 1] perform mutation Mutate : MBPD× → MBPD
such that for each row at index m in the MBPDs if Type(ni) = T:
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1. With probability rresequence swap the column of the non-zero vector vm,j1

to a new position j2 6= j1.
2. With probability rparallelize add rows rm − 1 and rm + 1 to the MBPD

and add vectors vm−1,j1 and vm+1,j2 in the columns j1 and j2 such that for
the element vm,j the following sequence relations nm−1Snm and nSnm+1
hold.

Definition 8.8 allows mutations to have two effects on a BPD:

1. Resequencing: Illustrated in Figure 8.4, this modification alters the BPD
element S which defines sequence flows. Specifically, it alters the relation
between two nodes in the sequence flow (e.g. A and B in Figure 8.4(a)),
replacing the destination node with a different node (Figure 8.4(b)) and
reconnecting any excluded nodes to follow after the resequencing (Fig-
ure 8.4(c)). In effect, randomly reordering the sequencing of a number of
tasks in the BPD.

· · · · · ·A B C D

(a) Before

· · · · · ·A

B

C D

(b) During

· · · · · ·A C B D

(c) After

Figure 8.4: Illustration of application of the resequencing operator.

2. Parallelisation: This modification is illustrated in Figure 8.5 and func-
tions by injecting pairs of parallel merge and fork gateways. These can be
injected at any point other than at start and end elements (e.g. between A
and D in Figure 8.5(a)), and the nodes between the injected gateways are
initially all assigned to one of the parallel paths (e.g. Figure 8.5(b)). Note
that when this is combined with the resequencing operator both parallel
branches will eventually contain nodes.
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· · · · · ·A B C D

(a) Before

· · · · · ·A

B

C

D

(b) After

Figure 8.5: Illustration of application of the parallelisation operator.

It is tempting to consider a more refined version of the parallelisation operator
which avoids performing parallelisation in cases when it obviously will produce an
invalid variant, i.e. their is a constraint which explicitly forbids the parallelisation
of two tasks. However, in practice no refinement has been found which does not
involve performing an amount of work that is broadly equal to the burden of
simply model checking to check if the variant is valid.

8.2.6 Optimisation Algorithm

The approach in this thesis to the optimisation of business processes is to take an
existing business process, modelled as a Core BPMN BPD and search through
possible iterative modifications of this BPD to arrive at an improved version in
the fashion shown in Figure 8.2. Algorithm 5 uses the key functions described
above to perform optimisation of a BPD and, by performing modifications
directly on the BPD, ensures that the final improved process is also a BPD
and requires no special interpretation by end users.

The influence of the various constants employed in Algorithm 5 is discussed
separately in Section 8.4.

In Algorithm 5, an initial population of variants of the input BPD of size
pop_size is generated by means of a while loop in lines 2-7. Specifically, each
variant BPD′ is constructed by applying the MBPD2BPD function to the Mutate
function operating on the MBPD representation of the original BPD with
a chosen mutation probability rate of rmutation_initial (line 3). Due to the
computational expense of performing quantitative model checking of a BPD,
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Algorithm 5: BPD Optimisation
Input: A Core BPMN BPD with Rewards, a set of optimisation goal tuples G,

a set of functional requirements F, and a generation limit and
population size gen_limit,pop_size ∈ N+

Output: A BPD optimised with regard to G and not violating F.
1 i← 0
2 while (i < pop_size) do //Generate initial population
3 BPD′ ← MBPD2BPD(Mutate(BPD2MBPD(BPD), rmutatuion_initial))
4 if WellFormed(BPD′) ∧ FCheck(BPD′,F) then
5 V ariants[i]← BPD′

6 Fitness[i]← Score(BPD,BPD′,G)
7 i+ +

8 generation← 0
9 while (generation ≤ gen_limit) do //Evolve population

10 i← 0
11 while (i < pop_size) do //Generate children
12 (BPDA, BPDB)← SelectPair(V ariants[i], F itness[i])
13 BPD′ ← Cross(BPD2MBPD(BPDA),BPD2MBPD(BPDB))
14 BPD′ ← Mutate(BPD′, rresequence, rparallelize)
15 BPD′ ← MBPD2BPD(BPD′)
16 if (WellFormed(BPD′) ∧ FCheck(BPD′,F)) then
17 V ariants[i]← BPD′

18 Fitness[i]← Score(BPD,BPD′,G)
19 i+ +

20 BPD ← ChooseHighest(V ariants[], F itness[])
21 generation + +
22 return BPD

some variants are excluded before evaluating their quantitative properties. This
filtering is performed in line 4 where the function WellFormed determines if the
structural semantic rules of Section 3.3.2 hold for BPD′ and function FCheck (see
Definition 8.5) checks if BPD′ conforms with a set of functional requirements F.
Subsequently BPD′ is added to an array of variants (line 5) and its corresponding
fitness score as determined by the function Score (see Definition 8.4) is stored in
a separate fitness array at the same index point i in line 6. Finally the array
index is incremented before the generation of the next variant in line 7.



192 Optimisation of Business Processes

In line 8 a generation counter is initialised. Subsequently in lines 9 -21, the
evolution of the initial population takes place within a while loop for a number
of generations determined by the generation limit gen_limit which is an input
to the algorithm. First in line 10, a counter of the current population size of a
generation is initialised to 0.

Next a new child population, of size pop_size, is generated by means of a while
loop in lines 11 -19. This is done, in line 12, by selecting a pair of BPDs from
using the function SelectPair from elements of the array of variants of the previous
generation in a fashion that is proportional to their associated fitness scores (see
Definition 8.6) (note in the first iteration these variants will be members of the
initial population). This pair is used to generate a new variant BPD′ using the
crossover operator Cross applied to MBPD representations of BPD′ (line 13).
Next, in line 14, the function Mutate performs a number of alterations of BPD′,
currently containing an MBPD representation, dictated by the mutation rates
rresequence and rparallelize. At this point, in line 15, the MBPD representation
BPD′ is mapped back to a standard BPD representation.

If a variant proves to obey the structural semantic rules of Section 3.3.2 and
meets functional requirements F (line 16), it becomes part of the next generation
by being added to the variant array (line 17) where its associated fitness score is
stored in the associated fitness array (line 18) and the array population index is
incremented (line 19).

Having generated a new child population, the function ChooseHighest selects
the highest fitness scoring member of the final generation with regard to the
optimisation goals G and stores it as the current BPD (line 20). In line 19 the
generation counter is incremented, before the next iteration of the generation
loop.

Having completed execution of Algorithm 5 the BPD BPD will contain the most
optimal, functionally correct variant of the original input BPD that could be
found, within the search parameters. Note that Algorithm 5 may not terminate
as generation of populations may never produce a child that is both functionally
correct and obeys the Core BPMN structural semantic rules. In this case an
implementation should seek to terminate variant generation and present the
result found so far. Alternatively a new initial population can be generated
and crossover performed between this population and the best found so far. A
number of specific implementation strategies are discussed in Section 8.4.
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The worst case execution time, in the case when Algorithm 5 terminates, is
O(nm) where n and m are gen_limit and pop_size. Note that each execution
involves performing PCTL model checking, which in turn is linear in the size
of the PCTL formula |φ| and polynomial in the size of the state space |S| (see
Appendix A.7).

8.3 Optimisation Example

To illustrate an application of this method, an example of a simple business
process inspired by hospital operations of the type described in Section 1.1,
where patients are treated with chemotherapy drugs, is used. Fig. 8.6 is an
example of such a process which is annotated with rewards and information
about its stochastic behaviour. This naively-designed business process consists of
two processes: Doctor, modelling the actions of a doctor, and PharmacyRobot,
modelling the actions of a robot which prepares drugs for use by the doctor.

Figure 8.6: BPD model of a doctor and pharmacy robot system before
optimisation.

In this model, when the Doctor process is in the ready state, a patient is received,
and the doctor then proceeds to perform actions in a linear sequence. Specifically,
the doctor begins by examining the patient’s medical records which takes 240
seconds. He then questions and assesses the patient (120 seconds) and then scans
the patient (300 seconds). In this simple example, the doctor always proceeds to
treat the patient by requesting a chemotherapy drug from the PharmacyRobot
process.

The PharmacyRobot process can progress beyond its ready state when an order
is received. At this point it proceeds to prepare a drug, an action which has two
associated reward structures, capturing the time taken (500 seconds) and the
amount of drugs used (1 drug). It then prints a tracking label to be placed upon



194 Optimisation of Business Processes

the order (80 seconds) and sends the drug (120 seconds). After having sent off
the drug order, the robot makes a choice between resetting to its ready state
or turning off and going offline. In terms of the semantics of stochastic Core
BPMN this means that the PharmacyRobot process makes a non-deterministic
choice between these options, where each choice has an associated probabilistic
value with a probability of 1.0.

Once the Doctor process receives the drug, the next step is to prepare to
administer it (60 seconds). After preparing the drug the Doctor process makes a
non-deterministic decision whether to treat the patient with the drug, or whether
the Doctor has deemed that a bad (incorrect or unsafe) dose of drug has been
sent and resets the process. In the case when the Doctor process decides the
drug is ok and chooses to treat the patient there are two probabilistic outcomes
of this action: with a probability of 0.8 the treatment is successful and the
Doctor process reaches its end state. However, in the case where treatment is
the decided cause of action, there is a probability of 0.2 that the treatment is
not effective and, in this simple example, the application of the same drug is
eventually repeated.

8.3.1 Example Optimisation Goals

Inspired by requirements in hospital operations of the type described in Sec-
tion 1.1, the following set of optimisation goals and functional requirements are
a reduced but representative set, of the type of goals and requirements placed
on medical workflows.

For the business process described in Figure 8.6 it is desirable to see an im-
provement in the time taken for a doctor to complete treatment of a patient.
Further, it would also be desirable that the rate of drug consumption and the
consequent probability, given a specific drug stock size, of running out of the
drug is kept as low as possible. These requirements G are expressed, using goals
from Definition 8.3 as:

G = {(min, 1,Rtime
min [F SendHome]), (min, 1,Pmin[F DrugExhausted])} (8.7)

In addition to the optimisation goals, a number of functional requirements, F,
exist for this process:

1. The review of the patient’s medical history should take place before the
Doctor assesses the patient:
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Pmin = 1 [ review U assess ]
2. All analysis of the patient, assessment, scanning, history review (in any

order), must take place before a drug is administered:
Pmin = 1 [F(assess ∧ scan ∧ history ) U admin ]

3. The Doctor cannot administer the drug before he has requested it.
Pmax = 0 [ admin U request ]

4. The PharmacyRobot must ensure that a drug has been prepared and
labelled (in any order) before it is sent to the doctor.

Pmin = 1 [F( prepare ∧ label ) U send ]
5. When the doctor determines that a bad dose of drug has been received, he

must immediately request a new dose.
Pmin = 1 [F( bad_drug (X request ))]

Note that the final functional requirement (Item 5) is not currently satisfied by
the initial BPD shown in Figure 8.6.

8.3.2 Example Optimisation Outcomes

Figure 8.7 illustrates one possible outcome of applying Algorithm 5 to the
BPD shown in Figure 8.6. Specifically, this is the outcome of 28 generational
improvements of population size 500 of the variants per generation. In the
case of this example, the rates rresequence and rparallelize are set so that the
Mutate function ensures that considerably more resequencing modifications are
performed than parallelisation modifications. The exact choice of these rates was
found through experimentation with the values of rresequence ∈ [0.25, 0.65] and
values of rparallelize ∈ [0.1, 0.2] frequently leading to convergence on a process
exhibiting some degree of improvement in less than 30 generations.

In this run of the optimisation method, two opportunities to parallelize actions
are identified. Within the PharmacyRobot process, the drug can be prepared
and the label printed to be placed on the order at the same time. In the Doctor
process, it is possible to scan the patient while simultaneously reviewing the
medical record and then doing an assessment of the patient. In both cases this
saves time, as when performing actions in parallel only the path with the slowest
behaviour is counted towards the parallel section’s contribution to the reward
value. Further, note that the new functional requirement (Item 5) is now satisfied
and receiving a bad_dose of drug immediately leads to a request for a new dose.
It should be noted that doing tasks in parallel might be too demanding for the
Doctor process if it only consists of a single human doctor, but even in this case
it can suggest new designs for the process and technology, such as an automated
medical scanner, could be used to realise it.
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Figure 8.7: Post optimisations BPD model of a doctor and pharmacy robot
system after 28 generations with a population size 500.

In this simplified example, the doctor always orders a drug to treat a patient,
but the doctor must wait while the Pharmacy Robot performs its operations
and then delivers the drug. As the drug will inevitably be needed, and only
the administration of the drug needs to be done after the patient has been
examined, it is within the functional requirements for the process, and results in
a considerable time saving, to order the drug immediately before even examining
the patient. This ensures that there will be no delay imposed on the Doctor
process by the actions of the Pharmacy Robot process. While this optimisation
seems somewhat unrealistic, it does not violate the functional requirements
and is a natural consequence of the stated optimisation goals as it results in a
significant reduction of the time taken for the execution of the business process.
This highlights a limitation of the method in that the functional requirements
for an optimal process must be carefully specified.

8.4 Evaluation of the Optimisation Method

This section reflects on the pros and cons regarding the proposed optimisation
approach for a qualitative perspective. The performance and scalability of this
approach is explored in Section 9.3.5.

The foundations of the synthesis of concurrent programs under quantitative
constraints have been pursued by Černý et. al. [68], resulting in a proof that the
complexity of this category of synthesis problems lies in the NEXP-complete
complexity class. Hence, in the general case, they can be solved in time O(2p(n))
for some polynomial p(n). While this bound also applies to the method described
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here, evolutionary algorithms can often find near optimal solutions considerably
faster. However, the fundamentally stochastic nature of evolutionary algorithms
makes predicting the time taken for each optimisation search challenging and sev-
eral runs of the algorithm with the same tuning properties may have convergence
times that vary by several orders of magnitude.

The focus of efforts to obtain more reliable performance from the optimisation
approach is to employ parallelisation of individual model checking runs. In
particular the generation limit gen_limit and population size of pop_size dictate
the average run time. Tuning these values to closely match the available computa-
tional resources in terms of parallel processing units available provides significant
speed up if all processing units can be kept busy. Experimentally extending
child generation runs in Algorithm 5 to terminate when, a threshold fraction
of parallel processing units become idle leads to overall reductions in run time
at the expense of greater variance in convergence time. This approach leads to
generally better results, both in terms of convergence and degree of improvement,
than an alternative where, as fitness checking steps are completed (evaluation of
the score function), results are compared, and if significant improvement is not
discovered, the pathologically slow searches are terminated. This seems to be
due to the fact that while obviously incorrect models can quickly be checked, an
individual long model checking run is a sign that no property violation has yet
been found and may likely be a good candidate process for the next generation.

When performing crossover, ensuring basic structural restrictions provide better
performance, by ensuring more variants are produced which obey the structural
semantic rules. Computationally suitable restrictions are ensuring that the
diagonals in the MBPD must be zeros or that each task represented in the
MBPD has only one entry for each row or column. This provides a clear
performance improvement in a practical implementation when applied to checking
systems where model variant generation dominates the execution time. This is
due to the fact that while crossover is less likely to produce a model that is not
structurally sound than what is generated by mutation. However, it may well
not meet the functional requirements which are checked via model checking.

In terms of the search of possible improved models performed by Algorithm 5,
the population size, pop_size, determines the breadth of an optimisation search
and the generation limit, gen_limit, the depth of search. Tuning these values
is heavily dependent on the specific model being tackled and how far away an
optimised solution is expected to lie from the current BPD. For problems which
are already close optimal, increasing pop_size limit lead to faster convergence
on high fitness score solutions, in fewer generations. Whereas in cases where a
model is clearly far from optimal increasing the generation gen_limit increases
the chance that an optimised variant that is significantly different from the
original BPD will be found. However in the case of large values of gen_limit
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a phenomenon known as bloat [192] occurs where after many generations of
improvement the fitness score becomes largely static and the BPD starts growing
at a rapid pace. Where typically the increased size is not accompanied by any
corresponding increase in fitness.

Goal weights affect both the rate of convergence on a solution and, of course,
the specific solution found. In theory, at generation ∞ one set of weights would
give one specific solution from a set of equivalent solutions. [118]. However in
practice, it seems best to experiment with a range of values around the desired
goal weighting. Again the stochastic nature of evolutionary algorithms makes
performing repeatable experiments in this area difficult.

The basic concept of evolutionary algorithms is that they are designed to simulate
the natural process of survival of the fittest. Specifically, evolutionary algorithms
generate new solutions to a problem in three ways. The initialization of the
population is a source of new solutions. Mutation generates variations of existing
solutions, and crossover blends solutions. When working well, crossover is a
source of large innovations. However, an unavoidable problem with standard
evolutionary algorithms is that they lose diversity rapidly, because after a
number of generations, crossover happens mostly between elements of the same
approximate type. The result is that most crossover is wasted effort. Mutation is
therefore employed to help maintain diversity [118]. In the context of Algorithm 5,
this practical principle of evolutionary algorithms was found to apply. Modifying
the rates rresequence and rparallelize towards larger values (closer to 1) tended to
lead to faster convergence towards a solution. However, too large values for
these rates, typically rresequence ≥ 0.85 and rparallelize ≥ 0.6 prevent finding any
improved process at all. This is due to the fact that the mutation operator must
be tuned so as to successfully preserve diversity through successive generations
by introducing a sufficient amount of new information into models. It must
not produce too much diversity as this leads to a large number of BPDs which
are invalid with respect to the structural semantic rules for Core BPMN. This
reduces the approach virtually to simply trying random BPDs in the hope that
they will provide a degree of improvement.

Fundamentally, choosing the correct resequence and parallelize rates is the
mechanism by which “building blocks” of an improved solution are aggregated.
From a theoretical perspective the effective variant of the Schema Theorem [192]
that governs this work can be seen as conservatively parallelising and reordering
sections of the BPD which contribute to optimising the chosen set of optimisation
tuples G. Further, when performing mutation, enforcing the structural semantic
rules after each individual modification leads to an effect that seems to mirror the
effect of reducing both pop_size, and gen_limit, leading to often to converging
runs but which do not exhibit much improvement.
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The structure of the source BPD also is of great significance when employing
this optimisation approach. The number of reward annotations, for which there
are specified optimisation goals, in the source BPD effects the tractability of
the problem. If there are not enough rewards, initial improvements never get
discovered, or a trivial solution (local maxima) dominates. Further, very few
highly linear processes generally benefit from a higher rresequence rates than those
with a large degree of branching. Further If the functional requirements make
few explicit sequencing demands, increasing rparallelize tends to find higher fitness
score solutions.

The need to specify functional requirements of an optimised BPD can be laborious
and a complete set of requirements can become very large for a real-world model.
However, the process of producing such a list has been found to be valuable
to business practitioners as it focuses attention on what the actual purpose
of the business process is. This is very much in line with the first step of the
business process re-engineering life-cycle [89]. Fundamentally PCTL, even in the
PCTL* variant, is not expressive enough to formalize all reasonable structural
constraints, as formalizing the branching structure up to bi-similarity would
require the full expressiveness of the µ-calculus.

The work of Pešić et. al. [219] employs Linear Temporal Logic (LTL) for
functional requirements placed on web-services, and restricts the use of LTL to
only represent sequences of single events for reasons of performance. The basic
performance problems in the applying the optimisation approach presented here
apply to the work of Pešić et. al. also. However, in this case when the functional
requirements are specified in a fragment of PCTL* which restricted to only
the probabilistic Computation Tree Logic (CTL) component an improvement
is possible. The time complexity for PCTL model checking over an Markov
Decision Process (MDP) is linear in the size of the PCTL formula and polynomial
in the size of the models statespace |S| [39]. However the overall complexity
checking of LTL formulas is exponential in the LTL formula and polynomial
in |S| [39]. While this performance improvement of the optimisation approach
presented here comes at the cost of expressivity of functional requirements, it
does make this approach somewhat more feasible.

All in all this optimisation approach can still be considered experimental and
requires considerable computing resources and considerable investment in terms
of defining functional requirements to be readily applicable for dealing with
real-world processes. A discussion of broader conclusions that can be drawn
about these results and suggestions for future improvements will be in pre-
sented Chapter 10.
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8.5 Chapter Summary

This chapter presents an advanced application of the developed framework for
analysis of business processes which exploits the fact that model checking of busi-
ness processes is relatively computationally inexpensive when using Probabilistic
Symbolic Model Checker (PRISM) and can be parallellised for separate model
checking problems. An evolutionary algorithm is developed to explore variants
of a given business process for possible improvement, by means of mutation,
crossover and selection operators. This algorithm is able to find optimised
variants of Core BPMN processes, while observing a set of functional constraints
which express properties which must hold for a final optimised process.

A small example is presented of the application of this method which is able to
automatically reconfigure a business process under a set of functional require-
ments of weighted optimisation goals. This is used to motivate a discussion of
the overall character of this approach.



Chapter 9

SBOAT

“Every program has at least one bug and can be shortened by at least
one instruction - from which, by induction, it is evident that every
program can be reduced to one instruction that does not work”

(Ken Arnold 1986)
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Overview

This chapter describes the tool: Stochastic BPMN Optimisation Analysis Tool
(SBOAT), which implements the unified specification and analysis framework
presented in previous chapters. It allows a user to model Core Business Process
Model and Notation (BPMN) processes, and annotate them with rewards,
stochastic branching, and faults. The description of SBOAT covers the design
of the GUI, central data structures and support for cloud compute resources,
along with a number of practical issues to improve the performance of analyses
presented. Using SBOAT, the extent to which the various analyses presented
in this thesis are able to scale to tackle business processes of a range of sizes is
explored.

The development with SBOAT and examples using SBOAT have been presented
in previous work [3]–[5].

9.1 SBOAT

SBOAT is a software implementation of the main ideas in this thesis. It evolved
from a previous tool: Stochastic BPMN Analysis Tool (SBAT) which only
implemented the Core analysis presented in Chapter 5 (excluding scheduling
analysis) and allowed for model construction via an eXtensible Markup Language
(XML) based model description language for Core BPMN Business Process
Diagrams (BPDs) loosely based around the XML Process Definition Language
(XPDL) file format. SBAT was built on top of version 3.3.1 of the Probabilistic
Symbolic Model Checker (PRISM) tool. The primary use of SBAT was as a pilot
version for the development of SBOAT which implements the entire framework.

SBOAT, in its latest version (0.45 ) is built on top of PRISM version 4.1 dev-
r7596 [217]. SBOAT implements a graphical user interface that should be readily
familiar to users of Business Process Management (BPM) modelling tools. To
enable the analysis to scale flexibly it employs cloud computing technologies that
allow for applying significant parallel computational resources to the analyses
when required.

Note that due to legal requirements and copyright infringements specified in a
non-disclosure agreement with the industrial partner, the SBOAT tool cannot be
made publicly available. Furthermore, the examples from the industrial partner
of concrete medical workflows cannot be made available due to confidentiality
arrangements between the industrial partner and its customers.
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9.2 Overall SBOAT Design

An overview of the Architecture of SBOAT which enables the tool to perform
analysis of Core BPMN models is shown in Figure 9.1. The main elements of
this architecture are described in the following sections.

SBOAT GUI

SBOAT

Northwoods GoWPFAvalonEdit Code Editor

SBOAT User Interface

SBOAT Core BPMN to PRISM Compiler

SBOAT Analysis Execution Manager

.NET Platform

PRISM API DLL (IKVM.NET)

PRISM Model Checker

Java Platform

PRISM API DLL (IKVM.NET)

PRISM Model Checker

Java Platform

Execution Platforms

PC Hardware Cloud Compute Service

Figure 9.1: Architecture of the SBOAT tool and environment.

SBOAT is implemented in C# and employs IKVM.NET [107], a .NET implemen-
tation of a Java Virtual Machine, to be able to statically compile Java libraries,
specifically the PRISM engine and API, into .NET assemblies. This allows for
calling PRISM without the overhead involved in starting an instance of the
Java virtual machine. A key motivation for employing C# for development was
that the SBOAT would be able to be integrated into a larger tool-chain of the
industrial partner. However, code profiling suggests that the memory allocation
strategy of a .NET virtual machine leads to a slight speed improvement when
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running PRISM on models of small size (as shown later in Figure 9.5). Above
this threshold size, performance of PRISM model checking runs is equivalent to
running PRISM on the Java virtual machine.

The design makes extensive use of established software components. This is due
to a desire to not “reinvent the wheel”. Therefore, the components used are all
well established .NET components as the manual development of any component
used, to an equivalent quality standard, would have taken more time than the
entire PhD project.

The main components used are:

• AvalonEdit [231] is a Windows presentation foundation based code-editor
employed in the open-source SharpDevelop C# code editor. It support a
flexible code highlighting a parsing mechanism which is used for showing
the XML based representation of Core BPDs and generated PRISM code.
It provides parsing, at the syntax level, of these representations and handles
reading and writing these file formats.

• Northwoods GoWPF is a Windows presentation foundation based imple-
mentation of the GoXam user interface controls for implementing diagrams.
It provides data structures for and supports the rendering of a wide range
of graph-based structures. Of particular note, in terms of the design of
SBOAT, is the support for highlighting sub-graphs (groups of nodes), col-
lapsing and expanding trees in-place (used for manageable presentations
of fault trees) and automatic layout of graphs. In addition, it provides
support for link (edge) and node annotations and drawing new links or
reconnecting existing links, with validation.

• SBOAT Core BPMN to PRISM Compiler implements the checking
of a number of global Core BPMN structural semantics rules, as described
in Section 3.3.2. Furthermore, it provides an implementation of the trans-
lation from Core BPMN BPDs to PRISMmodels as described in Section 5.4.

• SBOAT Analysis Execution Manager handles the execution of indi-
vidual instances of the PRISM model checker. It supports setting various
properties of the BPMN analysis engine, parsing the output of analysis
runs and the caching of generated statespaces in cases where a model has
not changed between analysis runs. Furthermore, it manages the parallel
execution of multiple instances of the PRISM model checker.

• .NET Framework is a well-established software framework developed
by Microsoft that runs primarily on Microsoft Windows. It includes a
large library. Programs written for the .NET Framework execute in a
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software environment (as contrasted to hardware environment), known
as the Common Language Runtime, an application virtual machine that
provides services such as security, memory management, and exception
handling. The class library and the Common Language Runtime together
constitute the .NET Framework.

• PRISM API DLL is a statically compiled combination of the PRISM
engine and Application Programming Interface (API). This component is
constructed by means of IKVM.NET [107], a .NET implementation of the
Java virtual machine. It should be noted that the specific version of PRISM
used for this purpose is modified to allow scheduling generation queries
(multi(...) keyword) over any number of unbound reward structures.

• Execution Platforms can be chosen when performing analysis. SBOAT
either supports running analysis locally on the machine hosting the SBOAT
tool or it is possible to make use of a cloud compute service. Specifically,
SBOAT supports the use of the Microsoft Windows Azure platform which
is a cloud computing platform and supporting infrastructure, created by
Microsoft, for building, deploying and managing applications and services
through a global network of Microsoft-managed datacenters. The Windows
Azure Platform provides an API in the form of a client-side managed class
library which encapsulates the functions of interacting with the services.
This allows for distributing PRISM instances over a large number of
processor cores, along with extensive features to manage the workload of
each core.

9.2.1 User Interface

The user interface of SBOAT is shown in figure Figure 9.2.

The user interface consists of a tool-bar at the top of the application which
is used to load and save models, export statespaces, start a series of analysis
runs or obtain limited help. On the left hand the main modelling area is a
pallet of Core BPMN elements which can be dragged into a main modelling
area to construct models. Sequence flows between Core BPMN elements are
constructed by clicking on an element and then clicking on different element
to connect the two. If the structural semantic rules do not allow a connection,
the cursor icon indicates this and a tool-tip is provided. A group of elements
may be selected and then marked as a pool and any valid links that cross a
pool boundary automatically become message flows. Right clicking on a link
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Figure 9.2: SBOAT version 0.45 Overall User Interface (enlarged)

or element allows for the annotation of the element. Decision gateways may be
annotated with probabilities and tasks and sequence flows may be annotated
with reward structures.

On the right hand side of the user interface is a series of 7 tabs. These have the
following features:

1. Query Analysis tab (Shown) implements the execution of standard Prob-
abilistic Computation Tree Logic (PCTL) queries as demonstrated in
Section 5.5. The upper half allows setting PRISM engine options (sensible
defaults are chosen), and a text-box allows for input of a PCTL query in
the PRISM query language format. Pressing an “evaluate” button starts
up a PRISM instance to resolve the query. The results are shown in the
box below. In the case when a qualitative query is false a sequence of
labelled nodes are returned and these are then matched to the source
model (where all nodes and transitions have unique label). The GoWPF
based user interface then highlights a path through the model that leads a
violation.
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2. Model Data tab shows the current XML based representation of the
model. This is updated in real time as a model is edited and can be
exported using a button.

3. PRISM Code tab shows the last generated PRISM code representation
of the current model. This can be updated by means of a tool-bar button.

4. Simulation tab allows for generating traces produced by a random walk
through the BPD. At each state it provides information on the accumulated
reward values. This mechanism is implemented by means of a random walk
algorithm which follows sequence flows through a model. When encoun-
tering stochastic gateways, the simulation first randomly chooses a label
and then chooses a specific labelled outflow depending on the associated
probability. In the case of regions of parallel execution one of the parallel
paths are randomly chosen. This tab can be useful for a quick examination
of model behaviour.

5. Schedule tab implements the schedule generation analysis described in
Section 6.1. In the top of the tab there are two boxes, one lists the non-
deterministic actions of the model and a button allows moving actions to
the other box, indicating that they are to be part of the schedule. For
each element in the schedule list of actions a number may be associated,
indicating how many times the action should be performed. A number
of controls allows for setting PRISM engine options and finally a query
text box and output area allow for schedule query specification and output
of results. Note that once a schedule has been generated, the highlight
mechanism of the GoWPF controls is used to highlight the optimal schedule.

6. FTA tab implements fault tree analysis and allows for setting PRISM
engine options, has a button to start the analysis and an output area
showing the activity of PRISM while the analysis is being performed. Note
that using the Fault Tree Analysis (FTA) requires that at least two states
have been annotated with fault-continue or fault-stop faults. Once FTA
has been completed the output is displayed as a tree by means of the
GoWPF controls.

7. Optimise tab implements the optimisation analysis. In this tab the usual
PRISM engine settings can be input along with mutation rates and pop-
ulation sizes. In addition, a text file must be loaded containing a list of
functional PCTL constraints.
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In general using SBOAT involves constructing an annotated Core BPMN model,
choosing the analysis one wishes to perform and then starting the analysis. It
may be desirable to set a number of analysis settings first if one expects the
analysis to be particularly complex.

9.2.2 Main data structures

Within SBOAT the modelled BPD is stored as an adjacency list [80]. This
is implemented using generics, allowing a wide range of data to be annotated
to either nodes or links. Likewise the structural semantics verification rules
associated with individual elements is implemented in a fashion that allows for
easy replacement. This makes it possible for future versions of SBOAT to support
other modelling languages and therefore this implementation allows nodes and
edges to be of any data type, where edges implement a simple interface that
defines connections to nodes. This flexibility also supports almost any type of
reward annotation to be stored in nodes or edges (although only floating point
numbers are used for now). Furthermore, the data structure is mutable and
cloneable, making it possible to build a suitable data structure for a wide range
of possible graph based process languages. Internally, the data structure keeps
a dictionary from nodes to a unordered list of edge elements. Core BPMN are
stored as XML and parsing a file involves building the graph data structure as
elements are parsed for the XML tree.

The other data structures are mostly trivial, with the main other, non-analysis
specific data structure, being the execution log, which records debug information
and the output of PRISM instances.

9.3 SBOAT Performance Evaluation

Analysis in SBOAT is done using the PRISM PCTL query language. The central
idea is that SBOAT manages the execution of multiple PRISM instances so as to
perform efficient analysis. This is focused on parallelising the checking of multiple
queries on an individual model (reusing the same statespace) or performing the
same query over multiple models. This allows SBOAT to efficiently perform fault
tree generation, strategy generation, and, to a lesser degree, business process
optimisation.
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A limitation of this presentation of the SBOAT tool is that the specific cases
on which the tool was employed can not be included in this thesis. Therefore
enlarged versions of the examples from the previous chapters have been created
by hand to explore the scalability of the analysis. These models are inspired by
the type of models encountered in working with the industrial partner.

The performance evaluation shown here, when not otherwise stated, was per-
formed on an Intel Core i7-4810 Processor with 4 cores and supporting 8 concur-
rent threads of execution and 32GB of RAM.

9.3.1 Bounded Rewards

An unusual feature, in terms of model checking, of this analysis framework is
the use of parametrised rewards. The statespace of these models enjoys a large
degree of symmetry, as can be seen in Figure 5.3. Performing analysis of enlarged
variants of a model highly similar to the one given in Section 3.4, albeit with
five bounded reward structures, illustrates, in Figure 9.3, how the analysis of a
typical time to completion query scales when employing bounded rewards.

The large degree of symmetry present in the statespaces of the models checked
in Figure 9.3, allows for employing the methods of partial order [119] and sym-
metry [167] reduction implemented in PRISM. This allow for an efficient internal
representation of these models, as evidenced by the near logarithmic growth in
the amount of memory needed to represent the statespace. Consequently, this
allows for efficient model checking of these models and likewise the growth in
checking time is also approximated by logarithmic growth.

The key finding is that beyond a certain size limit, in models where bounded
rewards produce most of the growth of the statespace, so much symmetry will be
present that there is near logarithmic growth in both checking time and memory
usage. This behaviour means that including bounded rewards in a model has
little impact on the performance of the model checking process.

When exploring the behaviour of a model, it is frequently desirable to try a
range of possible reward bounds. This is implemented in SBOAT by choosing
an unbound variable ui for reward structure i’s upper bound. In this case u
different models will be developed for each reward structure i with a variable
upper bound. This behaviour, described in Section 5.3.1, gives rise, in terms
of the analysis, to a range of models. While the number of models generated
for real world examples can be very large, in this case the checking is easy to
parallelize and additional compute services can be employed to perform the
associated model checking in parallel, and the same logarithmic growth as seen
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Figure 9.3: Bounded reward analysis performance of a time to completion
query for a scaled up model of the example shown in Section 3.4, making
use of five bounded reward structures.

in Figure 9.3 is observed in checking times of each model. Therefore the effective
performance limit of checking a range of models, given sufficient computational
resources, is the same as simply checking the model with the largest possible
value of the bound.

9.3.2 General PCTL checking

PRISM is a highly capable model checker and able to scale to the analysis of
models with sizeable statespaces. Furthermore, the restrictions placed upon
Core BPMN models in Section 3.3.2 ensure that they are limited in terms of the
parallelism they exhibit. In Figure 9.4, a range of manually constructed models
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of various size have been randomly connected by means of message passing
to form ever larger models, to determine the scalability of the general PCTL
analysis technique.

Figure 9.4: General analysis performance, per step, in terms of execution time
for BPD models with an number of elements up to 106.

Note in Figure 9.4, how further (the 2nd query curve) queries only require about
10% of the time taken to perform the initial query. This is due to the fact
that once the statespace has been generated, SBOAT ensures it is reused for
subsequent queries. A set of further queries to be performed can be executed
in parallel such that given sufficient computational resources any number of
additional queries only incur an additional 10% overhead.
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In line with PCTL model checking theory, the model checking problem is
polynomial in the size of the system statespace S. Furthermore, the translation
of BPDs to PRISM models while subject to polynomial growth, constitutes only
a small fraction of the time taken to perform model checking. The largest model
explored in Figure 9.4 has a million BPD elements and exhibits on average
1.5 two-way message exchange between BPDs pools and features at most three
parallel regions within each pool. This level of parallelism seem to reflects a
scaled up version of the typical business processes encountered by the industrial
partner.

An interesting case is the checking of BPDs with a number of elements more in
line with the real-world business processes encountered by the industrial partner
where the number of elements in a BPD is less than 3500 and which feature a
similar degree of parallelism as described above. In this case the checking results
are shown in Figure 9.5.

The erratic performance seen in Figure 9.5, for models of small size has the
noteworthy feature that the behaviour of checking times and memory usage
closely tracks each other and even falls for models with a larger number of states.
This is likely due to PRISM finding opportunities for statespace reduction which
lead to less memory used and improved checking times. However, another
possibility is that the large cache on the platform used is playing a role and
leading to this behaviour as it is not seen to the same degree for large models.
This result is consistent and highlights how in general model checking of small
systems has highly unpredictable performance. Further analysis where a range
of cache sizes is employed should make clear which effect is dominant in this
analysis.

9.3.3 Scheduling analysis

This analysis, in essence, involves performing a standard PCTL query, but due
to the need to keep more of the statespace in memory the limiting factor when
performing this analysis is to a greater degree the amount of memory available.
This is seen in Figure 9.6 where more data points could not be generated within
the memory limit of the platform used.

Figure 9.6 also highlights the close relationship between compacting the states-
pace and the analysis performance achieved. Larger statespace representations
simply take longer to examine. The use of the multi(...) keyword, used when
generating adversaries which optimise multiple reward structures does not allow
for quite as efficient a statespace representation as when performing standard
PCTL queries. While this checking should in principle be as efficient as perform-
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Figure 9.5: General analysis performance in terms of memory and execution
time for models of small size.

ing standard analysis of PCTL queries, in practice the implementation of this
feature in PRISM is still under development and, in particular in more aggressive
application of statespace reduction techniques, is not currently possible.
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Figure 9.6: Scheduling analysis performance in terms of memory and
execution time for enlarged variants of the robot example given in
Figure 6.3, where schedules are generated to optimise two unbound
reward structures and an order of 250 does of drugs.

9.3.4 Fault Tree analysis

The FTA inherently involves constructing a fault tree which, whether done
manually or in an automated fashion, has a complexity bound of O(2n). Using the
technique for automated FTA described in Section 7.3 involve performing, for each
node in the fault tree, a PCTL query for each reward structure of the model and
a single lower-bound probability query. However, once the statespace of a model
is generated evaluation of each query is relatively inexpensive. Furthermore, each
of these queries can be parallellised, meaning that the bulk of the computational
demand is the statespace generation itself. This is evident in Figure 9.7.
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Figure 9.7: FTA performance in terms of memory and execution time for the
doctor example given in Section 3.4.

In SBOAT when FTA is performed the tree data structure of the GoWPF
framework is initialised and starting from the maximal combination of all faults,
nodes are added to the tree. The model which corresponds to the top node is
model checked and the generated PRISM model is cached and employed for all
further model checking runs. Next, for each node in the fault tree the appropriate
model checking is performed to determine relevant probabilities and rewards and
the result is stored in a hash table with keys based on the alphabetical order
of fault terms. When a node is generated which contain a previously identified
combination of faults no model checking is performed, instead a hash table
lookup is used to obtain the appropriate data. Finally, once construction of the
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fault tree is complete the fault tree is rendered using the GoWPF framework
and displayed to the user, where areas with identical results are “collapsed” from
view.

9.3.5 Optimisation

The performance of each individual PCTL check needed when performing op-
timisation has already been explored in Section 9.3.2. However, as is common
for evolutionary algorithms the time taken to perform each optimisation search
is highly unpredictable, the focus in the design of SBOAT is on doing several
optimisation searches in parallel. As the individual searches are completed, their
results are compared, and if no significant improvement is being discovered, the
pathologically slow searches are terminated. A plot of the average time taken to
perform analysis at each generation along with the associated average statespace
size is shown in Figure 9.8.

It is clear from Figure 9.8 that the analysis times are highly unpredictable and
production of this plot required the use of 512 CPU cores on the Azure cloud
platform. In addition, the analysis was set up so that when 80% of the cause
checking a given population had fallen idle, generation of that population was
terminated.

In practical use of the SBOAT tool, once an optimisation run has been completed
the final optimal BPD is rendered using the GoWPF framework and displayed
to the user.

9.4 Chapter Summary

This chapter introduced SBOAT, the software implementation of the unified
framework presented in this thesis. This tool implements the modelling formalism
of Core BPMN in the form a GUI modelling tool. SBOAT employs PRISM as
the underlying model checking with a focus on employing multiple instances of
PRISM in parallel to achieve performance gains in complex analyses.

Experimental results with a series of semi-randomly generated models of various
size are presented and discussed.
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Figure 9.8: Optimisation Analysis Performance for a standard BPD with 1000
elements and a population size of 512 per generation. This plot is
produced over combined analysis runs where rresequence ∈ [0.25, 0.65] and
values of rparallelize ∈ [0.1, 0.2].
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Chapter 10

Conclusions

“The term ‘informatics’ describes our discipline better than ‘computer
science’, as it is now concerned with communicating and informing
as well as with calculation. The most long-lived and famous infor-
matic structure is the von Neumann machine, which gave rise to an
impressive series of languages and theories. But the von Neumann
machine treats primarily sequential computing on a single machine,
and does not scale up to explain modern informatic behaviour.”

(Robin Milner 2009)
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Overview

This chapter concludes the thesis and provides a brief summary of its main
contributions. The approach of using model checking to analyse stochastic
business processes is evaluated in terms of the thesis’s objectives in modelling,
analysis and the various extended analysis. In each case the main strengths of the
approach developed is discussed, together with areas that need further refinement.
During this discussion some possibilities for further development of this framework
are identified. Some final remarks address the broader perspectives of the work
presented in this thesis.

10.1 Contributions

This thesis is motivated by the problems described in Section 1.1. While it was
not possible to incorporate in this thesis more information about the specific
workflows where the industrial partner Intelligent Hospital Systems products
have been deployed, the overall character of examples presented reflect simplified
cases of the industrial problems encountered.

The specific requirement was for a unified framework in which business processes
can be specified, verified and analysed in a precise fashion while only requiring
limited technical knowledge for an end user. This motivated the decision to
develop a unified framework in which a concise stochastic business process
modelling language would be tightly coupled with an analysis based on formal
methods. The ultimate choice of the formal method of Probabilistic Computation
Tree Logic (PCTL) model checking was motivated by consideration that this
approach was the one most likely to allow for fully automated analysis. Once
the modelling language and associated analysis had been developed, this enabled
the construction of a number of advanced analyses which addressed issues
such as scheduling and Fault Tree Analysis (FTA). Further, a requirement to
suggest improved business processes at design-time - given an initial model of a
business process - was explored within the established framework. A software
implementation of these ideas was developed which offered a graphical design of
business processes and automated the execution of the various analyses.

Specifically, the main contributions of the thesis are:
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• An overview of the current state of business process modelling languages
with a particular focus on their potential for formal analysis and their
ability to capture business processes which exhibit stochastic behaviour.
(Chapter 2)

• A formalised sub-set of the Business Process Model and Notation (BPMN)
language was developed as a graph-based language. This language was
based on a trace semantics corresponding to traversal of the underlying
graph structure. This language was then extended with quantitative and
stochastic annotations. (Chapter 3)

• A high-level overview of the current formal method approaches which
would allow for quantitative and qualitative analysis of stochastic systems
was developed with a main focus on the strengths and weaknesses of the
chosen method of quantitative probabilistic model checking. Additionally,
an overview of the current state of the art probabilistic model checking
tools were given and the Probabilistic Symbolic Model Checker (PRISM)
model checking tool was selected as the tool which was best suited for the
analysis of business processes. (Chapter 4)

• The mechanism for analysis itself was to convert business process models
into PRISM models, a process which fundamentally involved the mapping
of a graph-based language to a block-based language representing a Markov
Decision Process (MDP). This allows the PRISM model checker to em-
ployed to analyse models by means of the logic PCTL. (Chapter 5)

• Inherent in the process of MDP model checking is the construction of ad-
versaries that optimise quantitative properties of a MDP. These adversaries
can be considered as encoding schedules of non-deterministic actions within
a business process. As the PRISM tool performs model checking over all
possible adversaries, this allows for its use in a technique which relates
adversary generation to scheduling a multiset of actions. Combined with
optional qualitative constraints, an optimal schedule can be generated for
executing actions within a stochastic business process subject to arbitrary
constraints expressed in PCTL.(Chapter 5)

• The analysis framework allows for the development of a method for the
construction of fault trees. This is achieved by extending the developed
modelling formalism to include the modelling of faults in a business pro-
cess. The structure of a fault tree containing all possible combinations of
these faults is defined and an algorithm presented which determines their
probabilities and the quantitative properties of all combined fault states.
(Chapter 7)
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• By employing parallel execution of the analysis developed in this thesis an
approach to design-time optimisation of business processes is constructed.
The approach does require the explicit definition of functional constraints
required of a future improved business process. Optimisation then takes
the form of an evolutionary algorithm which develops candidates for an
improved business process with respect to freely defined quantitative prop-
erties. (Chapter 8)

• A software implementation of the unified framework, Stochastic BPMN
Optimisation Analysis Tool (SBOAT), was developed. This tool implements
the modelling formalism of Core BPMN in the form a GUI modelling tool.
This tool manages the execution of analyses by means of PRISM, and
provides feedback to the user on the result of the analysis. Experimental
results with a series of artificial models were performed to determine the
performance of an implementation of the framework. (Chapter 9)

Overall, the work of this thesis shows that for an upfront cost of a minor amount
of additional information added to business process models such as reward
structures or points of possible failure, a substantial amount of information
about the behaviour of both the functional and the non-functional quantitative
properties of a stochastic business process can be obtained.

10.2 Evaluation of Objectives

This thesis set out to investigate how to specify verify and optimise business
processes within a unified framework. Specifically, a set of objectives were
defined in Section 1.2 based on the requirements of the industrial partner. In
the following subsections each of these is evaluated.

10.2.1 Modelling Objectives

The first set of objectives is focused on developing a modelling formalism that
can capture business processes in a fashion which:

1. Allow for the modelling of both non-deterministic and probabilistic decision
points. (Objective 1a)
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2. Allow for modelling numerical data and resources associated with a busi-
ness process. (Objective 1b)

3. By means of the imposition of structural semantics serve as a basis for the
formalisation of an established business process modelling language which
is familiar to business practitioners. (Objective 1c)

As the primary goal of this thesis was to enable formal analysis of business
processes it was essential that the modelling formalism used had a formally
defined semantics, that was free from ambiguities in its behaviour. Of the
three main established business process modelling languages, BPMN and Unified
Modelling Language (UML) cannot be said to have a formally defined semantics,
preventing their use as an underlying structure to model business processes within
a unified analysis framework. Yet Another Workflow Language (YAWL) does have
a formally defined semantics, however the semantics of YAWL which are defined
by means of a Coloured Petri Net [294] is extremely complex [252] to the extent
that it prevents efficient formal analysis. In general the limitations of current
business processes languages are elaborated upon in Chapter 2. This motivated
the choice to develop a small concise business process modelling language which
had a clear semantics close to a well established formal language. Specifically
Core BPMN, the developed language, draws inspiration from Communicating
Sequential Processes (CSP) to develop a clear semantic base. In addition
to allowing for formal analysis a formal semantics provides the basis for an
extensible architecture where extensions, in the form of additional constructs,
can be precisely defined and their effect on the language understood.

Objective 1a was motivated by the fact that real-world processes inevitably
exhibit stochastic behaviour. Fundamentally this stochastic behaviour arises
from the uncertainty principle which places fundamental limits on the extent to
which the future state of any physical system can be determined. While medical
workflows are not commonly dependent on quantum mechanical processes, there
is a large degree of uncertainty even in the most routine of medical practices.
Beyond the medical domain it remains the case that business processes have an
underlying stochastic nature either due to either the physical processes on which
they depend, or the unpredictable nature of human behaviour.

The overview of different business process modelling approaches presented in
Chapter 2 highlights the fact that support for stochastic behaviour in established
modelling formalisms is limited. None of the three main established business
process modelling formalisms, BPMN, UML or YAWL directly support mod-
elling stochastic systems. This motivated the need for extending a business
process modelling language to incorporate stochastic behaviour. MDPs provide
a mathematical framework for modelling decision making in situations where
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outcomes are partly random and partly under the control of a decision maker. In
essence, this allows for capturing two types of unpredictable behaviour, namely
that which is probabilistic and that which is non-deterministic in a fashion which
allows them to be independent of each other or combined. This allows for an
intention preserving stochastic semantics to be imposed on business processes,
where choices can be made but their outcomes may not be entirely predictable.
The key limitation of MDPs is that they are discrete systems and stochastic or
non-deterministic behaviour can only be exhibited in transitions between states
of the system. However, this is in line with common business process modelling
languages where fundamentally series of discrete tasks are combined into work-
flows. For this reason it was decided that a modelling formalism that would
be well-suited to the type of workflows motivated by the situation described in
Section 1.1 should incorporate MDP type behaviour. The development of Core
BPMN directly incorporates MDPs as the underlying model of stochastic be-
haviour within a business workflow and therefore Objective 1a can be considered
to be adequately addressed in this thesis.

Objective 1b imposes the requirement to annotate business processes with data
and while this is already permissible in established business process modelling
languages. These allow for data to be associated with models, however their
lack of a formal semantics does not provide a mechanism to determine the
change in these data values as the business process is executed. As the intention
of this thesis is to provide a unified framework which provides both for the
specification and analysis of business processes, data associated with steps in
a business process must be given a semantic interpretation. This is necessary
to be able to determine the evolution of these data structures as the business
process executes. The choice made in this thesis is to employ the domain of real
numbers to capture data associated with a business process. This is an extremely
expressive structure able to model a wide range of underlying data. However,
the approach used in this thesis imposes the requirement that each separate data
structure must be monotonic and consequently it should be noted that a key
limitation of the current framework is that, while separate data structures are
free to either increase or decrease, processes where a single data structure is both
incremented and decremented in the course of execution cannot be modelled. In
spite of this limitation Objective 1b has still broadly been met as data associated
with real-world business processes can frequently be broken down into separate
monotonic structures.

Objective 1c has led to the choice to employ BPMN as the inspiration for the
business process language developed. This was motivated primarily by studies
that identified a compact subset of the language which was overwhelmingly the
most commonly used part of the language. Further, the industrial partner had
experience with BPMN and there exists a number of guides aimed specifically at
employing BPMN in the medical industry [237], [248], [249].
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The modelling language presented in this thesis is a reduced subset of the full
BPMN language, with the primary aim of formalising this language, and making
models described in this notation amenable to formal analysis. This work has
been focused on the core BPMN subset, which as discussed in Sections 3.3.2
and 3.3.4 can frequently be used to simulate many constructs of the full BPMN
language. Many of the omitted constructs, such as specific tasks types which in
the full BPMN language exist in a range of forms covering user tasks, manual
tasks, service tasks, etc., can be captured using a type system to allow for the
basic task presented to function as a base type for the specific variants of this
element. The wider variety of events in full BPMN which allow for multicast
messages and error handling where control flow jumps to one or more pools, can
also be addressed by sub-typing the flow relations with appropriate structural
semantic rules ensuring meaningful connections between elements. As discussed
in Section 3.3.1, many omitted control flow structures can be addressed through
pre-processing of BPMN models before analysis.

However, it should be noted that a few constructs involving abstract processes
or the inclusive OR join are not included in the language developed. While this
omission was not found to be a limitation in the medical workflows encountered
by the industrial partner, and frequently business processes that make use of
this construct use it erroneously [122], there are undoubtedly business processes
which cannot be described without this construct.

In general, a wide range of process modelling languages has been developed in
recent years and a significant proportion of these make use of directed graphs as
their underlying mathematical structure. Therefore, the process of constructing a
formalised version of BPMN, by means of the notion of process graphs amenable
to formal analysis can easily be adapted to other languages which have a
fundamentally graph-based structure.

Of particular note are UML statecharts, also known as a UML state machines,
these are an enhanced realization of the concept of a finite automaton expressed
in UML notation. The description of how a process works (e.g. a business
workflow) is organized so that an entity, or each of its sub-entities, is always
in one of a number of possible states, and there are well-defined transitions
between all states. While not as commonly used to model business processes as
BPMN, the key difference between between Core BPMN and UML statecharts is
primarily notational and UML statecharts models can be translated to PRISM
models in much in the same fashion. By simply replacing the notion of pools and
message passing with the notion of separate statecharts and employing UML’s
notion of action synchronization between these statecharts a formalisation for
UML statescharts can be constructed which is similar to what is done here for the
core subset of BPMN. Fundamentally UML statecharts can be described by using
elements of process graphs, or by directly mapping Core BPMN to UML statechart
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elements. The structural semantic rules needed to make UML statecharts conform
with a reasonable interpretation of the poorly defined UML semantics would be
broadly similar to what is done here for BPMN. It should be noted that UML
models do allow guards on their transitions and these can be mapped directly
to PRISM action guards in the same fashion as the direct mapping of guards
added to reward exhaustion states. The mechanism for stochastic branching of
process graphs (Section 3.2.2) can be used without modification and likewise the
reward functions from Definition 3.7 and Definition 3.8 can be easily applied.

Indeed this approach to formalisation of UML is similar to the work by Jansen et.
al. [148] which formalises UML statecharts and extends them with probabilities
in a fashion similar to that developed here. Their framework also adds data
(in the form of rewards) to a UML model, making it possible to analyse the
resources consumed by a system by means of the PRISM model checker. The
similarity of this approach suggests that the approach taken here to BPMN has
at least been pursued by other researchers.

Having discussed the pros and cons of this modelling approach it should be
noted that the fundamental limitation of model checking, and of all model-based
approaches, is that verification is only as good as the model of the system.
Furthermore, the use of modelling languages with synchronisation constructs
allows for building complex workflows by modelling sub-components that interact
via message passing, allowing the manageable construction of complex business
processes by composing components. This allows the Core BPMN language
used in this thesis to scale to the description of large systems, and allows these
systems to be modelled by separate teams and composed to perform analysis
of enterprise-wide behaviour. Further, despite their formalisation it has been
possible to ensure that they remain a graphical representation that can be readily
employed by business analysts.

It should be noted that while the choice of modelling formalism was originally
motivated by problems in the healthcare industry it can easily be employed in
other industries, for example in the Baked Goods industry, of which an example
is shown in [3].

In conclusion, the modelling approach taken in this thesis has the following
strengths and weaknesses:

Main Strengths:

• A concise graphical BPMN based modelling formalism with formal seman-
tics.

• Amenable to model checking via PCTL.
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• Captures stochastic and nondeterministic business processes, via an MDP
style semantics.

• Able to associate real valued data with nodes and states in a model.
• Extensible to capture other graph based business process languages, via

the underlying process graph formalism (UML statecharts are particularly
well suited).

Main weaknesses:

• The full BPMN language is not supported, in particular inclusive-join
gateways are not allowed for.

• Employing MDPs as the underlying modelling limits modelling to discrete
systems and stochastic or non-deterministic behaviour can only be exhibited
in transitions between states

• Each individual associated data structure is limited to being monotonic

10.2.2 Analysis Objectives

The second set of objectives are focused on developing an analysis technique
which allows for:

1. Functional safety properties which assert that the system always stays
within some allowed region, such as defined by regulatory requirements, of
business processes. (Objective 2a)

2. Non functional qualities of business processes such as timing properties or
the determination of resources consumed by business processes. (Objec-
tive 2b)

3. Probability bounds on functional and non-functional properties for business
processes which exhibit stochastic behaviour. (Objective 2c)

In established engineering disciplines, the reliability and accuracy of predictions
of system behaviour are determined by the fidelity of the mathematical models
on which they are based. Combined with the extent to which the necessary
calculations employing them can be performed without error. The traditional
approach to analyse the performance and resource usage properties of business
processes by means of simulation do not provide sufficient certainty. In particular
when addressing sensitive business processes where safety is a key element, such
as those found in the healthcare industry (Section 1.1). Here, strong guarantees
must be produced for execution times and resources consumed, and the analysis
developed must allow for exact verification often of complex combined properties.
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The evaluation of the main techniques for formal analysis, as opposed to simula-
tion, presented in Chapter 4 covers the techniques of theorem proving, static
analysis and model checking. A key requirement is for a fully automated approach
to formal analysis which excludes theorem proving as a potential technique due
to the common need for theorem provers to require manual assistance to com-
plete proofs. The large degree of similarity between static analysis and model
checking, as highlighted by the papers [204], [259], makes the choice between
these approaches more difficult. The key trade-off is between the size of models
that can be tackled and accuracy of the results provided. Static analysis, as it
applies to general systems verification, operates over an abstraction of a system
and consequently is not always able to produce unambiguous answers and in
cases when a verification property is violated it not be possible to produce a
counter example. The abstraction of static analysis allows the approach to tackle
large statespaces, however it is in the nature of business processes that they
are relatively small compared to other domains, such as software verification
or systems biology, where static analysis is commonly used. This makes model
checking, where an explicit statespace representation is exhaustively explored to
perform analysis, a feasible option.

A key advantage of being able to choose model checking is that precise quanti-
tative results can be obtained from the analysis as it explores all states where
quantities of interest change. Similarly when considering models with stochas-
tic elements, the complete exploration can provide accurate determination of
probability bounds on the occurrence of states of interest, in the cases when
bounds exist. This provides excellent results with regard to Objectives 2b and
2c as the results are precise with regard to the Core BPMN models used as
input. Likewise in the case of functional properties it can be determined with
certainty whether qualitative properties, for example encoding safety constraints,
are violated. Furthermore, in the case when qualitative properties are violated,
model checking can provide counterexamples in the form of a sequence of tasks
and decision gateway choices that lead to a property violation. For these reasons
Objective 2a can be considered to be satisfied with regard to accuracy and utility.

By employing model checking for formal verification, properties can be analysed
individually during the design process, which allows new properties to be analysed
as they are determined to be of importance. This is a key factor when employing
these methods in practice, as typically business analysts will not be aware of
the full range of properties a business process must satisfy. Instead, this thesis
suggests an approach where business processes can be explored throughout their
design by means of a fully automated analysis of their properties. This was found
be be of great use by the industrial partner because the partner was working in
an environment were customer demands and some regulatory requirements were
subject to frequent change.
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The choice of PCTL, specifically the PCTL* variant, for expression of qualitative
or quantitative properties of interest is a rich logic which is able to encode a
wide range of properties of interest. There were no properties of interest to
the industrial partner that could not be encoded using PCTL, although in the
case of resource constrained processes it was necessary to employ the analysis
mechanism that allowed for bounded rewards to be included in the analysis. This
mechanism produces models with a very large degree of symmetry and which
are therefore relatively neutral with regard to the performance of the analysis
as PRISM is able to employ symmetry reduction that means that including
bounded rewards only produces a modest increase in the effective statespace
size. In practice the industrial partner found that this enables the effective
provisioning of resources allocated to business processes.

A key weakness in the choice of PCTL is the requirement for business users to
employ PCTL queries, implemented in the PRISM query language, to specify
properties of interest. Furthermore, business users may misunderstand the
verification process as providing absolute guarantees. However, it should be
stressed that the method for analysis presented provides firm probability bounds
and mean levels of resource usage, but, as in any stochastic system, behaviour
far from the mean is possible. However, the nature and significance of these
potential flaws in this method are no different from those that attend the use of
applied mathematics in other engineering disciplines.

The core analysis of functional and non-functional properties of a business process
is able to scale to reasonable (less than 1 day) verification of a Core BPMN
Business Process Diagram (BPD) model with a statespace of up to a million
elements (Section 9.3.2). This bound includes the time taken to translate a Core
BPMNmodel into the PRISM language and generate its statespace and compute
an initial PCTL query. Further, queries only require inspection of the statespace,
represented as a Multiple Terminal Binary Decision Diagram (MTBDD), which
typically requires about 10% of the time taken to determine the initial query.
A set of further queries to be performed can be executed in parallel such that
given sufficient computational resources any number of additional queries only
incur an additional 10% overhead.

The performance of the core analysis holds the potential for further refinement by
performing a degree of abstraction of the business process before analysis. Here,
once a specific query has been formulated, a reduced and abstracted version
of the business process would be generated that only captures states where
the properties of interest change. This would reduce the statespace generated
by the business process and allow for verification of even larger systems. The
likely approach to successfully achieve this would be to develop a Counter
Example Guided Abstraction Refinement (CEGAR) approach of which a specific
probabilistic version is being developed as an extension for PRISM [114]. While
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substantial effort has gone into this work it is still immature and not yet suited
for practical use in analysing business processes. However, it should be noted
that, in this case, a key drawback is that the generated statespace is unique to
the query performed and performing additional queries incur the full overhead
of generating a new query specific statespace. It is likely that a hybrid approach
employing non-abstracted analysis for models of modest size and switching to
abstracted analysis in cases where the analysis time exceeds a user specified
bound, would provide the best of both worlds.

In conclusion, the analysis approach taken in this thesis had the following
strengths and weaknesses:

Main Strengths:

• Exact analysis and verification results can be obtained, as opposed to
simulation results.

• Possible to provide counterexamples, in cases of property violation.
• Properties of interest can be analysed independently
• Separate queries are amenable to parallelisation.
• Generally checking of models is feasible for BPDs with up to one million

elements.
• Models can be checked for a range of resource bounds in an efficient manner

due to symmetry reduction, which allows for resource provisioning.

Main weaknesses:

• Model checking is fundamentally limited by the statespace explosion prob-
lem.

• Properties to be analysed must be expressible in PCTL.
• To employ the framework business users must employ PCTL queries to

specify properties of interest.
• Analysis results can be complex for some business users to understand as

they express bounds on expected values.

10.2.3 Extended Analysis Objectives

The third set of objectives focuses on meeting a specific set of advanced analysis
objectives as dictated by the industrial partner. These include:

1. Automatic synthesis of execution schedules for business processes which
are subject to combined functional and non-functional requirements. (Ob-
jective 3a)
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2. The generation of industry standard fault trees which can assist in the
analysis of the effects of combined faults within a business process. (Ob-
jective 3b)

3. The optimisation of existing business processes. (Objective 3c)

In general these were addressed by employing the basic qualitative and quantita-
tive analysis technique as a building block in various ways to enable extended
analyses which seek to address this set of objectives.

10.2.3.1 Scheduling Analysis

In this thesis the term schedule is defined as the sequence of actions to be
taken from an initial state in the system to obtain the optimum of one or more
quantitative properties associated with a model. The approach to addressing
Objective 3a in this thesis employs the core analysis to perform a query which
expresses all possible scheduling possibilities of a chosen set of actions encoded
in a disjunction combined PCTL query. These queries can be combined with a
freely defined constraint query which can encode properties which must, or must
not, hold for a desired schedule.

Fundamentally, being able to determine the quantitative properties of a business
process allows for the determination of the effect of specific sequences of actions
on the performance of the business process by means of optimal adversaries.
During the development of this thesis a new version of the PRISM model checker
(version 4.1) was released which greatly simplified the process of adversary
generation in the case of generating adversaries which optimise multiple reward
structures associated with a model. This means that generating a schedule
which optimises multiple rewards is now done in a single model checking run,
specifically PRISM performs model checking over all possible adversaries and
selects the optimal choice. These changes in PRISM allow for very efficient
schedule generation as the performance of adversary generation is no different
then simply performing a normal model checking query using the core analysis
framework, as the process of adversary generation is inherent to the model
checking of MDPs.

For a business practitioner to determine a schedule it simply requires specifying
a multiset of non-deterministic actions which can be scheduled, along with a
PCTL query encoding any constraints on the desired schedule. The automatic
translation of this multiset and the constraints simply involves building a PCTL
query that is linear in the size of the set of actions and constraints of the
scheduling problem. Hence this adds no significant performance penalty when
performing this analysis.
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With regard to building a unified framework the determination of schedules has
been successful. It is a fully automated analysis that requires minimal input
from a business user to construct and the labelled induced Discrete-time Markov
Chain (DTMC) which form the schedule can readily be mapped back to the
original Core BPMN process to produce a clear indication of how the optimal
schedule will be executed in terms of the modelled business process. Combined
the positive results in this area suggest that Objective 3a has been met.

It should be noted that the limitation in PRISM 4.1 that adversaries can only
be generated over a maximum of two unbound PRISM reward or probability
queries is only present to allow the generation of Pareto Curves modifying the
freely available PRISM source code to remove this restriction, as done in SBOAT,
allows for schedule generation with regard to any number of unbound reward or
probability queries.

It should be noted that this procedure can neither deal with cases where only part
of the actions are controllable while others are uncontrollable disturbances, which
would require strategy construction in 2 1/2 player games, nor partially observable
processes, as the state-dependent adversary assumes perfect identifiability of the
current process state. Both restrictions place some limitations on applying this
approach to practical implemented processes.

In conclusion, the scheduling analysis approach taken in this thesis had the
following strengths and weaknesses:

Main Strengths:

• Schedules can be defined for quantitative properties, where qualitative
constraints are also observed.

• Schedule generation can be done efficiently as a single model checking
operation for multiple goals and constraints.

Main weaknesses:

• Schedules are limited to those for which goals and constraints can be
expressed in PCTL.

• A technical limitation in PRISM 4.1 is that adversaries can only be gen-
erated over a maximum of two unbound PRISM reward or probability
queries, without forking the underlying PRISM engine.

• No support for limited information or not modelled disturbances.
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10.2.3.2 Fault Tree Generation

The generation of fault trees is not typically part of Business Process Management
(BPM) approaches. In the case of this thesis it was a requirement of our industrial
partner. However, it was discovered that this type of system analysis with a
view to suggesting system failures that can arise from individual system faults
can provide valuable input when considering safety aspects of a business process.
This approach is focused on design time modelling of a business process before
it has been implemented. The motivating context described in Section 1.1
of medical workflows are subject to regulation which in many cases explicitly
require FTA to have been performed before a business process is put into practice.
Automated FTA can save time and cost by ensuring that business processes, for
which the construction of fault trees is a regulatory requirement, can have fault
trees generated for them throughout their development. When a design change
produces a fault tree which implies that the design is unlikely to gain regulatory
approval, this design change can be excluded at that point in development.

In a fashion similar to the approach taken in schedule generation, the approach
taken to FTA is to employ the core analysis framework to construct PCTL queries
describing possible combinations of faults. Faults have been incorporated into
the Core BPMN language so as to be a strict addition to the basic Core BPMN
modelling constructs, allowing faults to be added and removed with only local
modifications to a task. In terms of the SBOAT implementation of this analysis
faults can be added through simple annotations to tasks. Once an initial fault
tree has been generated where all faults are combined by OR gates, designers
can modify the gates to better reflect realistic interpretations of how the faults
may combine. The central strength of this stochastic model checking approach
is that the probabilities of combined faults or failures occurring will reflect not
only the combined probabilities of individual faults but will also account for
the base stochastic nature of the underlying business process, providing useful
guidance on the likely bounds of the probability of failure.

The incorporation of quantitative information into the fault tree provides further
useful information for a business process designer in that it can suggest mean
values of the expected time to failure, its associated cost and in general the values
of any reward structures of interest at the point of failure. This information can
be useful in informing testing of business processes as it can provide guidance
on when faults are expected during testing or the magnitude of their impact.

While the approach presented successfully meets Objective 3b in that it produces
industry-standard fault trees and even is able to annotate them with quantitative
data, a fundamental problem is the need to generate the underlying fault tree
skeleton which involves generating generating all possible subsets of the sets of
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faults which has a complexity which is exponential in the number of fault states.
Further, while the statespace for the faulty model must only be generated once
PCTL queries must be generated corresponding to each of the sub-sets.

While these individual queries can be parallellised, the growth in the computa-
tional burden of this approach means that large amounts of computing resources
must be devoted to the task. This is the motivation behind the ability to inject
fault states for specific tasks and not simply generate a maximum fault tree where
every task has a potential to be faulty. Despite this there are clear limitations
to the scalability of the approach. In spite of this the technique was found to be
useful by the industrial partner as the same complexity bounds apply to manual
construction of a fault tree. In the SBOAT implementation the assistance given
in fault tree construction is still of utility compared to a strictly manual approach
to fault tree generation. Hence, Objective 3b can be considered to be met when
compared with the industrial partner’s current manual alternative.

In conclusion, the fault tree generation approach taken in this thesis had the
following strengths and weaknesses:

Main Strengths:

• Adding faults to tasks is a straight-forward local annotation to tasks in
Core BPMN models.

• Quantitative data about the system’s state can be determined at points of
failure.

Main weaknesses:

• The scalability of this approach is fundamentally limited by the exponential
growth in the size of the fault tree as more fault states are added.

• Fault trees involve an inherent creative element in determining whether a
combination of faults actually lead to a failure and what the nature of the
failure is.

10.2.3.3 Optimisation

Objective 3c has been addressed through the use of an evolutionary algorithm
approach. This objective is a highly ambitious form of Business Process Re-
Engineering (BPR) which seeks to omit the human element in redesigning
business processes and instead move the burden of such work to an algorithmic
approach. At design time there is only a limited amount of information available
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to suggest what form an optimal business process might take. The specific choice
of an evolutionary algorithm is motivated by the enormous statespace of possible
business processes that can be devised to meet a specific business objective.

The practical application of this approach requires extensive specification of what
is required of an optimal business process. Frequently requiring specifications at a
level of detail that goes beyond what is commonly used in the business community.
An algorithmic approach requires the definition of explicit information which
would be obvious to anyone taking part in the design or implementation of a
business process. This limitation is central to attempting to generate optimised
business processes at design time. However, when working with our industrial
partner, it became clear that the process of making a full specification for a
business process explicit could be very beneficial. While it could at times become
more verbose than would be typical for such specifications, frequently it was
found that some elements of the specification was ambiguous or allowed for
improvements which, while typically minor, were nevertheless non-obvious.

From a theoretical perspective it is possible to achieve optimisation of business
processes through the iterative modification and model checking of business
processes. The model checking step, which is fundamentally the same as in
the core analysis, is computational quite feasible for business processes of a
realistic size. However, the vast number of variant child processes generated
when employing an evolutionary algorithm which must each be checked both for
structural semantic conformance and individually model checked involving the
generation of a unique statespace in each case, does set limits on its practical
utility. It is the contention of this thesis that an evolutionary algorithm approach
provides the most efficient search of the space of possible business process’
variants in the case where the goals for optimisation can be defined as both
quantitative and qualitative properties.

The key weakness in the specific approach adopted here is in the generation of
variants. The approach taken closely follows the basic principles of evolutionary
algorithms and future work in this area should be devoted to finding improved
techniques for variant generation. Variants should ideally be well-formed by
construction such that if one starts from a well-formed business process it is at
least highly unlikely that derived variants will violate the structural semantic
rules defined.

The performance of this approach, while relatively easy to parallelize, is in its
current form computationally expensive. A future development in this area would
be to improve the generation of variants done as part of the optimisation process.
Notions of the bi-similarity of business processes developed by Kunze et. al. [165]
could be employed to broaden the variants generated while simultaneously
increasing the likelihood that a variant will be structurally sound. The ability
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of this definition to preserve the required properties of a system while allowing
enough freedom to explore a wide range of possible changes would substantially
enhance this method. This effectively means allowing variants which are bi-
similar to be considered, as opposed to those simply generated by mutation
and crossover. This would require some refinement of these early notions of
bi-similarity, but should allow the optimisation approach to scale to much larger
systems and for the discovery of optimisations of greater novelty.

Within the bounds of the requirements of Objective 3c this thesis has managed
to develop a strategy for producing improved business processes at design
time without manual intervention. The traditional BPM approach is cyclic
and requires a process to be implemented before optimisation of a process is
considered. In this case considerably more information is available and an
evolutionary algorithm approach, as demonstrated by Medeiros [184] where
data from an instrumented implemented process is used to derive a model, is
highly successful at finding optimised models. However, the work in this thesis
highlights that without this information the amount of optimisation which can
be performed is much more limited.

In conclusion, the optimisation approach taken in this thesis had the following
strengths and weaknesses:

Main Strengths:

• The approach successfully finds improved processes within the specification
given, at design time.

• Defining the needed goals is for an improved process can be beneficial in
itself.

• The approach is amenable to parallelisation and sufficient computational
resources allow it to be applied to models of up to one million BPD elements
per generation per day, with a population size limited only by the amount
of parallel computation resources available.

Main weaknesses:

• A detailed explicit specification of the constraints upon an improved
solution must be defined.

• Variants generation must be finely tuned to quickly converge on improved
processes.

• Computationally expensive
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10.3 Wider Perspectives

The BPM field employs informatics concepts to support the design, enactment,
management, and analysis of business processes. Although the practical adoption
of BPM concepts has been widespread [276], it is a field where a clear definition of
terms are missing and in many areas it lacks a formal mathematical foundation.

There are many different kind of ways to describe a business process. By
developing Core BPMN this work is placed within the business aspect of process
modelling, which is consistent with this project seeking to full research objectives
from an industrial partner. Beyond BPMN and the other feasible of modelling
language option of UML statecharts, the approach developed here of formal
analysis of business processes could be transferred to other domains where
the same basic ideas of this thesis could be employed. For example, biological
systems, where languages broadly similar to BPMN such as the such the biological
signalling pathway modelling language Kappa [85] could be enhanced with a
model checking based approach to where in particular the FTA analysis developed
would be of considerable utility. Alternatively, the telecom focused SDL modelling
language [145] could be a domain where the basic ideas of the thesis and in
particular accurate performance analysis and scheduling analysis approach could
be of great benefit. In general, the core concepts presented here sketch a path
for the general conversion of graph-based modelling languages into a block-based
structure which is amenable to quantitative probabilistic model checking in cases
when stochastic behaviour, inherent in real world processes, is present.

While formal analysis of business processes is a growing field in the literature,
however most approaches to not include stochastic behaviour and only a limited
number address general quantitative properties. This thesis seeks to show that for
a number of different applications a stochastic model checking approach can be
successfully applied. The use of model checking and PCTL places the work in the
context of one of central problems of informatics namely addressing concurrency
through an effective mathematical theory. These methods have seen extensive
development, and the underlying model checking approach is now able to scale
up to handle the analysis of relatively simple systems such as business processes.
A comparison can be made between the development of business processes and
the general development of software systems. However, as business processes are
systems of lesser complexity, it becomes possible to explore what can be achieved
with model checking beyond verification of basic properties. In this way, this
thesis explores the future of what can be achieved in model checking of software
systems. The advanced analyses, and in particular the optimisation method
presented, potentially allow for a substantial improvement in the development of
business processes and hopefully could inform the optimisation, or synthesis, of
software systems. In particular the cross-fertilisation of ideas from static analysis
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and model checking, as illustrated by [204] and [259], continue to enhance the
scalability and accuracy of each other allowing ever bigger systems to be tackled
by this approach.

In a business context, with regard to strategy generation and optimisation, the
methods presented here provide an appealing route to reducing the burden
of performing change management. Change management programs typically
involve putting an improved business process into practice. Crucially, the
methods presented here make change management a process of simply defining
the goals for the improved process, and then automatically deriving the process
that will best meet these needs and, through strategy generation, determining
who are to perform which actions in the new process. Crucially, this derivation
is an automated step and a set of constraints could be envisioned which would
encode that an actor should experience a certain level of disruption in their
workflows.

Finally, this work in the area of business process optimisation, despite its limita-
tions, provides a mathematical foundation to suggest that Frank Gilbreth’s [113]
nearly one-hundred year old vision of finding the one best way to do work is
flawed in its suggestion that there exists a single optimal business process for
an enterprise in a given industry. The optimisation methods presented here
suggest that looking for ideal business processes is akin to searching for an ideal
organism in a given biological ecosystem. Instead, there will, in any sufficiently
complex market, be multiple niches which specific business processes are able to
exploit. This work demonstrates a general method for the determination of high
performance safe business processes which dominate in their given niche.

In conclusion, the overall objective of the thesis, namely, developing an unified
framework for the specification, verification and optimisation of business processes
has been broadly successful.

10.4 Directions for future work

There are a number of areas of this framework that have the potential for further
development.

Future developments of modelling aspect framework could make use of PRISM’s
mechanism to support reward annotations expressed as algebraic expressions
of data structures associated with the model. The reason this is not included
in this framework is that no such demand was uncovered while working with
the industrial partner, and in all explored cases, rewards could be expressed as
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simply positive real numbers. While the capability for complex rewards could be
readily introduced into this framework, they would come at a cost of a significant
increase in the complexity of the statespaces to be analysed. However, the
limiting monotonicity requirement is inherent to the model checking approach
and will remain a fundamental limitation of this framework.

With regard to building models from sampled data, the approach presented here
is informal, based on observing the difference encountered upon refining bins.
This approach could be enhanced to employ interval probabilities and interval
MDPs, thus being able to conservatively quantify the worst-case estimation error.
This would be a relatively simple addition, and have a limited effect on the
analysis complexity.

Additional further work in terms of modelling could focus on the replication
of business processes in the style of the µ-calculus [164], this would allow for
modelling business processes with an element of mobility. This is potentially
possible within this framework through PRISM’s support for module renaming,
which allows duplication of modules. This is done at a textual level, so any
identifiers, including action labels, constants and functions used in the module
definition can be changed during conversion to PRISM models. While no need
was identified in the cases of the industrial partner for this capability, this would
allow sub-processes in a business process to make copies of themselves and be
relocated to other points in a business process. If this capability was added
the main drawback would be a significant increase in the complexity of the
statespaces used within the verification process and a consequent growth in the
time taken to perform model checking.

In terms of the analysis aspect, the notion of temporal logics is not a traditional
business management concept, and an area for future research would be the
construction of a logic grounded in business concepts for the expression of desired
properties. Within this framework this logic would be employed by translation
into the PRISM property specification language. To make this logic readily usable
in a business setting an extension of the BPMN-Q a visual query language [36]
to include probability and reward queries would likely be an ideal approach.
Alternatively the Business Property Specification Language (BPSL) of Xu et.
al [293] allows for a similar visual logic specification approach.

In terms of the scheduling analysis aspect future work could focus on the experi-
mental additions to the PRISM model checker [70] which provide a mechanism,
by means of turn-based stochastic multi-player games, to resolve adversaries for
multiple actors in a system. This would provide the underlying framework for
building separate strategies (a more appropriate term than schedules in the case
of game theory) for competitive systems where separate sub-systems are working
towards different goals. When these methods are more mature they would be
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relatively straightforward to incorporate into this work. This would allow for the
generation of strategies in a competitive business environment. Here separate
enterprises would each be modelled individually together with a additional model
describing the market in which they are competing. For each enterprise a set
of actions they are able to perform is defined and the stochastic game can then
be analysed using model checking to determine a strategy. PCTL queries would
encode one enterprise seeking to optimise properties of interest, while competing
enterprises are seeking to minimise the same quantities for the original enterprise.
The ultimate goal would be to develop a strategy that would allow one enterprise
to outperform another with regard to properties of interest. It should be noted
the work of [70] also allows for modelling imperfect information although in its
present form it is not readily applicable to the work of this thesis.

In terms of the fault tree analysis aspect further work could focus on handling
faults in message passing between processes as these poses a similar set of
problems to those explored in this thesis. Lost messages and situations where
messages are delayed or arrive out of sequence could also be accounted for. A
future research direction in this area is to develop an approach to these faults
using a preprocessing step which models queues of lost messages which have
associated probabilities of being sent each time a transition is made in the
system. Further messages can be received by other recipients than intended,
leading to further complexity. Combined with advanced rewards, this allows
for modelling and deriving fault trees for considerably more complex business
processes. Handling faults in message exchange is also crucial in dealing with
large scale enterprise-wide faults where a lack of successful communication is
frequently a key factor in failure [263].

An approach by Mukherjee et. al. [195] to generating fault trees from maintenance
logs can be greatly enhanced by the work presented here. Specifically, the methods
of the framework allow business processes models with a considerably greater
degree of freedom in their behaviour to be built from logs prior to fault tree
generation. This creates fault trees which better reflect the system and which
include data (in the form of rewards). This could be a direction for future
research.

In terms of the optimisation aspect the performance of this approach while
relatively easy to parallelize is in its current form computationally expensive. A
future development in this area would be to improve the generation of variants
done as part of the optimisation process. Notions of the bi-similarity of business
processes developed by Kunze et. al. [165] could be employed to broaden the
variants generated while simultaneously increasing the likelihood that a variant
will be structurally sound. The ability of this definition to preserve the required
properties of a system while allowing enough freedom to explore a wide range of
possible changes would substantially enhance this method. This effectively means
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allowing variants which are bi-similar to be considered, as opposed to those
simply generated by mutation and crossover. This would require some refinement
of these early notions of bi-similarity, but should allow the optimisation approach
to scale to much larger systems and for the discovery of optimisations of greater
novelty.

With regard to defining appropriate requirements for the optimisation of a
business process, a problem exists in that the initial specifications are often too
weak (e.g., they may be vacuously satisfied), or too strong (e.g., they may allow
too many system behaviours). Work has been done in this area by Chatterjee et.
al. [69] on the synthesis of an environment in which a system will satisfy a given
specification. Specifically, they show that an ω-regular specification φ can be
realized if, and only if, there exists a winning strategy in a certain parity game
constructed from φ. If φ is not realizable, they then construct an environment
assumption ψ such that ψ → φ is realizable. The focus of this work is on the
automated refining of a specification and not on optimisation of the system itself.
Future work in this area could focus on incorporating their approach to allow
for some degree of automated refinement of the functional and non-functional
constraints supplied by a user. This should allow for better exclusion of variants
which have little hope of evolving into viable optimisations.

Therefore, future research in the area of optimisation area should acknowledge
that optimising business processes requires at a minimum that a test version
of a business process be implemented and instrumented for analysis so that
future improved variants can be determined. In this case, a combination of the
workflow mining techniques of Medeiros [184] with the design time approach
developed in this thesis, is likely to help iterative process improvement more
rapidly converge on an ideal maximally improved process. This would extend
the notion of workflow mining to not just determining the nature of an existing
process but also allow automated improvements, minimising the manual burden
of the BPR life-cycle.

Future work in the area of the framework presented in this thesis in general, could
enable a more automated approach to the formalisation of a graph-based language
and thereby extend the automated nature of this method to also encompass
the addition of new languages, through a meta language which describes the
source language and allows for the specification of associated structural semantic
constraints.
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This Appendix presents a formal description of quantitative model checking
drawn primarily from the Principles of Model Checking by Christel Baier and
Jost-Pieter Katoen [39], and Advances in Probabilistic Model Checking by Marta
Kwiatkowska and David Parker [171].

A.1 Discrete-Time Markov Chains

Fundamentally, probabilistic model checking operates by performing model
checking on a Discrete-time Markov Chain (DTMC). This is a simple probabilistic
system model, which models systems whose behaviour at each point in time can
be described by a discrete probabilistic choice over several possible outcomes. A
DTMC consists of discrete states representing specific configurations of a system,
and has transitions governed by (discrete) probability distributions over the
target states. Each transition is assumed to take a discrete time-step and there
are no deadlocks, and all terminating states are modelled with a self-loop.

Definition A.1 (Discrete-time Markov chain)
A discrete-time Markov chain (DTMC) is a tuple D = (S, s̄,P, L) where S is a
(countable) set of states, s̄ ∈ S is an initial state, P : S×S → [0, 1] is a transition
probability matrix such that, for all s ∈ S:∑

∀s′∈S

P(s, s′) = 1

and L : S → 2AP is a labelling function mapping each state to a set of atomic
propositions taken from a set AP .

A DTMC can be represented as a labelled transition system (LTS) in which each
transition is annotated with a probability value indicating the likelihood of its
occurrence. An example of a simple DTMC where S = s0, s1, s2, s3 is shown
in fig. A.1(a). Labels A,B ∈ AP have been associated with states s0 and s2
respectively. The transition probability matrix for this example is shown in
fig. A.1(b), where each row has a sum of 1 as required by the restriction on
transition probability Matrices.

A DTMC captures the evolution of a system by letting each element P(s, s′) of
the matrix P define the probability of a transition from s to s′ taking place. In a
DTMC, a transition is assumed to take a discrete time-step and means that there
is no notion of real time present in the model. Reasoning about any discrete
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(a) LTS Representation

P =


0.1 0.3 0.0 0.6
0.4 0.4 0.1 0.1
0.0 0.8 0.0 0.2
0.2 0.0 0.2 0.6



(b) Transition Probability Matrix P

Figure A.1: An example of a 4 state DTMC (a) and the corresponding matrix
P which defines the probabilities of state transitions (b).

time structure is possible, by assigning time intervals to states and accounting
for the transition steps taken. There are no deadlocks, and all terminating states
are modelled with a self-loop.

A DTMC model can be unfolded (unwound) into a set of paths. Where a
path through a DTMC is a non-empty finite or infinite sequence of states
π = sn, sn+1, sn+2, . . . with P(si, si+1) > 0 for all i ≥ 0. In the example from
fig. A.1, if s̄ = s0 is chosen, the path sets shown in fig. A.2 are obtained, within
which a specific path could be π = s0s0s3s0.

The probability matrix P induces a probability space on the set of infinite paths
Paths, which start in state s using a cylinder construction as follows [153]. An
observation of a finite path determines a basic event (cylinder). Let s = s0, for
π = s0, s1, . . . sn, then a probability measure Prfins for the π-cylinder can be
defined as:

Prfins =
{

1 if π contains a single state
P(s0, s1) ·P(s1, s2) · . . . ·P(sn−1, sn) otherwise

(A.1)
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Figure A.2: 3 levels of unfolding of the DTMC from Figure A.1 starting from
the starting state s̄ = s0. A specific path π = s0, s0, s3, s0 is highlighted.
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It is proven by Kemeny et. al. [153] that eq. (A.1) extends to a unique measure
Prs on the set of infinite paths Paths.

A.2 Probabilistic Computation Tree Logic

Specifications for DTMCmodels can be expressed in a range of temporal logics. In
this description, a probabilistic extension of the temporal logic Computation Tree
Logic (CTL) [75] known as Probabilistic Computation Tree Logic (PCTL) [131]
is employed:

Definition A.2 (PCTL Syntax)
The syntax of PCTL is as follows:

φ := true | a | φ ∧ φ | φ ∨ φ | ¬φ | P./p[ψ]
ψ := X φ | φ U φ (A.2)

where a is an atomic proposition, ./∈ {≤, <,>,≥} and p ∈ [0, 1].

PCTL formulas are interpreted over the states of a DTMC. PCTL replaces the
CTL existential and universal quantification over paths with the probabilistic
operator P./p[·] where p ∈ [0, 1] is a chosen probability bound. Note that in
definition A.2 path formulas ψ can occur only within the scope of the probabilistic
operator. Formally, the meaning of the P./p[·] operator is:

Definition A.3 (DTMC Model checking P Operator)
Given a statespace S, a path formula ψ, and a chosen state s ∈ S then

s |= P./p[ψ]⇔ Prs(ψ) ./ p where Prs(ψ) ./ p def= Prs{ω ∈ Paths|ω |= ψ}
(A.3)

Where ./∈ {≤, <,>,≥} and p ∈ [0, 1].

Here, the standard CTL path formulas are included in PCTL:

• Next state: (X φ) which is true for a path ω ∈ Paths if φ is satisfied in the
next state.

• Unbounded until: (φ1 U φ2) which is true for a path ω ∈ Paths if φ2 is
satisfied at some state along the path and φ1 is true up until that point.
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From these, further derived formulae are possible, such as:

• Eventually: F φ⇔ true U φ which can be used to determine reachability,
i.e. the probability of reaching a state satisfying φ.

• Always: G φ⇔ ¬(true U ¬φ) which can be used to determine invariance,
i.e. the probability of φ always remaining true.

A.3 Model Checking DTMCs with PCTL

Qualitative model checking is performed by calculating probability measure
Prs(ψ) ./ p compared to a chosen probability bound p ∈ [0, 1], which yields
respectively true or false. Vardi showed in 1985 [277], that the probability
measure Prs(ψ) ./ p of the set φ-paths is indeed measurable.

Quantitative model checking involves calculating the probability bound for the
outermost probabilistic operator in a PCTL formula. Hanson and Johnson [131]
defined the original PCTL model checking algorithm, as an extension of the
original CTL model checking algorithm [75]. The PCTL model checking algorithm
takes as input a labelled DTMC D and a PCTL formula φ and proceeds,
by bottom-up traversal of the parse tree for φ recursively computing the set
Sat(φ′) = {s ∈ S|s |= φ′} of states satisfying each sub-formula φ′. For the
operators of PCTL to establish if a given state s satisfies φ, it is necessary to
check s ∈ Sat(φ), which the algorithm computes as:

Sat(true) = S
Sat(a) = {s ∈ S|a ∈ L(s)}
Sat(¬φ) = S\Sat(φ)
Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)
Sat(P./p[ψ]) = {s ∈ S|Prs(ψ) ./ p}

(A.4)

When computing these sets, it is convenient to view the DTMC as the matrix
P and Sat(φ) as a column vector φ : S → 0, 1 given by φ(s) = 1 if s |= φ and 0
otherwise. In the case of the next operator X φ the probabilities for all states
can then be computed by a single matrix-by-vector multiplication, written in
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vector notation as Pr(X φ) = P · φ. For the until path operator φ1 U φ2 the
probabilities of Prs(φ1 U φ2) are obtained as the unique solution of the system
of linear equations in the variables {xs|s ∈ S} as:

xs =


0 if s ∈ Sno
1 if s ∈ Syes∑
∀s′∈S

P(s, s′) · xs′ if s ∈ S? (A.5)

Where Sno def= Sat(P≤0[φ1 U φ2]) and Syes def= Sat(P≥1[φ1 U φ2]) denote the sets
of all states that satisfy φ1 U φ2 with probability exactly 0 and 1, respectively,
and Sno def= S\(Sno ∪ Syes).

The sets Sno and Syes are precomputed using conventional fixed point com-
putations. Since the values for the precomputed states are known (0 or 1),
the solution of the resulting linear equation system in |S?| variables can be
obtained by any direct method (e.g. Gaussian elimination) or iterative method
(e.g. Jacobi, Gauss-Seidel). For qualitative PCTL properties, it suffices to
use these pre-computation algorithms alone. Note that the pre-computation
algorithms determine the exact probability in case it is 0 or 1, thus avoiding the
problem of round-off errors that are typical for numerical computation. The
time complexity for PCTL model checking over DTMCs is linear in the size
of the formula |φ|(number of logical connectives and temporal operators) and
polynomial in the size of the state space |S| [131].

A.4 Model Checking Rewards

Let D = (S, s̄,P, L) be a DTMC. A reward structure is a pair (rs, rt) of functions:
a state reward function rs : S → R≥0 mapping a state to the reward acquired
per time-step, and a transition reward function rs : S × S → R≥0, mapping each
transition to the reward acquired as the transition is taken. The rewards can be
interpreted in two ways: instantaneous (omitted for simplicity) or cumulated
over system execution.

Checking these can be done by extending the logic PCTL [168] to allow for the
reward properties by the addition of the reward operator R./r[·]. State formulas
R./r[C≤k] denoting cumulative rewards and R./r[Fφ] denoting reachability rewards,
are defined for a state s:
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Definition A.4 (DTMC Model checking R Operator)
Given a statespace S, φ a PCTL formula, and a chosen state s ∈ S then

s |= R./r[C≤k] ⇔ Es(XC≤k ) ./ r
s |= R./r[Fφ] ⇔ Es(XFφ) ./ r (A.6)

Where ./∈ {≤, <,>,≥}, k ∈ N, r ∈ R≥0, and Es denotes the expectation with
respect to the probability measure Prs.

The random variables XC≤k , (XFφ : PathS → R≥0 corresponding to the two forms
of the reward operator are defined, for any path ω = s0s1s2 · · · ∈ Path as:

XC≤k (ω) def=


0 if k = 0
k−1∑
i=0

rs(si) + rt(si, si+1) otherwise

XFφ(ω) def=


0 if s0 |= φ
∞ if ∀i ∈ N.si 2 φ
min(j|sj |=φ)−1∑

i=0
rs(si) + rt(si, si+1) otherwise

(A.7)

Model checking of the reward operator is similar to computing probabilities for
the probabilistic operator, and follows through the solution of recursive equations
for R./r[C≤k] or a system of linear equations for R./r[Fφ]. Model checking rewards
has the same time complexity as checking probabilistic properties.

A.5 Markov Decision Processes

Markov Decision Processes (MDPs) generalise discrete-time Markov chains with
the addition of non-determinism. Non-determinism is used to model unknown
environments, where such distributions are not known. It is also used to model
concurrency, where it represents the different possible interleavings of multiple
components operating in parallel. Formally, a Markov decision process is defined
as:

Definition A.5 (Markov Decision Process)
An MDP is a tuple MDP = (S, s̄, Act, Steps, L) where S is a set of states, s̄ ∈ S
is an initial state, Act is an alphabet of actions, Steps : S × Act→ Dist(S) is
a partial probabilistic transition function and and L : S → 2AP is a labelling
function mapping each state to a set of atomic propositions taken from a set
AP .
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In an MDP, several actions may be available in a given state s, each corre-
sponding to a probability distribution. This set is denoted by A(s) = {a ∈
Act|Steps(s, a)isdefined}. Like for DTMCs, deadlocks are disallowed and it is
assumed that A(s) is non-empty for all s ∈ S. The behaviour of an MDP MDP
is as follows. Firstly, a choice between one or more actions from the alphabet
Act is made non-deterministically. Secondly, for the chosen action a, a successor
state s′ is chosen randomly, according to the probability distribution Steps(s, a),
i.e. the probability that a transition to s′ occurs is Steps(s, a)(s′).

Figure A.3 shows an example MDP MDP = (S, s̄, Act, Steps, L) with states
S = {s0, s1, s2, s4}, an initial state s0 and alphabet of actions Act = {a, b, c}
and labels L = {INIT,HEADS, TAILS}. In this example, state s1 has a
non-deterministic choice between two actions, b and c.

s0 [INIT] s1

s2 [HEADS]

s3 [TAILS]

a:1.0

b:0.3

b:0.7

c:0.5

c:0.5

a:1.0

a:1.0

Figure A.3: An LTS representation of an 4 state example MDP.

An infinite path through an MDP is a sequence ω = s0a0s1a1 . . . where si ∈
S,ai ∈ A(Si) and Steps(si, ai)(si+1) > 0 for all i ∈ N. A finite path π =
s0a0s1a1 . . . sn is a prefix of an infinite path ending in a state. Paths and
Pathfins denotes the sets of all infinite and finite paths from state s respectively,
and Path and Pathfin denotes the corresponding sets of paths from any state.
For a finite path π the last state of π is denoted last(π).
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A.6 Adversaries over MDPs

Formal reasoning about MDPs requires a probability space over infinite paths.
However, a probability space can only be constructed once all the non-determinism
has been resolved. Each possible resolution of non-determinism is represented
by an adversary (also known as strategies), which is responsible for choosing an
action in each state of the MDP, based on the history of its execution so far.

Definition A.6 (Adversary)
An adversary of an MDPMDP = (S, s̄, Act, Steps, L) is a function σ : Pathfin →
Dist(Act) such that σ(π)(a) > 0 only if a ∈ Act(last(π)). An adversary σ is
memoryless if σ(π) depends only on last(π) and deterministic if the distribution
σ(π) always selects a single action with probability 1.

The set of all adversaries of an MDP MDP is denoted Adv. Under a particular
adversary σ ∈ Adv, the behaviour of MDP is is fully probabilistic and can be
captured by an induced DTMC, denoted MDPσ, each state of which is a finite
path of MDP .

Definition A.7 (Induced DTMC)
For an MDP MDP = (S, s̄, Act, Steps, L) and adversary σ, the induced DTMC
is MDPσ = (Pathfin, s̄,P, L′) where

• for any π, π′ ∈ Pathfin:

P(π, π′) =
{
σ(π)(a) · Steps(last(π), a)(s) if π′ = πas, a ∈ A(last(π))
0 if otherwise

(A.8)
• L′(π) = L(last(π)) for all π ∈ Pathfin

There is a one-to-one mapping between the infinite paths of the DTMC MDPσ

and the infinite paths of the MDP MDP when under the control of adversary σ.
This means that the DTMC yields, for a start state s, a probability space, denoted
Prσs over these infinite paths. The induced DTMC MDPσ has a (countably)
infinite number of states. However, in the case of memoryless adversaries, its
state space is isomorphic to S and MDPσ can be reduced to an |S|-state DTMC.

Consider the example MDP MDP from fig. A.3 and the (deterministic, but
non-memoryless) adversary σ, which picks action b the first time that state s1
is reached, and then action c the second time. The induced DTMC MDPσ is
shown in fig. A.4.
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s0 s0s1

s0s1s0

s0s1s1

s0s1s0s1

s0s1s1s2

s0s1s1s3

s0s1s1s2s2

s0s1s1s3s3

s0s1s0s1s3

s0s1s0s1s2 · · ·

· · ·

· · ·

· · ·

1.0

0.7

0.3

1.0

0.5

0.5

1.0

1.0

0.5

0.5

Figure A.4: The induced DTMC for an adversary of the MDP in fig. A.3.

A.7 PCTL Model Checking over MDPs

Probabilistic statements about MDPs typically involve quantification over adver-
saries, so as to establish that some specified event is observed for all possible
adversaries. The logic PCTL, for example, is defined for MDPs as for DTMCs [46],
the key difference being that the semantics of the probabilistic operator contains
explicit universal quantification:

Definition A.8 (MDP Model checking P Operator)
Given a statespace S, a path formula ψ, and a chosen state s ∈ S then

s |= P./p[ψ] ⇔ Prσs {ω ∈ Paths|ω |= ψ} ./ p for all σ ∈ Adv (A.9)

Where ./∈ {≤, <,>,≥} and p ∈ [0, 1].

The algorithm for PCTL model checking proceeds as for DTMCs, except for
the probabilistic operator. For PBp[ψ] where B∈ {≥, >}, this reduces to the
calculation of the minimum probability Prmins (ψ). The case of PCp[ψ] where
C∈ {≤, <} is dual, maximum probability Prmaxs (ψ):

Sat(PBp[ψ]) = {s ∈ S|Prmins (ψ) B p}
Sat(PCp[ψ]) = {s ∈ S|Prmaxs (ψ) C p} (A.10)
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Where Prmins (ψ) = infσ∈Adv{Prσs (ψ)} and Prmaxs (ψ) = supσ∈Adv{Prσs (ψ)}

To describe the computation of these values, attention is restricted to the case
of minimum probabilities (maximum probabilities are analogous). If ψ = X φ, we
have:

Prmins (X φ) = mina∈A(s)

 ∑
s′∈Sat(φ)

Steps(s, a)(s′)

 (A.11)

For ψ = φ U φ, the minimum probabilities are the unique solution of:

Prmins (ψ) =


0 if s ∈ Sno
1 if s ∈ Syes

mina∈A(s)

[ ∑
s′∈S

Steps(s, a)(s′) · Prmins′ (ψ)
]

if s ∈ S?

(A.12)
with Sno and Syes denoting the sets of states where the minimum probability is
respectively 0 and 1, precomputed in a similar fashion to the DTMC case via a
fix-point. The computation of these probabilities can be performed in several
different ways; including linear programming, value iteration, or policy iteration.

The logic PCTL can be extended, as for DTMCs, with the reward operator R./r[·]
in quantitative forms Rmin[·] and Rmax[·]. The difference is that the minimum
(or maximum) reward values are computed as expectations.

The time complexity for PCTL model checking over an MDP is (again) linear
in the size of the formula |φ| and polynomial in the size of the state space |S|.
Like for DTMCs, MDPs can also be verified against Linear Temporal Logic
(LTL) properties via the construction of the product with a deterministic Rabin
automaton for the LTL formula. Model checking reduces to the computation of,
maximum reachability probabilities of, a set of end components of the product
MDP. The overall complexity for LTL is doubly exponential in |φ| and polynomial
in |S|; unlike for DTMCs, this cannot be reduced to a single exponential.
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Glossary

Key technical terms and names used in this thesis:

Application Programming Interface specifies how some software compo-
nents should interact with each other.

Architecture of Integrated Information Systems is an approach to enter-
prise modelling. It offers methods for analysing processes by means of
simulation, and takes a holistic view of process design, management, work
flow, and application processing (Main Source: [258])

Büchi Automata are a type of ω-automaton, which extends a finite automaton
to infinite inputs. In essence, Büchi automata recognize infinite word
versions of regular languages.

Binary Decision Diagram are a data structure that is used to represent a
Boolean function (Main Source: [39])

Business process is a series of related activities aimed at executing the com-
ponents of a business model in a measurable manner (Main Source: [228])

Business Process Diagram is based on a flowcharting technique tailored for
creating graphical models of business process operations. It is a notation
that is readily understandable by all business users, from the business
analysts that create the initial drafts of the processes, to the technical
developers responsible for implementing the technology that will perform
those processes, and finally, to the business people who will manage and
monitor those processes. (See Definition 3.9)

Business Process Execution Language short for Web Services Business
Process Execution Language (WS-BPEL) is an OASIS standard executable
language for specifying actions within business processes with web services
(Main Source: [211])
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Business Process Management is the activity of supporting business pro-
cesses using methods, techniques and software to design, enact, control and
analyse operational processes involving humans, organizations, applications,
documents and other sources of information (Main Source: [159])

Business Process Model and Notation is a specific business process mod-
elling language developed by the OMG group (Main Source: [207])

Business Process Re-Engineering is a business management strategy, orig-
inally pioneered in the early 1990s, focusing on the analysis and design
of workflows and processes within an organization. BPR aimed to help
organizations fundamentally rethink how they do their work in order to
dramatically improve customer service, cut operational costs, and become
world-class competitors (Main Source: [126])

Business Process Re-engineering Life Cycle is a cyclic process of continu-
ous improvement where a TO-BE situation is defined and the gap between
the current AS-IS situation and the desired situation is then addressed by
modifying the processes which need to be changed in order to achieve the
desired situation. (Main Source: [123])

C++ is a well-established statically typed, free-form, multi-paradigm, compiled,
general-purpose programming language.

Calculus of Communicating Systems is a process calculus introduced by
Robin Milner [191]. Its actions model indivisible communications between
exactly two participants. The formal language includes primitives for de-
scribing parallel composition, choice between actions and scope restriction.
CCS is useful for evaluating the qualitative correctness of properties of a
system such as deadlock or livelock.(Main Source: [191])

Communicating Sequential Processes is a formal language for describing
patterns of interaction in concurrent systems. Programs in the original
CSP were written as a parallel composition of a fixed number of sequential
processes communicating with each other strictly through synchronous
message-passing. However, considerable development has since happened
and many extensions has been developed.(Main Source: [137])

Computation Tree Logic is a branching-time temporal logic in which the
model of time is a tree-like structure in which the future is not determined;
there are different paths in the future, any one of which might be an actual
path that is realised.(Main Source: [39])

Continuous Stochastic Logic is temporal logic for reasoning about Continuous-
time Markov chains.

Continuous-Time Markov Chain is a branching-time temporal logic in which
the model of time is a tree-like structure in which the future is not deter-
mined; there are different paths in the future, any one of which might be
an actual path that is realised.(Main Source: [39])
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Counter Example Guided Abstraction Refinement is a counter example
guided abstraction refinement that attempts to prove the properties on
a system by first simplifying it. The approach begins checking with a
coarse (imprecise) abstraction of an model and iteratively refines it.(Main
Source: [76])

Dafny is an imperative object-based language with built-in specification con-
structs designed to support the static verification of programs. It is
imperative, sequential, supports generic classes, dynamic allocation, and
inductive datatypes. The Dafny verifier is run as part of the compiler.
As such, a programmer interacts with it much in the same way as with
the static type checker when the tool produces errors, the programmer
responds by changing the program’s type declarations, specifications, and
statements.(Main Source: [9])

Discrete-time Markov Chain is a mathematical system that undergoes tran-
sitions from one state to another, between a finite or countable number of
possible states. (See Definition A.1)

Duration Calculus is an interval logic for reasoning about real-time sys-
tems.(Main Source: [296])

Event-driven Process Chain is a type of flowchart used for business process
modelling. Event-driven Process Chains can be used for configuring an
enterprise resource planning (ERP) implementation,[1] and for business pro-
cess improvement. The Event-driven Process Chain method was developed
within the framework of Architecture of Integrated Information Systems
(ARIS) by August-Wilhelm Scheer at the Institut für Wirtschaftsinformatik
at the Universität des Saarlandes in the early 1990s. - Main Source: [258])

eXtensible Markup Language is a markup language that defines a set of
rules for encoding documents in a format that is both human-readable and
machine-readable.

Failures-Divergences Refinement is a refinement checking software tool,
designed to check formal models expressed in the Communicating sequential
processes (CSP) process algebra. FDR is developed at the University of
Oxford.(Main Source: [60])

Fault Tree Analysis is a top down, deductive reasoning failure analysis in
which an undesired state of a system is analysed using boolean logic to
combine a series of lower-level fault events leading to a larger system
failure(Main Source: [97])

FileNet is considered to be one of the leading commercial BPM systems. Pro-
cesses are modelled graphically and tasks are assigned to work queues. It
is aimed at simulation of business processes(Main Source: [199])
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GNU General Public License is a widely used free software license, which
guarantees end users (individuals, organizations, companies) the freedoms
to use, study, share (copy), and modify the software. Software that ensures
that these rights are retained is called free software. The license was
originally written by Richard Stallman of the Free Software Foundation
(FSF) for the GNU project.

Information Technology is the application of computers and telecommuni-
cations equipment to store, retrieve, transmit and manipulate data, often
in the context of a business or other enterprise. The term is commonly
used as a synonym for computers and computer networks, but it also
encompasses other information distribution technologies such as television
and telephones.

Interactive Markov Chains is Markov chains in which transition proba-
bilities are functions of population frequencies in the states. (Main
Source: [265])

Intravenous bag is the infusion of liquid substances directly into a vein. It is
used to correct electrolyte imbalances, to deliver medications, for blood
transfusion or as fluid replacement. Intravenous therapy can also be used
for chemotherapy.

JAVA is a general-purpose, concurrent, class-based, object-oriented computer
programming language that is specifically designed to have as few imple-
mentation dependencies as possible.

Labelled Transition System is an abstract machine used in the study of
computation. The machine consists of a labelled with labels chosen from a
set; the same label may appear on more than one transition. If the label set
is a singleton, the system is essentially unlabelled, and a simpler definition
that omits the labels is possible.(Main Source: [39])

Labelled Transition System is an adjacency matrix style representation of
a BPD employed as a genotype representation in the optimisation of
business processes. (See Section 8.2.5)

Linear Temporal Logic is a modal temporal logic with modalities referring
to time. In LTL, one can encode formulae about the future of paths and is
sometimes called propositional temporal logic.(Main Source: [39])

Markov Decision Process is a mathematical framework for modelling deci-
sion making in situations where outcomes are partly random and partly
under the control of a decision maker (actor). It is a discrete time stochastic
control process. (See Appendix A.5)

Markov Reward Model Checker is a probabilistic model checking tool. It
supports reward extensions of PCTL and CSL (PRCTL and CSRL), and
allows for the automated verification of properties concerning long-run
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and instantaneous rewards as well as cumulative rewards. MRMC has
been developed by the Formal Methods and Tools (FMT) group at the
University of Twente, The Netherlands and the Software Modelling and
Verification (MOVES) group at RWTH Aachen University, Germany. (Main
Source: [151])

Modelling and Analysis of Real Time and Embedded systems is an ex-
tension of the UML language.

MOdest TOol EnviRonment is a probabilistic model checking tool for the
MoDeST modelling language developed at Saarland University. (Main
Source: [50])

Multiple Terminal Binary Decision Diagram is a refinements on the Bi-
nary Decision Diagram (BDD) data structure giving way to a number of
related graphs. (Main Source: [39])

NEXPTIME is the set of decision problems that can be solved by a non-
deterministic Turing machine using time O(2p(n)) for some polynomial
p(n), and unlimited space.

NuSMV is a reimplementation and extension of SMV symbolic model checker,
the first model symbolic checking tool based on Binary Decision Dia-
grams.(Main Source: [74])

Object Management Group is the consortium responsible for CORBA (Com-
mon Object Request Broker Architecture), Unified Modeling Language
(UML), and Model-Driven Architecture (MDA).

OPPAAL-SMC is a probabilistic model checking tool. The name is derived
from the first three letters of Uppsala University (UPP) and Aalborg
University (ALL), while SMC stands for the Statistical Model Checking
extension of this tool.(Main Source: [63])

Ordered Binary Decision Diagram is a type of Binary Decision Diagram
that ensures the variables appear in the same order along all paths from
the root to the leaves. (Main Source: [62])

Performance Evaluation of Parallel Programs is a model checker which
can provide numerical evaluation of processes’ performance. (Main Source: [59])

Performance Evaluation Process Algebra is a stochastic process algebra
designed for modelling computer and communication systems introduced
by Jane Hillston.(Main Source: [135])

Petri-net is a directed bipartite graph, in which the nodes represent transitions
and places. Directed arcs describe which places are pre- and/or post-
conditions for which transitions occurs. (Main Source: [220])

Probabilistic Computation Tree Logic is an extension of computation tree
logic (CTL) which allows for probabilistic quantification of described
properties. (See Appendix A.2 - Main Source: [131])
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Probabilistic Symbolic Model Checker is a formal verification software
tool for the modelling and analysis of systems that exhibit probabilis-
tic behaviour. PRISM is developed at the university of Oxford.(Main
Source: [170])

Probabilistic Timed Automata are an extension of Markov decision pro-
cesses with clocks and constraints on clocks. It is an extension of timed
automata with (discrete) probabilistic choice.

Process Graph Fundamentally, models of business processes focus on the
sequencing of tasks, where a task is an abstraction of a piece of work
which is to be performed. Process graphs encapsulate this notion and
are formally defined in the thesis. They are employed as an overarching
definition that captures this sequencing of tasks within a well-defined
mathematical structure.(See Definition 3.1)

PROTOS is a modelling and analysis tool developed by Pallas Athena and it
is mainly applied for the specification of their in-house business processes.
Processes can be analysed with respect to data, user and control logic
perspectives with mean, 90% and 99% confidence intervals of utilization
rates, waiting times, service times, throughput times and costs. PROTOS is
a project by Oulu University Secure Programming Group (OUSPG).(Main
Source: [272])

Rewards Data values associated with states of a system which are accumulated
as different states or transitions in the system are traversed. Both types of
rewards are formally defined in this thesis.(See Section 3.2.3)

SPIN is a general tool for verifying the correctness of distributed software
models in a rigorous and mostly automated fashion. It was written by
Gerard J. Holzmann and others in the original Unix group of the Computing
Sciences Research Center at Bell Labs, beginning in 1980. Systems to be
verified are described in Promela and properties to be verified are expressed
as Linear Temporal Logic (LTL).(Main Source: [140])

Statespace is a representation of a system model where each state of the states-
pace corresponds to a unique configuration of the system and transitions
between states describe the evolution of the system’s configurations.(Main
Source: [39])

Stochastic BPMN Optimisation Analysis Tool is a software service which
allows for the analysis and automated radical optimisation of business pro-
cesses. This is the name of the software tool created by the author.(See
Chapter 9)

Stochastic Hybrid Automata At the core of the Modest Toolset is the model
of networks of stochastic hybrid automata (SHA), which combine non-
deterministic choices, continuous system dynamics, stochastic decisions
and timing, and real-time behaviour, including non-deterministic delays.
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The Modelling and Description Language for Stochastic and Timed Systems
is a specification formalism for describing stochastic real-time systems.
(Main Source: [50])

The Technical University of Denmark is a university just north of Copen-
hagen, Denmark. It was founded in 1829 at the initiative of Hans Christian
Ørsted as Denmark’s first polytechnic, and is today ranked among Europe’s
leading engineering institutions, and the best engineering university in
Scandinavia.

Thousands of Problems for Theorem Provers is a library of test prob-
lems for automated theorem proving (ATP) systems. (Main Source: [269])

UML-Statecharts are an enhanced realization of the mathematical concept
of a finite automaton in computer science applications as expressed in the
Unified Modelling Language notation.(Main Source: [208])

Unified Modeling Language Systems Modeling Language is a general-
purpose modeling language for systems engineering applications. It sup-
ports the specification, analysis, design, verification and validation of a
broad range of systems and systems-of-systems. SysML is defined as an
extension of a subset of the Unified Modeling Language (UML) using
UML’s profile mechanism

Unified Modelling Language is a standardized general-purpose modelling
language, developed by the Object Management Group.(Main Source: [208])

UPPAAL is an integrated tool environment for modelling, validation and
verification of real-time systems modelled as networks of timed automata,
extended with data types (bounded integers, arrays, etc.). Developed
in collaboration between the Department of Information Technology at
Uppsala University (UPP) in Sweden and the Department of Computer
Science at Aalborg University (AAL) in Denmark.(Main Source: [43])

Web Services Business Process Execution Language is a standard for
formally describing business processes and business interaction protocols.
WS-BPEL was designed to extend the Web Services interaction model to
support business transactions.(Main Source: [211])

Weighted Metric Temporal Logic is a temporal logic for reasoning about
weighted timed automata and is an extensions of CTL that allows for the
incorporation of relative weights of separate CTL formula.

XML Process Definition Language is a format standardized by the Work-
flow Management Coalition (WfMC) to interchange business process defini-
tions between different workflow products, i.e. between different modeling
tools and management suites. XPDL defines an XML schema for specifying
the declarative part of workflow / business process.(Main Source: [291])
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Yet Another Workflow Language is a workflow language based on the Work-
flow patterns. The language is supported by a software system that includes
an execution engine, a graphical editor and a worklist handler. The system
is available as Open source software under the lesser GPL license. (See
Section 2.3.2.3 - Main Source: [23])
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