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Abstract

A tramp ship operator often has contracted cargoes that must be carried and seeks to maximize
profit by carrying optional cargoes. Hence, tramp ships operate much like taxies following
available cargo and not according to fixed route networks and itineraries as liner ships. Marine
fuel is referred to as bunker and bunker costs constitute a significant part of daily operating
costs. There can be great variations in bunker prices across bunker ports so it is important
to carefully plan bunkering for each ship. As ships operate 24 hours a day, they must refuel
during operations. Therefore, route and schedule decisions affect the options for bunkering.
Current practice is, however, to separate the two planning problems by first constructing
fleet schedules and then plan bunkering for these fixed schedules. In this paper we explore
the effects of integrating bunker planning in the routing and scheduling phase for a tramp
operator sailing full shiploads, i.e. carrying at most one cargo onboard each ship at a time.
We present a mixed integer programming formulation for the integrated problem of optimally
routing, scheduling and bunkering a tramp fleet carrying full shiploads. Aside from bunker
integration, this model also extends standard formulations by using load dependent costs,
speed and bunker consumption. We devise a solution method based on column generation
with a dynamic programming algorithm to generate columns. The method is heuristic mainly
due to discretization of the continuous bunker purchase variables. We show that the integrated
planning approach can increase profits and that the decision of which cargoes to carry and on
which ships is affected by the bunker integration and by changes in the bunker prices.

1 Introduction

It is estimated that over 80% of world trade is carried by the international shipping industry
(UNCTAD, 2011) and world trade therefore depends on the industry’s efficiency and competitive
freight rates. Hence, research to increase efficiency within maritime transportation is important,
and, taking the mere size of this huge industry into consideration, even small improvements can
have great impact.

An important part of utilizing the existing fleet efficiently is routing and scheduling the ships,
i.e. assigning cargoes to ships while simultaneously finding the sequence and timing of port calls
for all ships. Many ship operators use experienced planners to manually route and schedule the
fleet. However, increased competition and recent trends of mergers among, and pooling of, ship-
ping companies have increased the pressure as well as the difficulty of devising efficient schedules
manually due to the increased fleet sizes (Christiansen et al., 2004). Therefore, there is a need for
an automated approach to the planning that can both aid the construction of efficient schedules
and enable fast changes to existing schedules in case of new opportunities or changed demand.

In this paper we focus on tramp shipping where ships operate much like taxies following the
available cargoes and not according to a fixed route network and itinerary as in liner shipping.
Routing and scheduling within tramp shipping is therefore a more dynamic and ongoing process
compared to that of liner shipping. A tramp operator often has some contracted cargoes that must
be carried and seeks to maximize profit by carrying optional cargoes found in the spot market.
Tramp ship routing and scheduling is very closely related to the well researched Vehicle Routing
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Problem (VRP) and its variants but there are, however, important differences that facilitate the
development of industry specific methods. To mention a few, we note that optional cargoes are
not considered in the standard VRP and that ships pay port fees and operate around the clock.

Marine fuel is also referred to as bunker fuel or simply bunker while refueling is called bunkering.
Fuel costs constitute a significant part of daily operating costs and since bunker prices can vary
significantly across ports, it is important to carefully plan the bunkering of each ship. The recent
increase in oil prices adds further motivation for operators to plan bunkering optimally, yet many
still use manual planning. Ships operate 24 hours a day so they must refuel during operations.
Hence, route and schedule decisions will affect the options for bunkering. Consequently, it seems
natural to integrate bunker planning in the routing and scheduling phase and consider the combined
routing, scheduling and bunkering problem. Current practice is, however, to separate the two
problems by first constructing fleet schedules and then plan bunkering for these fixed schedules.

In this paper we explore the effects of integrating bunker planning in the routing and scheduling
phase for a tramp operator sailing full shiploads, i.e. carrying at most one cargo onboard each
ship at a time. We present a mixed integer programming formulation for the integrated problem
of optimally routing, scheduling and bunkering a tramp fleet carrying full shiploads. This model
extends standard tramp formulations by accounting for bunkering time, variations in bunker prices
and bunker ports costs and further by using load dependent costs as well as speed and bunker
consumption. We devise a heuristic solution method that can simultaneously select which optional
cargoes to carry, how cargoes should be allocated to ships, determine ship routes and schedules,
and decide when, where and how much each ship should bunker during its schedule depending
on forward curves for bunker prices. The method relies on column generation with a dynamic
programming algorithm to generate columns. Computational results show that this integrated
planning approach can increase profits, and that the decision of which cargoes to carry and on
which ships is affected by the bunker integration and by changes in the bunker prices.

The remainder of the paper is organized as follows. In Section 2 relevant literature is presented.
Section 3 provides a problem description as well as a mathematical model for the problem, while
the devised solution method is described in Section 4. Section 5 describes some instance generators
that we have developed to acquire necessary data on cargoes and bunker prices. In Section 6 we
tune the devised algorithm and in Section 7 we explore the effects and benefits of integrating bunker
planning in the routing and scheduling phase through a comparison of the integrated approach and
the sequential approach. We also investigate the method’s sensitivity to bunker prices. Finally,
concluding remarks and suggestions for future work are discussed in Section 8.

2 Literature review

Mathematical formulations and discussions on solution methods for a wide range of maritime
problems on all planning levels can be found in Christiansen et al. (2007). Furthermore, a thorough
review of literature focused on ship routing and scheduling before 2013 can be found in the four
review papers, Ronen (1983), Ronen (1993), Christiansen et al. (2004) and Christiansen et al.
(2013).

Recent work on tramp ship routing and scheduling include Kang et al. (2012) who consider the
interaction between ship routing and scheduling and ship deployment, and St̊alhane et al. (2012)
who investigate split loads. Fagerholt and Ronen (2013) present and consolidate results for three
practical extensions within bulk shipping: (1) flexible cargo quantities, (2) split cargoes, and (3)
sailing speed optimization, while Tang et al. (2013) consider speed optimization.

The tramp ship routing and scheduling problem is closely related to vehicle routing problems.
Most similar to our problem is the vehicle routing problem with pickup and deliveries and time
windows (VRPPDTW) for which we refer the reader to Desaulniers et al. (2002). There are,
however, important differences between the maritime version of the problem and the land based
one, creating the need for tailor made models and solution methods for each industry. Ronen (1983),
Ronen (2002) and Christiansen et al. (2004) elaborate on these differences but to mention a few,
we note that ships pay port fees and operate continuously. Hence, ships have different starting
positions and starting times, as some ships can be occupied with prior tasks when planning begins.
Even in multi-depot versions of the VRPPDTW vehicles must return to their home depot whereas
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ships do not have to return to their starting point. Finally, the distinction between contract cargoes
and optional cargoes leads to a priority on cargoes not used in VRPPDTW where all customers
must be serviced at minimum cost. In contrast, the tramp objective is to maximize profit as in
the less known Pickup and Deliver Selection Problem, see Schönberger et al. (2003).

Column generation has received much attention and achieved great success within vehicle rout-
ing but is not as frequently used within maritime transportation. This is partly because the
large number of constraints reduce the solution space to such an extent that - combined with the
major uncertainty within maritime transportation - feasible schedules only consist of a few voy-
ages. Hence, all feasible combinations can be enumerated and, so, it is often sufficient to apply
a priori column generation. However, within tramp ship scheduling both Appelgren (1969) and
Brønmo et al. (2010) have found dynamic column generation more efficient than a priori generation.
Brønmo et al. (2010) report that in their experiments, the dynamic approach is both faster and
enables them to deal with larger or more loosely constrained instances than a priori generation.
In line with that, recent years have shown an increase in maritime papers that explore dynamic
column generation, see e.g. Kobayashi and Kubo (2010), Hennig et al. (2012) and St̊alhane et al.
(2012). Furthermore, Desaulniers et al. (2005) devoted two whole chapters to column generation
in maritime problems.

Within vehicle routing research on refueling policies can be found in Hong Lin et al. (2007) and
Lin (2008). Software products for refueling, called fuel optimizers, have also been developed for
the trucking industry. Suzuki (2008) gives a description of such systems and a literature review
while Suzuki and Dai (2012) discuss solution methods. These systems use the latest price data to
calculate which truck stops to use and how much to purchase at each stop to minimize refueling
costs. The above work on refueling policies are for single vehicles traveling on fixed routes. Hence,
there is no integration of refueling with routing and scheduling. Also, since customers have already
been assigned to vehicles, the interdependency of vehicle routes is ignored and the problem is
decomposed into independent one-vehicle problems while we must consider the entire fleet.

Within air transportation work on refueling policies can be found in Darnell and Loflin (1977),
Stroup and Wollmer (1992), Abdelghany et al. (2005) and Zouein et al. (2002). However, they also
consider refueling policies for fixed routes and do not allow aircraft to divert from their routes for
refueling. In fact, since routes are fixed, the refueling policy problem relates more to liner shipping
where the combinatorial aspect, i.e. the route selection, from tramp shipping is not present.

Within liner shipping Yao et al. (2012) explore refueling policies where sailing speed is a decision
variable. As they consider a liner service, they too assume a fixed route and do not allow diversions
from routes to refuel. Similarly, Besbes and Savin (2009) also explore refueling policies for liner
ships for fixed routes. In contrast, Notteboom and Vernimmen (2009) consider the impact of
increasing bunker prices on the actual design of liner services. For a single liner vessel on a fixed
route Kim et al. (2012) seek to minimize the bunker related costs together with the cost of the
ship’s time and environmental costs. They determine the optimal ship speed, bunkering ports, and
amounts of bunker fuel. Finally, Wang et al. (2013) present a review on mathematical solution
methods for bunker consumption optimization problems within liner shipping and propose several
new ones.

Within tramp shipping, as far as we know, only two papers address optimal refueling. Oh and
Karimi (2010) consider a multi parcel tanker and propose a mixed integer programming model to
optimize bunkering. They use speed as a decision variable and take uncertainty of fuel prices into
account but they too assume a fixed route. In contrast, Besbes and Savin (2009) simultaneously
optimize routes and bunker plans. However, their approach is much more strategic than ours.
They formulate the problem as a stochastic dynamic program. They only consider one ship and do
not consider actual cargoes. Instead they assume a stochastic revenue process that leads them to
explore optimal network cycles. In fact, they view the problem more as an inventory management
problem with no end, and, consequently, seek to maximize long term average profit. They charac-
terize the optimal refueling policy when prices are constant over time and do not differ across ports
and when prices are constant over time but differ across ports. However, they do not consider the
case where prices vary over time and at the same differ across ports as we do.
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3 Problem Description

In this section we give a problem description starting with the pure tramp ship routing and schedul-
ing problem. We then move on to include bunkering and present a mathematical model for the
Tramp Ship Routing And Scheduling Problem with Bunker Optimization (TSRSPBO).

3.1 The Pure Tramp Ship Routing and Scheduling Problem

A tramp operator has long term contracts that obligates him to carry some cargoes and can choose
to carry additional cargoes, so called spot cargoes, if fleet capacity allows it and it is profitable.
The objective is to create a profit maximizing set of fleet schedules, one for each ship, where a
schedule is a sequence and timing of port calls representing cargo loading and discharging. The
optimal solution therefore combines interdependent decisions on which optional cargoes to carry,
the assignment of cargoes to ships and the optimal sequence and timing of port calls for each ship.

A cargo is mainly characterized by the quantity to be transported, the revenue obtained from
transporting it and the pickup and discharge port. There is also a service time for loading and
discharging and a time window giving the earliest and latest start for loading. In some cases there
is also a time window for discharge. A tramp fleet is usually heterogeneous, comprised of ships of
different sizes, load capacities, bunker consumptions, speeds, and other characteristics. Ships can
be occupied with prior tasks when planning starts so each ship is further characterized by the time
it is available for service and the location it is at when it becomes available. The characteristics of
a ship determine which cargoes, ports and canals it is compatible with.

As we consider a fixed fleet we can disregard the fixed setup costs and focus on the variable
operating costs. The main sailing cost is fuel cost and this is different for each ship and load
dependent. In traditional tramp ship routing and scheduling models, sailing cost, and in turn
bunker consumption, is assumed independent of the load of the ship. We, however, will not make
such an assumption. When loading and discharging, ship dependent port costs are incurred. While
loading and unloading, ships also consume bunker although much less than at sea. Other costs
can be relevant depending on the specific operator.

The research presented here has been conducted in collaboration with the Danish shipping com-
pany Maersk Tankers A/S involved in, among other things, transportation of refined oil products
worldwide. Based on their case we focus on full shiploads, i.e. each ship carries at most one cargo
at a time. When considering full shiploads and not including bunkering, pickup and delivery of a
cargo must be performed directly after each other and, hence, the two tasks can be aggregated.
This yields a simple model and we refer the reader to Christiansen et al. (2007) for a mathematical
arc flow formulation for the pure tramp ship routing and scheduling problem with full shiploads.

3.2 Incorporating Bunker

The model presented in Christiansen et al. (2007) for the pure routing and scheduling problem,
just as most other tramp ship routing and scheduling models, assumes that sailing costs are fixed
with no consideration to the great variations in bunker prices or the port costs incurred when
bunkering. Furthermore, the time consumption of bunkering is not considered. In our work, we
integrate considerations for bunker price variations, bunker port costs as well as the time aspect of
bunkering and extend the pure routing and scheduling formulation to include variables for bunker
purchases for each ship, new constraints to incorporate these variables and, finally, an extended
objective function that reflects this new way of calculating bunker costs, and in turn sailing costs.
We also incorporate load dependent bunker consumption. Bunker consumption also depends on
the speed of the ship. However, in reality the speed is not necessarily fixed but instead allowed to
vary with the load of the ship. E.g. if a ship sails at ’full speed’, the actual speed depends on the
load of the ship. Likewise, a speed setting often incurred is ’ECO speed’, i.e. the most economical
speed, and this speed also depends on the load of the ship. We assume each ship sails at ’ECO
speed’ and, so, the actual speed and bunker consumption depend on the load of the ship. Likewise,
we allow costs to be load dependent which is often the case for port and canal costs.

Bunkering can take place at a bunker port where ships enter port just to refuel or at a pickup or
discharge port since almost all ports involved in shipping also sell bunker. Bunkering at a pickup or
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discharge port has the obvious benefit of avoiding detours just for bunker, only incurring port costs
once and even saving time if concurrent bunkering is allowed. However, price variations between
ports can easily be large enough to compensate for the extra cost of a detour, the extra port costs,
and also the extra time consumption. In fact, a few ports seem to dominate bunker sales because
of their strategic location along major trade routes thereby limiting the detours necessary for ships
to refuel there. Two examples of such ports are Malta and Singapore (Oh and Karimi, 2010).

A bunker option is mainly characterized by its geographical location, port costs, bunker price
and time window in which this price is assumed to remain valid. Several bunker options can
represent the same physical bunker port but at different times and, hence, with different prices.
Time dependent port costs or port opening hours can also cause a separation of one bunker port
into many bunker options with different prices and associated time windows. Due to high volatility
in bunker prices these time windows are bound to be narrow and without loss of generality we
assume they are so narrow that no ship will use the same bunker option twice. If time windows
are not narrow enough for such an assumption, each time window can simply be split into several
smaller time windows each with an associated bunker option until the assumption is valid.

Data from the collaborating tramp operator on distances, port costs, fleet bunker consumption
and fleet bunker tank capacity shows that it is very reasonable to assume that each ship makes
at most one bunker stop in between cargo stops. This assumption is also used by Oh and Karimi
(2010) and helps reduce the problem size. However, our solution method also works without this
assumption although longer running times must be expected due to the increase in problem size.

Ships operate 24 hours a day so there is no natural end to the optimization problem. Hence, the
condition of the fleet at the end of the planning period affects optimization in the next period. With
bunker included in the process, the initial bunker inventory for each ship is therefore an important
part of fleet data. Likewise, any remaining bunker onboard ships at the end of their schedules must
be considered a valuable resource for the next planning period independent of future demand. To
account for this resource, we put a premium on any quantity above the initial bunker level for each
ship and call this quantity bonus bunker. Similarly, ships that end their schedule with less bunker
than the initial level must pay for using this resource. As we discuss later, it is in fact vital for our
solution method to account for this bonus bunker. However, the actual value of it is difficult to
price. Using the price of the last visited bunker port is not possible for ships that due to high initial
bunker inventory or idleness did not refuel during their schedule. It also leads to arbitrage since
visiting an expensive bunker port last to purchase a small amount will drive up the resell price
even though the bonus bunker might have been bought at a cheap bunker port. Likewise, there is
no incentive to fill up if a ship passes a cheap bunker port last. Allowing bonus bunker to be resold
at an average price of the region that the ship ends its schedule in motivates repositioning ships
to regions with high bunker prices with no consideration for future cargo demand. Therefore, we
calculate premiums for bonus bunker at an average price of all bunker options with time windows
containing the end of the planning horizon, i.e. a geographically independent forecast of the average
bunker price at the end of the planning horizon. Ship data will now also include a minimum and
maximum bunker level corresponding to a required safety level and tank capacity, respectively.

Concurrent bunkering and loading/discharging can easily be added to the model. If i and
j correspond to the same physical port which allows concurrent bunkering and i correspond to
a bunker option while j correspond to a cargo node, then T v

ij and T v
ji will not contain time for

bunkering (assuming bunkering time is less than loading/discharging time). We have chosen not to
include it in our analysis and have further chosen to assume that all bunker options have the same
pumping rate for bunkering. The reason is that preliminary data analysis indicate that the majority
of bunker ports used by the collaborating tramp operator do not allow concurrent bunkering and
that we want to be able to differentiate bunker options on their prices and geographic location
rather than their ’timing’. This allows us to explore the solution’s sensitivity to changes in bunker
prices. Furthermore, when taking the time for port clearance, berthing etc. into account, the time
spent actually pumping bunker onboard the ships can be considered negligible and considering
the trade off between solution time and complexity we have chosen to assume a fixed time for
bunkering at all options regardless of the amount purchased.
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3.3 Mathematical model

When including bunkering in the problem, bunker stops can be made in between pickup and
delivery of a cargo so the two tasks can no longer be aggregated into one. Instead the problem
must be modeled similar to a multiple cargo problem. A mathematical arc flow formulation for the
pure routing and scheduling problem for multiple cargoes can be found in Christiansen et al. (2007).
It is formulated as a pickup and delivery problem with time windows and capacity constraints.

Let V be the set of ships and index it by v, and let B denote the set of bunker options indexed by
k. Since not all ships are compatible with all ports, we get ship specific bunker sets denoted Bv ⊆ B.
Furthermore, we assume that there are N cargoes and index them by i. Let NP = {1, · · · , N} and
ND = {N + 1, · · · , 2N} denote the set of pickup and discharge nodes, respectively. We represent
each cargo i by a pickup node i ∈ NP and a discharge node N + i ∈ ND. We define N = NP ∪ND

as the set of all cargo related nodes and partition NP into NP = NC ∪ NO, where NC and NO

contain pickup nodes for contract cargoes and optional cargoes, respectively. Associated with each
ship v is now a standard network (N v,Av) not including bunker options. The standard network
nodes, N v ⊆ NP ∪ ND ∪ {o(v), d(v)}, correspond to cargoes that ship v is able to carry and two
ship specific nodes representing, respectively, the origin and an artificial destination for ship v.
Ship v is able to carry a cargo i if it has sufficient capacity, is compatible with the specific load
and discharge ports and is in general compatible with cargo i on all accounts. The ship specific
cargo nodes are given by N v

P = NP ∩ N v for pickups and N v
D = ND ∩ N v for discharges. The

set of standard network arcs, Av, is a subset of {(i, j)|i ∈ N v, j ∈ N v} and contains all the arcs
traversable by ship v, e.g. with respect to time and bunker consumption.

For each ship v we extend the standard node set, N v, by adding a node for each element in
Bv and index the full set by i. Likewise, we extend the standard arc set, Av, by adding all arcs
connecting nodes in N v \d(v) with nodes in Bv and traversable by ship v with respect to time and
bunker. We do not connect the destination node, d(v), with bunker nodes, as we do not want idle
ships to bunker since this could send them in the exact opposite direction of their next (unplanned)
port stop and since their unplanned voyages could involve port stops with very attractive prices. For
each ship v we thereby obtain an extended cargo-bunker network (N̂ v, Âv) = (N v ∪Bv,Av ∪Av

B)
where Av

B denotes arcs connecting bunker nodes to nodes in N v \ d(v).

For v ∈ V and i ∈ N̂ v we let lvi denote the load onboard ship v just after completing service
at node i. In case of full shiploads it is common industry practice to simply distinguish between
a laden and a ballast ship, i.e. loaded or empty, rather than calculating the actual load. We will
adopt this practice and thereby use binary load variables, lvi , equal to 1 if the ship is laden and 0 if

the ship is ballast. With (i, j) ∈ Âv we associate a load dependent time consumption T v
ij(l

v
i ) when

traversed by ship v calculated from the arrival at the port of node i until the arrival at the port
of node j. It accounts for service time at the port of node i whether it is a loading, discharging
or bunkering node, and the sailing time from the port of node i to the port of node j. We also
associate a load dependent bunker consumption Bv

ij(l
v
i ) that accounts for bunker consumption

while traveling from node i to node j but not including bunker consumption while in port at
node i. This port consumption is instead accounted for by Bv

i . Finally, we have the variable cost
function Cv

ij(l
v
i ). Like time consumption, this accounts for costs related to visiting the port of node

i and sailing costs from the port of node i to the port of node j. Note however, that the cost of
purchasing bunker is not included, as it is a dynamic node cost dependent on the amount of bunker
purchased at the node. Instead, this cost will be added separately and accounted at a bunker unit
price of Pk for k ∈ B while bonus bunker is ’resold’ at a unit price P . Also note that if nodes i and
j correspond to the same physical port, Cv

ij(l
v
i ) does not include port costs, T v

ij(l
v
i ) does not include

travel time and Bv
ij(l

v
i ) = 0. We also have a revenue Ri for all cargoes i ∈ NP and we denote the

bunker capacity of ship v by Bv
Max. The safety level for bunker inventory is denoted Bv

Min while
the initial bunker level onboard the ship is denoted Bv

0 . Finally, we denote by [T v
MNi, T

v
MXi] the

time window associated with node i ∈ N̂ v. For o(v) this window is collapsed into the time ship v
is available for service. For the mathematical formulation we need the following variables:

xvij , v ∈ V, (i, j) ∈ Âv. Binary variable that is equal to 1, if ship v visits node i just before node
j, and 0 otherwise

tvi , v ∈ V, i ∈ N̂ v. Denotes the time ship v begins service at node i
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lvBi, v ∈ V. Denotes the bunker load onboard ship v just after completing service at node i

lvi , v ∈ V. Binary variable that is equal to 1, if ship v is laden when leaving node i , and 0
otherwise

yvk , v ∈ V, k ∈ Bv. Gives the bunker purchased by ship v at option k ∈ Bv

We can now give an arc flow formulation of the TSRSPBO:

max
∑
v∈V

∑
i∈Nv

P

Ri

( ∑
j∈N̂v

xvij
)
−
∑
v∈V

∑
(i,j)∈Âv

Cv
ij(l

v
i )xvij

−
∑
v∈V

∑
k∈Bv

yvkPk +
∑
v∈V

P · (lvBd(v) −B
v
0 ) (1)

s.t.∑
v∈V

∑
j∈N̂v

xvij = 1, ∀i ∈ NC , (2)

∑
v∈V

∑
j∈N̂v

xvij ≤ 1, ∀i ∈ NO, (3)

∑
j∈Nv

P∪Bv∪{d(v)}

xvo(v)j = 1, ∀v ∈ V, (4)

∑
i∈N̂v

xvij −
∑
i∈N̂v

xvji = 0, ∀v ∈ V, j ∈ N̂ v \ {o(v), d(v)}, (5)

∑
i∈Nv

D∪Bv∪{o(v)}

xvid(v) = 1, ∀v ∈ V, (6)

∑
j∈Bv

xvij = 0, ∀v ∈ V, i ∈ Bv, (7)

xvij(t
v
i + T v

ij(l
v
i ) − tvj ) ≤ 0, ∀v ∈ V, (i, j) ∈ Âv, (8)

T v
MNi ≤ tvi ≤ T v

MXi, ∀v ∈ V, i ∈ N̂ v, (9)

xvij(l
v
i + 1 − lvj ) = 0, ∀v ∈ V, (i, j) ∈ Âv|j ∈ N v

P , (10)

xvi,N+j(l
v
i − 1 − lvN+j) = 0, ∀v ∈ V, (i,N + j) ∈ Âv|j ∈ N v

P , (11)

xvij(l
v
i − lvj ) = 0, ∀v ∈ V, (i, j) ∈ Âv|j ∈ Bv, (12)

lvo(v) = 0, ∀v ∈ V, (13)

lvi = 1, ∀v ∈ V, i ∈ N v
P , (14)

lvN+i = 0, ∀v ∈ V, i ∈ N v
P , (15)

xvij(l
v
Bi − Bv

ij(l
v
i ) −Bv

j + yvj − lvBj) = 0, ∀v ∈ V, (i, j) ∈ Âv|j ∈ Bv, (16)

xvij(l
v
Bi − Bv

ij(l
v
i ) −Bv

j − lvBj) = 0, ∀v ∈ V, (i, j) ∈ Âv|j ∈ N v, (17)

lvBo(v) = Bv
0 , ∀v ∈ V, (18)

Bv
Min +

∑
j∈N̂v

Bv
ij(l

v
i )xvij ≤ lvBi ≤

∑
j∈N̂v

Bv
Maxx

v
ij , ∀v ∈ V, i ∈ Bv ∪N v (19)

0 ≤ yvi ≤ (Bv
Max − Bv

Min)
∑
j∈N̂v

xvij , ∀v ∈ V, i ∈ Bv (20)

tvi + T v
i,N+i(l

v
i ) − tvN+i ≤ 0, ∀v ∈ V, i ∈ N v

P , (21)∑
j∈N̂v

xvij −
∑
j∈N̂v

xvj,N+i = 0, ∀v ∈ V, i ∈ N v
P , (22)

lvi ∈ {0, 1}, ∀v ∈ V, i ∈ N̂ v. (23)

xvij ∈ {0, 1}, ∀v ∈ V, (i, j) ∈ Âv, (24)
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The objective function (1) maximizes profit by subtracting all costs from revenues for serviced
cargoes and adding the value of bonus bunker. Note that B0 is a constant that could be removed.
However, we leave it in the objective function to emphasize that only bunker levels above the
initial level incurs a premium. The premium for bonus bunker is negative if the bunker level at the
destination node is less than at the origin node. Constraints (2) and (3) ensure that all contract
cargoes are carried by exactly one ship and that all spot cargoes are carried by at most one ship.
Constraints (4) and (6) together with the flow conservation constraints in (5) ensure that each
ship is assigned a schedule starting at the origin node and ending at the destination node. If a
ship is idle for the entire planning period, the assigned schedule is simply represented by the arc
(o(v), d(v)). Our assumption of at most one bunker stop in between cargo stops is enforced in
constraints (7). In situations where this assumption is not reasonable, the right hand side of the
constraints can be increased or they can just be removed from the model. Constraints (8) ensure
that if the route for a ship v visits node i directly before node j, the service at node j cannot begin
before service time at node i plus the service time at node i and travel time from node i to node j
with ship v. Waiting time is allowed and, hence, the constraints have an inequality sign. Together
with the time window constraints (9) they take care of the temporal aspect of the problem. If ship
v does not visit node i, the service time tvi is artificial. Constraints (10), (11) and (12) ensure that
the cargo load variables are correctly updated along the chosen route, increasing the load variable
by 1 if visiting a loading node, similarly decreasing the load variable if visiting a discharge node
and simply maintaining the previous load variable value if visiting a bunker node. In (13) the
initial load condition for each ship is given since we assume that the ship is empty at the time
it is available for service. Constraints (14) and (15) determine the value of the load variables for
loading and discharging nodes, respectively. For completeness constraints (15) have been added to
the model though they could be omitted. Constraints (16)-(19) place similar restrictions on the
bunker load variables: Constraints (16) and (17) ensure that the bunker load variables are updated
correctly, constraints (18) give the initial bunker level for each ship while (19) give lower and upper
bounds for the variables ensuring that a ship will never arrive at a port with less bunker than the
safety level and will never carry more bunker than its bunker capacity allows. Constraints (20)
restrict the bunker purchase amounts for each ship. Constraints (21) are precedence constraints
ensuring that a cargo cannot be discharged before it has been picked up, i.e. node i must be visited
before node N + i. Constraints (22) couple pickup and discharge nodes for each cargo together to
ensure that the same ship will service both nodes. Finally, the load variables and the flow variables
are restricted to be binary in (23) and (24), respectively.

4 Solution Method

The mixed integer programming model (1)-(24) could in theory be solved by commercial optimiza-
tion software for non-linear problems. In practice, however, problem instances will be too large
to achieve solutions in a reasonable amount of time. This section therefore describes a solution
method tailored for the TSRSPBO.

In the mathematical programming model (1)-(24), constraints (4)-(24) are ship specific with no
interaction between ships. They constitute a routing and scheduling problem for each ship where
time windows, cargo and bunker capacity as well as bunker purchases are considered. We denote
these ship specific constraints ship routing constraints and further notice that the objective function
also splits into separate terms for each ship. The only constraints linking the ships together are
the so called common constraints in (2) and (3) which ensure that each contract cargo is carried
by exactly one ship and that each spot cargo is carried by at most one ship. This suggests use
of decomposition and column generation since it allows the complex and ship specific constraints,
concerning the routing and scheduling, to be handled separately in subproblems, one for each
ship. Only the common constraints remain in the master problem in which feasible ship schedules
constitute the columns. This way the original problem is transformed into a master problem with
a reduced number of constraints but with a potentially very large number of columns.

Often ship scheduling problems are so tightly constrained that it is possible to a priori generate
all master problem columns. This is done by generating the optimal schedule for each feasible
cargo set for each ship. Such an approach has been attempted in Brønmo et al. (2007). However,
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as already mentioned, Brønmo et al. (2010) find it computationally advantageous to apply dynamic
column generation even though a priori generation can be applied. The inclusion of bunker decisions
in the scheduling process will further complicate the determination of an optimal schedule for a
given cargo set and can, hence, make a priori generation very time consuming. In line with this,
we apply dynamic column generation to solve the problem (see e.g. Desaulniers et al. (2005) for
a general description or Christiansen et al. (2007) for a maritime version). Therefore, we initially
consider only a subset of the master problem columns and iteratively add new columns that have
the potential to improve the current solution. We find these columns by iteratively solving the
subproblems, also called pricing problems.

4.1 The Master Problem

The common constraints (2) and (3) in combination with the objective function (1) constitute the
master problem. They must, however, be expressed by new path flow variables corresponding to
feasible ship schedules and constraints must be added to ensure that each ship is assigned exactly
one schedule. We let Rv denote the set of all feasible schedules for ship v. Each cargo set can
correspond to several feasible schedules as the order of cargoes in the schedule will correspond to
different geographical routes. Schedules can also differ in bunker port calls, the amounts purchased
at each bunker port and even in the timing of port calls. For a given set of cargoes there will be
at least one profit maximizing schedule corresponding to the optimal bunkering strategy and the
optimal timing of port calls. However, due to the subproblem solution method we might generate
several different schedules for the same cargo set. We denote the profit of a schedule by pvr for
r ∈ Rv and define a binary schedule variable λvr that is equal to 1 if ship v is chosen to sail schedule
r, and 0 otherwise. The profit pvr is calculated based on information from the underlying schedule,
which holds all necessary information, i.e. the ship it is constructed for, the cargoes carried, the
bunker ports visited as well as the bunker quantities purchased, and the timing of port calls during
the schedule. Finally, we let avir be equal to 1 if ship v carries cargo i in schedule r, and 0 otherwise.

The master problem is now given by the following path flow reformulation of the original arc
flow model:

max
∑
v∈V

∑
r∈Rv

pvrλ
v
r (25)

s.t.∑
v∈V

∑
r∈Rv

avirλ
v
r = 1, ∀i ∈ NC , (26)∑

v∈V

∑
r∈Rv

avirλ
v
r ≤ 1, ∀i ∈ NO, (27)∑

r∈Rv

λvr = 1, ∀v ∈ V, (28)

λvr ∈ {0, 1}, ∀v ∈ V, r ∈ Rv. (29)

The above model is based on all feasible schedules but it is not necessary to include all of them.
Instead, column generation is applied to dynamically generate them as needed. This process
begins with the solution of the restricted master problem (RMP) which is the linear relaxation of
the original master problem (25)-(29) but with only a subset of the columns included. Iteratively
we then generate new promising columns by solving the subproblems.

4.2 The Subproblem - Generation of promising schedules

Constraints (4)-(24) split into one independent subproblem for each ship. Since these are all
essentially the same problem, we simply consider the generic subproblem for ship v and refer to
’the subproblem’. Note though the interdependence between the subproblems due to the common
constraints. The ship routing constraints in the subproblem ensure that any solution is a feasible
schedule for ship v and the objective ensures that only schedules with the potential to improve the
current solution of the RMP are generated. This, in turn, means finding schedules with positive
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reduced costs in the current solution of the RMP, i.e. finding columns r with pr−σTar, where σ is
the dual vector of the current solution of the RMP. Let ui be the dual variables for constraints (26)
and (27) where the variables corresponding to (26) are free of sign while the variables corresponding
to (27) must be nonnegative. Next, let wv be the dual for constraint (28) which is also free of sign.
Finally, define σi = ui for all i ∈ NP , σo(v) = wv corresponding to the origin node and σi = 0
for all other i. Since we consider the generic subproblem we can drop the superscript v and the
subproblem is then given by:

max
∑
i∈NP

Ri

(∑
j∈N̂

xij

)
−

∑
(i,j)∈Â

(
Cij(li) + σi

)
xij −

∑
k∈B

ykPk + P (lBd − B0) (30)

s.t.

(4)− (24). (31)

The subproblem finds the maximum reduced cost feasible schedule with respect to the current
dual values. If this schedule has a positive reduced cost it will be represented by a new column in
the RMP. The subproblem can be modeled as a resource constrained shortest path problem and
is NP-hard since it is a generalization of the shortest path problem with time windows which is
itself NP-hard (see e.g. Desrosiers et al. (1995)). We therefore devote Section 4.4 to an efficient
solution method for the subproblem.

4.3 Full Column Generation Scheme

The full column generation scheme is an iterative process starting from the RMP with only a small
initial column set. To ensure feasibility of the initial problem, we include a dummy column for each
contract cargo. Each dummy column corresponds to an artificial ship carrying exactly one contract
cargo. The revenue from each dummy schedule is −M , where M is a large constant. Feasibility
with respect to the generalized upper bound constraints (28) must also be ensured, i.e. each ship
must be assigned a schedule. Therefore, we include an empty schedule with 0 profit for each ship
corresponding to the ship being idle for the entire planning horizon, and leave the corresponding
(o(v), d(v)) out of the subproblem networks.

Once the RMP has been solved, the optimal dual solution values are transferred to each of
the subproblems which are then solved to obtain new schedules. The subproblem solution method
presented in the next section allows us to speed up the solution process considerably by generating
several columns for each ship in each iteration. This is done by transforming all new schedules with
positive reduced cost into columns rather than just transforming the schedule with the maximum
reduced cost. All these new columns are then added to the RMP which is resolved to obtain new
dual values that can again be transferred to the subproblems. This process of iterating between
the master problem and the subproblems continues until no promising columns can be found, i.e.
until no schedules have positive reduced costs.

Since all the intricate and nonlinear constraints and costs are transferred to the subproblems,
the master problem can most often be solved by commercial linear programming software. As each
subproblem must be solved a potentially great number of times to obtain all necessary columns,
a fast solution method for the subproblem is vital for the effectiveness of the column generation
scheme. Since the subproblem considered here is NP-hard, solving it can be very time consuming
and a choice between heuristics and optimization must be made depending on the desired solution
quality and computation time.

Once the column generation process terminates, an optimal solution to the linear relaxation of
the full master problem is obtained. In order to ensure an optimal integral solution, the column
generation scheme must be embedded in a Branch & Bound search, resulting in a Branch & Price
algorithm. In our computational studies we have, however, encountered relatively few fractional
solutions and for these fractional solutions, the integrality gap was acceptable. Therefore, we
have not implemented a Branch & Bound algorithm. Instead, integrality has been enforced by
the simple, but non-optimal, approach of solving the integer version of the RMP once column
generation terminated. In Section 7 we verify the quality of these forced integer solutions by
comparing them to their corresponding upper bounds obtained from the fractional solutions.
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4.4 Solving the subproblem

Shortest path problems with resource constraints (SPPRC) are often encountered in both land and
air based transportation, e.g. as a subproblem in column generation frameworks for solving vehicle
routing and crew rostering problems. The problem entails finding a shortest path between two
nodes, while satisfying several resource constraints. For vehicle routing problems typical resources
include, among others, time windows and vehicle capacity, and we observe similar requirements
here. The SPPRC is typically solved by dynamic programming algorithms on the underlying
networks, and we will also use this approach here. The reader is referred to Desaulniers et al.
(1998), Irnich and Desaulniers (2005) and Irnich (2008) for a thorough introduction to the SPPRC,
the related dynamic programming algorithms, and several associated concepts. In what follows
we provide more specific details on the SPPRC at hand. In particular, we discuss in detail the
nature of the underlying network, preprocessing techniques, and the actual dynamic programming
algorithm we implement.

4.4.1 The Underlying Ship Network

Before providing a detailed description of the underlying network for the subproblem, we state an
assumption which impacts the modelling approach chosen. As the research in this paper is more
on a tactical level than an operational one, we are looking for a guide line on where to bunker
and roughly how much to bunker at each bunker stop. The operational planning problem of
exactly how many tons of bunker to purchase with decimal accuracy is not relevant in our setting
where decisions are based on bunker price forecasts rather than actual prices. If decimal precision
is desired for the bunker levels, one could adopt similar procedures from Ioachim et al. (1998)
and Christiansen and Nygreen (2005) to handle the linear node costs. Instead, we assume that we
can discretize the bunker purchase variables; this allows us to avoid the difficulties associated with
linear node costs.

When discretizing the bunker purchase variables an obvious concern is how to do this in a
manner that does not sacrifice optimality too much. We therefore note that logically the optimal
decision at each bunker stop is to either fill up the tank or to purchase just enough bunker to allow
the ship to sail to the next bunker stop; we cannot know in advance how much bunker is required
to get to the next bunker stop, but we can obviously fill up the tank. When tuning and testing the
devised solution method in Section 6 and Section 7 we see that when constructing bunker schedules,
the majority of bunker stops actually correspond to filling up the tank to its capacity. As we want
to retain this optimal decision amongst the possible purchase quantities, we let each bunker node
correspond to the situation of filling up the tank to a certain inventory level rather than purchasing
a specific amount of bunker. Note that using a mix of these two types of bunker purchases can
almost aggregate some bunker nodes, e.g. if the ’fill up tank’ node corresponds to bunkering 833
tons and the fixed amount node is 800 tons. Therefore, we only use ’fill up to’ nodes so that the
purchase quantities span the feasible interval of possible purchase quantities as much as possible.
That is each bunker node of the network corresponds to a different ’fill up to’ level for a particular
bunker purchase option. Each ship has its own bunker tank capacity and safety level and these,
in turn, describe the ship specific interval of feasible bunker purchase quantities. This interval is
divided in to L discrete bunker purchase quantities, where L is a parameter of the algorithm that
we tune in Section 6. Note that this parameter could be different for each ship but as the tank
capacities do not vary too much in size for the fleet we consider, we have chosen to use the same
parameter for all ships. Dividing (BMax − BMin) into L intervals and rounding the result down
to the nearest 25 tons yields the refinement level q. That is each bunker option i ∈ Bv is replaced
by the L discrete purchase quantity levels: BMax, BMax − q . . . , BMax − (L − 1)q. If L = 1, the
only option is to fill up the tank to its maximum capacity. Note that with the discretization of
bunker purchases, the notion of bonus bunker becomes a vital part of the solution procedure. If
this premium for unused bunker is not included in the model, it becomes more important to find
combinations of bunker purchase quantities that let ships finish their schedules with empty tanks
than to find cheap bunker options. In other words, the effect of price changes on the optimal
bunker plan is almost non existent.

The SPPRC for ship v ∈ V can now be stated on a network in which the node set is comprised
of N v and an extended set of bunker nodes based on the bunker set Bv. This extended set of
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bunker nodes is obtained by discretizing the bunker purchase variables in to the L discrete bunker
purchase options. Arcs are introduced to govern the transitions between the cargo nodes and
the bunkering possibilities. More specifically, the arc set contains all arcs in Av (i.e. the cargo
network), and additional arcs which connect cargo nodes to each bunkering possibility. Figures 1(a)
and 1(b) illustrate the resulting network for a small example with 2 cargoes and only one bunker
option that has been discretized into just one node, i.e. L = 1. Note the double headed arrows
in Figure 1(b) which have just been aggregated for the sake of simplicity in this figure. Nodes Li

and Di correspond, respectively, to pickup and discharge of cargo i while node B corresponds to
the bunker node.

(a) Standard cargo network (b) Normal cargo-bunker network

Figure 1: Extending a standard cargo network to include bunker nodes

While Figure 1(b) can be used to model the SPPRC for ship v ∈ V, we prefer to modify it in
the following way. We duplicate the extended set of bunker nodes, a set with cardinality K · L
(with K = |Bv|), as many times as there are potential time feasible arcs in the standard network,
(N v,Av), excluding arcs leading to the destination node. Note that ’potential time feasible’ means
that any arc connecting nodes in N v \d(v), and which is feasible with respect to time, is considered
here. A ’potential time feasible’ arc does not have to belong to Av as it can be infeasible with
respect to bunker constraints. Each new node is inserted on to the edge it is associated with. If
any arcs connecting bunker nodes to the rest of the network are infeasible with respect to bunker
consumption and safety levels, they can be removed. Essentially, we construct multiple nodes in
the network for each i ∈ Bv, where each node is associated with a specific, discrete bunker amount
and indicates whether the respective bunkering occurs between a specific origin destination pair.
The resulting, extended network can be seen in Figure 2(a).

(a) Extended cargo-bunker network (b) Reduced network

Figure 2: The extended bunker network and the reduced extended cargo bunker-network

Constructing such networks means that all paths in the networks respect the cargo capacity
and precedence constraints as they are implicitly considered in the network setup. Furthermore,
each arc in the network now corresponds to either a laden or a ballast ship and, hence, the load
dependent time and bunker consumption as well as costs can now be considered fixed and calculated
in advance. As a result, in total, this network setup allows us to disregard the onboard cargo as a
resource, and this simplifies the dynamic programming algorithm for finding the shortest path.

12



All these advantages do, however, come at the expense of an increase in the potential node and
arc count of (N2 + N − 1)K · L and (2N2 − 2N − 1)K · L, respectively, compared to the normal
cargo-bunker network illustrated in Figure 1(b). A significant number of these extra nodes and arcs
can, however, be removed by preprocessing, especially with respect to time windows. A further
reduction in the node and arc count can be achieved by noting that some of these new bunker nodes
can be aggregated into one without sacrificing the reduction in resources. First, all bunker nodes
that are successors to the origin node and correspond to the same bunker option and purchase level
can be aggregated. Secondly, all bunker nodes that are successors to a single discharge node and
predecessors to other pickup nodes and correspond to the same bunker option and purchase level
can be aggregated. This reduces the potential size of the network by (N2−N−1)K·L nodes and also
(N2−N − 1)K ·L arcs compared to the extended cargo-bunker network illustrated in Figure 2(a).
This gives a potential network size of 2N+2+(2N+1)K ·L nodes and N2+2N+(N2+3N+1)K ·L
arcs. Figure 2(b) illustrates the final network for the same example above.

Time windows on bunker nodes are, as mentioned, so narrow that a ship can never visit the
same bunker node twice. In our data sets, the time windows for cargo loading are also tight enough
that, in combination with the long voyage lengths, there do not exist any time feasible cycles in the
networks. Hence, the resulting network is acyclic. If cycles do exist, nodes with wide time windows
must be split in to several duplicate nodes with smaller time windows. This produces an acyclic
network; however, it does not ensure that cargoes are not lifted several times in one schedule as
this simply corresponds to visiting several of the duplicate nodes for the same cargo. To prevent
this, the dynamic programming algorithm needs to remember all previously visited nodes. This
is cumbersome and we refrain from doing so. We describe how this is handled in the following
section.

During network construction, standard preprocessing techniques are applied to tighten time
windows and, in turn, reduce the number of arcs, see e.g. Desrosiers et al. (1995). Each node
has an associated time window, an associated port and for bunker nodes also a bunker price.
Furthermore, each node also has a bunker window holding the minimum and maximum level of
bunker allowed onboard a ship on arrival. For cargo nodes and the destination node this window
is [Bv

Min, B
v
Max] and for the origin node it is [Bv

0 , B
v
0 ]. For the bunker nodes, the window becomes

[Bv
Min, F ], where F is the ’fill up to’ level at the corresponding bunker node. Each arc in the

network now has a constant time and bunker consumption as well as cost and we denote these
by Tij , Bij and Cij , respectively. We abuse notation slightly by now letting Bij denote bunker
consumption corresponding to both traveling from i to j as well as the consumption from port
operations at node i (as opposed to Bv

ij(l
v
i ) that did not include port operations at node i). Note

that Cij still does not include bunker purchases or the bonus bunker premium as these will be
dynamically added.

4.4.2 Dynamic Programming Algorithm

Given a dual solution to an optimized restricted master problem, the role of the subproblem is
to identify whether or not a negative reduced cost schedule exists for any of the ships. This
entails solving the SPPRC over the networks described above once the respective arc costs have
been updated to reflect the dual solution. Updating the cost on arc (i, j) entails assigning it the
negative of the fixed cost part of the reduced cost. We denote this cost as Ĉij . That is,

Ĉij = Cij + σi − Ri ∀(i, j) ∈ Â, (32)

where Ri = 0 for i /∈ NP . The remaining part of the reduced cost expression in (30), i.e. the node
costs for bunker purchases and node premiums for bonus bunker, must be added dynamically as
partial schedules are extended and bunker purchase amounts are determined.

As mentioned above, we solve the SPPRC using a dynamic programming algorithm. Such
algorithms for this particular problem build new schedules for ship v ∈ V by starting with the
trivial, partial schedule s = {o(v)}. Schedules are then built incrementally by extending partial
schedules in all feasible ways. Partial schedules are represented by so-called labels. That is, for each
partial schedule si ending in node i we associate a label L(si) = (C̄(si), T (si), B(si)). Here C̄(si) is
the negative of the reduced cost for the schedule, i.e. the sum of the arc and node costs where the
arc costs are

∑
(i,j)∈si

Ĉij . T (si) and B(si) denote, respectively, the arrival time at node i and the
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bunker inventory level on arrival at node i on schedule si. Note that we relax the subproblem to
allow non elementary paths and refrain from keeping track of the nodes previously visited. Hence,
routes can be produced where a cargo is picked up more than once, i.e. have air > 1 for some i.
Such a schedule is not added to the master problem.

Two partial schedules generated at the same node can be compared by defining a partial order
relation between the respective labels. This partial order allows us to determine if one label
dominates another that can, hence, be discarded. This dominance concept ensures that only the
best schedules, i.e. Pareto optimal, are kept during the iterative process of the algorithm as only
they can contribute to the optimal schedule. The success of the algorithm relies on an efficient
domination procedure for the labels to eliminate non-useful partial schedules. In our case we note
that a schedule si ending at node i dominates another schedule s′i also ending at node i if and only if
L(si) 6= L(s′i), C̄(si) ≤ C̄(s′i), T (si) ≤ T (s′i) (since there is no cost for waiting) and B(si) ≥ B(s′i).

In order to augment a partial path, label extension is necessary. Label extension is associated
with a particular arc in the underlying network and utilizes specific resource extension functions
that dictate how each resource level will change when traversing the arc. For the case at hand, the
time resource is extended using T (sj) = max{TMNj , T (si) + Tij}, and this extension is deemed
feasible if T (si) + Tij ≤ TMxj . When extending to bunker nodes, the bunker resource is updated
using B(sj) = BMXj with an associated dynamically calculated purchase quantity yj = BMXj −
(B(si) − Bij). Note that this updates the bunker inventory immediately on arrival at the node
and remember that BMXj is defined as the ’fill up to’ level for bunker nodes. I.e. a ship filling up
its bunker tank to e.g. 1200 tons might actually leave the node with 1199 tons as a small amount
of bunker is consumed while bunkering. If j is a cargo related node, we have B(sj) = B(si)−Bij .
For the destination node, d, we get B(sd) = B0, with an associated dynamically calculated bonus
bunker amount, yd, given by B(si)−Bid−B0. With this setup, si can only be extended to node j
if B(si)−Bij ≥ BMNj and B(si)−Bij ≤ BMXj . The latter requirement ensures that a schedule
with arrival bunker inventory higher than the ’fill up to’ level at a bunker node will not visit such
a node. Finally, the negative of the reduced costs are updated as follows:

C̄(sj) = C̄(si) + Ĉij + yjPj , ∀j ∈ B, (33)

C̄(sj) = C̄(si) + Ĉij , ∀j ∈ N , (34)

C̄(sd) = C̄(si) + Ĉid − yd · P, (35)

The dynamic programming algorithm we implement is hence a standard label setting algorithm,
which begins at o(v) with an initial label. Nodes are considered in topological order, and processed
in turn. In processing a node, all non-dominated labels for the current node are extended, using the
resource extension functions defined above and consider the node’s set of outgoing arcs. When the
algorithm terminates, several resource feasible and Pareto optimal schedules might exist. We add
all schedules with positive reduced cost, i.e. C̄(p) < 0, to the master problem. See Algorithm 1
for a general overview of our label setting algorithm. Due to the reselling of bonus bunker, all
schedules will have the same amount of bunker at the end, namely the initial inventory level of
the ship. Schedules can, however, differ in both reduced costs and time. Therefore, we can have
multiple columns corresponding to the same cargo set in the master problem if they correspond to
different end times, e.g. due to differences in bunker plans.

Finally, it should be noted that due to the discretization of bunker purchases and the assumption
of at most one bunkering in between cargo stops, the subproblem solution method described above
is heuristic. To ensure an optimal solution to the master problem, the subproblems should be
solved to optimality once the heuristic approach fails to find schedules with positive reduced costs.
As previously discussed, the planning problem considered here is of a more tactical nature and,
hence, an optimal continuous solution is beyond the scope of this research. We do, however, rerun
the dynamic programming algorithm with an increased number of possible purchase quantities, i.e.
an increased value of L, for the fixed cargo routes found by the initial optimization of the master
problem. We discuss this further when tuning the algorithm in Section 6.
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Algorithm 1: Label Setting Algorithm

Input: Directed, Acyclic Graph G = (V,A), two nodes o, d ∈ V
Output: Set of Pareto Optimal Schedules S

1 Sorted Node List V̂ ← topologicalSort(G);
2 CreateInitialLabel(o);

3 for u ∈ V̂ and u 6= d do
4 Lu ← getLabels(u);
5 for l ∈ Lu do
6 if l is not dominated then
7 for a ∈ outgoingArcs(u) do
8 if extension(l, a) is feasible then
9 v ← headNode(a);

10 createLabel(l, a, v);
11 Lv ← getLabels(v);
12 dominanceCheck(Lv);

13 end

14 end

15 end

16 end

17 end
18 Ld ← getLabels(d);
19 S ← constructSchedules(Ld);
20 return S;

5 Problem Instance Generators

In order to both tune and test the devised algorithm thoroughly, we have developed instance
generators that independently generates cargoes and bunker prices. These instance generators are
based on industry data from the collaborating tramp operator. Although this operator operates
world wide, the cargoes naturally divide into two groups traveling within two separate parts of the
world with only 5% of cargoes traveling between them. We therefore limit our analysis to one of
these cargo groups, namely the one responsible for almost 70% of the overall cargoes. We have
excluded some remote regions that generate very little, if any, demand. This leaves us with a cargo
area covering the Mediterranean, the North-West part of Europe, the East Coast of Canada and the
US, the Mexican Gulf and the Caribbean Sea. We have selected 38 ports that are representative
for the ports in this area. Both generators therefore assume 38 ports and each port has some
associated ship dependent port costs. For all problem instances the fleet is the same and consists
of 7 ships of varying size and other characteristics, e.g. speed, bunker consumption etc.

For each cargo, the cargo generator randomly selects a pickup port from a probability distribu-
tion of cargo pickup ports. Once the pickup port is known, there is a specific discharge distribution
related to this pickup port from which a discharge port is randomly drawn. A cargo quantity is
randomly selected in a user defined interval. For our analysis, the quantities are randomly chosen
between 60-90% of ship sizes. Based on this quantity as well as the distance between pickup port
and discharge port and their costs, a reasonable revenue for transporting the cargo is randomly
calculated. Also based on user defined intervals, time windows for both pickup and discharge as
well as the service time for loading and unloading are randomly calculated. We have used time win-
dows with a length of minimum 72 hours and maximum 120 hours. Finally, the cargo is randomly
selected to be either a spot cargo or a contract cargo depending on user input.

The bunker price generator randomly generates a price quote for each of the 38 ports for a
number of consecutive time periods determined by the user. E.g. if a period is determined to be 3
days and the user asks for 20 bunker options, 20 price quotes will be generated for each of the 38
ports and each of these prices are given a time window of 3 days. For the 38 prices of the last time
period in the planning period, an average is calculated to use for bonus bunker. To generate the
actual prices, the 38 ports are divided into regions and each port is randomly selected to belong
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to one of the price classes cheap, average and expensive. For each region, reasonable bunker price
intervals corresponding to a cheap port, an average port and an expensive port at the beginning of
the planning period are given as parameters to the generator. Each port is assigned a start price,
e.g. a price for the first 3 days, by randomly picking a price in the interval that corresponds to
the specific region and price class of the port. In order to generate prices for the remaining time
periods a world trend is randomly generated that is valid for all regions and ports. This world
trend simply defines whether the price goes up or down from one time period to the next. For
each port the remaining bunker prices are now determined by using the start price of the port
and then raising or lowering the price from time period to time period following the world trend.
The actual amount it is raised or lowered with is determined randomly for each port for each time
period from an interval defined by user input. In our analysis we have used an interval of 0-5%.

6 Parameter Tuning

The number of possible purchase levels, i.e. the parameter L, must be tuned before running the
algorithm. Obviously, the more levels we allow the more of the underlying feasible bunker interval
we span, however at a cost of computation time.

We have generated 18 problem instances for tuning using the instance generators described
in Section 5. All problem instances have the same fleet of 7 ships and use 38 ports worldwide.
Three cargo instances have been generated containing 30 cargoes with their loading time windows
distributed over a time horizon of 30 days. Note that the planning period continues after these 30
days as cargoes must of course also be discharged. Three bunker price instances have been generated
with 14 weekly bunker options for each port corresponding to a time horizon that just contains
the latest possible discharge time plus the time to discharge. Combining each cargo instance with
each of the corresponding bunker instances yields nine instances with this combination of data and
we denote them C30/PH30/B14 instances. Another three cargo instances have been generated
with 50 cargoes over a 60 days pickup planning horizon. Three bunker price instances have been
generated for these cargo sets but now with 19 bunker options for each port. Again, we get nine
instances by combining each cargo instance with each of the bunker instances. We denote these
bigger instances by C50/PH60/B19.

The integrated planning approach will be more advantageous the fewer contract cargoes there
are. We want to explore what effect the integrated planning approach can at best have and
therefore we have predefined all cargoes to be spot cargoes. However, when testing the algorithm
in Section 7 we also consider data sets with contract cargoes.

On each of the problem instances we have run the algorithm with varying number of purchase
levels, namely L varying from one to ten, and report the key values in Table 1. Each entry
corresponds to the average over the nine problem instances of the specific instance type for the
stated setting of L. The key values reported are: the percentage increase in the objective function
value compared to the L = 1 case (Obj.), the total running time in CPU seconds (CPUTotal), the
CPU seconds for solving the subproblems (CPUSub), and, finally, the percentage of all bunker stops
that filled up the ship’s bunker tank to its maximum capacity (Filled). This number is interesting
as it shows that relatively few bunker stops use ’fill up to’ levels lower than tank capacity and,
hence, the actual discretization of this interval is less important.
We see from Table 1 that increasing L yields an objective function value increase of only 0.53-
1.4% and that the increase is largest when going from L = 1 to L = 2. Note also that the
objective function value does in one case drop when increasing L. This demonstrates the heuristic
nature of the algorithm due to the discretization. Furthermore, the increase in computation time
is considerable as L is increased and this is almost only due to the increase in solution time for the
subproblems. Running the algorithm with high L values is therefore computationally undesirable.
Increasing L gradually during the algorithm as the optimum is approached will also be very time
consuming. Even resolving the subproblems in each iteration with an increased value of L for
each fixed cargo route found by the shortest path solver, i.e. each Pareto optimal schedule (or
the best of them), will be computationally expensive. Instead we have chosen to investigate the
effect of simply increasing L for the fixed cargo sets found for each ship in the final solution to
the master problem. We rerun the algorithm with L = 17 as this is the lowest value that yields a
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Table 1: Tuning results for increasing L values

C30/PH30/B14 C50/PH60/B19
Obj. CPUTotal CPUSub Filled Obj. CPUTotal CPUSub Filled

L = 1 - 5.8 5.5 100.0 - 31.6 30.9 100.0
L = 2 0.91 14.0 13.6 78.6 0.53 77.2 76.1 77.3
L = 3 1.08 23.9 23.4 74.4 0.58 116.5 115.1 78.8
L = 4 1.18 35.2 34.6 73.1 0.69 186.9 185.2 72.4
L = 5 1.25 48.5 47.8 75.2 0.74 276.9 274.7 70.2
L = 6 1.32 71.7 70.9 74.4 0.81 360.6 358.0 67.9
L = 7 1.34 86.7 85.7 73.1 0.86 495.5 492.5 67.3
L = 8 1.35 111.1 110.0 72.5 0.88 540.9 537.7 64.6
L = 9 1.37 144.4 143.2 72.5 0.86 755.0 751.4 64.9
L = 10 1.40 157.2 155.9 73.1 0.89 861.5 857.6 64.3

refinement of 25-50 mts between purchase quantities for all ships. For our tactical approach this
level of refinement is sufficient and mimics a continuous solve.

Table 2 shows the key values for rerunning the algorithm on all 18 instances again for increasing
values of L but this time finishing the algorithm by solving the bunker optimization problem with
L = 17 for the fixed cargo sets determined by the final solution to the master problem. If the
original solution from using the low L-value is better than when rerunning the algorithm with
L = 17 for fixed routes, we naturally use the original solution rather than the solution from
rerunning with L = 17. Note that the objective column (Obj.) again contains the percentage
increase in profit compared to the L = 1 case for the unrefined algorithm, i.e. the one used in
Table 1.

Table 2: Tuning results for algorithm that reoptimizes with L = 17 for increasing L values

9 instances: C30/PH30/B14 9 instances: C50/PH60/B19
Obj. CPUTotal Filled Obj. CPUTotal Filled

L = 1 1.33 14.6 76.6 0.70 61.5 66.0
L = 2 1.46 21.3 73.8 0.95 108.7 65.5
L = 3 1.45 31.7 73.5 0.94 145.8 65.2
L = 4 1.44 42.8 73.6 0.97 218.6 64.4
L = 5 1.43 56.2 74.4 0.93 307.3 65.7
L = 6 1.46 79.3 72.5 0.97 390.2 63.5
L = 7 1.46 94.0 75.0 0.96 526.0 64.5
L = 8 1.47 118.7 73.8 0.97 572.8 64.3
L = 9 1.47 151.9 73.3 0.94 785.3 63.6
L = 10 1.47 164.8 73.8 0.97 892.1 64.1

As before, we see that increasing the value of L yields almost no, if any, increase in profit and yet
the computation time increases rapidly.

In Figure 3(a) and Figure 3(b) we illustrate these findings for the C30/PH30/B14 and the
C50/PH60/B19 instances, respectively. Each figure shows a plot of the percentage increase in
objective function value and the CPU seconds both as functions of L for the standard version of
the algorithm and for the refined version using a resolve on fixed cargo sets with L = 17. As can be
seen from the above figures, the refined algorithm with L = 2 afterwards increased to L = 17 yields
almost the best objective function values of all settings and at almost no increase in computation
time. Increasing the initial L-value above 2 achieves at best an insignificant objective improvement
of only 0.01% and this is at great computational expense. We therefore use the refined algorithm
with an initial value of L = 2 when testing the algorithm in the next section.
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(a) Tuning for small instances (b) Tuning for large instances

Figure 3: Tuning the algorithm on data sets of two different sizes

7 Computational Results

In order to explore the benefits of integrating bunker planning in the routing and scheduling phase,
we compare the devised solution method with the standard sequential approach where routes and
schedules are planned with no consideration to actual bunkering. When planning routes and
schedules in this standard approach, bunker consumption is accounted at the average of all bunker
prices valid at the time of planning and no actual bunker stops are planned, meaning that no time
is scheduled for bunkering and no bunker port costs are incurred. Each optimal schedule from
this process now assigns a given cargo set to each ship and a bunker plan must be created that
respects this cargo assignment to ships. We find the optimal bunker plan by fixing cargoes to ships
according to this cargo assignment, and then run the bunker algorithm with L = 17.

When testing the devised solution method, we consider the same fixed fleet of 7 ships as when
tuning in Section 6 and also use the same 38 ports for all test instances. We have used the instance
generator described in Section 5 to generate 25 cargo instances. With a pickup time horizon of
30 days we have five sets with 30 cargoes, five sets with 40 cargoes and five sets with 50 cargoes.
For the 60 days horizon we have five sets with 50 cargoes and five sets with 60 cargoes. We
have constructed two versions of each of these 25 cargo instances: one where all cargoes are spot
cargoes and one where 15% of the cargoes are randomly chosen to be contract cargoes. The sets
without contract cargoes allow us to explore how much the integrated planning approach can at
best increase profits while the other sets can help estimate the expected decrease in profit gain
when incorporating contract cargoes. We also generated problem instances with a planning horizon
of 90 days but when testing on these instances we found that the sequential approach in 2 out of
3 cases produced a solution that was infeasible with respect to bunkering. By construction, the
integrated approach found feasible solutions for all instances. Therefore, we could not compare
the two methods on these cases and do not report them here. It should be noted that bunkering
becomes more relevant the longer the planning horizon we consider as ships must travel more, but
at the same time the assumption of valid price forecasts becomes more unrealistic.

The bunker price generator has been used to generate six bunker instances: Three price in-
stances for the 30 days planning horizon with 14 weekly bunker options per port, i.e. a total of 532
bunker options, and three price sets for the 60 days horizon with 19 bunker options per port, i.e.
722 bunker options. Across all six price instances and across all time periods the prices range from
$494 per tonne to $705 with an average price of $608. The maximum recorded price spread within
a time period is $183 while the average and minimal spread is, respectively, $148 and $119. Within
the individual regions the maximum and minimum recorded spread is $120 and $21, respectively.
On average the spread for a given time period constitutes 22% of the maximum price for the time
period and 24% of the average price of the time period.

These cargo and price instances can be combined to a total of 2×75 problem instances. Table 3
gives an overview of these problem instances of varying size and complexity.
We use the same notation as in Section 6 and denote a problem instance with e.g. 40 cargoes over
a pickup horizon of 30 days with 14 bunker options per port by C40/PH30/B14.
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Table 3: Problem instance overview

Ships 7 7 7 7 7
Ports 38 38 38 38 38
Cargoes 30 40 50 50 60
Pickup Time Horizon (days) 30 30 30 60 60
Bunker options per port 14 14 14 19 19
Bunker options in total 532 532 532 722 722
Number of instances 2× 15 2× 15 2× 15 2× 15 2× 15

On each of these 150 problem instances we have run both the standard sequential approach
described above and the integrated approach defined by the refined bunker algorithm described in
Section 4 and Section 6 with L = 2 afterwards increased to L = 17. All computational experiments
were performed on a PC with 4.0 GB RAM and an Intel(R) Core(TM)2 Duo CPU P8600, 2.4 GHz
processor under a 64 bit Windows 7. Both algorithms were entirely developed in C++ using Cplex
12.4 with default settings to solve the master problem.

Table 4 summarizes some key values for the refined bunker algorithm on the problem instances
containing only spot cargoes while Table 5 does the same for the instances with a mix of spot and
contract cargoes. Each line corresponds to the average key values over the 15 problem instances
of the corresponding problem type given by the entry in the left most column. We do not report
the objective function value but return to that when comparing with the sequential approach. The
key values reported are, respectively, the percentage gap from the forced integer solution to the LP
solution (Gap), CPU seconds for the whole algorithm (CPUTotal), CPU seconds for reoptimizing
bunker with L = 17 for fixed routes (CPU17), CPU seconds for solving all subproblems in the
column generation phase with L = 2 (CPUSub), the number of columns generated (Cols.) and the
number of calls to the subproblems (Subs) (i.e. number of iterations) in the column generation
procedure with L = 2, the percentage of all bunker stops that corresponded to filling up to tank
capacity (Filled), the number of cargoes carried in the final solution (Cargoes) and finally, some
statistics on price sensitivity (PS(Av,Max)). As each cargo instance is run with three different
price instances we can get an idea of how sensitive the method is to changes in prices. For this
we consider the differences in carried cargoes between two solutions derived from the same cargo
instance but from different price instances. If one solution carries x more cargoes than the other
solution, we define the cargo difference to be equal to x. Two solutions carrying the same number
of cargoes do not necessarily carry the same cargoes and we increase the cargo difference count by
one for each difference in carried cargoes when comparing the two solutions. As a small example,
imagine that one solution carries cargoes 1, 2 and 3 while another solution carries cargoes 1, 3, 4
and 5. Such a solution would correspond to one extra cargo and one different cargo and we would
therefore define the cargo difference between these two solution to be equal to two. In the price
sensitivity column (denoted PS) we report the average and the maximum cargo difference when
comparing solutions derived from the same cargo instance.

Table 4: Key values for the refined bunker algorithm on spot cargo sets

Gap CPUTotal CPUL17 CPUSub Cols Subs Filled Cargoes PS(Av,Max)
C30/PH30/B14 0.00 17.1 6.8 9.9 205 6 70.0 16.5 (1.2 , 2)
C40/PH30/B14 - 27.3 10.5 16.3 248 6 75.6 18.3 (0.9 , 2)
C50/PH30/B14 0.22 44.8 14.0 30.1 287 7 71.8 20.9 (2.2 , 5)
C50/PH60/B19 0.26 123.9 33.9 88.8 453 11 65.3 29.0 (3.8 , 8)
C60/PH60/B19 0.07 167.4 37.9 128.1 513 11 64.5 30.0 (3.9 , 8)

Out of the 75 spot cargo instances, we obtained fractional solutions from only 19 instances while
there were 28 fractional solutions for the 75 mixed cargo instances. However, from Table 4 and
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Table 5: Key values for the refined bunker algorithm on mixed cargo sets

Gap CPUTotal CPUL17 CPUSub Cols Subs Filled Cargoes PS(Av,Max)
C30/PH30/B14 0.02 21.8 8.4 13.0 250 8 72.7 16.3 (0.5 , 3)
C40/PH30/B14 - 32.4 11.7 20.2 356 8 74.1 18.3 (0.5 , 2)
C50/PH30/B14 0.07 53.8 14.2 38.8 430 9 73.9 20.5 (1.1 , 4)
C50/PH60/B19 0.38 152.0 36.5 114.2 728 15 66.6 29.6 (1.3 , 4)
C60/PH60/B19 0.21 222.7 44.1 177.1 733 15 65.0 30.8 (1.6 , 6)

5 we note that the integrality gap is relatively small for these fractional occurrences. Aside from
justifying our non optimal integer approach this also suggests that the ships are not competing
for the cargoes. This is probably because the fleet operates in a very large part of the world, and,
hence, ports are spread over vast distances. For a given cargo, chances are that only one available
ship is close enough for it to be profitable to carry the cargo. Vice versa, for a given ship, there are
only a few cargoes that are both reachable with respect to time but also profitable. The addition
of contract cargoes introduces a form of dependency between the ships because they must share
these cargoes somehow. This dependency explains the increase in fractional solutions and also the
added problem complexity reflected by the extra running time of the algorithm on instances with
mixed cargoes.

From Table 4 and 5 we also see that the majority of bunker stops correspond to filling up to
tank capacity and that this number seems to be unaffected by the addition of contract cargoes.
Finally, from the price sensitivity column we see that the optimal solution is indeed affected by
changes in prices though the effect is, as could be expected, smaller when contract cargoes are
introduced. For the larger instances, two solutions from the same spot cargo instance can differ
by as much as 8 cargoes making an accurate price forecast very important.

Before considering the sequential approach we first present some network statistics in Table 6
for the bunker optimization with L = 17. The numbers are unaffected by the introduction of
contract cargoes so we only present one table. In the first part of the table we report statistics on
the actual network sizes: The number of nodes in the average subproblem network (Nodes), the
number of these that were bunker nodes (bNodes), the arcs in the average network (Arcs) and,
finally, the number of these that where bunker arcs (bArcs). In the second part of the table we
report the potential network sizes of, respectively, the aggregated (agNodes and agArcs) and the
extended (extNodes and extArcs) cargo-bunker networks as stated in Section 4.4.

Table 6: Network statistics for the refined bunker algorithm

Actual Network Size Potential Network Size
Nodes bNodes Arcs bArcs agNodes agArcs extNodes extArcs

C30/PH30/B14 19,362 19,303 39,423 39,252 64,966 1,055,384 989,582 1,980,000
C40/PH30/B14 27,612 27,534 56,974 56,688 86,266 1,832,824 1,745,042 3,491,600
C50/PH30/B14 35,833 35,736 77,165 76,735 107,566 2,823,264 2,713,302 5,429,000
C50/PH60/B14 49,899 49,802 150,177 149,482 145,946 3,830,644 3,682,302 7,367,000
C60/PH60/B14 57,588 57,474 209,821 208,849 174,846 5,463,484 5,285,162 10,573,800

We first note from Table 6 that bunker nodes constitute over 99.7% of the total nodes in the
networks while the corresponding number for the arcs is 99.5%. Next, we see that preprocessing
has allowed a network node reduction of 66-70% compared to the potential network size stated in
Section 4.4. Similarly, preprocessing has removed 96-97% of the arcs. When comparing with the
extended cargo-bunker network illustrated in Figure 2(a), we see that the potential node count
of the aggregated networks that we use, is 93-97% lower than that of the corresponding extended
networks while the arc count is 47-48% lower.
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The key values for the standard sequential approach on the 2 × 75 instances are reported in
Table 7 and 8. They are almost the same as for the refined bunker algorithm but the CPU time
for solving subproblems now corresponds to the column generation phase of finding routes and
schedules without optimizing bunker simultaneously. Likewise, the number of generated columns
and the number of calls to the subproblems are derived from the pure routing and scheduling phase.
Finally, we do not report any values on price sensitivity as the bunker prices are not considered
while constructing the routes and schedules when using the sequential approach.

Table 7: Key values for sequential algorithm on spot cargo sets

Gap CPUTotal CPUL17 CPUSub Cols Subs Filled Cargoes
C30/PH30/B14 - 7.9 7.8 0.0 88 6 69.7 16.8
C40/PH30/B14 - 10.4 10.3 0.0 94 5 76.0 18.4
C50/PH30/B14 0.25 13.7 13.5 0.0 121 6 69.5 20.8
C50/PH60/B19 0.22 30.3 30.1 0.0 196 10 65.6 28.8
C60/PH60/B19 0.12 44.4 44.1 0.0 219 9 65.2 30.4

Table 8: Key values for sequential algorithm on mixed cargo sets

Gap CPUTotal CPUL17 CPUSub Cols Subs Filled Cargoes
C30/PH30/B14 - 8.3 8.2 0.0 95 7 72.0 16.2
C40/PH30/B14 - 11.3 11.2 0.0 144 7 73.7 18.2
C50/PH30/B14 0.25 13.8 13.7 0.0 180 8 73.6 20.4
C50/PH60/B19 0.36 35.8 35.6 0.0 304 14 65.3 29.6
C60/PH60/B19 0.28 45.0 44.7 0.1 319 14 64.2 31.0

On 2 out of the 25 mixed cargo instances the sequential approach produced a solution that was
infeasible with respect to bunkering. The infeasibility is of course independent of bunker prices
and therefore 6 bunker infeasible solutions were produced.

For the sequential approach, 24 out of the 75 spot cargo instances resulted in a fractional
solution while for the mixed cargo instances the same number was 18. However, as can be seen
in Table 7 and 8 the integrality gap is again relatively small. Furthermore, we see that bunker
optimization, i.e. rerunning with bunkering included and L = 17, is accountable for almost all the
CPU time and that the introduction of contract cargoes slightly increases the running time of the
algorithm.

Finally, in Table 9 we compare the two approaches to see the effect of integrating bunker. Each
entry in the table corresponds to the average over the 15 problem instances generated for the given
problem category. For the columns marked with an * we only report the average over 12 instances
as the remaining 3 instances resulted in a bunker infeasible solution when using the sequential
approach. The objective function value for the sequential approach serves as a base at which
we compare the objective value from the integrated approach. Therefore, the objective values
for the sequential approach (Obj) are not reported, and the objective values for the integrated
approach (Obj%) are given as the percentage increase from the corresponding sequential objective
function values. We do not report the actual objective function values since these are to some
extent artificial due to the inclusion of bonus bunker. Both algorithms, however, include this and
therefore we can still compare their objective function values. For both algorithms we report the
CPU seconds for running the entire algorithm (CPU), the number of cargoes carried in the final
solution (Cargoes), and the number of bunker stops in the final solution (Bunker). In the lower part
of the table we report the average (Av. Cargo Difference) and maximum (Max Cargo Difference)
cargo difference when comparing the solutions found by the integrated approach with those of the
sequential approach.
When comparing the two planning approaches, we see that the percentage increase in profit is
relatively small and that the increase is smaller when contract cargoes are introduced. It is however,
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Table 9: Comparing the two planning approaches

Spot cargo sets Mixed cargo sets
PH30/B14 PH60/B19 PH30/B14 PH60/B19

C30 C40 C50 C50 C60 C30* C40 C50 C50 C60*

Sequential
Obj - - - - - - - - - -
CPU 7.9 10.4 13.7 30.3 44.4 8.4 11.3 13.8 35.8 49.8

Approach
Cargoes 16.8 18.4 20.8 28.8 30.4 16.3 18.2 20.4 29.6 31.8
Bunker 13.2 14.7 14.7 21.3 21.5 12.5 14.2 15.1 20.9 21.2

Integrated
Obj% 0.4 0.3 0.7 0.5 0.6 0.1 0.1 0.2 0.5 0.4
CPU 17.1 27.3 44.8 123.9 167.4 22.2 32.4 53.8 152.0 240.2

Approach
Cargoes 16.5 18.3 20.9 29.0 30.0 16.3 18.3 20.5 29.6 31.5
Bunker 13.3 14.7 16.1 21.3 21.6 12.7 14.1 14.8 21.3 21.0

Av. Cargo Difference 0.8 0.9 2.7 3.7 3.7 0.3 0.3 1.1 2.0 1.9
Max Cargo Difference 2 3 5 6 8 3 2 4 3 7

important to remember that the fixed costs have not been subtracted, and, hence, we are actually
comparing the marginal contributions rather than the profits. The actual profits will therefore be
much lower and any difference in profits will correspond to a larger percentage. We, however, do
not have data on fixed costs and so, we use the marginal contributions as above. We also note
that the profits obtained from the sequential approach are expected to be an optimistic estimate of
the standard sequential approach where current practice is to use manual planning in both phases.
Furthermore, we note that we are dealing with an industry where numbers are huge. This means
that even small percentage increases can lead to huge increases in profit. Finally, we note that
including more ports can help increase the bunker effect as distances between ports will become
smaller. As already mentioned, with our setup the distances between ports, and in turn between
cargoes, are often so large, that for a given ship, only very few cargoes are actually eligible for
transportation.

From Table 9 we also note that the integrated approach does not in general produce solutions
that carry more cargoes than the sequential approach. The method is not designed to increase fleet
utilization in the sense of carrying extra cargoes. Rather it is designed to increase fleet utilization
by carrying the right cargoes and we see that the cargo difference can be as high as 8 cargoes for the
spot cargo instances and 7 for the mixed cargo instances. Aside from the reported cargo differences,
we very often found that cargoes carried in both the sequential solution and the integrated solution
where carried by different ships in the two solutions.

Table 9 also shows that the two solution approaches generally produce solutions that have the
same number of bunker stops. However, we note that the solutions produced by the sequential
approach generally rely on more pure bunker stops (i.e. ports where the ships only bunker) than
the integrated approach. This is to be expected as the sequential approach does not factor in
bunker prices when selecting the cargoes to carry.

Overall, we note that a small profit increase can be obtained at little computation time by
integrating bunkering in the routing and scheduling planning phase. It should also be noted that
such an integration will prevent the construction of bunker infeasible schedules as we saw for many
of the larger instances.

8 Concluding Remarks

In this paper we have considered the tramp ship routing and scheduling problem with simultaneous
bunker optimization for full shiploads. We have presented a mixed integer programming formula-
tion that extends the standard tramp formulation by accounting for bunkering time, variations in
bunker prices and bunker port costs. We have also extended standard formulations by using load
dependent cost, speed and bunker consumption. We have developed a solution method that uti-
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lizes column generation with a dynamic programming algorithm to generate columns. The devised
method is heuristic and this is mainly due to the discretization of the continuous bunker purchase
variables. Results from tuning in Section 6 show that there is very little gain from refining this
discretization and therefore it seems that solving the continuous version of the problem can at best
yield very small improvements in the solutions. Likewise, our computational results show that for
most instances we obtain integral solutions and that the integrality gap is small for the fractional
solutions. Therefore, embedding the column generation scheme in a Branch & Bound framework
is not expected to change results much. Generally, the method is very flexible and can be extended
to incorporate various operator specific characteristics such as e.g. multiple product types, tank
cleaning and restrictions on product successions, by simply changing the subproblem networks and
the corresponding labels and resource extension functions.

We have compared the method with a standard sequential approach where routes and schedules
are planned without considerations for bunkering. Computational results on 150 generated test
instances show that the integrated approach can increase profits slightly. They also show that the
decision of which cargoes to carry and on which ships is affected by the bunker integration and
by changes in the bunker prices. Consequently, we recommend combining the decisions on fleet
scheduling and bunker optimization rather than separating the two planning problems as is current
practice.

We also want to mention that the work presented here assumes only one type of bunker even
though several exist in practice. It would therefore be very interesting to extent this work to
consider multiple types of bunker. Finally, we have solved the problem using a forward curve for
the bunker price at each bunker port. If in fact several price scenarios exist, it would be interesting
to apply stochastic programming to cope with this price uncertainty.
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