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Regular nanoscale perforations in graphene (graphene antidot lattices, GALs) are known to lead to a gap
in the energy spectrum, thereby paving a possible way towards many applications. This theoretical prediction
relies on a perfect placement of identical perforations, a situation not likely to occur in the laboratory. Here,
we present a systematic study of the effects of disorder in GALs. We consider both geometric and chemical
disorder, and evaluate the density of states as well as the optical conductivity of disordered GALs. The theoretical
method is based on an efficient algorithm for solving the time-dependent Schrödinger equation in a tight-binding
representation of the graphene sheet [Yuan et al., Phys. Rev. B 82, 115448 (2010)], which allows us to consider
GALs consisting of 6400 × 6400 carbon atoms. The central conclusion for all kinds of disorder is that the gaps
found for pristine GALs do survive at a considerable amount of disorder, but disappear for very strong disorder.
Geometric disorder is more detrimental to gap formation than chemical disorder. The optical conductivity shows
a low-energy tail below the pristine GAL band gap due to disorder-introduced transitions.

DOI: 10.1103/PhysRevB.87.085430 PACS number(s): 73.21.La, 72.80.Vp, 73.22.Pr

I. INTRODUCTION

Pristine graphene has no band gap: the conduction and
valence bands touch at the K and K ′ points of the hexagonal
Brillouin zone. This property, combined with the linear dis-
persion of the low-energy excitations, leads to the spectacular
electronic properties that graphene is so famous for.1,2 Never-
theless, the lack of a gap severely hampers many applications
where a gap is needed to control the flow of charges. This
feature is further underscored by the phenomenon of Klein
tunneling: graphene carriers impinging on a potential barrier
may experience reflectionless tunneling thus making their
control even more difficult.3,4 It is thus natural that many
schemes have been proposed to create a gap in graphene:
these suggestions include etching extended graphene flakes
into nanoribbons,5,6 or by considering bilayer graphene in a
transverse electric field,7,8 or by using an external periodic
potential to modify the electronic properties so that a gap is
formed. The external periodic potential may be caused by a
number of agents, such as periodic gates9,10 or strain,11 or
adsorption of adatoms in a regular pattern,12,13 or, as in this
work, by a regular nanoperforation of the pristine graphene
sheet; this system will be referred to as graphene antidot
lattices (GALs).14

The design principle14 behind the GAL was inspired by
photonic crystals where pass and stop bands for light can be
designed by drilling holes in the dielectric medium. GALs
(and their constituents, single holes in graphene15) have
been studied theoretically with a large number of methods,
ranging from a continuum description and tight-binding
methods14,16 to fully microscopic DFT calculations.17,18 Both
electronic19–22 and thermal23–25 transport properties as well
as optical properties26,27 have been discussed. Symmetry
principles determining the existence or nonexistence of the
gap have been outlined.28,29 Most important, however, is
the recent emergence of experimental techniques by which
GALs can be fabricated. These fabrication methods include,

e.g., electron-beam etching,30–33 etch masks based on self-
assembled block co-polymers.34–36 nanoimprint technology,37

or nanoparticle deposition.38,39 Most experimental papers have
focused on the structural aspects, but also a few transport
experiments have been reported.30,31,33,35,36,39 Indeed, transport
gaps have been observed but so far they have been associated
to disorder induced localization instead of band-structure
effects.33,35,36 This highlights the importance of studying
disorder in GALs: all fabricated structures contain disorder,
and one cannot (yet) control the exact geometry of the edges
of the etched holes. It is thus vital to examine the robustness
of the band gaps against disorder, whether it be structural, ge-
ometrical, or chemical. A study of this kind presents a serious
computational challenge because the systems fabricated in the
laboratory, where unit cells of the order of tens of nanometers
can be achieved, are computationally large involving tens of
thousands of carbon atoms in the computational cell. Fully
microscopic DFT-based methods cannot presently address
such systems, and certain compromises must be made.

In this paper, we perform a systematic study of the
electronic properties of disordered GALs in the framework
of a tight-binding model in a perforated honeycomb lattice
of carbon atoms. We consider the most relevant kinds of
disorder for these systems, namely a random deviation of
the periodicity and of the radii of the nanoholes from the
perfect array, as well as the effect of resonant scatterers in
the sample (like vacancies, adatoms, etc.) and the effect of
noncorrelated and correlated (Gaussian) on-site potentials.
Within this scheme, the density of states (DOS) is obtained
from a numerical solution of the time-dependent Schrödinger
equation (TDSE),40 and the optical conductivity is calculated
by using the Kubo formula for noninteracting electrons.40,41

Being interested in the room-temperature electronic structure
we do not take into account in our calculations the spin
polarization which can arise at the zigzag-type edges at low
temperatures.
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YUAN, ROLDÁN, JAUHO, AND KATSNELSON PHYSICAL REVIEW B 87, 085430 (2013)

The paper is organized as follows. In Sec. II we present
the details of the method. The effect of the different kinds
of disorder on the DOS and the optical conductivity of a
GAL is discussed in Sec. III. Finally, our main conclusions
are summarized in Sec. V.

II. MODEL AND METHOD

We consider the following real-space tight-binding Hamil-
tonian for a disordered GAL:

H = −
∑
〈i,j〉

(tij c
†
i cj + H.c.) +

∑
i

vic
†
i ci , + Himp, (1)

where c
†
i (ci) creates (annihilates) an electron on site i of

the honeycomb graphene lattice, tij is the nearest-neighbor
hopping parameter, and vi is the on-site potential. In our
model, the GAL is simulated by the creation of a hexagonal
array of circular holes of a given radius R, and a separation
P = √

3L between the centers of two consecutive holes,
where L is the side length of the hexagonal unit cell.14 We
thus label our GALs with the parameters {L,R}, in units
of the graphene lattice constant a = √

3ã ≈ 2.46 Å, where
ã ≈ 1.42 Å is the carbon-carbon distance. Another possible
notation is [P,N ], where N = √

3L − 2R is the neck width,
defined as the smallest edge-to-edge distance between two
neighboring holes in the array.35 Deviations of the GALs with
respect to perfect periodicity are considered in our calculation
in a twofold manner. First, we allow the center of the holes
to float with respect to their position in the perfect periodic
lattice (x,y) around (x ± lC,y ± lC) [see Fig. 1(a)]. Second,
we allow the radius of the holes to randomly shrink or widen
within the range [R − rR,R + rR], as sketched in Fig. 1(b).
All along this paper, we will express lC and rR in units
of a.

The second term on the right of Eq. (1) accounts for a change
in the on-site potential of the carbon atoms. A long-range
potential for correlated impurities can be modelled with

vi =
Nc∑
k=1

Vk exp

(
−|ri − rk|2

2d2

)
, (2)

where Nc is the number of the impurity centers, which are
chosen randomly distributed on the carbon atoms, Vk is
uniformly random in the range [−V0,V0] and d is interpreted as
the effective potential radius. The value of Nc is characterized
by the ratio nc = Nc/N , where N is the total number of carbon
atoms of the sample. A noncorrelated short-range random
potential can be obtained from the above equation with d → 0,
i.e., vi is random and uniformly distributed, independently of
each site i, in the range [−vr,+vr ]. The number of sites with
nonzero potential (Nr ) is characterized as nr = Nr/N .

We further consider the effect of isolated vacancies in the
sample, which can be regarded as an atom (lattice point)
with an on-site energy vi → ∞ or, alternatively, with its
hopping amplitudes to other sites being zero. In the numerical
simulation, the simplest way to implement a vacancy is to
remove the atom at the vacancy site [see Fig. 1(c)].

If additional resonant impurities are present in the sample
as, e.g., hydrogen adatoms, their effect is accounted for through

(a) (b)

(c) (d)

FIG. 1. (Color online) Sketch of the different kinds of disorder
considered. (a) The center of the holes is shifted randomly with
respect to the original position in the perfect periodic array (x,y)
to a new position in the range (x ± lC,y ± lC) (lC = 2a). (Notice
the different relative distance between the holes.) (b) The radius of
the holes is randomly shrunk or enlarged within the range [R −
rR,R + rR] (rR = a). (Notice the different relative size of the holes.)
(c) GAL with additional randomly distributed vacancies, signaled
by the missing carbon atoms (nx = 1%). (d) GAL with randomly
distributed hydrogen adatoms, signaled by the red dots (ni = 1.75%).
Notice that two other kinds of disorder are considered in the text,
namely noncorrelated and correlated long-range (Gaussian) changes
in the on-site potentials, which are not sketched in this figure.

the term Himp in Eq. (1):

Himp = εd

∑
i

d
†
i di + V

∑
i

(d†
i ci + H.c.), (3)

where εd is the on-site potential on the “hydrogen” impurity
(to be specific, we will use this terminology although more
complicated chemical species can be considered, such as
various organic groups)42 and V is the hopping between carbon
and hydrogen atoms.40,42,43 The spin degree of freedom, which
contributes through a degeneracy factor 2, is omitted for sim-
plicity in Eq. (1). All along this work, we fix the temperature
to T = 300 K. We use periodic boundary conditions in the
calculations for both the optical conductivity and the density
of states, and the size of the system is 6400 × 6400 atoms.

Our numerical method is based on an efficient evaluation
of the time-evolution operator e−iHt , based on the Chebyshev
polynomial representation.40 (In fact, any function of H can
be evaluated with this method.) We have thus access to the
time-dependent state |ϕ(t)〉 ≡ e−iHt |ϕ〉, where |ϕ〉 is a random

085430-2



ELECTRONIC PROPERTIES OF DISORDERED GRAPHENE . . . PHYSICAL REVIEW B 87, 085430 (2013)

superposition of all the basis states in the real space, i.e.,40,44

|ϕ〉 =
∑

i

aic
†
i |0〉, (4)

ai are random complex numbers normalized as
∑

i |ai |2 = 1,
and |0〉 is the electron vacuum state.

The numerical method has the advantage that an average
over different random initial states is not needed. This is
because one initial state contains all the eigenstates in the
whole spectrum.40,44 Furthermore, it is not necessary to
average over different realizations of the disorder, because
the system contains millions of carbon atoms, and one specific
disordered configuration contains a large number of different
local configurations. As shown in Ref. 40, the results for
different disorder configurations are essentially identical.

Consider first the optical conductivity. We omit in our
calculations the ω = 0 Drude contribution to the real part of
the optical conductivity, so that the regular part can be written
as40,45

σαβ(ω) = lim
ε→0+

e−βω − 1

ω�

∫ ∞

0
e−εt sin ωt

× 2Im〈ϕ|f (H)Jα(t)[1 − f (H)]Jβ |ϕ〉dt, (5)

where β = 1/kBT is the inverse temperature, � is the sample
area, f (H) = 1/[eβ(H−μ) + 1] is the Fermi-Dirac distribution
operator, and we use units such that h̄ = 1. The time-dependent

current operator in the α (=x or y) direction is Jα(t) =
eiHt Jαe−iHt . The Fermi-Dirac distribution operator f (H) is
computed with the Chebyshev polynomial representation, as
mentioned above.

As the next example, consider the overlap between the
time-evolved state |ϕ(t)〉 and the initial state |ϕ〉. The Fourier
transform of this object yields the DOS of the system as40,44

ρ(ε) = 1

2π

∫ ∞

−∞
eiεt 〈ϕ|ϕ(t)〉dt. (6)

Finally, the quasieigenstate |�(E)〉, which is a superposi-
tion of the degenerate eigenstates with the same eigenenergy
E, is obtained as the Fourier transform of |ϕ(t)〉:40

|�(E)〉 = 1

2π

∫ ∞

−∞
dteiEt |ϕ (t)〉 . (7)

The quasieigenstate is not exactly an energy eigenstate, unless
the corresponding eigenstate is not degenerate at energy
E. However, we can still use the real-space distribution
of the amplitude to examine the quasilocalization of the
modes.40,41,46 Below we display several examples of all these
objects.

III. RESULTS AND DISCUSSION

In this section we present the results and discuss the effect
of the different kinds of disorder introduced in Sec. II, in the

(a) (b)

(d)(c)

FIG. 2. (Color online) DOS (top panels) and optical conductivity (bottom panels) for a {10,6} GAL with geometrical disorder. In the first
column we show (a) DOS and (c) σ (ω) for a disordered GAL in which the center of the holes is shifted randomly with respect to the original
position in the perfect periodic array within the range (x ± lC,y ± lC), as sketched in Fig. 1(a). The different colors correspond to different
values of lC (in units of a), as denoted in the inset of the figures. In the second column we show (b) DOS and (d) σ (ω) for a GAL where the
radius of the holes is randomly shrunk or enlarged within the range [R − rR,R + rR], as sketched in Fig. 1(b). Different colors correspond to
different values of rR (in units of a).
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DOS and in the optical conductivity of GALs. As discussed
in Sec. II and sketched in Fig. 1, we consider three main
sources of disorder: geometrical disorder, which is associated
to deviations of the GAL from the perfect periodicity; resonant
impurities, which can be associated to additional vacancies in
the graphene lattice, or to adatoms deposited on the sample;
and the effect of on-site potentials which can randomly vary
within the sample.

A. Geometrical disorder

We start by considering the most generic source of disorder
in these kinds of systems, which is the geometrical disorder.
Uncontrollable fluctuations in the fabrication process lead to
irregularities in the resulting antidot lattice, such as changes
in the center-to-center distance of the etched holes, or in
variations in the size of the holes. Examples of the geometrical
disorder in the lattice are sketched in Figs. 1(a) and 1(b),
respectively. Let us consider first the effect of a random
deviation of the relative distance among the holes on the DOS
and σ (ω), as shown in Figs. 2(a) and 2(c) respectively. In
Fig. 2(a) we see that, for the perfect periodic array (lC = 0,
black line) clear band gaps open up in the spectrum. Notice
that the peaked structure of the DOS is due to the set of locally
flat bands which appear in the new band structure of the GAL
as compared to the spectrum of standard graphene.14 If we
now allow for a relative displacement among the nanoholes
(lC 
= 0), we observe that the gap shrinks but survives if lC is
not too large, as seen by the red line of Fig. 2(a), but eventually
the gap closes for some critical value of lC , due to the lack of
periodicity in the GAL, as is the case shown by the green line of
Fig. 2(a) which corresponds to lC = a. The disorder affects the
optical conductivity in the following manner. As can be seen in
Fig. 2(c), for the perfect periodic case (lC = 0) σ (ω) = 0 up to

ω = �, where � ≈ 0.2t (for the case considered here) is the
gap opened due to the antidot array. Because � decreases as
we increase lC , the threshold for optical transitions is reduced
and for lC = 0.5a we observe a finite optical conductivity for
ω � 0.05t . Finally σ (ω) > 0 at any frequency for an even
larger amount of disorder as, e.g., lC = a (green line), for
which the gap of the GAL has completely collapsed.

A similar effect on the electronic properties is observed if
instead of randomly changing the relative separation between
the antidots, their size is varied within some range, as sketched
in Fig. 1(b). The results of our simulations for this kind of
disorder are shown in Figs. 2(b) and 2(d) for the DOS and
optical conductivity, respectively. One observes that the DOS
presents an increasing number of peaks as rR is increased.
These peaks are associated to states with a large amplitude
circling the antidots, and their energy depends on the radius
of the antidot. For the pristine GAL (rR = 0, black line)
all antidots have the same radius which leads to the peaks
at E/t ∼ ±0.12 [signaled by a black arrow in Fig. 2(b)].
The finite width of the peak is due to a coupling between
the antidots, and the weak splitting reflects the van Hove
singularities at the edges of these quasi-one-dimensional
bands. Peaks at higher energies originate from states that are
not tightly localized around the antidots, but have a larger
amplitude all over the sample. If the radius of the antidots is
varied we observe that, apart from the peak discussed above
shown by the black arrow, part of the spectral weight is
transferred to new peaks that correspond to localized states
at different energies, around antidots of different radii. Some
examples are shown by the red and green arrows in Fig. 2(b).
This behavior is illustrated by the spatial distribution of the
quasieigenstates shown in Fig. 3. There we show, for the
case of rR = 0.25, a small section of the lattice studied in our
simulations, with a real-space distribution of the amplitude of

(a)
(b)

FIG. 3. (Color online) Distribution of quasieigenstates of a {10,6} GAL with geometrical disorder, where the radius of the holes is randomly
shrunk or enlarged within the range [5.75,6.25]. The holes with unchanged radius (R = 6) are indicated by the red arrows. The quasieigenstates
are calculated at energy E = 0.056t and E = 0.12t , corresponding to the states at the low-energy peaks marked by the black and red arrows,
respectively, in the DOS of Fig. 2(b) (rR = 0.25). The highest contribution to the quasieigensate at E = 0.056t (a) is concentrated around
holes with radius R > 6, for which the first ring of atoms, as compared to perfect GAL with R = 6, has been removed. The quasieigenstate at
E = 0.12t with highest amplitude (b) are localized around the holes with R = 6 (marked by the red arrows), as in perfect GAL.
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the quasieigenstates |�(E)|2. Figure 3(a) shows that, for the
energy E/t ≈ 0.056 [marked by the red arrow in Fig. 2(b)],
the large amplitude of the states is around antidots with R > 6,
for which the innermost ring carbon atoms of the antidot
has been removed. However, in Fig. 3(b) we see that at an
energy corresponding to the first mode of the undistorted lattice
[E/t ≈ 0.12, shown by the black arrow in Fig. 2(b)] the states
are localized at the edges of holes with a radius corresponding
to a perfect GAL. Those antidots are shown by red arrows in
Fig. 3.

The effects of this kind of disorder on the optical conduc-
tivity are shown in Fig. 2(d). As rR is increased, we observe
optical processes of lower and lower energy contributing
to σ (ω), due to optical transitions between the localized
states around holes of different sizes. This suggests that
photoluminescence spectroscopy can be an useful tool for the
characterization of the GALs.

B. Resonant impurities

The next source of disorder that we consider is the effect of
resonant scatterers. Resonant impurities can be understood
as vacancy atoms in the sample, or as hydrogen or other
organic molecules (CH3, C2H5, etc.) adsorbates which bind
to a single carbon atom, changing its hybridization from sp2

to sp3.2,42 A sketch of a GAL with a certain amount of
vacancies or hydrogen adatoms randomly distributed is shown
in Figs. 1(c) and 1(d), respectively. The main effect of the

resonant impurities in graphene membranes is the creation
of “midgap” states at the Dirac point.41,42 Therefore, if some
amount of these kinds of impurities is present in the GAL,
a zero energy flat impurity band is expected to appear in
the middle of the gap. This is indeed what we obtain in our
calculations, as can be seen by the E ≈ 0 peak in the DOS plots
shown in Fig. 4. As we discussed in Sec. II, this kind of disorder
is accounted for in our calculations through the term Himp in
Eq. (3), with the band parameters V ≈ 2t and εd ≈ −t/16, as
obtained from ab initio density-functional theory.42 The DOS
of a GAL with different amounts of vacancies and hydrogen
adatoms, randomly distributed, is shown in Figs. 4(a) and 4(b),
respectively. We observe that, apart from a slight deviation
from the Dirac point (E = 0) of the position of the hydrogen
adatoms impurity band (due to the finite value of the energy
εd ), as compared to the E = 0 energy of the midgap band
due to vacancies, the effect of these two kinds of defects in the
spectrum is very similar. In the two cases, the quasilocalization
of the newly created states leads to an almost flat band which
does not affect the rest of the energy spectrum away from the
Dirac point (apart from some smearing of the peaks in the
DOS).

As a consequence, the main contribution to the optical
conductivity is obtained, as in the clean limit, for interband
processes with an energy ω ≈ �, as can be seen in Figs. 4(c)
and 4(d). However, due to the transfer of spectral weight
to the midgap states, there is some finite σ (ω) for energies
smaller than the threshold defined by the energy gap �, with

(a) (b)

(c) (d)

FIG. 4. (Color online) DOS (top panels) and optical conductivity (bottom panels) for a {10,6} GAL with resonant impurities. In the first
column we show (a) DOS and (c) σ (ω) for a GAL with a random distribution of vacancies, as sketched in Fig. 1(c). The different colors
correspond to different amounts of missing dangling bonds, as denoted in the inset of the figures. In the second column we show (b) DOS and
(d) σ (ω) for a GAL with hydrogen adatoms, as sketched in Fig. 1(d). Different colors correspond to different percentage of adatoms in the
sample.
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(a) (b)

(c) (d)

FIG. 5. (Color online) DOS (top panels) and optical conductivity (bottom panels) for a {10,6} GAL with on-site potential disorder. In the
first column we show (a) DOS and (c) σ (ω) for a GAL with a noncorrelated random distribution of short-range potential, which can take the
values within the range [−vr ,vr ]. The different colors correspond to different concentrations of disorder, as denoted in the inset of the figures.
In the second column we show (b) DOS and (d) σ (ω) for a GAL with a long-range Gaussian potential disorder. The potential is given by
Eq. (2), where Vk is uniformly random in the range between −V0 and V0, and d is the effective potential radius (see text).

an appreciable peak at ω ≈ �/2 ≈ 0.1t . This contribution is
due to the new optical transitions from the impurity band to
the conduction band, which are activated for ω > �/2.

C. Short- and long-range potential disorder

Another kind of disorder that can be considered is a shift of
the on-site potentials at a given lattice point, which can lead
to a local shift of the chemical potential. This contribution is
accounted for by means of the second term of the Hamiltonian
(1). This kind of disorder can be of extraordinary importance.
For example, if the atoms in sublattices A and B have opposite
strength of the on-site potential vr , then a gap of size � = 2vr is
opened in the spectrum.40 Here we consider, depending on how
the defects are distributed over the lattice sites, a correlated
or a noncorrelated disorder. In the case of a short-range and
noncorrelated potential disorder, the nonzero on-site potentials
are taken to be uniformly randomly distributed over the sample
within a range [−vr,vr ]. The results for the DOS and the
optical conductivity with vr = 3t are shown in Figs. 5(a) and
5(c), respectively. We observe a broadening of the peaks in
the DOS, accompanied by a transfer of spectral weight to the
gapped regions.

Next, consider the long-range correlated disorder given by
Eq. (2). In standard graphene, this kind of disorder leads to
regions of the graphene membrane where the Dirac point is
locally shifted to the electron (Vk < 0) or to the hole (Vk > 0)
side with the same probability. This leads to some finite DOS

at zero energy. Our calculations for GALs in the presence
of a Gaussian potential disorder are shown in Figs. 5(b)
and 5(d), for the DOS and optical conductivity respectively.
One observes similar qualitative effects in the spectra as
compared to the short-range noncorrelated random potentials.
In particular, there is a small but appreciable contribution to
the optical conductivity at low frequencies, due to the transfer
of states to the gapped region.

IV. A COMMENT ON MAGNETIC PROPERTIES
OF DISORDERED GALS

Recently, magnetoresistance measurements of GALs with
hydrogen-terminated and low-defect antidot edges have
opened the interest on the magnetic properties of those
systems.39 Here we comment on the effect of disorder on the
magnetism of GALs. Although a complete study of defect-
induced magnetism in those systems is beyond the scope of
this work (it would require a consideration of electronic corre-
lations which are not included here), we present a qualitative
discussion about what one may expect for GALs, based on the
existing theoretical work addressing this controversial issue
for graphene and other carbon-based materials.

Both density-functional calculations and Hubbard model
studies predict a ferromagnetic ground state for zigzag-type
grain boundaries in graphene (for reviews, see Chapter 12 of
Refs. 2 and 47). This results in a spin splitting of the midgap
edge states.15,48 However, ferromagnetic ordering does not
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exist for a one-dimensional system (such as graphene edges)
at any finite temperatures due to thermal fluctuations. First-
principles calculations49 give a magnetic correlation length
of the order of only 1 nm at room temperature. Keeping in
mind that the magnetic moment in carbon systems is due to
sp electrons and is distributed over a broad region (see, e.g.,
Ref. 50), it seems safe to assume that this spin splitting is
unlikely to survive. This issue has been studied for a long time
for transition metals by various approaches (see, e.g., Refs. 51–
55). In some itinerant electron magnets (like chromium) local
magnetic moments above magnetic ordering temperature are
absent and no signals of spin splitting (an antiferromagnetic
shadow gap) is observed whereas for others like iron some
smeared spin splitting exists in the paramagnetic phase. The
most probable scenario for sp-electron magnets is that the
Stoner picture is closer to reality: here no spin splitting above
the Curie temperature is predicted.56

Therefore, irrespective of the controversial issue of ferro-
magnetism and spin splitting in the ground state (they can
be quenched by edge reconstruction, chemical passivation,
etc.), magnetism appears irrelevant for the room-temperature
electronic properties of the systems studied in this work.

V. CONCLUSIONS

In conclusion, we have presented a systematic study of
the effect of disorder in GALs. We have used a tight-binding
model in a perforated honeycomb lattice of carbon atoms. The
DOS has been calculated from a numerical solution of the
TDSE, whereas the optical conductivity has been obtained by
using the Kubo formula for noninteracting electrons. We have
considered the most generic sources of disorder in these kinds
of samples: geometrical disorder such as random deviation of
the periodicity and of the radii of the nanoholes from the perfect
array, as well as the effect of resonant scatterers in the sample
(e.g., vacancies, adatoms, etc.) and the effect of noncorrelated
and correlated (Gaussian) on-site potentials. In order to have
a qualitative understanding of the effect of the different kinds
of disorder on the samples, we have applied the method to

one representative case, namely a {10,6} GAL. However, we
emphasize that the employed scheme is completely general
and applicable to any set of parameters {L,R}.

Our results show that the gap is rather robust against
geometrical disorder, and only a large deviation of the antidot
array from the perfect periodicity leads to a narrowing and
eventually closing of the energy gap. We find localized states
encircling the antidots, the energy of which depends on
the radius of the hole. The presence of additional resonant
scatterers, such as vacancies or adatoms, leads to the creation of
midgap states. The existence of this impurity band is reflected
in the optical conductivity, which now extends to energies
smaller than the gap energy �, due to disorder activated optical
transitions from the impurity band to the conduction band.
However, the main contribution to σ (ω) still corresponds to
transitions with an energy of the order of �. Finally, the
presence of noncorrelated or of Gaussian potential disorder
leads to a smearing of the peaks in the DOS, as well as to
the transfer of spectral weight to the gapped region. Contrary
to the effect of resonant scatterers, the presence of potential
disorder does not create a zero-energy band with a prominent
peak in the DOS at E = 0, but instead a DOS that grows
smoothly as a function of energy within the gapped region. As
a consequence, the optical conductivity also grows slowly from
0 until it reaches its maximum contribution at the energy of the
gap. Therefore, photoluminescense spectroscopy experiments
could be useful for the characterization of the GALs.
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Rev. Lett. 101, 196803 (2008).

44A. Hams and H. De Raedt, Phys. Rev. E 62, 4365 (2000).
45A. Ishihara, Statistical Physics (Academic, New York, 1971).
46S. Yuan, T. O. Wehling, A. I. Lichtenstein, and M. I. Katsnelson,

Phys. Rev. Lett. 109, 156601 (2012).
47O. V. Yazyev, Rep. Prog. Phys. 73, 056501 (2010).
48J. Fernández-Rossier and J. J. Palacios, Phys. Rev. Lett. 99, 177204

(2007).
49O. V. Yazyev and M. I. Katsnelson, Phys. Rev. Lett. 100, 047209

(2008).
50D. W. Boukhvalov and M. I. Katsnelson, Eur. Phys. J. B 68, 529

(2009).
51V. Heine, J. H. Samson, and C. M. N. Nex, J. Phys. F: Metal Phys.

11, 2645 (1981).
52T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism

(Springer, Berlin, 1985).
53J. Staunton, B. L. Gyorffy, A. J. Pindor, G. M. Stocks, and W. H.,

J. Phys. F: Metal Phys. 15, 1387 (1985).
54S. V. Vonsovsky and M. I. Katsnelson, Physica B 159, 61 (1989).
55A. I. Lichtenstein, M. I. Katsnelson, and G. Kotliar, Phys. Rev. Lett.

87, 067205 (2001).
56D. M. Edwards and M. I. Katsnelson, J. Phys.: Condens. Matter 18,

7209 (2006).

085430-8

http://dx.doi.org/10.1088/1367-2630/11/9/095020
http://dx.doi.org/10.1088/1367-2630/11/9/095020
http://dx.doi.org/10.1103/PhysRevB.80.115117
http://dx.doi.org/10.1103/PhysRevB.80.115117
http://dx.doi.org/10.1103/PhysRevB.80.045410
http://dx.doi.org/10.1103/PhysRevB.80.045410
http://dx.doi.org/10.1103/PhysRevB.79.075123
http://dx.doi.org/10.1103/PhysRevB.79.075123
http://dx.doi.org/10.1103/PhysRevB.80.073402
http://dx.doi.org/10.1103/PhysRevB.80.075413
http://dx.doi.org/10.1103/PhysRevB.84.155449
http://dx.doi.org/10.1103/PhysRevB.84.155449
http://dx.doi.org/10.1016/j.physleta.2012.06.010
http://dx.doi.org/10.1016/j.physleta.2012.06.010
http://dx.doi.org/10.1103/PhysRevB.86.041406
http://dx.doi.org/10.1103/PhysRevB.77.245431
http://dx.doi.org/10.1103/PhysRevB.79.113406
http://dx.doi.org/10.1103/PhysRevB.79.113406
http://dx.doi.org/10.1021/nn102442h
http://dx.doi.org/10.1021/nn102442h
http://dx.doi.org/10.1021/nn200580w
http://dx.doi.org/10.1021/nn200580w
http://dx.doi.org/10.1063/1.2988725
http://dx.doi.org/10.1088/1367-2630/11/9/095021
http://dx.doi.org/10.1021/nl1042648
http://dx.doi.org/10.1103/PhysRevB.86.045445
http://dx.doi.org/10.1103/PhysRevB.86.045445
http://dx.doi.org/10.1039/b915190g
http://dx.doi.org/10.1039/b915190g
http://dx.doi.org/10.1038/nnano.2010.8
http://dx.doi.org/10.1038/nnano.2010.8
http://dx.doi.org/10.1021/nl9032318
http://dx.doi.org/10.1021/nl9032318
http://dx.doi.org/10.1021/nl100750v
http://dx.doi.org/10.1021/ja105426h
http://dx.doi.org/10.1021/ja105426h
http://dx.doi.org/10.1063/1.3675547
http://dx.doi.org/10.1063/1.3675547
http://dx.doi.org/10.1103/PhysRevB.82.115448
http://dx.doi.org/10.1103/PhysRevB.82.115448
http://dx.doi.org/10.1103/PhysRevB.84.195418
http://dx.doi.org/10.1103/PhysRevB.84.195418
http://dx.doi.org/10.1103/PhysRevLett.105.056802
http://dx.doi.org/10.1103/PhysRevLett.101.196803
http://dx.doi.org/10.1103/PhysRevLett.101.196803
http://dx.doi.org/10.1103/PhysRevE.62.4365
http://dx.doi.org/10.1103/PhysRevLett.109.156601
http://dx.doi.org/10.1088/0034-4885/73/5/056501
http://dx.doi.org/10.1103/PhysRevLett.99.177204
http://dx.doi.org/10.1103/PhysRevLett.99.177204
http://dx.doi.org/10.1103/PhysRevLett.100.047209
http://dx.doi.org/10.1103/PhysRevLett.100.047209
http://dx.doi.org/10.1140/epjb/e2009-00119-2
http://dx.doi.org/10.1140/epjb/e2009-00119-2
http://dx.doi.org/10.1088/0305-4608/11/12/015
http://dx.doi.org/10.1088/0305-4608/11/12/015
http://dx.doi.org/10.1088/0305-4608/15/6/019
http://dx.doi.org/10.1016/S0921-4526(89)80054-7
http://dx.doi.org/10.1103/PhysRevLett.87.067205
http://dx.doi.org/10.1103/PhysRevLett.87.067205
http://dx.doi.org/10.1088/0953-8984/18/31/016
http://dx.doi.org/10.1088/0953-8984/18/31/016

