
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Statistical aspects of fish stock assessment

Berg, Casper Willestofte; Madsen, Henrik; Thygesen, Uffe Høgsbro; Nielsen, Anders

Publication date:
2013

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Berg, C. W., Madsen, H., Thygesen, U. H., & Nielsen, A. (2013). Statistical aspects of fish stock assessment.
Kgs. Lyngby: Technical University of Denmark (DTU).  (IMM-PHD-2013; No. 302).

http://orbit.dtu.dk/en/publications/statistical-aspects-of-fish-stock-assessment(30ca382f-9640-4d27-9ee6-26cfd8b8be9d).html


Statistical aspects of fish stock
assessment

Casper Willestofte Berg

kuno
Typewritten Text

kuno
Typewritten Text
PHD-2013-302

kuno
Typewritten Text



kuno
Typewritten Text
DTU Compute
Department of Applied Mathematics and Computer Science
Technical University of Denmark
Richard Petersens Plads
Building 324
2800 Lyngby, Denmark
Tel. +4525 3031
www.compute.dtu.dk

kuno
Typewritten Text

kuno
Typewritten Text



Summary (English)

Fish stock assessments are conducted for two main purposes: 1) To estimate
past and present fish abundances and their commercial exploitation rates. 2) To
predict the consequences of different management strategies in order to ensure
a sustainable fishery in the future.

This thesis concerns statistical aspects of fish stocks assessment, which includes
topics such as time series analysis, generalized additive models (GAMs), and
non-linear state-space/mixed models capable of handling missing data and a
high number of latent states and parameters. The aim is to improve the ex-
isting methods for stock assessment by application of state-of-the-art statistical
methodology. The main contributions are presented in the form of six research
papers.

The major part of the thesis deals with age-structured assessment models, which
is the most common approach. Conversion from length to age distributions in
the catches is a necessary step in age-based stock assessment models. For this
purpose, GAMs and continuation ratio logits are combined to model the proba-
bility of age as a smooth function of length and spatial coordinates, which con-
stitutes an improvement over traditional methods based on area-stratification.
GAMs and delta-distributions are applied for the calculation of indices of abun-
dance from trawl survey data, and different error structures for these are inves-
tigated.

Two extensions to the state-space approach to age-structured stock assessment
modelling are presented. The first extension introduces multivariate error dis-
tributions on survey catch-at-age data. The second extension is an integrated
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assessment model for overlapping sub-stocks subject to joint exploitation in the
area of overlap. Estimation and inference is carried out using maximum likeli-
hood.

Finally, a biomass dynamic model based on stochastic differential equations is
presented. This work extends the classical approaches to biomass modelling by
incorporating observation errors on the catches, and allowing for missing and
non-equidistant samples in time.



Summary (Danish)

Bestandsvurderinger af fisk har to overordnede formål: 1) At estimere den histo-
riske udvikling i fiskebestandene og graden af kommerciel udnyttelse af disse. 2)
At forudsige konsekvenserne af forskellige forvaltningsstrategier med det formål
at sikre et fremtidigt bæredygtigt fiskeri.

Denne afhandling beskæftiger sig med statistiske aspekter ved bestandsvurde-
ring af fisk, hvilket inkluderer emner såsom tidsrækkeanalyse, generaliserede
additive modeller (GAM’er) og ikke-lineære tilstands-/mixede modeller til hånd-
tering af manglende datapunkter og et højt antal uobserverede tilstandsvariable
og parametre. Formålet er at forbedre eksisterende metoder til bestandsvur-
dering ved at anvende avancerede statistiske metoder. De primære bidrag er
præsenteret i form af seks videnskabelige artikler.

En overvejende del af denne afhandling omhandler alders-strukturerede mo-
deller til bestandsvurdering, hvilket er den den mest almindelige tilgangsvin-
kel. Konvertering fra længde- til aldersfordelinger i fangsterne er et nødvendigt
skridt i alders-strukturerede modeller. Til det formål kombineres GAM’er og
fortsættelses-logitter for at modellere aldersfordelingen som en glat funktion af
længde og geografisk position, hvilket udgør en forbedring i forhold til tradi-
tionelle metoder baseret på område-stratificering. GAM’er og delta-fordelinger
bliver anvendt til beregning af relative bestandsestimater ud fra data fra viden-
skabelige bundtrawlstogter, og forskellige fejl-strukturer for disse undersøges.

To udvidelser til state-space tilgangen til aldersstrukturerede bestandsvurde-
ringsmodeller bliver præsenteret. Den første udvidelse introducerer multivariate
fejl-fordelinger for fangster per aldersgruppe fra videnskabelige togter. Den an-
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den udvidelse er en integreret bestandsvurderingsmodel for overlappende under-
bestande, der udnyttes samlet kommercielt i området for overlap. Estimation of
inferens baseres på princippet om maximum likelihood.

Slutteligt præsenteres en dynamisk biomasse-model baseret på stokastiske dif-
ferentialligniner. Dette arbejde er en udvidelse a klassiske metoder til biomasse-
modellering idet det tillader observations-fejl på fangsterne samt manglende og
ikke-ækvidistante målinger i tid.



Preface

This thesis was prepared at the National Institute of Aquatic Resources (DTU
Aqua) and the department of Informatics and Mathematical Modelling (DTU
Compute, formerly DTU Informatics) at the Technical University of Denmark
in partial fulfillment of the requirements for acquiring the Ph.D. degree in engi-
neering. The work was carried out between November 2009 and April 2013 and
was supported by a DTU Scholarship.

The thesis deals with statistical aspects of fish stock assessments, with special
focus on age-based models and the state-space approach.

The thesis consists of a summary report and six scientific research papers created
during the Ph.D.-period. Papers I to III are published in international peer-
reviewed journals, IV is under review in an international journal, and the last
two represent work in (far) progress.

Lyngby, 30-April-2013
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Chapter 1

Introduction

1.1 Background

Fish stock assessment models are statistically quite challenging because a) The
main quantities of interest (population abundance and fishery pressure) are not
directly observed. b) The ecological processes governing the system are often
non-linear and far from fully understood. c) Many different types of high-
dimensional data sources often needs to be combined, typically non-Gaussian
and highly skewed, covering different time-spans and geographical regions, and
containing intricate correlations, which may lead to substantially different con-
clusions about the stock depending on the model formulation and how the dif-
ferent data sources are weighted.

One of the starting points for this project was to develop a model for two
sub-populations of Atlantic herring. Because there is an overlap in the spatial
distribution of the two species, they are caught together by commercial fishing
vessels in the area of overlap. However, the area of overlap is currently managed,
but not analyzed, separately, causing problems for the managers. The model
should therefore address this issue. The available data sources at that time for
such a model were however not sufficient – survey indices of abundance for the
area of overlap were missing, although the area had been surveyed. Hence, new
survey indices had to be calculated, which led to rather complete re-examination
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of the statistical methodology that had been used so far for this purpose. A
major part of this thesis is therefore concerned with topics related to survey
index calculations and their role in stock assessments, although other topics are
touched upon as well.

1.2 Objectives

The thesis concerns statistical aspects of fish stocks assessment, which includes
topics such as time series analysis, generalized additive models (GAMs), and
non-linear state-space/mixed models with missing data and a high number of
latent states and parameters. The overall purpose of this thesis is to develop
improved methods for fish stock assessment.

More specifically, the objectives of this study are

• To develop an improved method for analyzing stomach data with individ-
ual identified prey items using mixed models to detect temporal patterns
in feeding behavior. Stomach data is an important source for knowledge
about predator/prey interactions and consumption rates, which can for
instance be utilized in multi-species fisheries models, and patterns in feed-
ing behavior may reveal insights about predator-prey interactions and aid
sampling design.

• To investigate methods for estimation in non-linear state-space models for
stock assessment.

• To improve the currently used methodology for calculating indices of abun-
dance by age from trawl survey data. To achieve this, two main problems
must be dealt with

1. Conversion from numbers-at-length to numbers-at-age using subsam-
ples of age and length taking geographical variations into account.

2. Integrating numbers-at-age from individual hauls to a index of abun-
dance for the whole population. This includes dealing with highly
skewed data, unbalanced designs, and correction for external factors
that may affect the catch rate other than abundance.

• To combine the developed methodology for calculating survey indices with
the state-space approach to age-based stock assessment models, and to
evaluate its impact on the precision of such assessments.
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• To develop an integrated assessment model for North Sea and Western
Baltic herring. Such a model will constitute an improvement over the
currently used methodology, which involves splitting of data based on
sampled proportions and carrying out separate assessments on each stock.
Since this a problem that is not unique to the examined herring stocks,
this model may generally applicable to other cases of mixing sub-stocks of
the same species.

• To account for both process and observation error and to handle missing
observations as well as varying sample times when estimating in biomass
production models. Many current applications of biomass models ignore
process error as well as errors on the observed commercial catches, which
may lead to biased estimates of key management quantities such as the
maximum sustainable yield (MSY).

1.3 Outline

Chapter 2 gives a brief overview of the data sources used in this thesis and of
stock assessment in general. Chapter 3 provides a review of some of the past
and current methodology used for fish stock assessment and describes how this
is applied and extended in Papers I-VI. Some of the contents in this chapter is
therefore also presented in the papers. Chapter 4 summarizes the main results
and findings documented in Papers I-VI. Appendices A and B contain descrip-
tions of two publicly available software packages related to stock assessment,
which were applied in, and whose development benefitted from, this thesis.



4 Introduction



Chapter 2

Data

2.1 Commercial Catch and Effort Data

Fish stock assessments are primarily conducted for commercially exploited pop-
ulations, and one of their major purposes is to quantify the implications of
different management strategies. A fish stock may be exploited by one or more
fleets that differ in their type of fishing gear and nationality. The mass of the to-
tal catches is measured for each fleet, and subsamples of weight, length, and age
are used to obtain estimates of the total number of fish caught in each length-
and/or age-group. Some error due to the catch sampling must therefore be ex-
pected, mostly with respect to age samples, as these are much sparser collected
due to the extra costs from analyzing for age. In some cases there are so-called
effort data available for the commercial fleets. Fishing effort may be recorded
as the number of days at sea, fishing hours or something similar.

For many EU stocks effort data are not used in the assessments, presumably
due to poor or insufficient data. However, growing time-series of satellite based
vessel monitoring systems (VMS), that automatically collect the position of all
major fishing vessels, are beginning to allow for the use of high-resolution effort
catch-effort data, especially when combined with logbook data on the catches
(Gerritsen and Lordan, 2011). When effort data is not available, the total
catches are sometimes known as “residual catches”.
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2.2 Surveys

Kimura and Somerton (2006) states: “Survey time series are the essential anchor
that makes modern fish stock assessment modeling possible”. This is because
commercial catch data alone do not contain sufficient information to estimate the
stock size and fishing mortality. A variety of sampling methods for fish exist such
as capture with active fishing gears (e.g. trawls), passive gears such as baited
hooks, plankton nets for capturing eggs and fish larvae, hydro-acoustics, and
even video photography. The goal is common for all these methods: To produce
indices of abundance that may be used in combination with a population model
for the purpose of managing the fishery.

2.3 Trawl Surveys

Bottom trawl surveys is probably the most analyzed and widely used method
to produce survey indices. Fish are sampled by towing a large conical net
across the sea bottom, usually for a standard distance or duration of time. The
International Council for Exploration of the Sea coordinates (among others) the
International Bottom Trawl Survey (IBTS) in the North Sea which constitute
a long and important time-series of survey data for this area. The data, which
are very detailed, are stored in the DATRAS database (ICES, 2012a).

2.4 Acoustic Surveys

Hydro-acoustic surveys measure the acoustic reflection energy from fish schools
using an echo sounder, which can be converted to biomass or numbers of in-
dividuals from calibration experiments (Misund, 1997). Acoustic surveys have
the advantage, that echo integration data is collected continuously during the
survey such that a much larger volume of water can be covered than with trawl-
ing. The downsides are among others that reflection energy may stem from
other sources than schools of fish creating false positives in the signal, and that
correct allocation of the integrated echo signal to species and size groups is
difficult.
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2.5 Stomach Contents

Since actual feeding events for fishes are rarely observed directly, analyses of
the stomach contents are important for understanding and quantifying feeding
preferences and consumption rates. These enable predation mortalities inflicted
by fish on each other to be included in multi-species models (e.g. Gislason
and Helgason (1985), Lewy and Vinther (2004)) Accurate models of gastric
evacuation have been developed using aquarium experiments (Andersen and
Beyer, 2005), which allows feeding rates to be determined from stomach samples
from the wild. A review of the role of stomach data and gastric evacuation
experiments is given in Bromley (1994).

2.6 Tagging Data

Classical tags involves releasing a large number of caught and marked indi-
viduals back into the population. The proportion of tagged individuals that
are found in new catches can be used for population estimates and survival
rates (Nielsen, 2004), and their geographical displacement for inferring move-
ment patterns. Electronic archival tags can make continuous measurements of
the environment around the fish such as depth and temperature, which allow
for estimation of whole movement trajectories (a discipline known as geoloca-
tion, Nielsen and Sibert (2007) ). Spatially resolved stock assessment models
that incorporate movement of fish exist (e.g. Quinn et al. (1990),Hampton and
Fournier (2001)), although they are still underused due to their complexity and
high data demands. A review of methods for incorporating movement into stock
assessment models is given by Goethel et al. (2011).

2.7 Age Data

Otoliths (or “earstones”) can be used for determining the age of many species
of fish. In analogy with trees, alternating periods of slow and fast growth in
the winter and summertime lead to alternating dark and translucent zones in
the otolith, which makes it possible to determine its age (see Figure 2.1). Time
series of paired observations of age and length are key in age-structured stock
assessment models.
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Figure 2.1: Otolith from an Atlantic Cod with 4 winter rings (Picture and
graphics: Karin Hüssy, DTU Aqua).

2.8 Summary of Data Sources Used

Paper I combines models of gastric evacuation with mixed effect models to es-
timate feeding patterns from stomach data. Paper II is based on simulated
data only. Paper III introduces the DATRAS-package for manipulating and
analyzing trawl survey data, and combines continuation ratio logits with gen-
eralized additive models (GAMs) for analyzing age and length data containing
spatial variations. Paper IV combines the methodology from paper III with
Delta-GAM models for estimating indices of abundance from trawl survey data.
Commercial catch data is also utilized in paper IV to evaluate the precision of
different procedures for estimating the survey indices by carrying out full stock
assessments. Paper V uses multiple sources of survey data (acoustic as well as
trawl surveys) for the assessment of two herring stocks. Paper IV deals with
estimation in biomass models, which require both commercial and survey catch
data but without the use of age-samples.
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Methods

There are four main factors contributing to the dynamics of an exploited fish
population (Beverton et al., 1957):

• Recruitment

• Growth

• Fishing mortality

• Natural mortality

Recruitment is defined as the number individuals entering the exploited part of
the population. Eggs, larvae and juveniles (the pre-recruit stages) often occupy
special nursery grounds away from the adult population, and they are too small
to be retained by normal fishing gear, which explains why this definition is
useful. Fishing mortality and natural mortality is the rate of deaths due to
fishing and other (natural) causes respectively. A fifth factor, movement and
migration, may also be considered, but data demands are high for models that
incorporate this element, so this is often ignored.

In the simplest models the population is described only by its total mass (or
numbers/density), at the expense that recruitment, growth, and natural mor-
tality cannot be separated. A more precise description of the population is
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therefore usually adapted by describing the population by its size or age dis-
tribution. This chapter contains a description of different models for fish stock
assessment, with the main focus on the models that are applied in papers II-VI
and statistical methods for estimation in such models.

3.1 Models Based on Total Weight

While age and length based models provide a detailed description of a fish pop-
ulation with respect to its size-composition, these require many costly samples
of the catches, which are often not available for less commercially interesting
stocks, in third-world countries, or simply not available as far back in time
as records on total catch in weight. Therefore, simpler models based only on
the total weight of catches as well as the population remain useful for fisheries
management (Punt, 2003).

These models are known as biomass models or (surplus) production models, and
a general discrete-time description of these models is given by

By+1 = (By + g(By)− Cy) eεy (3.1)
Iy = qByeηy (3.2)

where B is the biomass, Cy is the catch during year y, Iy is a relative biomass
index, q is a constant proportionality factor (catchability), r is the intrinsic rate
of growth, and K is the carrying capacity (unexploited equilibrium biomass).
The surplus production function g() determines how the density dependence
reduces the productivity at high population sizes. Common choices of surplus
production function include the Schaefer model (Schaefer, 1954)

g(B) = rB

(
1− B

K

)
, (3.3)

the Fox model (Fox, 1970)

g(B) = rB

(
1− logB

logK

)
(3.4)

and the Pella-Tomlinson model (Pella and Tomlinson, 1969)

g(B) =
r

p
B

(
1−

(
B

K

)p)
(3.5)

, which is a generalized form that includes the Schaefer (p = 1) and the Fox (p→
0) models. The power parameter p is often difficult to estimate from data. The
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theta-logistic model examined in Paper II is a re-parameterization of the Pella-
Tomlinson model (the first term r

p is replaced with r). Production models have
formed the basis of the concept of Maximum Sustainable Yield (MSY), which
is the largest catch that can continuously removed from the population while
keeping it in an equilibrium state (g(B) = C). The fishing mortality and biomass
at this equilibrium point (FMSY and BMSY ) can be derived analytically for all
of the production models above, which is why these models have popularized
the concept of MSY. Although the concept of MSY has been criticized by the
scientific community for being overly optimistic, and ignoring several aspects
such as the cost of fishing and multi-species effects (e.g. Larkin (1977)), it was
written into the 1982 United Nations Convention for the Law of the Sea (United
Nations, 1982), and is still used as a key concept for fisheries management in
both the EU and the US.

3.1.1 An SDE formulation

In state-space terminology, (3.1) is a process (or system) equation while (3.2)
is an observation equation, and hence εy ∼ N(0, σ2

ε ) describes process error due
to imperfections of the model, and ηy ∼ N(0, σ2

η) describes measurement error.
Historically, one or the other type of error have usually been ignored (Polacheck
et al., 1993) although this may lead to biased parameter estimates (and hence
biased estimates of MSY) (Chen and Andrew, 1998). Furthermore, the catches
C are also observations that may be more or less subject to observation noise
as well. Paper VI introduces a formulation of the Schaefer model based on a
set of stochastic differential equations (SDEs) rather than the typical discrete
time formulation used above, which allows for estimation of both process and
observation error (on Is as well as Cs), varying sample times, and missing
observations. The model is formulated in the log-domain, i.e. using Zt =
log(Bt). This has several advantages. One is that it avoids negative biomasses
that may arise otherwise (for instance if an observed catch exceeds the current
biomass estimate). Another advantage is that the multiplicative error structure
in (3.1) and (3.2) becomes additive in the log-domain. In the continuous time
formulation, C must be replaced with the differential equivalent dCt

dt = FtBt,
where Ft is the fishing mortality. The SDE version of the process equations are:

dZt =

(
r − r

K
eZt − Ft −

1

2
σ2
B

)
dt+ σBdWt (3.6)

d log(Ft) = σF dVt (3.7)

where Wt and Vt are independent standardized Brownian motions.
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Estimation in SDEs is complicated, but advanced statistical software packages
have been developed to this end, and Paper VI applies the methodology in
Kristensen et al. (2004) which is implemented in the CTSM-R package (Juhl
et al., 2013).

Since the catch observations consist of accumulated catches over some period
(typically a year), we the observation equation should ideally be based on the
integral ∆Cy =

∫ y
y−1

FtBtdt = Cy−Cy−1. However, the CTSM-R package requires
observations that depends on the state vector at one point in time only. Hence,
the following approximation is used

log ∆Cy ≈ logFy− 1
2

+ logBy− 1
2

(3.8)

That is, we evaluate the F and B processes half-way through the year, and
approximate the integral of the product of the two series simply by the product
evaluated in the middle of the time step.

Using this approximation, the observation equations become

log(it) = log(It) + log(q) + εI,t (3.9)
log(∆cy) = logFy− 1

2
+ logBy− 1

2
+ εC,y (3.10)

where εI,t ∼ N(0, σI) and εC,y ∼ N(0, σC).

3.2 Models Based on Numbers-by-age

Most analytical stock assessments are based on age-structured models. There
are several reasons for this (including historical reasons), but a main reason is
that biological processes such as growth and reproduction are inherently linked
to yearly cycles.

Mortality is typically divided into fishing mortality and and natural mortality.
This can be expressed through the following differential equation:

d

dt
Nt = − (Ft +Mt)︸ ︷︷ ︸

Zt

Nt (3.11)

where Nt is the total number of individuals at time t, and the total mortality Zt
is the sum of fishing mortality Ft and natural mortality Mt. The natural mor-
tality is usually considered to be known a priori, since it is hardly ever possible
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to estimate temporal development in fishing mortality and natural mortality
simultaneously from data.

The solution to 3.11, using one year as the time unit and assuming constant
mortalities within a year, is known as the stock equation,

Na+1,y+1 = Na,ye
−Za,y . (3.12)

where Na,y is the number of alive fish at the beginning of the year. The number
of individuals that died due to fishing is found using the catch equation

Ca,y =
Fa,y
Za,y

(1− e−Za,y )Na,y. (3.13)

Equations (3.13) and (3.12) are fundamental in age-structured fish stock assess-
ment models.

The recruitment is typically linked to the spawning stock biomass (SSB), which
is key quantity in relation to fish stock assessments. It is defined as the total
mass of sexually mature individuals in a population and is thus a measure of
the reproductive capacity of a stock. In age-structured models it calculated as
follows

SSBy =

A∑

a=1

Na,ywa,ypa (3.14)

where w is the mean weight of a fish, p is the proportion of mature individuals,
and N is the estimated number of fish. Subscripts a and y denote age group
and year respectively.

Since the number of future recruits in a population is key in determining its
future development, much research has been devoted to the development of
models for predicting recruitment. Environmental forcings, predation, and food
availability in the pre-recruit stages are often considered in this respect (e.g.
Beaugrand et al. (2003)). Although there are many publications which have
found correlations between the environment and recruitment success, few of
these have stood the test of time and have failed upon later retests using longer
time-series of data (Myers, 1998).

Hence, most stock assessment models assume a simple relationship between
the spawning stock biomass in the previous year SSBy−1 and the next year’s
recruitment Ry, and the most frequently used are the Beverton-Holt model
Beverton et al. (1957)

Ry =
αSSBy−1

1 +
SSBy−1

K

, (3.15)
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and the Ricker model Ricker (1954)

Ry = αSSBy−1 exp (−βSSBy−1) . (3.16)

Compensatory density dependence is the term used to describe the phenomenon
that at high population densities the mortality increases due to increased compe-
tition, predation, and disease transmission, which prevents the population from
exploding. However, for most fish stocks there are only data available from
periods where stock sizes are well below the carrying capacity, and recruitment
is often highly variable. Hence there is often little hope to distinguish between
these models. This is illustrated in Figure 3.1.
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Figure 3.1: Stock-recruitment for Western Baltic Spring Spawning Herring
(1991-2011).

3.2.1 Age-Length Keys

Converting observed catches from length to age distributions is a standard pro-
cedure when analyzing fisheries data using age-structured models, and to this
end a so-called age-length key (ALK) is typically applied. While measuring
for length is easy, age determination requires much more expensive laboratory
work, so only a small fraction of the catch is analyzed for age. This implies,
that many hauls may contain very few or no age samples, which means that
samples must be pooled somehow under the assumption that the ALK can be



3.2 Models Based on Numbers-by-age 15

considered constant (or at least similar) for hauls that are close in space and
time. The current ICES procedure is to use raw proportions of age by length
group aggregated over larger areas (ICES, 2012c), and to fill in gaps in the ALK
by “borrowing” samples from neighboring areas if no fish have been sampled for
some length groups in the area under consideration.

Continuation ratio logits (CRLs, Agresti (2010)) is a statistical model for or-
dered categorical responses that have been applied as an objective and more
robust way to obtain ALKs (Kvist et al. (2000), Rindorf and Lewy (2001)),
and to permit statistical inference such as to test whether two ALKs can be
considered identical (Gerritsen et al. (2006), Stari et al. (2010)).

Let a = R . . . A be the age groups under consideration and l the length of a
fish. The distribution of ages Pa = {pR . . . pA} is modelled through A minus R
models for the conditional probability of being of age a given that it is at least
age a:

πa = P (Y = a|Y ≥ a) =
pa

pa + . . .+ pA
, a = R . . . A− 1

which relates to the unconditional probabilities pa (the ALK) trough the follow-
ing equations

pR = πR

pa = πa


1−

a−1∑

j=R

pj


 = πa

a−1∏

j=R

(1− πj) , a > R

The CRLs based on area-stratification are usually just linear functions of length

logit(πa) = αa + βal

While solving the problem of having gaps in the ALK, the problem of selecting
appropriate areas in which the ALK can be considered equal is not addressed. To
this end, Paper III proposes to replace area stratification with smooth functions
s of the spatial coordinates (lon,lat):

logit(πa) = αa + s1,a(lon, lat) + s2,a(lon, lat)l (3.17)

This type of model is known as a varying-coefficients model (Hastie and Tibshi-
rani, 1993) since the regression coefficient on length is now a smooth function
of covariates. Other covariates may of course also be included.
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3.2.2 Catch standardization of survey data

Changes in survey design represents a challenge when time-series of indices of
abundance are to be calculated. If such changes are not accounted for, trends
in the indices may be a result of the changes in design rather than changes
in abundance. Catch standardization refers to procedures for removing effects
from the indices (or catch-effort data) that are caused by changes in design or
other covariates such as environmental conditions (Maunder and Punt, 2004).

Such analyses are statistically challenging because catch rates are notoriously
variable in that they often contain a high proportion of zero values as well as
occasional huge catches. Delta-distributions (e.g. Pennington (1983)), where
zero values are modelled separately and the positive values are assumed to be
log-normal (or Gamma) distributed, are a popular choice for describing highly
skewed catch data. More recent studies have combined delta-distributions with
generalized linear models (GLMs), generalized linear mixed models (GLMMs)
and generalized additive models (GAMs) to correct for effects such as spatial
position, depth, and time of day (Stefansson, 1996; Petrakis et al., 2001; Piet,
2002; Adlerstein and Ehrich, 2003; Beare et al., 2005). Discrete valued dis-
tributions such as the negative binomial (e.g. Kristensen et al. (2006)) have
been investigated as well, but if an age-length key has been applied prior to the
analysis, the response variable is no longer discrete, and models for continuous
responses must be used instead. The Tweedie distribution (Tweedie, 1984) has
recently been suggested as an alternative to delta-distributions (Candy, 2004;
Shono, 2008). It has a nice interpretation as a compound Poisson distribution,
because it is equivalent to the distribution of Z = W1 + ...+WN , where Wk are
independent identically distributed Gamma variables, and N follows a Poisson
distribution. Hence, it has a point mass in zero (corresponding to N = 0) but
is continuous on the rest of positive part of the real axis.

Nevertheless, a simpler method based on arithmetic means and area stratifica-
tion is still the standard method employed by ICES (ICES, 2012c).

Paper IV compares the method employed by ICES with the delta- and Tweedie
distributions using GAMs to correct for changes in survey design. The delta- and
Tweedie models uses the following relationship between the expected response
µ, which is numbers-at-age or 1/0 for the binomial part of the delta models, and
external factors

g(µi) = Year(i) + U(i)ship + f1(loni, lati) + f2(depthi) + f3(timei) (3.18)
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where Year(i) maps the ith haul to a categorical effect for each year, U(i)ship ∼
N(0, σ2

u) is a random vessel effect, f1 is a 2-dimensional thin plate regression
spline on the geographical coordinates, f2 is a 1-dimensional thin plate spline
for the effect of bottom depth, and f3 is a cyclic cubic regression spline on the
time of day.

The motivation for using a smooth function of geographical coordinates in place
of area-stratification is the same as in the previous section on ALK estimation:
The problem of selecting appropriate strata that have a sufficient number of data
points in all the years, yet still being small enough to assume of homogeneity
within strata, is replaced with an easier problem of smoothness selection for
the splines, which can be solved more less automatically using modern software
packages (Wood, 2006). In addition, related studies have shown that GAMs
provide more accurate estimates (Maxwell et al., 2012).

3.2.3 Deterministic Assessment Methods

Virtual population analysis (VPA, Fry (1949); Gulland (1965)) is a purely de-
terministic method for stock assessment that unlike statistical methods does
not provide any quantification of uncertainties of its estimates. Briefly, the pro-
cedure requires a guess on either the number of survivors or (more often) the
fishing mortalities in the final year and in the plus group (i.e. the last column
and the last row of either the N -matrix or the F -matrix). By recursive sub-
stitution into the catch and stock equations (3.13) and (3.12) it is possible to
back-calculate the entire N -matrix and F -matrix numerically. Pope (1972) de-
rived an approximation by pretending the catch is taken exactly in the middle
of the year, which may be solved analytically. Further details about VPA are
found in (Ulltang, 1977; Lassen and Medley, 2001).

VPA relies on catch data alone which does not provide much information about
the fishing mortality in the terminal years. Extended survivors analysis (XSA,
Shepherd (1999)) is an extension to VPA, which allow effort information for
commercial fleets or survey CPUEs to be included in the analysis. Although
not a statistical model, this method is still used as a standard method for stock
assessment by ICES today.

3.2.4 Statistical Assessment Methods

Stochastic models for stock assessment (introduced by Doubleday (1976), and
generalized to include auxiliary data by Fournier and Archibald (1982)) differs
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from the deterministic methods in that they treat observations as stochastic
variables subject to noise. The amount of observation noise is estimated from
data as a part of the model, which allows for quantification of uncertainties
and proper statistical hypothesis testing. These classical statistical assessment
models, also known as statistical catch-at-age models (SCA), are fully parame-
terized: unknown quantities are parameters of the model and observations are
random variables. However, more observations than parameters are needed for
the model to be identifiable, which means that some constraints on the model is
necessary. For instance, it is not possible to estimate an age- and year-specific
fishery mortality Fa,y for every combination of age and year. Hence, a separa-
bility assumption is usually made in which the fishing mortality is a product of
a year and an age effect Fa,y = FaFy. This assumption is a pragmatic solution,
but it does not allow for selectivity pattern to evolve over time. The state-space
model presented in section 3.2.7 solves this problem.

3.2.5 State-space models

Modern statistical approaches for analyzing fisheries time-series attempts to
meet the challenge of separating different sources of uncertainty such as process
error, observation error, and uncertainty about model structure (de Valpine and
Hastings, 2002). State-space models offer a formalized framework for analyzing
systems where both process error and observation error exist. The perhaps
simplest example is where the state η follow a random walk process

ηt+1 = ηt + εt,η (3.19)

where εt,η ∼ N(0, σ2
η) are independent Gaussian random variables. In the con-

text of fisheries models, η could represent the logarithm of the fishing mortality.
The system equation (3.19) would then describe the variability in the temporal
development of the fishing mortality. If we pretend we had direct observations
Y of the fishery mortality, these would most certainly deviate from the true
fishing mortality due to errors from the measurement process. The observation
equation (3.20) describes this other source of error:

Yt = ηt + εt,Y . (3.20)

where εt,Y ∼ N(0, σ2
Y ) is the observation error. The true state of the unobserved

fishery mortality process η can never be known, but using the state-space frame-
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work it is possible to give an optimal (in a least-squares sense) reconstruction η̂
and to quantify the uncertainty of that estimate. The above example is linear
with Gaussian errors, which means that the Kalman filter gives the optimal
solution (Harvey, 1989).

Since the basic equations for fish stock assessment models are non-linear, esti-
mation must be based on other methods such as the Extended Kalman Filter
(Gudmundsson, 1994). An alternative estimation approach consists of viewing
the states as random effects in a mixed effects model. This involves specifying
the joint likelihood L(θ, η, Y ) as the product of the conditional density of ob-
servations given the random effects, fθ(Y |η), and the marginal density of the
random effects hθ(η), which in the random walk example is,

L(θ, η, Y ) =

N∏

t=2

φ
(
ηt − ηt−1, σ

2
η

) N∏

t=1

φ
(
Yt − ηt, σ2

Y

)
(3.21)

where φ denotes the Gaussian probability density function. The maximum
likelihood estimate of θ is found be integrating out the random effects to obtain
the marginal distribution of θ given Y . A method to evaluate this integral is
outlined in the next section.

3.2.6 ADMB and the Laplace approximation

Automatic Differentiation Model Builder (ADMB, Fournier et al. (2012)) is a
powerful open-source programming framework for solving complex non-linear
optimization problems. This includes, and is in fact aimed at, maximum like-
lihood estimation in highly parameterized statistical models and random ef-
fect models. Efficient algorithms for optimization of a (likelihood) function of
many variables involves computing its derivatives, which is typically handled by
numeric finite-difference methods or by finding analytical expressions. Finite-
difference methods are not exact and become slow when many parameters are
involved, while deriving analytical expressions for a complex model with perhaps
hundreds of parameters is impractical and error-prone. A clever method known
as automatic differentiation allows derivatives to be calculated to machine pre-
cision for any objective-function expressed as computer code by successively
applying the chain rule of calculus to every operation that affects the objective
function. ADMB integrates automatic differentiation with a function minimizer
as well as other functions for statistical analysis such as the Laplace approxi-
mation for random effect models, profile likelihood, and MCMC and the Delta
method for estimation of uncertainties of estimated quantities.
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In random effects models it is common to use the Laplace approximation (Wolfin-
ger and Xihong, 1997) for evaluation of the marginal likelihood. The compu-
tational aspects of AD and the Laplace approximation are given in Skaug and
Fournier (2006), and a short description of the Laplace approximation is given
in the following.

Let θ be a vector of parameters (fixed effects) and let η be a vector of latent
random effects; the states in the state-space framework. Let Y be a vector of
observations, and let g(θ, η) be the joint log-likelihood.

The marginal likelihood is found by integrating out the random effects in the
likelihood exp(g(θ, η)),

L(θ|Y ) =

∫
exp(g(θ, η))dη (3.22)

but this integral is very difficult to evaluate numerically.

Let η̂θ be the argument that maximizes the joint likelihood for fixed θ, i.e.

η̂θ = argmax
η

g(θ, η) (3.23)

The Laplace approximation replaces the integrand with a second order Taylor
expansion of the likelihood function around the optimum η̂θ:

g(θ, η) ≈ g(θ, η̂θ) +
1

2
(η − η̂θ)T H(θ) (η − η̂θ) (3.24)

where H(θ) is the Hessian matrix (second order partial derivatives) of the log-
likelihood function evaluated at the maximum η̂θ. Notice, that since we are
at the optimum, all first order partial derivatives are zero, which is why these
are not present in the Taylor expansion. Also notice, that the second term
is proportional to the probability density function for a multivariate normal
distribution, which by definition has its integral equal to one. Hence,

L(θ|Y ) ≈ exp (g (θ, η̂θ))

∫
g(θ, η̂θ) +

1

2
(η − η̂θ)T H(θ) (η − η̂θ) dη (3.25)

∝ exp (g (θ, η̂θ))
1√

detH(θ)
(3.26)

Estimation of θ by maximizing the Laplace approximation is known as the
outer optimization problem, while the estimation of η (3.23) is known as the
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inner problem. The joint estimation can be accomplished by iterating between
optimizing η for fixed θ and vice versa (Skaug and Fournier, 2006).

In paper I random effects that follow independent truncated normal distributions
are applied. In this case, the Laplace approximation may be inappropriate since
the posterior distribution is probably not Gaussian, but it is also not needed
since the high-dimensional integral (3.22) reduces to products of one-dimensional
integrals.

3.2.7 SAM

This section introduces the state-space model for age-structured stock assess-
ments. This model was initially developed by Anders Nielsen and extensions of
this model appear in paper IV and V. A similar model is presented by Gud-
mundsson and Gunnlaugsson (2012).

As usual, the state-space model consists of a vector of states η describing the
system at time t, a set of process equations describing the transition of states
between time steps T , and finally a set of observation equations O relating the
observations Y to the states.

ηt = T (ηt−1) + εT,t (3.27)
Yt = O (ηt) + εO,t (3.28)

The vector of states, η, consist of log-transformed numbers-at-age logN1, . . . , logNA
and fishing mortalities logFi1 , . . . , logFin . The fishing mortalities may corre-
spond to age-classes or to groupings of these. The general structure of the model
is illustrated in Figure 3.2.

The process equations for logNi using yearly time-steps (t is replaced with y)
are:

logN1,y = logR(η, θR) + εR,y (3.29)
logNa,y = logNa−1,y−1 − Fa−1,y−1 −Ma−1 + εS,a,y , 2 ≤ a ≤ A (3.30)

logNA,y = log(elogNA−1,y−1−FA−1,y−1−MA−1 (3.31)

+ elogNA,y−1−FA,y−1−MA) + εS,A,y

whereMa is natural mortality at age a, and F is the total fishing mortality. The
recruitment process is described by (3.29) which could be standard functions



22 Methods

Figure 3.2: Illustration of state transitions in age-based stock assessment mod-
els (based on Nielsen (2004)).

of SSB such as the Ricker or Beverton-Holt models, whose parameters θR is
estimated as part of the model. The process errors εR and εS are assumed
to be zero-mean independent normal distributed with two separate variance
parameters, one for recruitment σ2

R, and one for survival σ2
S .

The fishery mortalities, F , are assumed to follow either independent random
walks:

logFa,y = logFa,y−1 + εF,a,y, 1 ≤ a ≤ A (3.32)

or a correlated random walk model (with scalars replaced by vectors)

logFy = logFy−1 + εF,y (3.33)

such that εF,y ∼ N (0,ΣF ) and ΣF,ij = σ2
F ρ for i 6= j and ΣF,ii = σ2

F , where
σF and ρ are parameters to be estimated. When ρ = 1.0 we have the special
case of a multiplicative structure in logF whereas ρ = 0 allows for completely
independent development by age group in fishery mortality over time.

Assuming independent observations, the observation equations become:
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logCa,y = log

(
Fa,y
Za,y

(1− e−Za,y )Na,y

)
+ εCa,y (3.34)

log I(s)a,y = log

(
Q(s)
a e−Za,y

D(s)

365 Na,y

)
+ ε(s)a,y (3.35)

where Za,y = Ma + Fa,y is the total mortality rate, D(s) is the number of
days into the year where the survey s is conducted, and Q

(s)
a are catchability

parameters, εCa,y ∼ N(0, σ2
C), and ε(s)a,y ∼ N(0, σ2

s).

The joint likelihood is

L(θ, η, Y ) =

N∏

t=2

φ (ηt − T (ηt−1) ,ΣT )

N∏

t=1

φ (Yt −O (ηt) ,ΣO) (3.36)

where φ denotes the Gaussian probability density function. Notice how each fac-
tor depends on at most two random effect vectors (ηt and ηt−1). This a common
feature of state-space models known as partial separability, and by wrapping the
evaluation of each factor into a specially declared SEPARABLE_FUNCTION call in
ADMB the computational costs can be greatly reduced, since the conditional
independence between most of the random effects implies that the Hessian is a
banded matrix containing many zeroes (Skaug and Fournier, 2006).

3.2.8 Incorporating within year correlations on survey in-
dices

It is common to assume independence among ages in observations from scientific
surveys like in (3.35), although it has previously been demonstrated that this
assumption is not valid in many cases (Walters and Punt (1994),Pennington
and Godø (1995),Myers and Cadigan (1995)).

Paper IV demonstrates that such correlations are also present for survey data on
North Sea herring, sprat, and whiting, especially among the older age-groups.
The SAM model is therefore extended to account for such correlations by chang-
ing the observation equation (3.35) to

log I(s)y = log

(
Q(s) ◦ e−Zy

D(s)

365 Ny

)
+ ε(s)y (3.37)
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where ε(s)y ∼ N (0,Σy) (note that scalars in eqn. 3.35 are replaced with vectors
containing all age groups at once, and “◦” denotes element-wise multiplication).

The covariance matrices Σy are found by bootstrapping entire hauls from the
survey experiment and repeating the entire procedure that leads to numbers-
at-age estimates from the surveys.

3.2.9 A mixed stock model extension

Many commercial fisheries exploit several stocks at once, which implies that
the assessments of the stocks under exploitation ideally should be integrated.
Integrated analysis involves analyzing all the available data in as raw a form
as possible in a single analysis, and should be preferred over separate analyses
when possible (Maunder and Punt, 2012).

Atlantic herring is an example of a species that is characterized by several lo-
cal sub-stocks, which differ in their choice of spawning grounds and timing of
spawning. These stocks may therefore be regarded as isolated with respect to
reproduction, but they often appear together in samples of catches from both
commercial and survey vessels, so their exploitation rates are linked in areas
where such overlap occurs. Western Baltic spring spawning herring (WBSS)
and North Sea autumn spawning herring (NSAS) are currently modelled sep-
arately by dis-aggregating catches according to sub-samples of spawner-type
(ICES, 2012b). This split ignores spatial aspects of the exploitation pattern
that may exist, since the area between the spawning grounds of the two species
where the mixing occurs (known as area IIIa) is managed separately.

Such stock-complexes have previously been modelled using coupled differential
(or difference) equations, also known as compartmental models, e.g.

dN1

dt
= −(Z1 + k12)N1 + k21N2

dN2

dt
= k12N1 − (Z2 + k21)N2

where kij ≥ 0 represents the transport from area i to area j. A schematic
illustration of the described herring complex is shown in Figure 3.3.

These models require the estimation of a matrix with transport coefficients from
and to each area (the ks) from tagging data (Quinn et al., 1990; Goethel et al.,
2011). However, tagging data is not available for the mentioned herring stocks,
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NS IIIa WB

Figure 3.3: Compartmental model for North Sea and Western Baltic herring.
Arrows between compartments indicate transport. Outgoing (ver-
tical) arrows represent mortality.

so other approaches should be investigated. To this end, Paper V develops an
integrated assessment model of WBSS and NSAS herring. The aim of this model
is to give a separate estimate of the fishing mortality in the mixing area, and to
allow inferences and predictions of the mixing dynamics.

The model comprises the two stocks, s = 1, 2, and three areas k = 1 . . . 3, where
individuals belonging to stock s = 1 can be located in either area k = 1 or 2,
but not k = 3, and individuals belonging to stock s = 2 can be located in area
k = 2 or 3, but not k = 1.

The state vector defined in section 3.2.7 is extended accordingly to consist of the
log-transformed number of individuals in each age class for each stock, logN

(s)
a ,

the log-transformed fisheries mortalities in each area logF
(k)
a , and finally the

logit-proportion of age class a from stock s that is located in the mixing area
(k=2), β(s)

a = log
(

π(s)
a

1−π(s)
a

)
.

The process equations (with age index omitted) for logN are made stock-
specific, area specific for logF , and a random walk process is assumed for the
age and area-specific logit-proportions β to allow for temporal development in
spatial distribution of stocks over areas:
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logNs,y = log
(
Ns,y−1e

−Zs,y−1
)

+ εN,s,y (3.38)
logFk,y = logFk,y−1 + εF,k,y (3.39)

βs,y = βs,y−1 + εβ,s,y (3.40)

and the observation equations are:

logCk,y = log

(∑

s

[
Fk,y
Zs,k,y

(1− e−Zs,k,y )Ns,k,y

])
+ εC,k,y (3.41)

log If,k,y = log

(
Qf,k,ye

Df/365

(∑

s

e−Zs,k,yNs,k,y

))
+ εI,f,k,y(3.42)

logit(pAS,y) = logit
(

π(1)N (1)

π(1)N (1) + π(2)N (2)

)
+ εpAS ,y (3.43)

Subscript k denote area, s stock, y year, and f is fleet. Besides the standard set
of parameters from in the single stock case, we have also process noise for the
temporal development in the logit-proportions described by σβ , and the split
proportion observation noise (σp).

3.3 Models Based on Length and Other Models

Reliable age data are not always available. For some species of fish the ring
structures in the otoliths lack sufficient contrast to identify the age, and in
other cases the data is simply missing. In such situations, the population may
be more conveniently described by its length distribution rather than the age
distribution. Gudmundsson (1995) developed a model based on catch-at-length
and compared estimation accuracy with a model based on catch-at-age data of
similar variability. Higher accuracy was obtained when the age-data was used.

Integrated assessment models that combine the statistical treatment of length
and age observations in a single model (e.g. Fournier et al. (1998)) have not
been considered in this thesis, although these represent a more sound albeit
involved statistical approach.

Another recent advanced statistical approach to population modeling based
purely on length data is described in Kristensen (2009). Here, a biological model
for growth, recruitment and mortality (a so-called size-spectrum model) is com-
bined with a statistical model based on the log-Gaussian Cox-process (LGCP)
for survey observations, which incorporates size, space and time correlations.



Chapter 4

Results and Conclusion

This chapter summarizes the main results and findings documented in Papers
I-VI.

Paper I re-analyzes the data set presented in Mergardt and Temming (1997),
who were able to identify one nightly peak period of feeding, which constituted
an improvement over analyses performed with methods based on mean stom-
ach contents, which failed to identify any diel feeding pattern. However, their
results did not agree with their expectations: “The opposite direction of the
vertical migration routes of whiting and sandeels reduces the potential times
of spatial overlap to two narrow periods during dusk and dawn, from which
one would expect two feeding peaks.”. The failure to identify two feeding peaks
was attributed the limited precision of the back-calculation method. The new
method presented in paper I is able to confirm the original hypothesis of a bi-
modal feeding pattern using the same data set. The problem is illustrated in
figure 4.1: By disregarding varying amounts of uncertainty in the observations,
the signal in data is blurred and the true fluctuations in the feeding pattern are
not sufficiently captured.

The purpose of Paper II was to assess the estimation performance of three ap-
proaches to nonlinear state-space models: Hidden Markov Models (HMM) using
a discretized state-space, ADMB, and a Markov Chain Monte Carlo method
(BUGS, Spiegelhalter et al. (2003)). While BUGS has received the most atten-
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Figure 4.1: Example of a reconstructed feeding pattern the simulation study
in Paper I. The true feeding intensity (thick solid), the estimated
intensity (thin solid), and the marginal 95% confidence interval
(thin dashed) are shown. The thick dashed line is based on a sim-
ple ML estimate that does not take varying amounts of observation
error into account (from Paper I).
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tion in the literature on ecological modelling, this must largely be accredited its
user friendly implementation (winBUGS) rather than superiority with respect
to parameter estimation. ADMB was found to be by far the fastest method
owing to its use of automatic differentiation combined with the Laplace ap-
proximation. The only downside is, that the Laplace approximation requires
approximate Gaussian posterior distributions, although it is possible to replace
the Laplace approximation with importance sampling at the expense of the
speed. The Laplace approximation is nevertheless applicable in most practical
applications (Skaug and Fournier, 2006). The HMM method gave practically
identical results to ADMB, but with much longer computation times. The
HMM method and BUGS may however be applied to a larger range of problems
due to their ability to handle discrete random effects and multi-modal posterior
distributions.

Paper III combines continuation ratio logits with non-parametric models (GAMs)
to estimate age as smooth functions of length and spatial position for fish. The
results confirmed the findings in similar studies, namely that significant spa-
tial variation in the relationship between length and age exist for many fish
stocks. This is illustrated in figure 4.2, which also illustrates the flexibility and
smoothness obtained in the age-length keys by using this method. By replac-
ing spatial stratification with thin-plate splines to account for this variability, a
higher number of age-groups may be included in the analysis. Also, improved in-
ternal consistency was found in indices of abundance derived using this method
indicating improved precision.

Paper IV is related to paper III in that it also applies GAMs to replace area
stratification, although this time it is for the purpose of catch standardization
of survey indices of abundance. The standard method for the species considered
in this study (the stratified mean method) was compared to three more similar
alternatives: Delta-Lognormal, Delta-Gamma, and Tweedie distributed obser-
vations, all of which accounted for spatial effects, unbalanced designs, and co-
variate effects (depth, time-of-day, vessel and gear) through GAMs. The Delta-
Lognormal model proved to be the best choice. This was supported by informa-
tion criteria (AIC/BIC), higher internal/external consistency in the produced
survey indices, and finally by leading to smaller uncertainties on estimates of
spawning stock biomass and fishery mortality from stock assessments. Signif-
icant positive correlations between the estimated numbers-at-age for the older
age-groups were evident from the residual analyses from the stock assessment
model. This was also confirmed by a bootstrapping procedure using the survey
data only. The stock assessment model was therefore extended to account for
these correlations. The perhaps most important conclusion in paper IV is, that
the stratified mean method currently used for many stock assessments by ICES
performs very poorly compared to the examined alternatives.
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Figure 4.2: Illustration of the results of applying a spatially smooth age-length
key to data on North Sea Haddock (solid lines) in three selected
locations contrasted with the alternative of using raw observed
proportions (points) within each of the boxed areas (from Paper
III).
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Paper V introduces integrated assessment modelling of two herring stocks. This
model represents an improvement over the currently applied methodology, in
which two separate single stock assessments are carried out using data that have
been split by stock according to subsamples of the catches. There are (at least)
three reasons why the integrated approach is to be preferred. 1) The two stocks
cover three management areas each with separate associated catch quotas, and
only the integrated approach permits estimation of the fishery mortality in all
three areas. 2) The uncertainty in the splitting proportions is quantified and
accounted for in the calculations of all quantities of interest. 3) Unusual large
cohorts observed in either stock are accounted for in the predictions of future
catches in the area where the two stocks mix. The model is simple compared to
other models with spatial structure in that it does not explicitly model migration
between the areas, but assumes homogeneity within areas and time-steps. This
assumption is probably more or less violated, however more data is needed to
facilitate more realistic models of the movement and exploitation dynamics.

Paper VI considers estimation in biomass models – an important class of models
for stock assessment in data-poor situations where only the total mass of the
catches is recorded. Most models of this type rely on estimators that only takes
one type of error into account, namely observation error on the relative indices
of abundance. The proposed model takes two additional sources of error into
account: process error due to simple structure of the model compared to the real
system, and observation error on the commercial catches. Failing to account for
substantial sources of error will lead to biased results and wrong perceptions of
the uncertainty related to key management quantities. The model is formula-
tion in continuous time using stochastic differential equations rather than the
usual discrete time approach. A distinct advantage by using the continuous
time formulation is the ability to handle varying sample times. In other words,
observed commercial landings or survey indices may be recorded at any time of
the year and used as data for the estimation process without having to change
the model. It was demonstrated that the maximum sustainable yield (MSY)
depends on the process error, and that the estimates of MSY is rather uncertain
in many cases.
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4.1 Conclusions

This Ph.D. project has touched upon several statistical subjects related to fish
stock assessment. Common among the subjects were the application of mixed
effects models, with particular attention given to state-space models, and various
methods for estimation in such models were considered.

A main result in this thesis is, that important information may be lost when
preprocessing steps are applied with the purpose of reducing data dimension-
ality prior to subsequent statistical analyses. While the ideal solution is to
integrate the preprocessing into the statistical model, this a complicated and
computationally demanding task. However, a compromise solution, which was
repeatedly applied in this thesis, consists of applying statistical methodology in
the preprocessing step in order to obtain probability distributions rather than
point estimates of the output quantities from the preprocessing step.

Special attention was given to the problem of calculating age-specific indices of
abundance from trawl survey data. This involved the development of a new
method for converting from length to age-distributions, and taking effects due
to the survey design into account, such as high sampling variability, depth, day-
light and vessel effects. It was demonstrated, that the developed methods gave
significant different estimates of abundance than currently used methods, and
that the new methods constituted an improvement.

Two extensions to a state-space approach to age-structured stock assessment
modelling were presented. The first extension introduced multivariate error dis-
tributions on survey catch-at-age data. The second extension was an integrated
assessment model for overlapping sub-stocks subject to mixed exploitation in
the area of overlap. Both extensions are important first steps towards better
handling of the uncertainties related to the input to, as well as the output of,
stock assessment models.

Finally, a biomass dynamic model based on stochastic differential equations was
developed. This work extended the classical approaches to biomass modelling
by incorporating observation errors on the catches, and allowing for missing and
non-equidistant samples.
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Appendix A

DATRAS-package

The DATRAS package (Kristensen and Berg, 2012) for the R programming
language contains functions for reading and manipulating trawl survey data
from the DATRAS database (datras.ices.dk). This database contains scientific
survey data covering “The Baltic Sea, Skagerrak, Kattegat, North Sea, English
Channel, Celtic Sea, Irish Sea, Bay of Biscay and the eastern Atlantic from the
Shetlands to Gibraltar.” and “Up to 45 years of continuous time series data”.
The raw “exchange” format is very comprehensive with detailed data about haul
position, gear types and experimental conditions, numbers-at-length by species,
sub-sampled fish with age determination data and many at times intricate as
well as crucial details and codes for different reporting/sub-sampling schemes.
Handling and interpreting data from DATRAS correctly from scratch takes a
significant amount of effort and time, but this R package can reduce much of
this workload to a few lines of code. The raw exchange format can be read into
a DATRASraw object in R using the package. These data objects contain three
components

1. Age data - one vector per individual fish

2. Hydro data - one vector per haul, position and experimental conditions.

3. Length data - numbers per length group by haul and species
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One particular useful function in the DATRAS package is the subset() function.
It allows subsetting over all three components at once, without the need for
specifying for which component(s) the subset clauses apply, because the function
will look for the variable names in all components and apply the clauses where
appropriate. This is best illustrated by an example:

require(DATRAS)

## Example file
zipfile <- system.file("exchange","Exchange1.zip",package="DATRAS")

## Step 1. Read exchange data into R
d <- readExchange(zipfile)

## Take subset
d <- subset(d,lon>10,Species=="Gadus morhua")

The above commands will read the raw data into R and take subset over all three
components leaving only data for Atlantic Cod (Gadus morhua) and excluding all data
from hauls with a position east of 10 degrees longitude. In fact the “Species” variable
is only present in component 1 and 3, whereas “lon” is only available in component 2,
but the user need not worry about this, since the function will automatically perform
the subsetting over the correct components. In addition the function will also remove
empty factor levels after subsetting and ensure that these are consistent across all
components.

The individuals components can be accessed by the list operator, e.g. the second
component of d in the above example is accessed directly using d[[2]]. The special $
operator in R has been redefined to work seamlessly with DATRASraw objects such that
d[[2]]$haul.id is identical to d$haul.id.

Size spectra on haul level are conveniently analysed using the addSpectrum() function,
which adds the numbers caught per length group (cm) in the variable N on component
2, an example:

> d<-addSpectrum(d)
> head(d$N[,10:15])

sizeGroup
haul.id [13,14) [14,15) [15,16) [16,17) [17,18) [18,19)

2009:1:SWE:ARG:GOV:82:20 0 0 0 5 1 2
2009:1:SWE:ARG:GOV:81:19 1 1 7 4 6 2
2009:1:SWE:ARG:GOV:80:18 2 3 0 0 0 1
2009:1:SWE:ARG:GOV:75:17 0 0 0 0 0 0
2009:1:SWE:ARG:GOV:74:16 0 0 0 0 0 1
2009:1:SWE:ARG:GOV:73:15 0 0 0 2 2 0
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Smooth age-length keys can be also easily be fitted using the methodology in Paper
III, and used to predict the number of individuals caught by age group rather than
length group:

## fit age-length key and predict numbers-at-age
alk <- fitALK(d,minAge=1,maxAge=4)
d$Nage = predict(alk)
head(d$Nage)

## plot age length key (smooth and raw proportions by length group)
plotALKfit(alk,row=1)
plotALKraw(d,minAge=1,maxAge=4,add=TRUE)

The resulting plot is shown in figure A.1.
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Figure A.1: Example of a raw (thin lines) and smooth (thick lines) age-length
key.

Some additional useful functions for DATRASraw objects are print(), plot(), summary(),
sample unit subset ( e.g. d[1:2] ), c() for combining data sets, and as.data.frame().

The entire package including source code is available online at www.rforge.net/DATRAS.
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Appendix B

Stockassessment.org

There are many stakeholders involved when it comes to the management of marine
resources, and since stock assessments provide the basis for the scientific advice for
managers, it is important that all the materials and methodology is open for peer
review and that the results are reproducible by others. In practice however, it is
often the case that only one or two scientist are able to carry out the assessment,
because getting all the data and configuring a computer to reproduce the results takes
quite a bit of work. This puts a tight barrier on how many alternative model/data
configurations that can be explored during the review process, as this is limited by
the number of persons who are able to do this. In 2009 Anders Nielsen and I made
the first prototype of a 100% web-based tool for stock assessment under the domain
www.stockassessment.org. It provided the users with a personal account from which
they could configure, run and compare assessments with no other requirements than
an internet connection and a browser. It quickly became apparent to us, that this
tool was very useful and needed as it became the primary tool for many official stock
assessments. During this Ph.D. this tool was continuously developed, and in the
summer of 2012 the International Council for Exploration of Sea sponsored a major
upgrade of this system and new server. Due to the great impact of this new tool and
the fact the development of it has benefitted greatly from this Ph.D-project, I feel a
short description is warranted in this appendix.
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B.1 Basic Design

An assessment at stockassessment.org is organized into several folders, but the 4 es-
sential ones each has its own page on the site: “Data”, “Configuration”, “Source Code”,
and “Results”. The “Data”, “Configuration”, and “Source Code” folders contain plain
text files, which are editable from the homepage. The “Results” contains the output
from an assessment in shape of HTML-tables and picture files with graphs. These
results are generated by an (editable) R-file called “plotscript.R” in the “Source Code”
folder. The dependencies between data, configuration, source code and results are
handled by the “Make” tool with a so-called Makefile, which is part of the source code.
For instance, it is specified in the Makefile that the output graphs only depend on the
plotting scripts and the model being run. This means that if e.g. only the plotscript.R
file is modified since the current results were created, the Make tool knows that we
do not need to estimate model parameters again, but only to update the plots by
re-running the plotting script. Also, the Make tool can automatically run commands
in parallel (using the -j option), such that the run time for e.g. leave-one-out analyses
can be greatly reduced.

B.2 Multiple Users and Version Control

Each user has his/her own account, and all changes made by a user are local changes to
that account. This effectively prevents any loss of work that has been saved. However,
all files are stored in two locations: 1) in a local folder on the server where all changes
are applied, and 2) in a version control repository (Subversion). Once a user is happy
with some changes he made, he can submit the updated assessment to version control
system, which will then track the changes made and save the updated version. This
feature also facilitates the possibility of multiple users working on the same assessment,
since locally modified files or entire assessment can always be synchronized with the
latest version in the repository.

B.3 Creating New Assessments

All new assessments are based on a common core of source code, which is also stored
in the repository. The main job in creating a new assessment is thus to set up the
data and configuration files. Stockassessment.org has a “Data wizard” (figure B.1) with
step-by-step uploading and validation of data files. Once all data files are present and
validated, the system can generate a default configuration, which allows a first run to
be made.
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Figure B.1: Stockassessment.org data wizard screen shot.

B.4 Code editing

A unique and useful feature of stockassessment.org is the ability to alter, compile and
run every bit of code associated with an assessment directly from a web-browser. This
relieves the user from spending potentially many hours on setting up the complete
list of tools needed on his/her own computer. However, allowing users to enter and
run computer code on the server directly from the browser is associated with serious
security problems, since if not handled correctly a user may e.g. (intentionally or not)
wipe the discs, infect it with malware and so on. To prevent such issues each user are
provided a secure shell (SSH) account on the server, and all executing of editable code
is sent through this connection. This prevents users from writing to the server discs
anywhere else but on their own account, and permits limitation of CPU resources on
user level.

B.5 Comparing Runs

Like with any statistical analysis, the process of creating an assessment is iterative,
and comparing two analyses with different configurations is thus a core job for the
investigator. There is therefore a built-in functionality for comparing two runs graph-
ically and formally through likelihood ratio tests. The graphical comparison feature is
illustrated in figure B.2.
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Figure B.2: Stockassessment.org results page screen shot.
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Estimation of feeding patterns for piscivorous fish
using individual prey data from stomach contents

Casper Willestofte Berg and Axel Temming

Abstract: The problem of estimating temporal feeding patterns using stomach data is considered, where the time of inges-
tion for each prey item can be predicted through a gastric evacuation model. The arrival of prey is modelled as a nonhomo-
geneous Poisson process with known periodic intensity. A maximum likelihood approach is used to estimate the intensity,
which is assumed to be the same for all predators, incorporating different uncertainties for the arrival time of each prey
item. The method is applied to a case where a population of whiting (Merlangius merlangus) is feeding on sandeel (Ammo-
dytes marinus), and peak feeding periods around dusk and dawn are identified.

Résumé : Nous examinons le problème de l'estimation des patrons temporels d'alimentation à l'aide de données de contenus
stomacaux, lorsque le moment de l'ingestion de chaque proie individuelle peut être prédit à l'aide d'un modèle d'évacuation
gastrique. L'arrivée des proies est modélisée comme un processus de Poisson non homogène avec une intensité périodique
connue. Nous utilisons une méthode de vraisemblance maximale pour estimer l'intensité que nous présupposons être la
même pour tous les prédateurs et nous incorporons différentes incertitudes concernant le moment d'arrivée de chaque proie
individuelle. Nous proposons un exemple du modèle dans lequel une population de merlans (Merlangius merlangus) se
nourrit de lançons nordiques (Ammodytes marinus) avec des maximums d'alimentation aux environs du coucher et du lever
du soleil.

[Traduit par la Rédaction]

Introduction

Knowledge about the interactions between predatory fishes
and their prey is important for understanding and modelling
marine ecosystems. These interactions are rarely observed di-
rectly. Instead, many studies on feeding behaviour have been
conducted using information derived from the stomach con-
tents of sampled fish from the wild. The objective of these
studies is often estimation of food consumption rates or feed-
ing preferences or to obtain information about temporal pat-
terns in feeding behaviour. Consumption rates and preferences
can for instance be utilized in multispecies fisheries models,
and patterns in feeding behaviour may reveal insights about
predator–prey interactions and aid sampling design.
Analyses of consumption rates and feeding cycles are often

based on average stomach contents (mass) (e.g., Sainsbury
1986; Adlerstein and Welleman 2000). In Adlerstein and
Welleman (2000), a generalized additive model (GAM) was
used to model the average stomach contents with time of
day as one of the explanatory variables. Magnússon and As-
pelund (1997) modelled the prey frequency instead of the

mass, but the possibility of a diurnal feeding pattern is dis-
missed after fitting a GAM on average stomach mass with
hour of sampling included. GAMs or generalized linear mod-
els (GLMs) have also been used to model the probability that
a stomach contains a particular prey group (e.g., Stefansson
and Palsson 1997 and Rindorf 2003). Both approaches re-
quired sampling in appropriate intervals throughout the (diel)
cycle and provide only information about the distribution in
the chosen sampling points. Hall et al. (1995) combined total
stomach contents with a digestion model in a dynamic
model, such that both the feeding intensity and the meal size
distribution were estimated. The cost of this extra complexity
is that the diel pattern is restricted to be piecewise constant
with a maximum of four “switch points”.
An alternative to modelling the total stomach contents is to

model the ingestion times of individual prey items, a method
that was used in this study. This idea was introduced by Grif-
fiths (1976), and it involves back-calculating the ingestion
time of partially digested prey items found in the stomach us-
ing a gastric evacuation model (GEM). This method requires
stomach data, where each individual prey item has been iden-
tified, weighed, and measured for length. This is a demand-
ing task, and it reduces the number of available data sets
substantially, but the extra information permits deeper levels
of analysis. Johansen et al. (2004) estimated consumption
rates using back-calculated ingestion times, but assuming
that the feeding rate follows a simple Poisson process disre-
garding any diel variation. The errors on the back-calculated
times were also ignored in Johansen et al. (2004). The goal
in this paper is to estimate diel feeding patterns from back-
calculated ingestion times while taking their error distribu-
tions into account.
Andersen and Beyer (2007) showed that previously used
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(purely mass-dependent) GEMs are biased in case of multiple
meals present in the stomach. They developed a new surface-
dependent model using mechanistic arguments that correctly
predicts evacuation times in a wide range of experimental set-
tings, including multiple meals. In this GEM, each food item
was represented by a cylinder, whose exposed sides gradually
peeled off while the length was preserved. Andersen and
Beyer (2008a) derived the error distribution of the back-
calculated ingestion times from the cylinder model and found
it to be approximately Gaussian. Because the errors on these
ingestion times can be substantial and of varying magnitude
between prey items, it is important to take these errors into
account. The method developed in this paper will weight
each prey item according to the precision of its back-
calculated ingestion time using the result in Andersen and
Beyer (2008a) when estimating the diel feeding pattern.
Also, we utilize the information that each prey item must
have been ingested before the predator was caught by consid-
ering a truncated normal distribution.
Diel feeding patterns are investigated by letting the feeding

rate follow a nonhomogeneous Poisson process (NHPP) with
periodic intensity. The NHPP is a stochastic process, where
the (feeding) intensity is allowed to change as a function of
time, unlike the normal Poisson process for which the inten-
sity is constant through time. The error distributions are ac-
counted for by using mixed models and the method of
maximum likelihood. The statistical framework allows us to
formally test whether a population-level diel feeding pattern
is present and to quantify the uncertainties on the estimated
intensity curve.
The power of this new method will be exemplified by re-

analyzing a data set that has previously been treated in Mer-
gardt and Temming (1997) and Temming and Mergardt
(2002). In these two studies, stomach data from a population
of whiting (Merlangius merlangus) feeding on sandeel (Am-
modytes marinus) were analysed. The authors noted that
usual methods using average stomach contents fail to detect
temporal feeding patterns in this case, where food particles
are large but few and digestion is relatively slow. They ex-
pected to find feeding peaks at dusk and dawn because of
documented behaviours of the two species. The authors could
not confirm this hypothesis, but noted that it is unlikely to
separate two peaks (by inspection of histograms) because of
the noise on the hindcasted ingestion times. Our new analysis
of this data set confirms the original hypothesis of a bimodal
feeding pattern. Although this case involves only one prey
type, it is straightforward to analyse cases involving different
prey types using this technique.

Materials and methods

Gastric evacuation model (GEM)
Ingestion times are not directly observed but instead they

are back-calculated from partly digested prey items using a
GEM. The GEM used in this study was developed by Ander-
sen and Beyer (2005a and 2005b). In case of a single prey
item, the model is

dSt

dt
¼ �r

ffiffiffiffi
St

p
; r ¼ rLHEL

h expðdHÞE�g

where St is the remaining prey mass at time t, and r is the rate

parameter that depends on a prey-specific basic resistance to
digestion rLHE, predator length L, temperature H, and prey en-
ergy density E. The remaining parameters were estimated in
Andersen (2001): h = 1.44, d = 0.078, and g = 0.86. The
prey is assumed to be homogeneous, such that r is constant
in time. In case of multiple meals in the stomach, it is as-
sumed that equal fractions of the surface area of the prey items
are exposed to digestion. The evacuation rate of prey i can be
written as a function of its own mass Si,t and its length li (stan-
dard length) (see for instance Andersen and Beyer 2008a):

dSi;t

dt
¼ �ri;tdi;t

ffiffiffiffiffiffi
Si;t

p
di;t ¼

ffiffiffiffiffiffiffi
Stli

p X ffiffiffiffiffiffiffi
Stli

p� ��1

There is no general analytical solution to Si,t, so instead
first-order numerical integration can be used for projecting
the masses of each prey back in time until their original
mass is reached. Because suitable parts of prey lengths are
preserved for a longer period in the stomach, an estimate of
the original mass bw can be obtained from known length–
mass relationships. It is assumed that the error is normally
distributed with a constant coefficient of variation (CV):ffiffiffiffi

w
p

� N
ffiffiffiffibwp
; sm

ffiffiffiffibwp� �2
� �

Furthermore, it is assumed that there is predator-specific
variation in the rate parameter r:

ð1Þ r ¼ brð1þ eÞ; e � Nð0; s2
eÞ

Andersen and Beyer (2008a) found that the distribution of
the time of ingestion for the ith latest prey ti is approximately
normal with variance

VðtijSi;tsÞ � ðsebt iÞ2 þ 2ðbri;tidi;tiÞ�1sm

ffiffiffiffibwph i2
Andersen and Beyer (2008a) provided the general esti-

mates 0.1 for se and 0.03 for sm. In this work, we will trun-
cate the above normal distribution at the point in time where
the predator was caught. This is done to account for the fact
that any prey item must have been eaten by the predator be-
fore it was caught.

Likelihood function for NHPPs
We will now consider how to estimate a common time-

varying feeding rate function, l (the NHPP), for all preda-
tors, given that we have estimated the distribution of the in-
gestion time for each prey item observed using the model in
the previous section.
Let us first recap the likelihood function for NHPPs when

the arrival times (here, ingestion times) are known without
error (see e.g., Alizadeh et al. 2008): An arrival process is
observed for time interval [tstart, tend]; a vector of arrival times
t = (t1, …, tn) is recorded (tstart ≤ t1 < … < tn ≤ tend), and we
wish to estimate an unknown arrival rate function l(·). For
the moment, assume that some suitable parametrization has
been chosen for l.
Given t and an arbitrary (nonnegative) choice of l, the

joint probability density can be written
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f ðt; lÞ ¼ exp
�
�
Z tend

tn

lðtÞ dt
�Yn
i¼1

lðtiÞ

� exp
�
�
Z ti

ti�1

lðtÞ dt
�

where we define t0 = tstart. The log-likelihood function l is then

ð2Þ lðt; lÞ ¼
Xn
i¼1

log lðtiÞ �
Z tend

tstart

lðtÞ dt

In this study, the arrival times are not directly observed,
but instead we have some noisy observation Ti = ti + 3i.
This leads to a nonlinear mixed effects model due to the ran-
dom effect 3i. Here, it is assumed that Ti follows a truncated
normal distribution Ti � NðTi; s2

i ; tstart; tendÞ with known si
for all i. Given l, the data (X = T, s, tend, tstart), and the true
arrival times s, the joint log-likelihood becomes

lðX; s; lÞ ¼
Xn
i¼1

loglðsiÞ þ log
1

ci
f

si � Ti

si

� �
�
Z tend

tstart

lðtÞ dt

where f is the standard normal probability density function,

and ci ¼ si F tend�Ti
si

� �
�F tstart�Ti

si

� �h i
is a normalization con-

stant due to the truncated normal distribution.
Now consider the situation where we have observed noisy

arrival times for p independent predators in p time intervals
½tkstart; tkend�, k = 1…p, and assume that all predators consume
prey arriving from the same nonhomogeneous Poisson proc-
ess, l(·). Let T = (T1, …, Tp) and s = (s1, …, s p) denote the
observed and true arrival times, respectively, for each of the
p predators, and let nk be the number of arrivals observed for
the kth predator. The log-likelihood is then simply obtained
by summing over all predators

lðX; s; lÞ ¼
Xp
k¼1

Xnk
i¼1

loglðski Þ þ log
1

ci
f

ski � Tk
i

sk
i

� �"

�
Z tk

end

tkstart

lðtÞ dt
#

By integrating out the latent true arrival times s in the like-
lihood and taking logarithms, we obtain

ð3Þ lðX; lÞ ¼
Xp
k¼1

Xnk
i¼1

log

Z tk
end

tkstart

lðtÞ 1
ci
f

t � Tk
i

sk
i

� �
dt

"

�
Z tk

end

tkstart

lðtÞ dt
#

Note, that it is also possible to consider two nested levels
of random effects: a predator effect on the digestion rate that
affects all ingestion times from the same predator and a prey
effect due to the prediction error on the original mass (this is
described in Supplemental Appendix S1, available online1).

We refrain from separating error terms because of the much
greater numerical complexity and because it is likely that lit-
tle will be gained from this, since each predator has eaten
only a few food items in the case considered.

Observation interval
Unfortunately, we do not have precise intervals ½tkstart; tkend� for

which we can say that we have observed all arrivals, even if we
take noisy arrival times into account. We effectively stopped to
observe the predator when the digestion process stopped. There
are indications that a caught fish stops digesting once in the
trawl because of their struggling behaviour (Farrell et al.
2001). We therefore chose tend as the midpoint of the time be-
tween release and withdrawal of the trawl. The associated un-
certainty is ignored, as the time between release and
withdrawal is relatively short (30 min) for the case considered.
The beginning of the observation interval, tstart, is not as

straightforward to quantify. In Johansen et al. (2004), a similar
variable is used (tmax). This is interpreted as the upper time
limit that a prey item (Atlantic herring, Clupea harengus) of
a given length group can be digested in the stomach of a
cod of a given mass at a given temperature, such that the to-
tal length is still measurable. Predation rate is then calculated
as the number of observed prey with an estimated digestion
time less than tmax divided by tmax. The authors find tmax by
inspection of the cumulative frequency of measurable herring
as a function of estimated digestion time. This should be a
straight line until the time when prey become immeasurable,
assuming uniform distribution of the digestive stages of the
prey. It is equivalent to increasing the length of a common
observation interval for all predators until the mean predation
rate starts to drop, because prey are digested beyond recogni-
tion within the observation window. The assumption of uni-
form digestive stages is easily violated in case of any
patterns in feeding behaviour. One could also argue that tmax
not only depends on the prey length, predator size, and tem-
perature, but also on the stomach contents of the given
predator — for an empty stomach, tmax should be lower than
for a full stomach, because the total evacuation time is longer
in the full stomach. One must however be careful using ob-
servation intervals that depend on observed stomach contents,
as it will introduce bias if the difference between full and
empty stomachs is not weighted correctly.
To circumvent the problems associated with choosing a suit-

able interval, we introduce a “smooth” horizon, j, which can be
interpreted as the probability of observing a prey item of ran-
dom size in the stomach tkend � t hours after it has been ingested.
A simulation study was performed to find a suitable parametri-
zation of j. It was found that a sigmoid functionwhose “center”
(j= 0.5) is inversely proportional to the (length- and temperature-
specific) digestion rate r provided a reasonable fit:

j0ðt; tkend; rk; a;bÞ ¼ j0
kðtÞ

¼ 1

1þ exp a tkend � t � b

rk

� �� �
where a > 0.

1Supplementary data are available with the article through the journal Web site (http://www.nrcresearchpress.com/cjfas).
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We want to ensure that j attains the value of 1 at the time
of catch, so we divide by the function evaluated at that point:

ð4Þ jkðtÞ ¼
j0

kðtÞ
j0

kðtendÞ
Now, we replace l(t) by jk(t)l(t) in the likelihoods (eqs. 2

and 3) and integrate from minus infinity. For eq. 2 that
ignores measurement errors, this gives

ð5Þ lðX; qÞ ¼
Xn
i¼1

logjkðtiÞlðtiÞ �
Z tend

�1
jkðtÞlðtÞ dt

and for the mixed model that takes the errors into account
(eq. 3), we obtain

ð6Þ lðX; qÞ ¼
Xp
k¼1

Xnk
i¼1

log

Z tk
end

�1
jkðtÞlðtÞ

1

ci
f

t � Tk
i

sk
i

� �
dt

"

�
Z tk

end

�1
jkðtÞlðtÞ dt

#
where q = (l, a, b) is the vector of parameters (a;b 2 R and
l is a function). Using the smooth horizon corresponds to an
expectation of the distribution of evacuation times having the
form of a dampened version of l.

Prey items with unpredictable ingestion times
It may be that the time of ingestion cannot be determined

for some prey items. For example, the assumption that equal
fractions of the surface area of prey items are exposed to di-
gestion may become problematic when many prey items are
in the stomach together, as some might be shielded from di-
gestion by others (10 prey items could be used as a reason-
able threshold). A solution to that problem is to consider
only the number of prey found in stomachs (nk), where nk >
10, but not the arrival times. The probability of such an ob-
servation is

Pðnk; tkend; rk;a;b; lÞ ¼
1

nk!

�Z tk
end

�1
jkðtÞlðtÞ dt

�nk

� exp �
Z tk

end

�1
jkðtÞlðtÞ dt

" #
which yields the following contribution to the log-likelihood
(for one predator):

l nk; t
k
end; r

k;a;b; l
	 
 ¼ nk log

�Z tk
end

�1
jkðtÞlðtÞ dt

�
� logðnk!Þ �

Z tk
end

�1
jkðtÞlðtÞ dt

This is equivalent to the situation where we let the varian-
ces of the arrival times go to infinity in eq. 6, so unpredict-
able arrival times can therefore in practice be handled by
setting the variances of these untrustworthy arrival times to a
suitable large number.

Parametrization of arrival rate
The simplest choice would be to let l be piecewise con-

stant. As noted in Alizadeh et al. (2008), such functions are
appropriate when discrete events affect all or a major subset
of the population at once. The rise and set of the sun are not
discrete events, although it might be a reasonable approxima-
tion to consider them as such. A smooth curve is, on the
other hand, more visually appealing, and it permits the
powerful technique of automatic differentiation for maximiz-
ing the likelihood.
The feeding process of a population is very often assumed

to be influenced by sunrise and sunset and (or) perhaps the
tide or other periodic events, which restricts our attention to
periodic functions.
We need to ensure that the arrival rate is nonnegative over

the entire interval considered, and when defined as a periodic
function, that amounts to everywhere on the real axis. There
are several possible ways of enforcing nonnegativity. One
simple way is to use an exponentiated function, a solution
employed in Kuhl et al. (1997), where l has the form

ð7Þ lðt ;a; g;u;fÞ ¼ exp
Xm
i¼1

ait
i þ

Xp
j¼1

g j sinðujt þ fjÞ
" #

where a 2 R
m and g;u;f 2 R

p. This parametrization allows
a general trend over time represented by the m-degree poly-
nomial as well as multiple (unknown) periodicities repre-
sented by p trigonometric functions. For our purpose, we
can disregard the possibility of a trend over time. Unlike
Kuhl et al. (1997), we also assume that the period Q is
known, because recurrent feeding patterns are most likely to
be diurnal. In this case, eq. 7 is just a reparametrized Fourier
series.
In this study, nonnegativity is enforced by squaring the

Fourier series instead of exponentiating:

ð8Þ lðt ; a; bÞ ¼ 1

2
a0 þ

XN
i¼1

ai cos
2pti

Q

� �
þ bi sin

2pti

Q

� �" #2

Squaring is fairly similar to exponentiating as long as the
variations in l are limited and the function we wish to ap-
proximate is not close to zero. However, zero exists only as
the limit for the exponential function, which might lead to
numerical problems for cases with a high proportion of
empty stomachs. Also, it is possible to write the antideriva-
tive in closed form for the squared Fourier, but not for the
exponentiated Fourier. Likelihood ratio tests can be used to
decide whether adding an extra harmonic gives a significant
better fit.

Daily ration
Let the daily ration be the expected number of prey con-

sumed per day. Given the arrival rate l(t), the expected num-
ber of arrivals N over a period of 24 h is

m � EðNÞ ¼
Z 24

0

lðtÞ dt

Numerical methods
The negative log-likelihood (eq. 6) is minimized using the

open source Automatic Differentiation Model Builder
(ADMB) software (http://www.admb-project.org). The inte-
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gration in eq. 6,
R b

af ðxÞ dx, is carried out with Romberg’s
method (using Bell 2005), which has error
O½ðb� aÞ=2n�1�2ðpþ1Þ. The values n = 9 and p = 2 were
used, which were the lowest possible numbers not leading to
any noteworthy visual difference in the estimated intensity
curves. Minus infinity is replaced with the 1% fractile in
eq. 4 for a given set of parameters. All standard deviations
and confidence limits reported are found through the esti-
mated Fischer information matrix. The ADMB code can be
obtained by contacting the corresponding author.

Simulation
To test the method's ability to reconstruct feeding intensity

curves, a number of simulated data sets were created. Two
cases based on real data were simulated: cod feeding on san-
deel and whiting feeding on sandeel. The former setting in-
volves medium-sized cod (28–64 cm) eating a sandeel at a
relatively high frequency (2.4 per day) and where digestion
happens faster because of the larger predators at higher tem-
perature (14 °C). The latter case was set to resemble the case
study described in the Introduction, where evacuation is
slower leading to higher uncertainties on the hindcasted in-
gestion times. Both sets of parameters were chosen such that
two distinct modes were present (details on how the simula-
tions were carried out can be found in Supplemental Appen-
dix S21). The number of stomachs for each simulation was
set to 150 in the cod case (900 prey items on average) and
200 in the whiting case (600 prey items on average).
The potential bias introduced by unobserved prey evac-

uated prior to the time of sampling is discussed in Andersen
and Beyer (2008b), and a bias of –3% to –22% was found to
cover most situations for North Sea gadoids, but can be more
or less extreme depending on the actual setting. The most im-
portant factor, however, is the time between ingestion and
sampling (i.e., the time spent in the stomach). The amount
of bias introduced by unobserved prey was examined by plot-
ting the predicted ingestion times versus the truth for simu-
lated data in a setting similar to the case study (the result is
shown in Supplemental Fig. S11). A second-order polynomial
(with no intercept) was found to provide a good fit, and it is
also shown. It is seen that the bias is relatively low for this
particular case. To evaluate if the bias due to unobserved
prey is problematic for our estimation problem, we need to
consider the estimated smooth horizon also.

Performance measures
For the simulated data sets, we can measure the error in

terms of deviation of the estimated arrival rate from the true
arrival rate. This error can be compared with the same meas-
ure calculated for the simple maximum likelihood estimate
(eq. 5).
Here we use a subset of the performance measures formu-

lated in Johnson et al. (1994). These are based on the abso-
lute errors for a series of K replications of the same
simulation experiment (m = 1, …, K). Let blmðtÞ denote the
estimated rate function for the mth replication. The average
absolute error is then given by

dk � 1

Q

Z Q

0

blmðtÞ � lðtÞ
��� ��� dt

The sample mean of errors from the K replications is de-
noted d and the corresponding CV is found in Johnson et al.
(1994) as

Vd ¼ 1

K � 1

XK
m¼1

ðdm � dÞ2
" #1=2

d
�1

Case study: whiting (Merlangius merlangus) feeding on
sandeel (Ammodytes marinus)
In this section, we apply our methodology on stomach data

from 690 whiting caught in the North Sea. This data set has
previously been analysed in Mergardt and Temming (1997)
and Temming and Mergardt (2002) and is thoroughly de-
scribed in the former, so only a short description is provided
here. The whiting were caught within a 10 × 10 nautical mile
square (1 nautical mile = 1.852 km) over a period of 3 days
(30 May to 1 June 1992). The sea temperature was 7.9 °C.
Only one size group of whiting (25–29.9 cm) was sampled.
The whiting population had been feeding almost exclusively
on sandeel. All material other than identifiable sandeel was
weighed for each stomach also, and we know that a high pro-
portion of this category consisted of detached loose sandeel
material. In the analysis, we therefore assume that all material
in this category consists of detached loose sandeel. We need
this assumption, because the precise contents of this category
was not used in the original analyses of the data and was
therefore not available. It is further assumed that this de-
tached material stems from individuals other than the identi-
fied sandeel, or more precisely from a single unobserved
sandeel. Alternatively, all (or some) of the detached material
could stem from the identified sandeel, but this would lead to
an unrealistic high proportion of individuals exceeding their
predicted fresh mass, so this possibility is rejected. The num-
ber of sandeel found in a single stomach ranged between 0
and 4, which seems to fit the Poisson assumption (no imme-
diate signs of overdispersion). The prediction of the mass of
a sandeel at time of ingestion was found using the method
and parameters from Mergardt and Temming (1997). The en-
ergy density for sandeel was set to vary linearly from 5.5 to
6.0 kJ·g–1 for sandeel of length 11–20 cm, as the energy den-
sity was found to increase with size in Pedersen and Hislop
(2001). The basic resistance to digestion parameter, rLHE,
was set to 1.29 × 10–3 for sandeel, as found in Andersen
(2001). 370 out of a total of 694 sandeels in the data set
were too digested to measure the standard length. The length
of these individuals was set to the mean length of the meas-
urable ones (13.89), and their hindcasted ingestion times
were left out of the subsequent analysis because of their ex-
cessive uncertainty.

Results

Simulations

Cod case
In the cod case, the errors were generally so small that it

was possible to recognize the modes in histograms of the
raw back-calculated ingestion times. The standard deviations
ranged between 0.2 and 12 h with a mean of 4.5 h. It there-
fore made sense to fix the number of harmonics to N = 2 and
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compare d for eqs. 5 and 6, which disregards and utilizes the
associated uncertainties on the ingestion times, respectively.
Convergence was achieved in all cases.
The performance measures for the simulated data sets are

shown (Table 1). The average absolute error is seen to be
halved when accounting for the noise. The corresponding
CV, on the other hand, is substantially larger for eq. 6, but
this was expected, as the noise flattens out the signal (i.e.,
disregarding the noise gives less variance but more bias).
The estimated intensity curves and their associated confi-
dence bounds were also inspected in the simulation experi-
ment. The plots (see example in Fig. 1) revealed that the
method is generally capable of reconstructing the generating
curve from the noisy measurements and that the confidence
bounds are reasonable.

Whiting case
For the whiting case, the uncertainties on the hindcasted

arrivals were of such magnitude that the histograms of the
raw back-calculated ingestion times generally appeared flat.
Estimation of the arrival rate where the uncertainties were
ignored and using N = 2 as in the cod case would therefore
result in an almost constant curve, making it practically
equivalent to N = 0, with which we will thus compare per-
formance measures. Estimation was therefore performed us-
ing N = 0…2, and likelihood ratio tests were used to
determine how many harmonics that could be identified
from the data (the resulting performance measures are shown
in Supplemental Fig. S21). All cases had a smaller average
error than the constant curve, except one that is only slightly
worse. In seven cases, a constant feeding rate could not be
rejected, in which case the errors coincide. In 18 cases, a
constant feeding rate was rejected in favour of using one har-
monic, and in the last seven cases two harmonics were found
to provide a significantly better fit. This suggests that the
number of prey items observed in each simulation (about
600) is in the low end to be able to demonstrate bimodality
in the feeding pattern for this particular case.

Case study
Mergardt and Temming (1997) have already noted that the

mean mass of stomach contents revealed no clear pattern of
diel food intake periodicity. Using the method of back-
calculation (although a different GEM), inspection of histo-
grams, and a simulation study that compared different scenar-
ios with the observed frequencies in 2 h intervals, it was
concluded that feeding peaked at night and had its minimum
around midday. The present analysis shows some different re-
sults, which emphasizes the need for taking the errors into
account.
The likelihood ratio tests for the number of harmonics (Ta-

ble 2) show that both the homogeneous Poisson model and
the one using a single harmonic is rejected in favour of using
two harmonics, whereas using three does not lead to a signif-
icantly better fit. The estimated intensity curve using two har-
monics is shown (Fig. 2). There are two clear peaks at dawn
and dusk, which has a nice biological interpretation also
mentioned in Mergardt and Temming (1997), namely that
feeding occurs at the spatial overlap during dusk–dawn where
whiting migrate away from the light and sandeel migrate to-
wards it.

The estimated probability of observing a sandeel in the
stomach at time t since ingestion for a whiting of average
size is shown (Supplemental Fig. S31). It is seen that the
probability is low after a couple of days, which means that
the bias introduced by unobserved prey on sandeels with lon-
ger evacuation times is negligible (cf. Supplemental Fig. S11).
The feeding rate m is listed among the parameter estimates

(Supplemental Table S11) and is found to be one sandeel
every 3.3 days with a quite low marginal standard error. In
comparison, Temming and Mergardt (2002) found the mean
time between meals to be 4 days for the same set of data.
The reason for this discrepancy is not clear, as the applied
methods are very different.

Discussion
Maximum likelihood estimation of arrival rates from noisy

observations has been considered, a problem that arises when
ingestion times from partially digested food items are pre-
dicted through gastric evacuation models. This new method
takes advantage of knowledge about the distribution of the
individual error on each predicted ingestion time, which here
is assumed to be a truncated normal distribution with known
mean and variance (Andersen and Beyer 2008a and 2008b).
As a result of including the error distributions, most empha-
sis is put on those observations with small errors for deter-
mining the shape of intensity curve. A key advantage of this

Fig. 1. Example of a reconstructed feeding pattern from the simula-
tion study (cod case). The true intensity (thick solid line), the esti-
mated intensity (thin solid line), and the marginal 95% confidence
interval (thin dashed lines) is shown. The simple maximum likeli-
hood estimate (eq. 4) is also shown (thick dashed line).

Table 1. Performance measures for 100 simulated
data sets with cod feeding on sandeel.

Measure Eq. 5 Eq. 6 Change
d 0.037 0.019 –50%
Vd 0.108 0.284 163%

Berg and Temming 839
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method in comparison with those based on total stomach
contents (e.g., Adlerstein and Welleman 2000; Rindorf
2003)) is that it is not necessary to sample throughout the
daily cycle, and the analysis is not confined by those sam-
pling points. This can be useful if catch rates vary with the
time of day. Another advantage is the ability to handle situa-
tions where slow digestion of infrequent arriving prey leads
to a flat signal with respect to mean total stomach contents.
The present analysis depends on a number of assumptions

(population-level Poisson process, periodicity, and no sati-
ation), which should be thought of as approximations needed
to facilitate the analysis rather than representing the truth.
The assumption of 24 h periodicity should therefore be re-
garded as a local approximation, but could in principle be
tested by changing the period to some appropriate integer
scaling i·24 covering the duration of sampling, followed by
estimation of the arrival rate with i times the original number
of harmonics and performing likelihood ratio tests (this will
ensure that i = 1 is a submodel of, for example, i = 3; the
two models are equal when the Fourier coefficients of all
but frequency indices divisible by three are zero). Owing to
the low signal-to-noise ratio encountered in this particular
study and only 3 days of sampling, it must however be
deemed unlikely that this will lead to rejection of our hypoth-
esis of 24 h periodicity. Another assumption is that the pop-
ulation feeding pattern can be well approximated using a
squared Fourier series. This is a convenient way to express

periodicity, but it is a priori not very likely that data were
generated from such a curve. Some care should therefore be
taken when interpreting the estimated curve and its confi-
dence bounds — deviations from a constant intensity such
as two narrow spikes around dusk and dawn would require
many harmonics and thus many parameters using this para-
meterization. Such a curve would therefore most likely be re-
jected in favour of a smoother curve.
Possible satiation effects have been ignored in this study,

although such an effect has been documented for many spe-
cies including whiting (see for instance Rindorf 2002). Ignor-
ing satiation will lead to some false periods of zero arrivals,
or equivalently, shorter effective observation intervals for
satiated individuals. It is, however, not as straightforward to
include satiation in this model as for a model based on total
stomach contents, as it would be natural to let satiation de-
pend on total stomach contents. On the other hand, including
satiation will most probably not change the estimated loca-
tions of the peak feeding times, but only add to the uncer-
tainty of the estimated curve.
An interesting but nontrivial question is how many sam-

ples are needed to demonstrate some predetermined amount
of variation in the feeding rate for some scenario that one
wishes to examine. Here, simulation studies can provide
some insight as it did in our case, where it was found that
600 prey items was often not enough.
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Supplemental Appendix S1

Separating Error Terms

Assuming a predator specific variation in the rate parameter ρ and a prey
specific variation on the error on the predicted original mass ŵ, the error
structure is correctly described by two nested levels of random effects. For
two arrival times from the same predator this amounts to the following
contribution to the likelihood in terms of the observed arrival times:

∫ ∞

ρ=0
φ(ρ, σ2

e)

∫

u1

λ(T1,ρ + u1)
1

c1
φ

(
u1
σ1,ρ

)
du1

×
∫

u2

λ(T2,ρ + u2)
1

c2
φ

(
u2
σ2,ρ

)
du2dρ

And thus the log-likelihood becomes

l(X, λ) =

p∑

k=1

[
log

(∫ ∞

ρ=0
φ(ρ, σ2

e)

nk∏

i=1

∫

ui

λ(Ti,ρ + ui)

× 1

ci
φ

(
ui
σi,ρ

)
duidρ

)
−
∫ tkend

tkstart

λ(t)dt

]
.

The integration with respect to ρ must be performed numerically, as
we do not have the ingestion time as a function of the evacuation rate ρ
on closed form in case of multiple meals. It can perhaps be questioned
whether separation of error terms is worth the extra trouble, especially if
the mean number of prey per stomach low. In this model it will also be more
complicated to estimate different arrival rates for different types of prey as
you cannot simply divide into separate datasets for each prey type. Using
separate datasets is only possible when the errors are independent.

1
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Supplemental Appendix S2

Sampling Arrival Times for NHPPs

As described in [2], inversion sampling can be used to generate random
samples of the time to the next arrival given the time of the current arrival
and the NHPP rate function λ. This involves the solution of an integral for
each sample which is undesirable. An alternative which avoids integrals is
rejection sampling/thinning. To sample from a pdf f , we need an envelope
function g with the restriction that g(t) ≥ f(t) everywhere. For this we use
a simple Poisson process, which implies a constant hazard rate g(t) = λ = c.
To generate samples in the interval [t1, t2] we start by generating N proposal
samples tp, where N v Pois(c(t2−t1)) uniform on [t1, t2] and N acceptance
thresholds a uniform on [0, 1]. For each proposal we accept it if ai < f(tp,i)/c
and reject it otherwise.

Simulating Stomach Data

A random time of catch was sampled for each predator, which must be suffi-
ciently large to assume stationarity of the distribution of stomach contents.
The catch time was chosen to be uniformly distributed over the daily cycle,
and the temperature was held constant. Each individual predator got its
own digestion rate ρ according to

ρ = ρ̂(1 + ε); ε v N(0, σ2
e)

using the general estimate of 0.1 of the coefficient of variation σe found by
[1]. The size of prey were sampled by sampling the length of the prey from a
log-normal distribution with parameters from a fit to real data. The weight
for each prey was then found by use of the power function

√
ŵ = cLd,

which describes the relationship between length L and body mass. The
parameters c and d were found by linear regression on the log-transformed
length, which is consistent with the assumption of constant coefficient of
variation. A general estimate of 0.03 of σm found in [1] was used. Now a
simulated stomach can be obtained by adding prey to the stomach according
to the simulated arrival times and prey sizes and projecting the mass of each
item forward in time until the time of catch. The forward projection was
performed numerically by a simple Euler scheme.

2
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Supplemental Figure S1
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Supplemental Figure 1: Bias from unobserved prey for simulated data in
a setting similar to the case study. The unbiased relationship (y = x) is
represented by the solid line. A better fit is obtained by a second order
polynomial (dashed line) indicating that some bias is present.
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Supplemental Figure S2
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Supplemental Figure 2: Performance measures for 32 simulated datasets
with whiting feeding on sandeel. The resulting errors from estimating a
constant intensity (crosses) and from using the chosen model (circles) are
shown. The choice of model for each simulation is based on the likelihood-
ratio test, using the constant intensity as the null hypothesis.
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Supplemental Figure S3
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Supplemental Figure 3: Estimated probability of observing a sandeel in the
stomach at time t since ingestion for a whiting with average digestion rate.
The 95% confidence interval is also shown.
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Supplemental Table S1

Parameter Estimate Standard deviation

a0 0.0275 0.039
a1 -0.0052 0.043
a2 -0.0330 0.040
b1 -0.1437 0.019
b2 -0.0545 0.020

log(α) -2.568 0.095
log(β) 2.266 0.124

µ 0.3014 0.029

Supplemental Table 1: Parameter estimates
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a b s t r a c t

The use of nonlinear state-space models for analyzing ecological systems is increasing. A wide range of
estimation methods for such models are available to ecologists, however it is not always clear, which
is the appropriate method to choose. To this end, three approaches to estimation in the theta logistic
model for population dynamics were benchmarked by Wang (2007). Similarly, we examine and compare
the estimation performance of three alternative methods using simulated data. The first approach is to
partition the state-space into a finite number of states and formulate the problem as a hidden Markov
model (HMM). The second method uses the mixed effects modeling and fast numerical integration frame-
work of the AD Model Builder (ADMB) open-source software. The third alternative is to use the popular
Bayesian framework of BUGS. The study showed that state and parameter estimation performance for all
three methods was largely identical, however with BUGS providing overall wider credible intervals for
parameters than HMM and ADMB confidence intervals.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

State-space models (SSMs) have become the favored approach
in modeling time varying ecological phenomena such as population
dynamics (Wang, 2007; Gimenez et al., 2007), animal movement
(Patterson et al., 2008) and animal behavior (Morales et al., 2004).
SSMs come in a variety of classes depending on the problem type
(linear or nonlinear) and the error structure of the data (Gaussian
or non-Gaussian). In the linear and Gaussian case an exact solu-
tion to the SSM can be found using the Kalman filter (KF), which is
the optimal estimator (Madsen, 2008). In case of minor departures
from linearity, KF variants, such as the extended KF or unscented
KF, can be employed. Both methods are reviewed and discussed by
Wang (2007). In cases where the state-space equations are highly
nonlinear, it is inappropriate to use any KF variant. For ecological
problems Markov chain Monte Carlo (MCMC) is perhaps the most
common approach to accommodate model nonlinearities owing to
its flexibility and general applicability. In addition, free software
for MCMC analysis is available, for example the widely used Win-
BUGS (Gimenez et al., 2008). An example of non-WinBUGS MCMC
population modeling is explained by Wang (2007).

We address three powerful methods for the analysis of nonlin-
ear state-space models, two of which have only gained moderate
attention previously within the field of ecology compared to the

∗ Corresponding author. Tel.: +45 4525 3095; fax: +45 4588 2673.
E-mail addresses: mwp@imm.dtu.dk, wpsgodd@gmail.com (M.W. Pedersen),

cbe@aqua.dtu.dk (C.W. Berg), uht@aqua.dtu.dk (U.H. Thygesen), an@aqua.dtu.dk
(A. Nielsen), hm@imm.dtu.dk (H. Madsen).

third. The idea of the first method we present is to discretize the
continuous state-space and then reformulate the SSM as a hidden
Markov model (HMM) (see Zucchini and MacDonald, 2009). A simi-
lar approach was described by Kitagawa (1987). The second method
we consider is implemented in the open-source software AD Model
Builder (ADMB-project, 2009a). In ADMB the SSM is formulated as
a statistical model with mixed effects. A major advantage of ADMB
is that it makes efficient use of available computer resources by
so-called automatic differentiation. Thirdly, we apply OpenBUGS,
which is the open-source version of WinBUGS (Spiegelhalter et al.,
1996). BUGS is flexible and therefore widely used in modeling eco-
logical systems (Gimenez et al., 2008).

To broaden the perspective of this study we apply the three
methods to simulated data from the theta logistic population
model, which is a nonlinear SSM. The same example was ana-
lyzed by Wang (2007). The performance of the three methods
is summarized with respect to a range of aspects: complexity of
implementation, computing time, estimation accuracy, limiting
assumptions, and algorithmic design. Algorithmic design refers to
the amount of subjective tuning required before actual estimation
can begin. Because of reduced subjective influence, methods with
fewer tuning parameters are often preferable. Finally, we discuss
some differences between Bayesian (BUGS) and frequentist (HMM
and ADMB) methods.

2. Methods

A state-space model describes the dynamics of a latent state (Xt)
and how data (Yt) relate to this state. An important feature of SSMs
is their ability to model random variations in the latent state and in

0304-3800/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2011.01.007
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data. For t ∈{1, . . ., N} the general system and observation equations
of the SSM are respectively Xt = g(t, Xt−1, et), and Yt = h(t, Xt, ut),
where et ∼ N(0, Qt) is the system error and ut ∼ N(0, Rt) is the obser-
vation error. Here, “∼N(·)” means Gaussian distributed. Because of
the possible nonlinearity of g and h, advanced filtering and smooth-
ing methods must be employed to gain meaningful estimates of Xt.
In this respect, the extended Kalman filter, the unscented Kalman
filter, and Bayesian filtering e.g. using Markov chain Monte Carlo
(MCMC) sampling or BUGS are common approaches. Alternative
methods for nonlinear state estimation are hidden Markov models
(HMMs, Zucchini and MacDonald, 2009) and mixed effects mod-
els using the software AD Model Builder (ADMB). ADMB is freely
available and open-source (ADMB-project, 2009a).

2.1. Benchmarking of estimation methods

The log-transformed theta logistic population growth model
(Wang, 2007) was used as benchmark example for assessing the
estimation performance of HMM, ADMB and BUGS. The system and
observation equations for this model are

Xt = Xt−1 + r0
(

1 −
(

exp(Xt−1)
K

)�)
+ et , (1)

Yt = Xt + ut , (2)

where et ∼ N(0, Q) and ut ∼ N(0, R).
Following Wang (2007), two different tests of the methods were

carried out:

1. State estimation performance with known parameter values, i.e.
the ability of the methods to estimate the population level xt for
all t. Obviously, this test is free of Bayesian prior assumptions on
parameters.

2. Estimation of states and all five model parameters, �= (log(�),
log(r0), K, log(Q), log(R)), simultaneously. This situation is
common in practice if model parameters cannot be estimated
from independent data. Notice that parameters that may yield
estimates close to zero are log-transformed to avoid invalid
parameter values.

Specifically for test 1, T = 2000 data replicates were simulated
with N = 200, K = 1000, Q = 0.01, R = 0.04, and the initial state x0 = 3
using 12 different sets of the � and r0 parameters (see Table 1). The
performance of the methods was evaluated using an estimate of
the state estimation error:

RMSE = 1
T

T∑

i=1

(
1
N

N∑

t=1

(�xi,t − xt)2

)1/2

, (3)

Table 1
Performance of state estimation as defined by Eq. (3) for HMM, ADMB, and BUGS.

Sim. no. r0 � RMSE

HMM ADMB BUGS

1 0.1 0.5 0.100 0.100 0.100
2 0.5 0.5 0.099 0.099 0.100
3 0.75 0.5 0.097 0.097 0.097
4 1.0 0.5 0.095 0.095 0.095
5 0.1 1.0 0.100 0.100 0.100
6 0.5 1.0 0.095 0.095 0.095
7 0.75 1.0 0.091 0.092 0.092
8 1.0 1.0 0.090 0.090 0.090
9 0.1 1.5 0.100 0.100 0.100

10 0.5 1.5 0.092 0.092 0.092
11 0.75 1.5 0.091 0.091 0.091
12 1.0 1.5 0.096 0.096 0.096

Fig. 1. Probability of a jump (transition) from the state˝i to the state˝j in the time
interval from t to t + 1 in a HMM. The shaded area corresponds to the integral in (4).

where �xi,t is the state estimate for replicate i at time t, and xt is the
true state at time t.

Specifically for test 2, two datasets were simulated using
two other sets of parameter values: �1 = (� = 0.5, r0 = 0.1, K = 900,
Q = 0.01, R = 0.04) and �2 = (� = 1.5, r0 = 0.1, K = 900, Q = 0.01,
R = 0.04) with the number of data points N = 200. Parameter esti-
mates for these data using the three methods were found similarly
to the study of Wang (2007). We further used these two parameter
configurations to generate plots of the joint profile likelihood sur-
faces for r0 and �, which were transformed to confidence contours
via a�2-distribution as in Polansky et al. (2009). The simulated data
sets for �1 and �2 are available in the supplementary material to
enable comparison of our results with future estimation methods.
Additionally for test 2 we estimated all five model parameters along
with 95% intervals using T = 200 of the data sets simulated for test
1. Inspired by Lambert et al. (2005), the purpose here was to evalu-
ate the frequentist properties of the intervals provided by the three
estimation methods.

2.2. Hidden Markov model with Matlab

The integrals involved in the prediction, filtering, and smooth-
ing steps for nonlinear SSMs (see e.g. Eq. (2.2, 2.3 and 2.5) in
Kitagawa, 1987) can, in general, not be solved analytically. How-
ever, by partitioning the continuous state-space uniformly into n
parts the solution can be computed using hidden Markov mod-
els (HMMs) (Zucchini and MacDonald, 2009). See de Valpine and
Hastings (2002) for an ecologically motivated study using a similar
method. A state is denoted˝i, where i ∈{1, 2, . . ., n}. The probability
distribution of the state given the observations Yt available by time
t is P(Xt ∈˝i|Yt) = pt(i|Yt) which are collected in the row vector
pt(Yt) = {pt(i|Yt)}. The transition probability of jumping from˝i to
˝j (see Fig. 1) is

pt(i, j) = P(Xt+1 ∈˝j|Xt ∈˝i) =
∫

˝j

fxt+1|xt (xt+1|Xt ∈˝i)dxt+1. (4)

For one-dimensional problems ˝i are intervals on the line, in
two dimensions ˝i are areas, and analogously for higher dimen-
sions. Note that the n × n probability transition matrix Pt ={pt(i, j)}
is not homogeneous, i.e. the transition probabilities may change as
a function of time as indicated by (1). Now, the HMM prediction,
filtering, and smoothing equations are respectively

pt(Yt−1) = pt−1(Yt−1)Pt−1,
pt(Yt) =  −1

t pt(Yt−1) � L(yt),

pt(YN) = pt(Yt) � [{pt+1(YN) � pt+1(Yt)}PTt ]

where ‘�’ and ‘�’ are elementwise matrix multiplication and divi-
sion, respectively. The likelihood of the observations L(yt) is a row
vector with elements pt(yt|i) and t = pt(Yt−1) · L(yt)

T is a normal-
ization constant with ‘·’ denoting dot product. The estimate of the
state given all N observations is simply the mean of the distribution
pt(YN).
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Using the above scheme we can estimate the unknown param-
eters (�) of the SSM by maximizing the likelihood function

L(�|YN) = fYN(YN |�) = [L(y1) · 1]
N∏

t=2

 t, (5)

as in Kitagawa (1987), where 1 is a column vector of ones. The
maximum likelihood (ML) estimate of the model parameters

�
� is

found by optimizing (5) as a function of �. The covariance matrix
of

�
� is approximated by the inverse Hessian of the likelihood func-

tion at the optimum
�
�. This approximation is appropriate because

the ML estimate is asymptotically Gaussian under certain regular-
ity conditions (Cappé et al., 2005). Thus, confidence intervals can
be constructed using the approximated covariance matrix. Under
parameter transformations it is important to construct the confi-
dence intervals in the transformed parameters and then reverse
transform the computed confidence limits.

When analyzing the theta logistic model we set n = 251. The
bounds of the discrete state-space are chosen such, that the prob-
ability of the true state falling outside the grid is negligible. That is,
we use the observation model (2) to determine bounds that enve-
lope the true latent state with a probability close to 1. This approach
is similar to the one used in de Valpine and Hastings (2002). Details
on grid specification can be found in the supplementary material
containing model code.

The HMM code provided in the supplementary material was
written in Matlab, but the method is not language specific. Matlab
was chosen because it is widely used and has a syntax which is
relatively easy to understand even for non-Matlab users.

2.3. Mixed effects model with AD Model Builder

Hierarchical mixed effects models are an alternative framework
for analyzing nonlinear SSMs. The states are the random effects
of the model and are collectively referred to as X = {x1, . . . ,xN}.
Here, as in Madsen and Thyregod (2010), we specify a model for the
data conditional on the unobserved random effects, fYN |X(YN |X, �a)
which corresponds to (2). We also specify a model for the ran-
dom effects, fX(X|�b) which corresponds to (1). The joint density
of random effects and observations conditional on the parameters
is

fX,YN (X,YN |�) = fX(X|�b)fYN |X(YN |X, �a).

To obtain the marginal likelihood for estimating �={�a, �b} we
integrate over the unobserved random effects

L(�|YN) = fYN (YN |�) =
∫

RN

fX,YN (X,YN |�)dX. (6)

The N-dimensional integral in (6) is generally challenging to solve,
and for nonlinear mixed models we must resort to numerical
approximation methods for estimating the model parameters. An
efficient and widely used method for this is the Laplace approxima-
tion (Wolfinger and Xihong, 1997), which replaces the integrand
with a second order Taylor expansion around the optimum of the
log-likelihood function. This allows for elimination of the integral,
because the second-order Taylor expansion can be formulated as
a known constant multiplied by a multivariate Gaussian density,
which integrates to unity. For nonlinear models the distribution of
the random effect may not be Gaussian. Then the Laplace approx-
imation is not exact. In particular for multi modal distributions
one should use the Laplace approximation with caution. Still,
when analyzing nonlinear models with moderately skewed uni-
modal distributions good results can be obtained with the Laplace
approximation (Vonesh, 1996; Mortensen, 2009). In any case it is
important to investigate if the approximation is critically violated

e.g. by Monte Carlo sampling from the random effects distribution.
Even with the Laplace approximation maximization of the

marginal log-likelihood with respect to � is challenging. A
computationally efficient method is to combine the Laplace
approximation with so-called automatic differentiation (AD Skaug
and Fournier, 2006). AD is a technique for finding the gradient of a
function h (in our case the log-likelihood), provided that h can be
expressed in computed code. Evaluating h using AD gives the func-
tion value along with the gradient of h at the point of evaluation.
The gradient is computed using the chain rule of calculus on every
operation in the code that contributes to the value of h. For effi-
cient maximization of the Laplace approximation of the marginal
log-likelihood with respect to �, up to third order partial deriva-
tives must be found. Skaug and Fournier (2006) show how this can
be accomplished by repeated use of AD.

The above procedure is implemented in AD Model Builder
(ADMB), which we use to analyze the theta logistic model. ADMB
is an open-source software package and programming language
based on C++. It includes a function minimizer for ML parameter
estimation and a random effects module, which utilizes the Laplace
approximation for integration of random effects. Standard devia-
tions for constructing confidence intervals are calculated using the
delta method (Oehlert, 1992) and automatically reported on all esti-
mated quantities. The covariance matrix for all states in an SSM
is a banded matrix (Skaug and Fournier, 2006). ADMB can exploit
this property by using the SEPARABLE FUNCTION construct (ADMB-
project, 2009b) to gain significant speed improvements. Other than
this useful property ADMB has no tuning parameters as such.

2.4. Monte Carlo estimation with BUGS

Finally, we analyze the theta logistic model using the Bayesian
modeling language BUGS, which is an MCMC estimation method
(Spiegelhalter et al., 1996). BUGS is a popular tool in ecological
modeling (e.g. Gimenez et al., 2007; Jonsen et al., 2005; Schofield
et al., 2009). BUGS is best known in the WinBUGS form which
has a graphical user interface. Here, however, we use the open-
source alternative OpenBUGS, yet the BUGS code provided in the
supplementary material is compatible with WinBUGS.

A Bayesian analysis requires that prior distributions are spec-
ified for the model parameters. The type of prior distributions
and parameter values related to these distributions should reflect
the a priori knowledge that is available about the model parame-
ters. BUGS then uses Gibbs sampling (Casella and George, 1992) to
explore the posterior distribution of the parameter and state-space
by incorporating the information specified by the priors, the state-
space model, and the observed data. The Gibbs algorithm exploits
that sampling the posterior is sometimes simpler via its conditional
distributions rather than directly from the joint distribution. This is
the case for state-space models where direct sampling of the poste-
rior for states and parameters is difficult. Instead, sampling model
parameters from priors and then sampling Xt conditional on model
parameters and remaining states (X1, . . ., Xt−1, Xt+1, . . ., XN) for all t is
simple using (1). The ampling algorithm applied by BUGS in specific
cases depends on the form and type of the conditional distribution,
and also on the composition of priors on model parameters (see
Spiegelhalter et al., 1996, 2003, for details).

We consider the common practical situation where a priori
knowledge is unavailable and estimation therefore relies entirely
on information in data. How to specify vague (or uninformative)
priors is a topic of on-going research (Gelman, 2006; Lambert et al.,
2005), which is outside the scope of this study. One suggested vague
prior is a uniform distribution with wide support (Spiegelhalter
et al., 1996). So, we choose a uniform prior for K, and uniform priors
for log � and log r0 that were much wider than the natural biologi-
cal bounds for the parameter values. By log-transforming � and r0
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Table 2
Computing times for HMM, ADMB, BUGS1 (inverse-Gamma prior on variances), and
BUGS2 (uniform prior on log-standard deviations). All times are for a single dataset
run on the same computer.

HMM ADMB BUGS1 BUGS2

State est. 6.12 s 0.49 s 58 s 58 s
Par. est. 225 s 2.5 s 118 s 614 s

biological meaningful (i.e. positive) parameter values are ensured.
The state-space formulation implies that the variance parameters
Q and R are non-zero and therefore also require prior distribu-
tions. It is common to assign vague inverse-gamma distributed
priors to variance parameters (Spiegelhalter et al., 2003; Lambert
et al., 2005). Gelman (2006), however, recommends using a uni-
form prior on the log-transformed standard deviation. Therefore,
to asses the sensitivity of the estimation results to the choice of
prior we perform BUGS estimation in two separate cases: BUGS1
using an inverse-gamma distribution for Q and R, and BUGS2 using
a uniform distribution on the log-transformed standard deviation,
i.e. 0.5 log(Q) and 0.5 log(R).

Estimation using BUGS involves a number of tuning parame-
ters: the initial values for the sampling scheme can be found in
the supplementary material online along with the specifics of the
priors. The total number of generated samples was 100,000 with
50,000 used for burn-in. The appropriate number of samples was
found iteratively by repeated application of Geweke Z score test for
convergence (Geweke, 1992). The BUGS thinning rate was 50 (for
reducing sample autocorrelation, which was apparent for � and r0
at lower thinning rates). With these values of the tuning parame-
ters we get an effective sample size of 1000. For summarizing the
estimation results the maximum a posteriori (MAP) parameter esti-
mates along with 95% credible intervals are reported (where the
lower bound equals the 2.5% quantile and the upper bound equals
the 97.5% quantile of the posterior distribution).

3. Results

State estimation results for the three methods using known
parameter values were practically identical (Table 1). ADMB was an
order of magnitude faster than HMM, which, in turn, was an order
of magnitude faster than BUGS (Table 2). State estimation using
estimated parameter values also gave practically identical results
for all three methods (Fig. 2). Regarding ML parameter estimation
and confidence intervals (CIs) for �1 and �2, HMM and ADMB per-
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Fig. 2. State estimation of the theta logistic model with 95% intervals using the
estimated parameter values in Table 3. True states were generated using �2(� = 1.5).
Panel A is a zoom of a part of the full time series indicated by the small box in panel B.
Clearly in this case, HMM, ADMB, and BUGS gave close to identical state estimation
results.

formed almost identically (Table 3). Likewise, MAP estimates and
credible intervals provided by BUGS1 and BUGS2 were overall sim-
ilar in the �2 case. In the �1 case, however, BUGS1 MAP estimates
of � and r0 were markedly lower and higher respectively than the
estimates provided by HMM, ADMB, and BUGS2. Perhaps most sur-
prisingly was the upper limit of the credible interval for K seemingly
quite sensitive to the choice of prior employed by BUGS, and in both
cases considerably higher than the HMM and ADMB CI upper limits.
Some notable differences between CIs and credible intervals were
present for �, K, and r0 in the �1 case (Table 3), with BUGS gener-
ally being more conservative and providing wider intervals (in the
log domain). Inspection of the joint profile likelihood surfaces for
� and r0 revealed that contour lines closely approximated elliptical
shapes for �2 (Fig. 4, panel B), thus indicating that the quadratic
approximation used by HMM and ADMB was appropriate. For �1,
on the other hand, the quadratic approximation was only appropri-
ate until the 65% confidence limit where the contour shape started
to diverge from the elliptical shape (Fig. 4, panel A). If comparing
the limits of the intervals provided by all three methods for the
�1 case (Table 3) with the extents of the likelihood surface (Fig. 4,
panel A), it is clear that neither credible intervals nor CIs captured
the actual range of plausible parameter values.

Visualizing the empirical distributions of the T = 200 parame-
ter estimates (Fig. 3) showed largely identical results for all three
methods. For all parameters the average 95% CIs provided by HMM
and ADMB closely approximated the 2.5% and 97.5% quantiles
of the corresponding empirical distribution. Similar results were
observed for BUGS1 and BUGS2 for parameters R and Q. Regard-
ing the three remaining parameters �, K, and r0, on the other hand,
the average credible intervals were markedly wider than the cor-
responding quantiles of their empirical distribution, and therefore
also wider than their CI counterparts. The difference in results
between the two vague priors (BUGS1 and BUGS2) was minimal
except for the credible intervals for K where BUGS2 gave wider
intervals than BUGS1. Since both priors have been regarded in
the literature as vague their influence on the resulting intervals
is surprising. Computing times for parameter estimation showed
that ADMB, again, was significantly faster than HMM and BUGS
(Table 2). Interestingly, BUGS1 was considerably (six times) faster
than BUGS2. This results can most likely be ascribed to BUGS using
different sampling algorithms in the two cases.

4. Discussion

Dynamical processes are prevalent in ecology. State-space mod-
els are commonly used in the analysis of such nonlinear processes
because they join separate models of the ecological system and
the observation process. This paper assessed the performance of
three methods for estimation in nonlinear state-space models: an
approach using hidden Markov models (HMM), the open-source
AD Model Builder framework (ADMB), and the BUGS language.
HMM and ADMB are frequentist (non-Bayesian) methods, while
BUGS is Bayesian. To facilitate a transparent comparison among
available estimation methods we considered the theta logistic
population model, which Wang (2007) analyzed with three other
methods (extended Kalman filter, the unscented Kalman filter and a
Metropolis–Hastings approach). To increase accessibility, the com-
puter code for our three methods can be found in the online
supplementary material.

The state estimation root mean square errors (RMSEs) of HMM,
ADMB, and BUGS (Table 1) were lower than those for the three
methods presented by Wang (2007), his Table 1. The 95% intervals
for the parameter estimates of � provided by our three methods
all included the true values (Table 3). Note that they also included
� = 1, which means that the models could not distinguish between

67



1398 M.W. Pedersen et al. / Ecological Modelling 222 (2011) 1394–1400

Table 3
Parameter values estimated by HMM, ADMB, BUGS1 (inverse-Gamma prior on variances), and BUGS2 (uniform prior on log-standard deviations) with related 95% intervals.
Data were simulated with the listed true parameter values: �1 = (� = 0.5, r0 = 0.1, K = 900, Q = 0.01, R = 0.04) and �2 = (� = 1.5, r0 = 0.1, K = 900, Q = 0.01, R = 0.04) of the theta
logistic model.

HMM ADMB BUGS1 BUGS2

ML est. 95% conf. intv. ML est. 95% conf. intv. MAP est. 95% cred. intv. MAP est. 95% cred. intv.

�1

� 0.588 0.134–2.588 0.583 0.129–2.640 0.374 0.0210–1.446 0.538 0.020–1.496
K 829.3 643.3-1015 829.5 639.2–1020 860.0 629.2–1900 834.0 638.3–4957
r0 0.116 0.046–0.298 0.117 0.045–0.305 0.135 0.053–1.667 0.118 0.045–1.666
R 0.041 0.032-0.053 0.041 0.032-0.053 0.042 0.031-0.054 0.041 0.031-0.052
Q 0.0092 0.0052–0.016 0.0092 0.0051–0.017 0.011 0.0055–0.017 0.0099 0.0060–0.018

�2

� 1.098 0.412–2.926 1.079 0.402–2.902 1.006 0.043–2.551 1.037 0.043–2.869
K 886.9 792.7–981.0 887.0 790.5–983.5 891.3 769.3–1121 910.0 774.9–1097
r0 0.128 0.082–0.201 0.129 0.081–0.203 0.127 0.078–1.136 0.134 0.074–1.032
R 0.043 0.032–0.056 0.043 0.032–0.056 0.043 0.031–0.056 0.044 0.032–0.056
Q 0.0082 0.0038–0.018 0.0081 0.0045–0.015 0.0094 0.0041–0.018 0.0086 0.0043–0.019

a concave and convex relation between population size and growth
rate. This is in contrast with the credible intervals in Wang (2007),
his Table 2, that excluded � = 1, however three out of six of his cred-
ible intervals also excluded the true parameter value, which is of
some concern.

Recent studies have indicated that � and r0 of the theta logistic
model (1) can be difficult to identify for certain data sets (Polansky
et al., 2009). This is the case because given � < 1 similar model
dynamics can be generated for different values of � (Clark et al.,
2010). Supporting this, a joint profile likelihood surface for log�
and logr0 showed that combinations of different values for the two

parameters may fit data equally well, i.e. result in practically iden-
tical model likelihoods (Fig. 4, panel A, data generated with � = 0.5).
Still parameters estimated by HMM and AMDB were reasonably
accurate (Table 3, case �1), however the confidence intervals (CIs)
were too narrow when compared to the contours of the confidence
regions in Fig. 4, panel A. This result underlines the importance of
validating the quadratic approximation to the log-likelihood func-
tion employed by HMM and ADMB before using it to construct CIs.
The credible intervals from BUGS were wider and therefore more
realistic than the CIs provided by HMM and ADMB, yet the interval
bounds were narrower than the range of plausible models indi-

Fig. 3. Violin plots showing the empirical distribution of T = 200 parameter estimates. Data used for estimation were simulated with the parameter configuration �= (� = 1.5,
r0 = 0.1, K = 1000, Q = 0.01, R = 0.04). Crosses indicate the true parameter values, �. Horizontal lines indicate the average limits of the 200 individual 95% intervals.
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Fig. 4. Joint profile likelihood surfaces for two simulated data sets of the theta-logistic model (see also Table 3). Panel A: parameters used for simulation �1 = (� = 0.5, r0 = 0.1,
K = 900, Q = 0.01, R = 0.04). Panel B: �2 = (� = 1.5, r0 = 0.1, K = 900, Q = 0.01, R = 0.04). Following (Polansky et al., 2009) the joint profile log-likelihood surfaces have been
transformed to confidence contours via a �2-distribution of the profiled models versus the model where all five parameters are estimated. Dots indicate the minima of the
transformed surfaces equivalent to the maximum likelihood (ML) point. Both surfaces have elliptically shaped contours in proximity to the ML point in which case a quadratic
approximation as used by HMM and ADMB is appropriate. While the surface for �2 (panel B) is close to quadratic even at the 95% level, the surface for �1 (panel A) departs
from the quadratic shape at the 65% level.

cated by the profile likelihood surface. A possible explanation for
this difference is that a substantial Monte Carlo sample size may
be required to fully explore the posterior distribution when two
parameters are highly correlated (Gamerman, 1997). If complica-
tions with parameter identifiability as illustrated in Fig. 4, panel A,
are encountered in practical situations it is recommended to switch
to a simpler model with fewer parameters e.g. by setting � = 1 (Clark
et al., 2010).

For the data set generated with� = 1.5, the joint profile likelihood
surface for log � and log r0 was well approximated by a quadratic
function (Fig. 4, panel B). Thus, log-transforming � and r0 in the
theta-logistic model avoids a boomerang-shaped likelihood surface
(see e.g. Figure 2 in Polansky et al., 2009), which deviates consid-
erably from a quadratic function. Thus, the CIs computed for HMM
and ADMB in the log-transformed parameter space (Table 3, case
�2) corresponded well to the confidence contours in Fig. 4, panel B.
For BUGS credible intervals the conclusion was the same.

Similarly to Lambert et al. (2005), the frequentist properties of
the three estimation methods were evaluated. To this end we used
so-called violin-plots (Fig. 3), where the empirical distribution of
200 parameter estimates was compared with the average of the
corresponding 200 95% interval bounds. In discussing our results
it is important to stress that CIs provided by frequentist meth-
ods (HMM and ADMB) and credible intervals provided by Bayesian
methods (BUGS) have fundamentally different interpretations. A
95% CI is an interval which contains the true parameter in 95% of
a large number of repeated experiments. Conversely, a 95% credi-
ble interval is an interval which has a 95% posterior probability of
containing the parameter for the experiment at hand. From Fig. 3
it was evident that the CIs were consistent with corresponding
quantiles of the empirical distributions. This further confirms the
validity of the quadratic approximation of the log-likelihood func-
tion. The empirical distributions of the BUGS parameter estimates
under vague prior assumptions were largely identical to their HMM
and ADMB counterparts. However, Fig. 3 showed that even when
assigning vague priors it cannot be expected that credible intervals
coincide with frequentist CIs, which by definition do not incorpo-
rate a priori knowledge. In addition, considerable differences in

credible intervals were present between the two BUGS analyses
using different vague priors (Fig. 3). Thus, it is crucial, when employ-
ing Bayesian methods in the absence of a priori knowledge, to assess
the sensitivity of credible intervals to the choice of distribution for
the vague prior.

ADMB uses automatic differentiation to estimate the states and
parameters of the model, which is the main reason for its computing
time superiority (Table 2). This advantage will only increase further
as models become more complex and the number of parameters
grows. The main disadvantage of ADMB is, that the Laplace approxi-
mation for the density of the random effects (here equivalent to the
latent states) must be reasonable. In our test cases the latent state
estimation of ADMB was close to identical to the HMM and BUGS
results (Fig. 2), which justifies using the Laplace approximation. If
results from alternative methods are not available, the quality of
the approximation can be assessed using the built-in importance
sampling functionality (p. 35, ADMB-project, 2009b). Another pos-
sible complication of ADMB is that some programming experience
in C++ is required. The HMM approach, on the other hand, has the
advantage of being language independent, i.e. the method can be
implemented in any programming language, for which a function
optimizer is available. The programming background of the mod-
eler is therefore of minor concern. The computing speed of the
HMM approach is, at worst, proportional to the number of grid
cells squared, a number which grows rapidly with increasing state
dimension. Thus, HMMs are best suited for one or two-dimensional
problems. BUGS depends less on state dimension because it is
Monte Carlo based and it requires no density approximations nor
differentiability. Consequently, BUGS is flexible and applicable to
the widest variety of problems of the three methods we have exam-
ined. In addition, WinBUGS (Spiegelhalter et al., 2003) can be used
to view and produce BUGS code graphically. This further increases
the accessibility of the method.

BUGS and Monte Carlo based methods in general have tun-
ing parameters that cannot be estimated from data and therefore
require subjective input from the modeler. The tuning parameters
include the number of samples, burn-in time, thinning rate, con-
vergence assessment, and choice of prior distribution, all of which
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influence the estimation results significantly. This fact is under-
lined in the BUGS manual (Spiegelhalter et al., 1996, p. 1), and it
is emphasized that the modeler using BUGS must have a sound
understanding of the Gibbs sampler. Our results supported this in
that computing times (Table 2) and interval estimation (Fig. 3) were
significantly influenced by the choice of prior. In contrast, ADMB
has no tuning parameters as such, but it does have certain options
that are more or less relevant depending on the type of problem, for
example the SEPARABLE FUNCTION construct. HMM has two tuning
parameters: the extent of the grid and the grid resolution. Limiting
the state-space involves a risk of truncating the latent state path. To
minimize this risk the approach of de Valpine and Hastings (2002)
was followed, where bounds are chosen so wide that the proba-
bility of latent path truncation is negligible. Naturally, wider grid
extents and higher grid resolution entail an increase in computation
time. Thus, determining the value of these parameters is a trade-
off between computing speed and accuracy of results. Generally, if
one is uncertain about the grid specifications, we recommend to
start with a wide and coarse grid to get preliminary results, and
then adapt extents and refine the grid accordingly if needed. If the
conclusion is unchanged on the adapted grid there is strong evi-
dence that the latent path is enclosed and properly resolved by the
discretization.

5. Conclusion

In summary, the three methods considered in this paper are all
powerful approaches to nonlinear state-space modeling of ecolog-
ical systems. ADMB is by far the fastest method owing to its use of
the Laplace approximation and automatic differentiation. This lim-
its ADMB to problems where the state distributions are unimodal,
which, however, is the case in the majority of practical examples.
In contrast, HMM and BUGS are more general and are able to han-
dle arbitrary state distributions. HMM requires specification of a
spatial grid and is limited to problems with low state dimensions,
say below four. BUGS has fewest model restrictions, but requires
specification of prior information and other subjective input from
the modeler in the form of algorithmic tuning parameters.

State-space methods provide a natural paradigm for ecosystem
modeling. Thus, it is imperative that the ecological community is
alert to progress in other scientific fields where state-space mod-
els are used and developed. This paper evaluated the performance,
with respect to estimation accuracy and speed, of three advanced
methods for state-space analysis. The study showed that state
and parameter estimation performance for all three methods was
largely identical, however with BUGS providing overall wider cred-
ible intervals for parameters than HMM and ADMB confidence
intervals.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ecolmodel.2011.01.007.
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Many  fish  stock  assessments  are  based  on  numbers  at age  from  research  sampling  programmes  and
samples  from  commercial  catches.  However,  only  a small  fraction  of  the  catch  is typically  analyzed  for
age as  this  is  a  costly  and  time-consuming  process.  Larger  samples  of the  length  distribution  and  a so-
called  age-length  key  (ALK) is  then  used  to obtain  the  age  distribution.  Regional  differences  in ALKs  are  not
uncommon,  but  stratification  is often  problematic  due  to  a  small  number  of  samples.  Here,  we  combine
generalized  additive  modelling  with  continuation  ratio  logits  to model  the  probability  of age given  length
and spatial  coordinates  to  overcome  these  issues.  The  method  is applied  to data  gathered  on North  Sea
haddock (Melanogrammus  aeglefinus),  cod  (Gadus  morhua),  whiting  (Merlangius  merlangus)  and  herring
(Clupea  harengus)  and  its  implications  for a simple  age-based  survey  index  of  abundance  are  examined.
The  spatial  varying  ALK  outperforms  simpler  approaches  with  respect  to  AIC  and  BIC,  and  the survey
indices  created  using  the  spatial  varying  ALK  displays  better  internal  and  external  consistency  indicating
improved  precision.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Estimation of catch at age from combined samples of length and
age is standard procedure in analyses of fisheries data. Only a small
fraction of the catch is typically analyzed for age as this is a costly
and time-consuming process. Larger samples of the length distri-
bution and a so-called age-length key (ALK) are then used to obtain
the age distribution.

The ALK is typically estimated from length-stratified subsam-
ples of the catch that are analyzed for age by examining the annual
ring structure in the otholiths. Missing or few data points for a given
combination of strata such as age, length group, and geographi-
cal area frequently occur due to unreadable otholiths or simply
because no fish were caught. In this case the raw observed pro-
portions of age-at-length are unsuitable for assigning age to fish in
these length groups. A solution to this problem is to use a statistical
model to create a smooth distribution of age given length and pos-
sibly other covariates, such that missing values can be interpolated
in an objective and robust way, and the uncertainty due to the sam-
pling variability can be taken into account. A statistical model also
has the advantage of allowing formal testing of hypotheses such as
whether two ALKs can be considered identical.

Continuation ratio logits (CRLs) is a type of model for ordered
categorical responses (such as age groups) and it has previously

∗ Corresponding author.
E-mail address: cbe@aqua.dtu.dk (C.W. Berg).

been used for modelling ALKs (Kvist et al., 2000; Rindorf and Lewy,
2001). In addition to ALKs, Rindorf and Lewy (2001) also applied
CRLs for estimating smooth length distributions.

CRLs have also been used to investigate spatial differences in
ALKs (Gerritsen et al., 2006; Stari et al., 2010). In both cases,
significant spatial differences were found in ALKs for North Sea
haddock. Gerritsen et al. (2006) divided their data into 3 depth
strata and examined the differences between using a single ALK and
ALKs calculated for each stratum. The shallow stratum was signifi-
cantly different from the deeper strata, with higher probabilities for
younger fish in the shallow stratum. Using a combined ALK for all
the strata resulted in nearly twice as many 1-year olds compared to
a survey index calculated from the stratified ALKs. Stari et al. (2010)
found significant differences between geographical areas, mature
and immature fish, commercial and survey data, and fleets using
different fishing gear.

In all previous applications of CRLs to ALK modelling, Gener-
alized Linear Models (GLMs) have been used for estimation, and
stratification has been used to model the effect of regional differ-
ences. Any type of stratification will exacerbate the problems with
missing data, and the choice of strata will often be a somewhat sub-
jective decision made by the modeller. In situations where detailed
information about the geographical origin of the age samples is
available, it is possible to consider alternatives to stratification by
area.

One such alternative is to use Generalized Additive Models
(GAMs) in place of GLMs. GAMs is a non-parametric tool for non-
linear modelling, which allows smooth functions of the explanatory

0165-7836/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.fishres.2012.06.016
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variables in the specification of the mean value distribution, and
numerous studies have used GAMs for modelling spatial effects.
Toscas et al. (2009) used GAMs to fit spatio-temporal models of
prawn catches with 2D thin plate regression splines for modelling
spatial variation. The GAMs interpolated the data well, but extrapo-
lation beyond data coverage was found to be problematic. Maxwell
et al. (2012) compared GAMs to a stratified mean method (strat-
ification in time and space) for estimating egg production of cod,
plaice, and haddock in the Irish Sea. The methods gave relatively
consistent estimates, but the GAM methodology offered higher pre-
cision and was better suited for handling missing observations. For
a thorough introduction to GAMs see Wood (2006).

In this study we describe how GAMs can be used for fitting CRLs
to model age as a smooth function of length and geographical posi-
tion. In addition to the advantages offered by the GLM approach,
it eliminates the need for spatial stratification by providing an ALK
that varies smoothly with geographical position.

The methodology has been fully implemented in the DATRAS
software package (Kristensen and Berg, 2012) for R (R Development
Core Team, 2012), which offers an accessible way to cre-
ate ALKs from all the data available in the DATRAS database
(www.datras.ices.dk) as well as other data using this format.

Using ten years of survey data the new method is compared to
the traditionally applied regional stratification of ALKs to determine
whether a significantly better fit to data is obtained. Further-
more, internal and external consistencies are calculated to examine
whether the new method leads to improved precision when used
to create indices of abundance by age.

2. Methods

The response variable is the age group of a fish, a = R . . . A,
i.e., ordered categorical also known as ordinal response, where R
denotes the youngest age category and A is the oldest. The latter
category is often defined to be a “plus group” which consists of fish
of age A or older. For each fish where the age has been determined,
a set of covariates x is also available, which in this study includes
the length l of the fish and the spatial coordinates of the fishery.

The continuation ratio model (Agresti, 2010) is well suited to
model the distribution of ages Pa(x) = {pR . . . pA}. This is accom-
plished through A minus R models for the conditional probability
of being of age a given that it is at least age a. That is, let

�a = P(Y = a|Y ≥ a) = pa

pa + · · · + pA
, a = R . . . A − 1

be those conditional probabilities and let our set of continuation
ratio logits be given by GAMs of the following type:

logit(�a[xi]) = x∗
i �a + f1a(x1i) + f2a(x2i, x3i) + f3a(x4i)x5i + · · ·,

a = R . . . A − 1

where xi is a vector of covariates, x∗
i

is a subset of the covariates
entering linearly in the model, � is the corresponding parameter
vector, and fj denotes some smooth function of the covariates xk,
which may  be of one or more dimensions and also multiplied by
known covariates. Given the set of A − R models, we can calculate
the estimated unconditional probabilities p̂a from the conditional
probabilities �̂a (the dependence on covariates is omitted here):

p̂R = �̂R

p̂a = �̂a

⎛
⎝1 −

a−1∑

j=R

p̂j

⎞
⎠ = �̂a

a−1∏

j=R

(
1 − �̂j

)
, a > R

We  choose to consider the following six formulations of the
CRLs:

1. A single common ALK for the whole North Sea fitted using GLM
methodology.

2. A stratified approach having separate ALKs within 3 subareas of
the North Sea (see Fig. 1), also fitted using GLMs.

3. A smooth spatial varying ALK fitted using GAMs with smooth-
ness selection by AIC. Only the intercept in the models are
allowed to vary with location.

4. Same as model 4, but with smoothness selection by BIC instead
of AIC.

5. A GAM where both the intercept and the regression coefficient
on length are allowed to vary with geographical coordinates.

6. Like model 4, but with the same spatial effect in all years, as
opposed to estimating a set of parameters for each year.

Using mathematical notation these six models can be written as
follows:

logit(�ayq[xi]) = ˛ayq + ˇayqli (1)

logit(�ayq[xi]) = ˛ayq + ıayq(Areai) + ωayq(Areai)li (2)

logit(�ayq[xi]) = ˛ayq + ˇayqli + sayq,AIC (loni, lati) (3)

logit(�ayq[xi]) = ˛ayq + ˇayqli + sayq,BIC (loni, lati) (4)

logit(�ayq[xi]) = ˛ayq + sayq,BIC (loni, lati)li + sayq,BIC (loni, lati) (5)

logit(�ayq[xi]) = ˛ayq + ˇayqli + saq,BIC (loni, lati) (6)

where i denotes the ith fish, l denotes the length of the fish, (lon,
lat) the geographical coordinates where the haul was taken (longi-
tude and latitude), ıa(Areai) maps the ith observation to one of 3
categorical effects for a division of the North Sea into 3 areas (see
Fig. 1), and similarly denotes ωa a regression parameter for each
of the 3 areas, sa is a thin plate spline in two dimensions, where
subscripts AIC and BIC denote which criterion is used for smooth-
ness selection, and (˛a, ˇa) are ordinary regression parameters to
be estimated. Subscripts y and q have been included here to indicate
that each combination of year and quarter should have a distinct set
of parameters to account for differences in population structure.

Note, that model 2 is equivalent to dividing the data set accord-
ing to the 3 areas and fitting model 1 with individual parameters
for each area. Models 3 and 4 include a spatial varying intercept for
each continuation ratio logit but a common regression parameter
on length, whereas model 5 is a varying-coefficients model (Hastie
and Tibshirani, 1993), where both the intercept and the regres-
sion parameter are allowed to vary with geographical coordinates.
Model 6 is like model 4 except that the spatial effect is constrained
to be identical for all years. All the parameters in the model has the
subscript a indicating that each logit has a distinct set of param-
eters. This implies that the likelihood equation can be partitioned
into separate terms for each logit (Agresti, 2010; Kvist et al., 2000),
and hence each logit can be fitted separately. Similarly, the total
deviance for the model is simply the sum of deviances from the
individual fits. This feature makes it possible to fit the continuation
ratio logit model using standard software that can handle binomial
responses.

Our GAM models are based on the implementation in the
mgcv package for R (Wood, 2006), which offers a variety of types
including multi-dimensional splines and automatic smoothness
selection. We follow the recommendation in Wood (2006),  who
suggests using thin plate regression splines for inputs on same
scale and where isotropy is relevant such as spatial coordinates.
All the thin plate splines used in this study for geographical effects
are splines with shrinkage smoothing (Wood, 2006, p. 160), which
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Fig. 1. Map  of the three areas used in model 2 and of three selected locations 1,2 and 3 (top left). Predicted probabilities of age given length using model 4 at each location
(solid  lines) as well as the raw observed proportions (points) in each of the boxed areas for the year 2011 Q1 (top right and bottom figures).

allows them to be completely eliminated from the model in the
sense of having all the parameters estimated to be zero.

2.1. Evaluating the implication of the ALK

Previous works (Gerritsen et al., 2006; Stari et al., 2010) have
utilized the generalized likelihood ratio test for measuring whether
two ALKs could be considered identical. This test requires that the
smaller model is nested within the larger, which is not the case for
all our models. Instead, we use the AIC and BIC values to investigate
which models are more appropriate. For the GAMs, the number
of parameters, which is needed to calculate the AIC and BIC, is
replaced by the effective degrees of freedom (edf), see Wood (2006)
for details.

However, since the AIC and BIC only applies to the age data,
it does not tell us whether applying the estimated ALKs to all the
length data will result in significant changes in an index of abun-
dance by age. We  will therefore create such an index to investigate
the implications of our proposed method for creating ALKs. If a spa-
tial ALK, in addition to providing a better fit to the age data, also
results in improved precision for a derived index of abundance, this
can be seen as further evidence that the spatial ALK is more appro-
priate. If the spatial effect in the ALKs were really noise rather than

a true signal, one would expect the precision of an index of abun-
dance to deteriorate when applying a spatial ALK as opposed to a
non-spatial ALK.

We  choose one of the simplest estimates of abundance:

Iayq = 1
hyq

nyq∑

i=1

p̂a(xi) (7)

where Iayq is the average predicted number of fish caught in age
group a per haul in year and quarter (y, q), n is the total number of
fish caught, and h is the number of hauls.

An appropriate way to test whether one index of abundance is
more accurate than another would be to run full assessment mod-
els using the different indices as well as commercial catch data and
compare their estimated observation variances. However, since this
is a quite complicated task we choose a simpler way of compar-
ing our different indices of abundance based on the concepts of
internal and external consistency (e.g., Payne et al., 2009). Under
the assumptions that an index is proportional to the abundance
without error and of constant catchability and constant total mor-
tality over time, the logarithm of the abundance at time t should
be perfectly correlated with the logarithm of abundance of the
same cohort at time t + �t.  Although all these assumptions are not
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correct, we should still be able to obtain significant correlations for
values of �t  within the range of a year, given that the signal in the
time-series outweighs the variability from sampling noise and vio-
lations of our assumptions. Recapping from Payne et al. (2009),  if
we assume that we have a survey index with a log-normal error
structure and substitute this into the Baranov catch equation we
get

Ia(t) = qa(t)Na(t)�a(t), �∼LN(0,  �a(t))

log(Ia(t)) = log(Ia(t+�t)) + log

(
qa(t+�t)

qa(t)

)
+ log(�a(t+�t)) − log(�a(t)) − Za(t, t + �t)

where Ia(t) refers to the index of abundance for some age group
a at time t, q denotes catchability, Z the total mortality over the
considered time interval, and � is a random log-normal distributed
component.

Internal consistency refers to correlations between Is within the
same survey index (e.g., Age 1 in quarter 1 year y versus Age 2 in
quarter 1 in year y + 1), whereas external consistency refers to com-
paring two independent survey indices, such as those for quarter 1
and 3 (Q1 and Q3). We  will refer to internal consistency between
age a and a + 1 (�t  = 1 year) in quarter q as IC(q, a) and external
consistency between the same age classes in Q1 and Q3 (�t  = 0.5
years) as EC(a).

3. Case studies

In this section the method will be applied to ten years
(2001–2011) of data from the International Bottom Trawl Survey
(IBTS) obtained from the DATRAS database (www.datras.ices.dk).
The samples are collected in the first and third quarters of the year
and all samples are caught using the same gear type. For further
details about the IBTS survey see (ICES, 2012). In section 3.1 we
will investigate an application of models 1 through 6 on North Sea
haddock data. Section 3.2 will deal with a less detailed rerun of
models 1 and 4 on multiple species focusing on consistencies only.

3.1. Haddock using models 1–6

For the area stratified model 2 we divide the North Sea into 3
areas (Fig. 1) with roughly the same number of age samples per year
(see tables in online supplemental material1). Area 2 is much larger
than the others, but this is due to the fact that haddock is primarily
caught in the northern parts of the North Sea. For all models except
model 2, it was possible to consider up to age group 8 without
estimation problems. However, for simplicity we consider the age
groups 1 to 4+ for all models, where the last group consists of fish
of age 4 or older. As age 0 appears for the first time in the IBTS
survey in Q3, it must also be included when creating the ALKs for
this time-series, but results of this estimation are not included in
the further analysis.

Table 1 shows the AIC and BIC calculated for each combination
of model and quarters. Since lower values of AIC and BIC are to be
preferred, model 2 is consistently better than model 1, implying
that there is significant geographical variation in the ALKs. Model
3 is consistently best with respect to AIC while models 6 and 5
are respectively best with respect to BIC for Q1 and Q3, but the
differences are much smaller between models 3–5 than the rest.
These values provide strong evidence against a null hypothesis of no
spatial effect in the ALKs, and also that the stratified GLM approach
did not sufficiently capture the spatial variation.

Fig. 1 shows the fitted distribution (model 4) of age given length
at three selected locations, as well as the raw observed proportions

1 See Appendix A.

Table 1
Haddock: summary of models 1–6. The columns ‘�AIC’ and ‘�BIC’ contain the
decrease in AIC and BIC from model 1, and the best values are shown in bold face.
The column ‘edf’ contains the effective number of parameters.

Model Quarter edf �AIC �BIC

1 1 66 0 0
2 1  198 3028.36 1940.47
3  1 770.10 10,155.53 4352.64
4  1 361.13 9252.17 6819.83
5  1 396.28 9600.90 6878.87
6 1 125 7659.33 7173.11

1  3 66 0 0
2 3  198 2966.02 1858.38
3  3 936.62 10,605.83 3300.25
4  3 384.29 9268.28 6597.43
5  3 421.89 9720.27 6733.91
6 3 130.88  6685.59 6141.19

within each stratum. The observed proportions seem to differ
between areas, and the fit in the three chosen locations resembles
the raw observations in the three strata. We should note, that we
cannot expect the fitted distributions to be the best interpolation
of the raw proportions since the raw proportions are calculated
over the entire stratum, but the shown fitted distributions applies
only to the points in space marked by the numbers on the map,
and the fits will therefore vary over the strata due to the significant
spatial effect in the model.

Fig. 2 shows the spatial pattern in the probability of being older
than one year given a length of 20 cm in 2011 Q1. The figure illus-
trates that there is spatial contrast in the data with a peak east of
the Scottish coast. Given that a 20 cm haddock is caught in this
region, it is more likely to be 2 years or older than being 1 year old,
whereas the opposite is true in the south-eastern parts of the North
Sea.

In order to illustrate the differences between models 1–6, the
estimated age probabilities for a 30 cm haddock along a selected
route (Fig. 3) from each model in year 2001 Q3 are shown in Fig. 4.
The same plots for all the years and quarters can be found in the

Fig. 2. Contour plot of the estimated probability (model 4) of being older than 1
year given a length of 20 cm in year 2011 Q1.
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Fig. 3. A selected route through the North Sea and some selected points marked by
‘+’.

online supplemental materials. The models based on GAMs (3–6) all
show a steep increase in probability for observing younger individ-
uals on last part of the route around the Skagerrak region. Although
there is considerable variation between years and quarters in the
estimated probabilities, the spatial pattern seems to be relatively
consistent. This is also supported by the fact, that model 6, which
has the same spatial effect over all the years, was  chosen as the
best model by the BIC criterion for Q3. Models 4 and 5 display very
similar results, while model 3 in some years estimates some more
wiggly curves in comparison, due to the AIC criterion being less
restrictive than BIC in terms of the amount of smoothing.

To illustrate the implications of using the different models
for our simple index of abundance we have plotted log(I2yq) and
log(I3yq) in Fig. 5. There seems to be very high consistencies between
the series, both internally and externally, for all ALKs. This implies,
that even though significant differences were found between the
ALKs, the resulting indices of abundance turned out to be quite sim-
ilar. The uncertainties on the indices of abundance were further
investigated using bootstrapping (not shown), and these analyses
confirmed that the difference between the calculated indices were
generally not statistically different.

The internal and external consistencies are shown in Table 2,
which confirms the apparent high correlation observed in Fig. 5,

Table 2
Haddock: internal and external consistencies for models 1–6. Internal consistency
between age a and a + 1 in quarter q is referred to as IC(q, a) and external consistency
between the same age classes in Q1 and Q3 as EC(a). Best average consistency is
shown in bold face.

Type\Model 1 2 3 4 5 6

IC(Q1, 1) 0.961 0.955 0.956 0.954 0.954 0.961
IC(Q1,  2) 0.910 0.919 0.918 0.917 0.916 0.918
IC(Q3,  1) 0.951 0.950 0.949 0.968 0.973 0.966
IC(Q3,  2) 0.970 0.976 0.944 0.963 0.968 0.969
EC(1) 0.972 0.973 0.969 0.968 0.969 0.955
EC(2)  0.985 0.993 0.980 0.992 0.992 0.994
EC(3) 0.921 0.948 0.954 0.956 0.945 0.963

Avg  0.953 0.959 0.953 0.960 0.959 0.961

Table 3
Haddock: internal and external consistencies for models 1 and 4. Internal consis-
tency between age a and a + 1 in quarter q is referred to as IC(q, a) and external
consistency between the same age classes in Q1 and Q3 as EC(a). Best average
consistencies are shown in bold face.

IC(Q1, x) IC(Q3, x) EC(x)

x\Model 1 4 1 4 1 4

1 0.96 0.95 0.93 0.97 0.97 0.97
2  0.91 0.92 0.95 0.97 0.99 0.99
3  0.95 0.95 0.97 0.96 0.92 0.96
4  0.93 0.95 0.97 0.96 0.93 0.99
5  0.94 0.97 0.98 0.99 0.95 0.96
6 0.88  0.95 0.92 0.93 0.91 0.95
7 0.73  0.68 0.94 0.92 0.88 0.90

Avg  0.90 0.91 0.95 0.96 0.94 0.96

Table 4
Cod: internal and external consistencies for models 1 and 4. Internal consistency
between age a and a + 1 in quarter q is referred to as IC(q, a) and external consistency
between the same age classes in Q1 and Q3 as EC(a). Best average consistencies are
shown in bold face.

IC(Q1, x) IC(Q3, x) EC(x)

x\Model 1 4 1 4 1 4

1 0.56 0.68 0.86 0.85 0.91 0.93
2  0.71 0.88 0.19 0.31 0.77 0.75
3  0.87 0.83 0.36 0.57 0.43 0.49
4  0.66 0.63 0.30 0.27 0.42 0.48
5  0.37 0.33 0.40 0.37 0.58 0.64

Avg  0.63 0.67 0.42 0.47 0.62 0.66

which implies a very strong signal in data. On average, models 4–6
have higher consistencies than the rest, which validates our con-
clusion that there is a spatial effect and that the GAM framework
outperforms the stratified approach.

3.2. Models 1 and 4 on more species

Tables 3–6 show internal and external consistencies for mod-
els 1 and 4 for cod, haddock, whiting and herring in the North Sea.
The choice of model 4 among the different GAM formulations was
rather arbitrary, although it can be considered the more conserva-
tive choice with respect to the amount of spatial variation in the
ALKs, as it uses the fewest number of effective parameters of the
GAMs. Since we  do not consider model 2, we can include a higher
number of age groups without worrying about years with no obser-
vations of older age groups. For all species except herring, model 4
is consistently better than model 1 with respect to average consis-
tency over age groups. While haddock has very high consistencies
even in older age classes, herring has appalling consistencies for Q1
(some are even negative). Whiting and Cod have fairly good con-
sistencies, perhaps with the exception of IC(Q3) for cod (4). These

Table 5
Whiting: internal and external consistencies for models 1 and 4. Internal consistency
between age a and a + 1 in quarter q is referred to as IC(q, a) and external consistency
between the same age classes in Q1 and Q3 as EC(a). Best average consistencies are
shown in bold face.

IC(Q1, x) IC(Q3, x) EC(x)

x\Model 1 4 1 4 1 4

1 0.79 0.76 0.70 0.72 0.84 0.86
2  0.96 0.98 0.83 0.82 0.85 0.84
3 0.86 0.87 0.76 0.78 0.88 0.90
4  0.63 0.65 0.85 0.85 0.67 0.67
5 0.37 0.47 0.85 0.84 0.57 0.57

Avg 0.72 0.75 0.80 0.80 0.76 0.77
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Fig. 4. Estimated age probabilities for a 30-cm haddock along the route shown in Fig. 3 from models 1 to 6 for year 2001 Q3. The x-axis corresponds to the position on the
route  from west to east, and the vertical lines indicate the positions marked with a ‘+’ on the map.

results emphasize the results found for haddock, namely that there
generally is spatial variation in length-at-age, and that improved
precision in indices of abundance can be obtained by including this
variation in the ALKs.

4. Discussion

Several studies have suggested using continuation ratio log-
its for modelling the age distribution in catch data from

Table 6
Herring: internal and external consistencies for models 1 and 4. Internal consistency
between age a and a + 1 in quarter q is referred to as IC(q, a) and external consistency
between the same age classes in Q1 and Q3 as EC(a). Best average consistencies are
shown in bold face.

IC(Q1, x) IC(Q3, x) EC(x)

x\Model 1 4 1 4 1 4

1 0.22 0.36 0.58 0.56 0.58 0.57
2  −0.14 −0.09 0.78 0.77 0.28 0.34
3 0.07 −0.07 0.71 0.69 0.44 0.55
4  0.23 0.05 0.76 0.75 0.61 0.49
5 0.24 0.35 0.80 0.83 0.63 0.54

Avg 0.12 0.12 0.73 0.72 0.51 0.50

length-stratified subsamples of age in place of raw proportions of
age given length. Two studies have also shown regional as well as
other effects using CRLs for North Sea haddock (Gerritsen et al.,
2006; Stari et al., 2010), a result that is confirmed in this study.
While these studies used a number of parameters proportional to
the number of boxed areas using GLM methodology, we propose to
use GAM methodology to model spatial effects as a smooth surface
and thereby be able to predict numbers-at-age at the haul level,
whenever the required information is available. This removes the
problem of having to select appropriate boxes for the data, and the
problem of missing data whenever a too fine-grained stratification
is chosen. This effect is comparable to the result found in Maxwell
et al. (2012),  who  compared GAMs with a stratified mean method
for modelling egg production in fishes. Also, the ALKs based on
GAMs provided a much better fit to data than the GLM based meth-
ods examined in this study, and they were also superior in terms
of both AIC and BIC. Our proposed model allows for a higher num-
ber of age groups than usual to be considered when an age based
index of abundance is to be created, and, although there were only
small differences in the survey indices between ALK methods, our
results indicated that including spatial variation in ALKs seemed
to improve the precision of the indices. It is straightforward to
expand the number of covariates used in this study, using the same
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Fig. 5. Index of abundances for age groups 2 and 3 in Q1 and Q3. The series have
been rescaled to prevent overlap between Q1 and Q3 for better overview, so only
relative comparisons of the time-series are meaningful.

technique. While a spatial smoother is a convenient way of mod-
elling the observed differences in ALKs between areas, it does not
offer us an explanation for the observed effects. Possible expla-
nations could be regional differences in growth, but also local
variation in relative abundance of age-classes, which can occur due
to migration, local differences in natural mortality, or even effects
due to the data collection such as different laboratories used for
ageing. In other words, the observed differences might be equally
well explained by other covariates not included in our models, but
given adequate spatial overlap between for instance different age-
ing labs, it will be possible to test for such an effect within our
model framework while still accounting for residual unexplained
spatial correlations by including a thin plate regression spline. Very
high internal and external consistencies were found for all the age
classes examined for haddock. While lack of consistency points to
problems with some of the usual assumptions made for survey
indices, strong consistencies are not proof of an excellent survey
index, e.g., a constant index, which could hardly be informative,
would yield perfect consistencies. We  found fairly good consisten-
cies for whiting and cod, but poorer consistencies for herring.

To ensure that changes in catch rates are due to changes in the
population size rather than changes in survey design or other fac-
tors, survey indices should be standardized in some way to make
them representative for the stock and comparable between years, a
process which is sometimes called catch-rate standardization (e.g.,
Maunder and Punt, 2004). We  should however keep in mind, that
we did not perform a proper catch-rate standardization, but instead
used a very simple index based on average numbers per haul. Also,
catch rates for herring are generally much more variable than for
the other species considered in this study, which can explain why
our simple index performs so poorly for herring.

We should note, that even though many stock assessment mod-
els use age-structured indices of abundance as input, alternatives
exist such as purely length-based models (e.g., Kristensen et al.,
2006) or integrated stock assessments (e.g., Fournier et al., 1998) in

which the separation into age-classes is performed within the stock
assessment model, such that the associated uncertainty is included
in the estimation. For stock assessments it should certainly be pre-
ferred to include the uncertainties due to the ALK estimation, either
by integrating the ALK estimation within the stock assessment
model, or to estimate the uncertainties on the derived indices of
abundance by age outside the model, and provide these uncertain-
ties as input to the stock assessment model along with the indices.
The latter approach could be accomplished by bootstrapping, and
is possible to carry out using the DATRAS-package.

Another useful aspect of ALKs is to combine them with the dis-
tributions of length and apply Bayes formula to get the probability
of length given age (as opposed to age given length in ALKs), which
for instance can be used to examine growth or differences in length
distributions between regions. This idea was  pursued in Rindorf
and Lewy (2001) where CRLs were used for both the ALKs as well
as the length distributions. The idea is, that since length distribu-
tions suffer from the same problems as age distributions, namely
being patchy when small areas or individual hauls are considered,
CRLs can be used to obtain smooth length distributions. Rindorf and
Lewy (2001) used a seventh degree polynomial to obtain the length
distributions on different locations, but noted that other types of
smooth functions could be considered. GAMs could be considered
in this respect, and this could be an interesting area for future
research.

Fisheries data can be very complex, and the data sets available
from DATRAS are certainly no exception to this rule. Producing an
age-based survey index, which includes the application of an ALK, is
therefore often a challenging task, and reproducing them by other
people even more so. We have provided a software package for R
that allows for manipulation of data from the DATRAS database, and
easy generation and application of robust ALKs without the need
for area stratification. The software package and all its source code
is publicly available (Kristensen and Berg, 2012), which allows for
adaptation to other data sets than those from the DATRAS database,
including samples from commercial fisheries. Example code show-
ing how to reproduce the models found in this paper is included
in the online supplemental material. We  have shown, that our
approach is superior to the stratified approach with respect to AIC
and BIC, and that it generally leads to better internal and external
consistencies for age based survey indices.
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Example of fitting ALKs using the DATRAS pack-
age

## Install and load DATRAS-package and data

## The data can be downloaded from the DATRAS homepage:

## http://datras.ices.dk/Data_products/Download/Download_Data_public.aspx

install.packages("DATRAS",,"http://rforge.net/",type="source")

library(DATRAS)

dAll <- readExchange("/exchange/IBTS/2001-2011.zip")

## create 3 areas by merging Roundfish areas.

dAll$rfpool=NA

conv=c("1"=1,"2"=2,"3"=3,"4"=2,"5"=2,"6"=2,"7"=2,"8"=2,"9"=2)

dAll$rfpool=as.factor( conv[as.character(dAll$Roundfish)] )

## choose North Sea haddock in quarter 1,

## only valid hauls

## and only hauls where all standard species have been identified.

dQ1=subset(dAll,Species=="Melanogrammus aeglefinus",Roundfish %in% 1:9,

Quarter==1,Year %in% 2001:2011,HaulVal=="V",StdSpecRecCode==1,Gear=="GOV")

## prepare data by adding spectrum, use 1 cm groups.

dQ1=addSpectrum(dQ1,by=1)

## Split data by year

dQ1.ysplit = split(dQ1,dQ1$Year)

## Declare settings for models 1-5:

mf = list( "cra~LngtCm","cra~LngtCm*rfpool",NULL,NULL,NULL)

gammas=c(NA,NA,1.4,NA,NA)

ack=c(FALSE,FALSE,TRUE,TRUE,TRUE)

useBICs=c(FALSE,FALSE,FALSE,TRUE,TRUE)

varCofs=c(FALSE,FALSE,FALSE,FALSE,TRUE)

maxKs=c(49,49,49,49,49)

## Fit model 1-5:

models=list()

for(m in 1:5){

models[[m]] = lapply(dQ1.ysplit,fitALK,minAge=1,maxAge=4,model=mf[[m]],

gamma=gammas[m],autoChooseK=ack[m],

useBIC=useBICs[m],varCof=varCofs[m],maxK=maxKs[m])

}

## Model 6 must be fitted on all year simultaneously

## and ’Year’ must be included in the model formula

models[[6]]=fitALK(dQ1,minAge=1,maxAge=8,

model="cra~Year*LngtCm+s(lon,lat,k=25,bs=’ts’)",gamma=4)

## Predict numbers at age for model 4

Nage.model4=lapply(models[[4]],predict)

## plot simple survey index for model 4

sIndexModel4=sapply(Nage.model4,function(x) colSums(x)/nrow(x))

matplot(2001:2011,t(log(sIndexModel4)),type="b",ylab="log(I)")
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Supplemental Tables

Year \ Area 1 2 3

2001 862 2909 917
2002 646 1891 744
2003 744 1747 1054
2004 730 1417 1089
2005 1061 1056 779
2006 492 743 306
2007 398 1215 490
2008 934 1388 854
2009 910 1174 861
2010 995 1432 936
2011 1064 1637 912

Table 1: Number of age samples in Q1

Year \ Area 1 2 3

2001 1472 1735 957
2002 1268 1497 793
2003 1153 1681 962
2004 1218 1274 903
2005 868 1588 630
2006 1566 1868 863
2007 1343 1452 772
2008 1685 1248 729
2009 932 1270 691
2010 1683 1720 794
2011 1468 1364 640

Table 2: Number of age samples in Q3
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Supplemental Figures
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lected points marked by ’+’.
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along the route shown in figure 1 from models 1-6 for year 2001 Q1. The
x-axis corresponds to the position on the route from west to east, and the
vertical lines indicate the positions marked with a ’+’ on the map.
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Supplemental Figure 3: As figure 2, but for 2002 Q1.
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Supplemental Figure 4: As figure 2, but for 2003 Q1.
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Supplemental Figure 5: As figure 2, but for 2004 Q1.
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Supplemental Figure 6: As figure 2, but for 2005 Q1.
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Supplemental Figure 7: As figure 2, but for 2006 Q1.

9

89



Model 1

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 3

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 4

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Position on route

Model 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Position on route

2
3
4

Supplemental Figure 8: As figure 2, but for 2007 Q1.
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Supplemental Figure 9: As figure 2, but for 2008 Q1.
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Supplemental Figure 10: As figure 2, but for 2009 Q1.
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Supplemental Figure 11: As figure 2, but for 2010 Q1.
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Supplemental Figure 12: As figure 2, but for 2011 Q1.
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Supplemental Figure 13: As figure 2, but for 2001 Q3.
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Supplemental Figure 14: As figure 2, but for 2002 Q3.
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Supplemental Figure 15: As figure 2, but for 2003 Q3.
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Supplemental Figure 16: As figure 2, but for 2004 Q3.
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Supplemental Figure 17: As figure 2, but for 2005 Q3.
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Supplemental Figure 18: As figure 2, but for 2006 Q3.
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Supplemental Figure 19: As figure 2, but for 2007 Q3.
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Supplemental Figure 20: As figure 2, but for 2008 Q3.
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Supplemental Figure 21: As figure 2, but for 2009 Q3.
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Supplemental Figure 22: As figure 2, but for 2010 Q3.
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Supplemental Figure 23: As figure 2, but for 2011 Q3.

25

105



106 Paper III



Appendix F

Paper IV
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Abstract

Indices of abundance from fishery-independent trawl surveys constitute an important source of
information for many fish stock assessments. Indices are often calculated using area stratified
sample means on age-disaggregated data, and finally treated in stock assessment models as inde-
pendent observations.

We evaluate a series of alternative methods for calculating indices of abundance from trawl
survey data (Delta-Lognormal, Delta-Gamma, and Tweedie using Generalized Additive Models)
as well as different error structures for these indices when used as input in an age-based stock
assessment model (time-constant vs time-varying variance, and independent versus correlated
age groups within years).

The methodology is applied to data on North Sea herring (Clupea harengus), sprat (Sprattus
sprattus), and whiting (Merlangius merlangus), and the Delta-Lognormal model is found best in
terms of internal and external consistencies as well as AIC/BIC. Finally, stock assessments using
the derived indices are presented, and the importance of selecting the most appropriate method
for calculating indices as well as their error structure is highlighted.

Keywords: Age-based stock assessment, Survey Indices, Generalized Additive Models

1. Introduction

Many fish stock assessments are based on two key sources of input data: 1) The removals
from the population due to commercial fishing and 2) Indices of abundance based either on catch
and effort data from commercial or recreational fisheries, or from independent scientific surveys
(Maunder and Punt, 2004). An index of abundance is a relative measure of e.g. the biomass or
number of individuals in a population and most often proportionality is assumed:

Iy = qNy
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Email address: cbe@aqua.dtu.dk (Casper W. Berg)
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In this paper the focus will be on the analysis of fishery-independent survey data to create
age-disaggregated indices of abundance, as well as on the subsequent use of these as input for a
stock assessment model.

Several quite different approaches to the analysis of survey data exist depending on the design
of the experiment, see Kimura and Somerton (2006) for a review. A popular method is based on
stratified analysis, where the region of interest is divided into smaller strata and assuming that
abundance is homogeneous within strata. The mean abundance is then calculated for each stra-
tum and summed to give an index for the whole region. The probably simplest procedures uses
the arithmetic mean within strata (e.g. ICES (2012c)). A slightly more refined alternative is the
use of delta-distributions (e.g. Pennington (1983)), where zero values are modelled separately
and the positive values are assumed to be log-normal (or Gamma) distributed. The mean in the
delta-distribution is a more efficient estimator when the nonzero values are well approximated
by a lognormal distribution, specifically it is less sensitive to the occasional huge catches that
are often found in marine data sets (Pennington, 1996). Discrete valued distributions such as the
negative binomial (Kristensen et al., 2006) and the Log-Gaussian Cox Process (LGCP) (Lewy
and Kristensen, 2009) have also been applied, but age-disaggregated indices are typically not
discrete valued, so these will not be considered in this study. More recently the Tweedie distri-
bution (Tweedie, 1984) has been suggested as an alternative to delta-distributions (Candy, 2004;
Shono, 2008).

When external factors other than changes in abundance affect the catch rate, these need to be
corrected for in order to obtain an unbiased index (Maunder and Punt, 2004). To this end, more
advanced methods such as generalized linear models (GLMs), generalized linear mixed models
(GLMMs) and generalized additive models (GAMs) have previously been applied to correct for
effects such as spatial position, depth, and time of day (Stefansson, 1996; Petrakis et al., 2001;
Piet, 2002; Adlerstein and Ehrich, 2003; Beare et al., 2005). GAMs permit non-linear smooth
relations between the response and the explanatory variables, so spatial stratification can conve-
niently be replaced by smooth functions of geographical coordinates (so-called splines). When
stratification is used, there will be a trade-off between loss of spatial resolution due to assumption
of homogeneity within strata and problems with few or missing values when a too fine-grained
stratification is used. When using GAMs, this trade-off problem is replaced with an easier prob-
lem of smoothness selection for the splines, which can be solved more less automatically using
modern software packages (Wood, 2006a).

Although useful on their own, one of the main uses of indices of abundance is to use them as
input to an assessment model in combination with commercial catch data to obtain estimates of
biomass and fishery mortality. The way that trawl survey data enters into many stock assessment
models, can roughly be described as follows: 1) Numbers-at-length data from individual hauls
are preprocessed and reduced to one matrix of numbers-at-age (the index of abundance). 2) Each
number in this matrix is taken as an observation of the relative abundance-at-age in the stock
assessment model (often assumed independent and with constant CV through time). Although
often separated for convenience, we will demonstrate that more information can be extracted
from the data by combining the analyses: Instead of reducing the information from a survey
to one matrix, we will use three matrices (by adding standard deviations and correlations), and
by actually carrying out the stock assessments with different distributional assumptions about
the survey indices, we are provided with additional means to evaluate the impact of changes
in the preprocessing step. This paper is therefore organized as follows: The first part of this
paper deals with a comparison of the stratified mean method (SMM) with three variations of the
Delta-GAM approach for calculating indices of abundance from trawl survey data, and second
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part of this paper deals with performing stock assessments using different assumptions on the
error structure for the survey indices derived in the first part. Using bootstrap methodology we
will show, that there can be considerable positive correlations between abundance indices by age
within the same year, and that including these correlations in a stock assessment model improves
the model.

2. Materials and methods

2.1. Data

The data sets consist of 20 years (1992-2011) of biannual (Q1 and Q3) trawl survey data from
the International Bottom Trawl Survey (IBTS) in the North Sea, downloaded from the DATRAS
database (www.datras.ices.dk, data downloaded 2012-04-30). The commercial catch-at-age data,
natural mortalities, proportion mature, and weight-at-age used in the stock assessments are taken
from ICES (2012a) for sprat and herring and from ICES (2012b) for whiting, and the number of
age-groups used in the analyses are also the same as in these two sources. Numbers-at-length
from the trawl surveys are first converted to numbers-at-age using the method described Berg
and Kristensen (2012) and implemented in Kristensen and Berg (2012), see online supplemental
materials for details.

2.2. Stratified Mean Method

The North Sea is divided into so-called statistical rectangles each of size 1◦ longitude x 0.5◦

latitude, where (ideally) two hauls should be taken each quarter (each by different countries),
each separated by at least 10 n.m. (ICES, 2010). The survey index is calculated using the
stratified mean method (SMM) by taking the mean catch per rectangle, and then the mean over
all rectangles in the North Sea. This method is similar to the current way that survey indices for
use in assessment are calculated for stocks in the North Sea (ICES, 2012c), and is thus a relevant
baseline to compare with.

2.3. Delta-GAM and Tweedie

The delta-models consist of two parts: one that describes the probability for a non-zero
catch (binomial response), and another that describes the distribution of a catch given that it
is non-zero (positive continuous). We will consider both the lognormal distribution and the
Gamma distribution for the positive values. We assume the following relationship in both parts
of the model between the expected response (µ, which is numbers-at-age or 1/0 for positive/non-
positive catch depending on the model) and external factors:

g(µi) = Year(i) + U(i)ship + f1(loni, lati) + f2(depthi) + f3(timei) (1)

where Year(i) maps the ith haul to a categorical effect for each year, U(i)ship ∼ N(0, σu) is a
random effect for the vessel collecting haul i, f1 is a 2-dimensional thin plate regression spline
on the geographical coordinates, f2 is a 1-dimensional thin plate spline for the effect of bottom
depth, and f3 is a cyclic cubic regression spline on the time of day (i.e. with same start end end
point). The function g is the link function, which is taken to be the logit function for the binomial
model, and the logarithm for the strictly positive responses in the Gamma and Tweedie models.
The lognormal part of the delta-lognormal model is fitted by log-transforming the response and
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using the Gaussian distribution with a unit link. Each combination of quarter and age group are
estimated separately.

The length to age conversion may produce numbers that are very close to zero, which poses
problems for the log-normal distribution and Gamma distribution when the mean is far from zero
(Myers and Pepin, 1990; Kimura and Somerton, 2006). This can be remedied by simply treating
values below some small chosen constant k as zero, and thereby move these from the positive
component of the delta-distribution to the zero component (Folmer and Pennington, 2000). A
preliminary analysis using histograms of residuals from the positive part of the delta models
indicated that k = 0.01 was a reasonable choice (not the often ad-hoc chosen value of k = 1,
which resulted in clearly non-Gaussian residuals in positive part of the delta-lognormal model).

The likelihood of the delta-distributions, can be found by fitting the model for the zero and
positive observations independently, and utilizing that the full likelihood is given by

L =
∏

i;yi=0

P(yi = 0; θZ)
∏

i;yi>0

P(yi > 0; θZ) f (yi; θP) (2)

However, since the delta-lognormal model is fitted using the log-transformed response, we
cannot compare likelihoods with models for the untransformed response directly, but since the
log-transformation is monotone, we can apply the formula for the change of variable Z = log(Y)
to get

L =
∏

i;yi=0

P(yi = 0; θZ)
∏

i;yi>0

P(yi > 0; θZ) f (log(yi); θP)
1
yi

(3)

which enables the comparison of the delta-lognormal models with the delta-gamma and
Tweedie models, when the former has been fitted on the log-transformed response.

The Tweedie distribution has been proposed as a interesting alternative to delta-distributions
(Tweedie, 1984; Candy, 2004; Shono, 2008) due to its nice interpretation as a compound Poisson-
gamma distribution, and its ability to handle both zero and positive values simultaneously.

The Tweedie distribution has three parameters and is a member of the exponential family
with variance Var[yi] = φµ

p
i . For 1 < p < 2 this distribution has support on all non-negative real

number, i.e. a continuous density on the positive reals with a point mass in zero. In this case it
is also known as a compound Poisson distribution, because it is equivalent to the distribution of
Z = W1 + ... + WN , where Wk are independent identically distributed Gamma variables, and N
follows a Poisson distribution (Candy, 2004). The fitting of GAMs with a Tweedie distribution
for 1 < p < 2 can be accomplished with the mgcv-package in R, which uses the series evaluation
by Dunn and Smyth (2005) for fixed values of p. We use the same strategy as Candy (2004)
and Shono (2008) to fit p, which is by optimizing the profile likelihood for this parameter. The
mean value specification for the Tweedie model is chosen to be identical to that of the Delta-
distributions. The thin plate splines are estimated with shrinkage smoothing (Wood, 2006a, pg.
160), and smoothness selection is carried out with the marginal likelihood method (Wood, 2011).

2.4. Extracting the index of abundance from the models
The usual procedure for GLMs is to use the estimated year effects as the indices of abun-

dance (Maunder and Punt, 2004). For the Delta-models this is not possible, and instead we must
integrate the fitted abundance surface to obtain the index (Stefansson, 1996).

4

111



However, when covariates such as depth, that are measured as part of the sampling procedure,
are included in the model, it is necessary to obtain the same covariates for each point in space that
we would be integrating over. Although bathymetri maps could be used for depth, other variables
might not be as easily obtainable. Another possible problem with a fine-grained integration of
the abundance surface, is that we might be extrapolating to areas where the model is invalid. This
could be extremely deep or shallow areas, where the estimated depth effect is inappropriate, or
in-trawlable areas, where the abundance is unknown. To overcome these problems, we choose
the following procedure to obtain the abundance estimates for each year: 1) Divide the survey
area into small subareas of approximately equal size. 2) For each sub-area where at least one haul
has been taken, choose one haul position to be representative of this sub-area, e.g. the one closest
to the centroid of all hauls in the given sub-area. 3) Take the sum over all predicted abundances
using the same reference vessel (or zero in case of a random vessel effects) in the chosen haul
positions. This approach has the advantage, that all covariates are immediately available given
that they were collected at the chosen haul positions, and it avoids the problems that could be
associated with extrapolation in space. The resulting grid is shown in supplemental figure 1.

2.5. Estimating the statistical distribution of the indices

Often only the point estimates of the indices are used as input to stock assessment models,
and additional knowledge about the distribution of the indices is thus discarded. However, var-
ious methods exist for obtaining approximations of the probability distribution of the indices
from the Delta-GAM and Tweedie models, e.g. Wood (2006a,b), as well as for the SMM ICES
(2012c). Bootstrapping is a widely used technique when analytic methods are infeasible, and
has previously been applied to fisheries survey data to deal specifically with the variability due
to sub-sampling of age and length (e.g. Cervino and Saborido-Rey (2006)). We therefore apply
bootstrapping to estimate the distribution of the indices.

In the following we assume, that the length distribution is known without error, and that all
variability is due to sampling variability from the hauls and the age-sampling procedure. This is
reasonable since the number of length samples is much greater than the number of age samples.
If we sample entire hauls and thereby also the age samples in the bootstrap procedure, we will
automatically incorporate the uncertainty due to the age sampling and possible correlations due
to clustering of similar age groups. We can also obtain estimates of the correlation between
the different age groups in our estimated indices of abundance from the bootstrap samples. The
bootstrapping is carried out as follows:

Let ny denote the number of hauls in a given year, and let a haul consist of both its associated
length distribution as well as the age samples taken from that particular haul.

1. Create a bootstrap sample of the hauls, i.e. for each year sample ny hauls with replacement
from the data from the given year.

2. For each year, use the bootstrapped age data to estimate an ALK, and convert from length
to age for each haul.

3. Estimate indices of abundance by age from the bootstrapped data set.

We choose to use 400 bootstrap replicates per survey to estimate standard deviations and
correlation matrices for every vector of log-indices by age for a given year, log Iy.

Although it would be possible to use the estimated standard deviations on log Iy directly in the
stock assessment model, these typically underestimates variability between Iy and the estimated
values of qNy from the stock assessment model (Maunder and Punt, 2004). This can be due to
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violations of some of the assumptions in the catch standardization model, the stock assessment
model, or both, e.g. that that catchability q is not constant. We will discuss further the choice
error structure in section 2.6.

2.6. Stock assessment model

While internal and external consistencies provide some means to evaluate survey indices,
they rely on assumptions of constant total mortality over time (Berg and Kristensen, 2012).
Hence, a more appropriate way to evaluate the survey indices when mortality varies over time
is to carry out full stock assessments using a statistical model, such that we utilize the extra in-
formation we have from the commercial catches and thereby estimate a time-varying mortality.
State-space models allows separation of process and observation errors, which leads to an objec-
tive way of weighting each data source in the estimation process. Briefly, a state-space model
consists of a set of states describing the complete system at time t, a set of transition (or system)
equations describing how the states at time t relate to those at time t + 1, and a set of observation
equations relating states with observations. All of these relations must be defined in terms of
probability distributions whose parameters should be estimated from the data. For a more thor-
ough discussion of the state-space approach to stock assessment models, see e.g. Gudmundsson
and Gunnlaugsson (2012). For this application, the states consist of log-transformed numbers-at-
age log N1, . . . , log NA and fishing mortalities log Fi1 , . . . , log Fin corresponding to different age
classes and total commercial catches.

Using yearly time-steps (and replacing t with y) the transition equations for log Ni are:

log N1,y = log N1,y−1 + εR,y (4)
log Na,y = log Na−1,y−1 − Fa−1,y−1 − Ma−1 + εS ,a,y 2 ≤ a ≤ A (5)

log NA,y = log
(
elog NA−1,y−1−FA−1,y−1−MA−1 + elog NA,y−1−FA,y−1−MA

)
+ εS ,A,y (6)

where Ma is natural mortality at age a, which is assumed to be known a priori, Fa−1,y−1 is
the total fishing mortality. A simple random walk model was chosen for the recruitment process
(eq. 4), because it is our experience that there most often is no gain from switching to functions
of SSB such as Ricker or Beverton-Holt (Gudmundsson and Gunnlaugsson (2012) made the
same observation and used a similar simplification). The process errors on log N are assumed
to be zero-mean independent normal distributed with two separate variance parameters, one for
recruitment σ2

R, and one for survival σ2
S . For the fishery mortalities, F, a correlated random walk

model is assumed (note, that the age index is now omitted indicating that we are dealing with
vectors rather than scalars as above):

log Fy = log Fy−1 + εF,y (7)

such that εF,y ∼ N (0,ΣF) and ΣF,i j = σ2
Fρ for i , j and ΣF,ii = σ2

F , where σF and ρ are
parameters to be estimated. When ρ = 1.0 we have the special case of a multiplicative structure
in log F whereas ρ = 0 allows for completely independent development by age group in fishery
mortality over time.

Assuming independent observations, the observation equations become:
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log Ca,y = log
(

Fa,y

Za,y
(1 − e−Za,y )Na,y

)
+ εC

a,y (8)

log I(s)
a,y = log

(
Q(s)

a e−Za,y
D(s)
365 Na,y

)
+ ε(s)

a,y (9)

where Za,y = Ma + Fa,y is the total mortality rate, D(s) is the number of days into the year
where the survey s is conducted, and Q(s)

a are catchability parameters, εC
a,y ∼ N(0, σ2

C), and
ε(s)

a,y ∼ N(0, σ2
s).

Now, to accommodate correlated observations of log Iy we change (9) to

log I(s)
y = log

(
Q(s) ◦ e−Zy

D(s)
365 Ny

)
+ ε(s)

y (10)

where ε(s)
y ∼ N

(
0,Σy

)
(note again, that the scalars in eqn. 9 are replaced with vectors con-

taining all age groups at once, and “◦” denotes element-wise multiplication).
The covariance matrices Σy are the empirical covariance matrices from the bootstrapped log-

indices described in section 2.5. The effect of using a multivariate normal distribution rather
than the independent normal distribution for each age group can be examined by inspection of
the scaled residuals (e.g., Myers and Cadigan, 1995) of the survey indices:

Σ
− 1

2
y

(
I(s)
y − Î(s)

y

)

Rather than working directly with the estimated covariance matrices, we choose instead
to parameterize them in terms of correlation matrices and vectors of standard deviations Σ =

diag(σ)Rdiag(σ). In order to account for additional uncertainty on the survey indices other than
that which is accounted for in the bootstrapping procedure, we examine the following error struc-
tures:

σt = σ, Σt = σtI (11)
σt = wtσ, Σt = σtI (12)

σt =

√
σ2 + w2

t , Σt = σtI (13)

σt = σ, Σt = diag (σt) Rtdiag (σt) (14)
σt = wtσ, Σt = diag (σt) Rtdiag (σt) (15)

σt =

√
σ2 + w2

t , Σt = diag (σt) Rtdiag (σt) (16)

where the observation variance at time t, σt is either constant through time (σ), time-varying
and proportional to the estimated standard deviation from the bootstrapping procedure, wt, or
time-varying with a total variance given by the sum of wt and an additional constant variance
component. In all cases σ is a parameter to be estimated, while wt and the correlation matrices
Rt are assumed to be known without error from the bootstrap procedure, and I is the identity
matrix.
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2.7. Model evaluation

2.7.1. AIC/BIC
To evaluate which distribution (log-normal, Gamma, or Tweedie) that provide the best fit to

the individual haul data we compare the AIC and BIC values for each distribution. Since we
are using GAMs, we replace the number of observations with the effective degrees of freedom
(edf, see Wood (2006a)). Since age groups are estimated independently, we can simply add
the log-likelihoods and edfs for each age group to obtain one the AIC/BIC for all age groups
combined.

2.7.2. Internal and external consistency
We define the internal consistency (IC) as the correlation between logIy,q,a and logIy+1,q,a+1

and external consistency as the correlation between logIy,q1,a and logIy,q3,a, where y,q, and a
denotes year, quarter and age respectively. Positive consistencies implies that we can “follow the
cohorts” within (IC) and between (EC) surveys, (see e.g. Berg and Kristensen (2012) for details).

2.7.3. Areas of confidence ellipses
Since we cannot use any standard tests for comparing different data sets, we will compare

the precision with which we can estimate the spawning stock biomass (SSB) and average fishing
mortality using the SMM and GAM approaches respectively. It is intuitively clear, that consis-
tent data sources with a low amount of noise will lead to smaller confidence ellipses and hence
higher precision than inconsistent data sources with a larger amount of noise given time-series of
equal length. Confidence ellipses for pairs of parameters are constructed from the corresponding
marginals of the estimated covariance matrix for the parameters, and from pairs of derived quan-
tities using the delta method (Oehlert, 1992). The area of a confidence ellipsis is proportional to√

e1e2, where e1 and e2 are the eigenvalues of the corresponding covariance matrix.

2.7.4. Likelihood comparison
For selection between error structures, the above criteria is not appropriate, since change to

a more appropriate model for the observations will not necessarily lead to smaller confidence
ellipses. Instead, likelihood based criteria such as AIC or BIC are appropriate, but since all
the error structures under consideration has the same number of parameters in the stock assess-
ment model, the choice of penalty due to the number of parameters does not matter and direct
comparison of likelihoods are possible.

2.8. Software

The trawl data was handled in R (R Development Core Team, 2012) using the DATRAS
package (Kristensen and Berg, 2012), and the GAM models were fitted using the mgcv package
(Wood, 2006a). The source code for the GAM models can be obtained by contacting the cor-
responding author. The stock assessment models were fitted using AD model builder (Fournier
et al., 2012), and the entire source code as well as data for the models are available online at
www.stockassessment.org (look for the assessments named “NS-Sprat-MV”,“NS-Herring-MV”,
and “NS-Whiting-MV”).
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Figure 1: Estimated relative survey indices by species, quarter, age and method. Scaling on y-axis is irrelevant since
indices are relative.

3. Results

3.1. Calculation of indices
3.1.1. Sprat

The delta-lognormal model (DLN) gives the best overall fit to the haul data when compared
to the delta-gamma and the Tweedie models using both AIC as well as BIC as the criterion
(Supplemental table 1). The estimated depth effects are rather weak, but there seems to be a
consistent tendency for the catch rate to decline on depths below 50 m. With the exception of
age 1 in Q1, catch rates during daylight are significantly larger than in the night time. Sprat are
mainly caught in the southern parts of the North Sea both in Q1 and Q3. Age group 1 seems to
be confined to a smaller area than the older age groups both in Q1 and Q3. In Q1 high catch rates
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Lognormal Gamma Tweedie Lognormal 2 Strat.Mean Quarter Species
0.27 0.18 0.21 0.13 0.08 IC(Q1) Sprat
0.60 0.50 0.32 0.61 0.20 IC(Q3) Sprat
0.52 0.62 0.59 0.47 0.46 EC Sprat
0.61 0.56 0.48 0.60 0.06 IC(Q1) Herring
0.68 0.63 0.71 0.62 0.66 IC(Q3) Herring
0.59 0.54 0.53 0.50 0.46 EC Herring
0.73 0.76 0.82 0.80 0.88 IC(Q1) Whiting
0.87 0.86 0.85 0.83 0.85 IC(Q3) Whiting
0.83 0.82 0.82 0.84 0.78 EC Whiting

Table 1: Average consistencies (average over ages 1-5). The columns “Lognormal”, “Gamma”, and “Tweedie” cor-
respond to indices calculated using equation 1 with the respective distributions, whereas “Lognormal 2” is a delta-
lognormal model with year effects only in equation 1. Best consistencies are shown in bold face.

of older age groups are found near the English channel, which constitutes the southern boundary
of the assessment area (Supplemental figure 2). This could cause problems with the Q1 index, if
substantial parts of the population may be found south of the assessment area in Q1.

The delta-models are clearly much better than the stratified mean model in terms of overall
consistencies, and the DLN the best overall (table 1). The stratified mean method seems to have
the most problems with the older age-groups in terms of bad consistency, and the same pattern
can be found in the DLN model with year effects only. This could indicate, that the spatial
distribution of age 1 is less consistent than that of the older age groups, so the time-constant
spatial effect might not be completely appropriate for age group 1. The Q3 indices have much
higher consistencies than the Q1 indices, although the estimated standard deviations on the log
indices are lower on average in Q1 than Q3 (figures 14 and 16, supp. mat). This could for
instance be linked to the problems with high catch rates near the southern boundary in Q1.

3.1.2. Herring
As for sprat, the DLN model gives a better fit to the haul data than the delta-gamma and the

Tweedie model (Supp. table 5). The estimated depth effects differ clearly between both age-
groups and quarters, but with a overall trend of older age groups being mainly caught in deeper
waters than age group 1. Catch rates for herring are higher in the day time than during night,
with the biggest contrast found in Q3. The spatial distribution of herring catches varies greatly
between age groups and quarters. In Q1, there are very high catch rates of older age groups on
the boundaries of the stock assessment area, both in the English channel and near the Norwegian
deep. There are no such apparent problems with the catches in Q3.

The stratified mean model performs very poorly compared to the GAMs in Q1 with respect
to internal consistency, but in Q3 the differences are smaller. Overall, the DLN model provides
the best consistencies.

In the final year (2011) there are some large discrepancies between the SMM and the GAMs
with the former indicating a much higher abundance, which may influence the assessment sub-
stantially. In 2003 Q1 the situation is reversed, the GAMs suggest a much higher abundance
than the SMM. Some light is shed on this behavior when the distributions of catch in numbers
(regardless of age) are examined closer: In 2003 we have the observed statistics [Proportion of
zeroes; Median; Mean; Max] = [ 9.0%; 153; 1499; 64440] whereas the same statistics in 2011
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are [12.0%; 36.5; 2152; 174400], i.e. there is a large maximum catch in 2011 which results in
a larger mean value than in 2003, although e.g. the median observation in 2011 is much lower
than in 2003.

3.1.3. Whiting
Again, the DLN model fits the haul data for whiting better than the two other delta distribu-

tions. In both quarters there are significant depth effects for all age groups. Like in the herring
case younger age groups tends to be caught in shallower waters than the older age groups. The
maps of their spatial abundance reveal that the older ages are farther from the English and Scot-
tish coast, but there are no alarmingly high catch rates near near the boundaries of the assessment
area in either quarter.

We choose to look at some catch statistics in two years (2000 and 2009) with substantial
discrepancies between the SMM and GAMs. In the year 2000 we have [Proportion of zeroes;
Median; Mean; Max] = [2.5%; 400; 1547; 20390] compared to [10.6%; 47.5; 679.2; 27510] in
2009. In both years the distribution are highly skewed to the right, but the large maximum in
2009 drives the mean value to be not that far from the mean over the whole series, although the
median value and proportion of zeroes suggests a low abundance year compared to the whole
series, where the corresponding statistics are [4.1%; 124.0; 884.9; 170100].

3.2. Stock assessments

The stratified mean method differs quite drastically from the DLN methods in the last years
(e.g. Sprat in Q3, Herring in Q1, cf. figure 1). Since the stratified mean estimates are much
larger than the corresponding DLN estimates, the former yields higher estimates of SSB and
lower estimates of F compared to the latter (change in [SSB,F̄] in final year: [+37%,-11% ] for
sprat, [+49%,-73%] for herring, and [+29%,-43%] for whiting when using SMM, see figure 2).
The confidence ellipses of the the SSB and F̄ estimates in the final year (figure 3) also illustrate
the substantial differences between the SMM and the DLN model. For all three stocks the areas
of these confidence ellipses are smaller when using input from DLN model compared to the
SMM under the assumption of independent observations in each age group for both methods.
This implies, that there is more consistency among the data sources based on the DLN approach,
since highly inconsistent and noisy data sources will result in more uncertain estimates about the
state of the stock. Including correlations between age groups within years gives slightly larger
confidence ellipses for all stocks (see figure 3). This is not too surprising, since having correlated
data reduces the effective number of observations and hence should give larger uncertainties. It
is worth also to notice, that the confidence ellipses from the model with correlations included are
still smaller than the ones from the SMM.
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Figure 2: Estimated spawning stock biomasses (left column) and average fishing mortalities (right column) for sprat (top
row), herring (middle row), and whiting (bottom row). The shaded areas represent 95% marginal confidence intervals
calculated using the lognormal indices with correlations.
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Figure 3: 95% contour ellipses for the joint distribution of log F̄ and log(SSB) in the last data year (2011) for sprat (top
row), herring (middle row), and whiting (bottom row).
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Figure 4: Whiting: survey standardized residual plots from the fitted assessment models.

The joint negative log-likelihoods for the different error structures (eqns 11–16) are shown in
table 2. Since smaller values are to be preferred, the errors on the logarithm of the survey abun-
dance indices are more likely to be distributed with the assumed multivariate normal structure
than to be independent among age groups within years. The change in likelihood by changing
from constant variance (eqn. 11) to time-varying (eqns. 12 or 13) is minor compared to the
differences between uncorrelated and correlated errors, though there is a slight improvement for
sprat and herring, but for whiting the equal variance assumption has the slightly better likelihood.

The standardized residuals for the survey data obtained from the stock assessment for whit-
ing using the SMM, DLN model and eq. 11, and DLN model and eq. 16 are shown in figure 4.
The SMM residuals are clearly problematic, there seems to be problems with correlations across
ages as well as time, and maybe even cohorts for the Q3 index. The DLN residuals are somewhat
better, although the Q1 index seems to have an overweight of negative values in the beginning
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Model (11) (12) (13) (14) (15) (16)
Correlated No No No Yes Yes Yes

σt σ wtσ
√
σ2 + w2

t σ wtσ
√
σ2 + w2

t

sprat 267.79 266.05 266.25 255.18 253.63 253.73
herring 257.66 255.44 255.07 218.44 217.63 216.34
whiting 163.17 165.44 163.24 131.87 134.04 131.76

Table 2: Negative log likelihood from the stock assessment models using different survey data observation error struc-
tures.

of the time-series for age 2+, and consequently an overweight of positive residuals in the end,
but vice versa for age group 1. The differences between the correlated and uncorrelated DLN
residuals are more subtle than between the SMM and DLN, but there are some small improve-
ments. The corresponding residuals from the sprat and herring assessments can be found in the
supplemental materials. For these two species there are generally less differences between the
patterns in the residuals between the three models than for whiting. The Q3 herring index has
a series of positive residuals in the beginning of the time-series followed by negative ones for
age 2+ regardless of the model for the indices. The SMM indices seem to suffer from variance
inhomogeneity with larger residuals occurring in the last five years in Q1 and the first six years
in Q3. The DLN indices look better with respect to homogeneity of variance. The residuals from
the sprat assessments look very similar between methods, and there are no immediately apparent
problems. The similarity between using uncorrelated versus correlated observations is expected
here, since the correlations found for sprat were minor compared to those for herring and whiting
(Supp. mat.).

The distribution maps and internal/external consistencies suggested that the Q3 indices de-
scribed the sprat and herring stocks better than the Q1 indices. This can be investigated further
by comparing the estimated precisions (inverse variances) from the stock assessment model. For

sprat, the ratio of observation variances (using eq. 11) is estimated to be
σ2

Q1

σ2
Q3

= 1.15, for her-

ring the same number is 1.4, and for whiting 2.4, and thus we must conclude that the Q3 survey
indeed provides a more precise index of abundance for these three species than the one in Q1.

4. Discussion

We have considered statistical aspects in the joint process of calculating indices of abundance
by age and using them as input for a stock assessment model. The first problem was how to
derive the indices from individual hauls from trawl survey data. To this end we compared the
method of stratified sample means, which is currently used for the stocks considered, with a
Delta-Lognormal, Delta-Gamma, and Tweedie model, and the Delta-Lognormal was found to
provide the best fit. This is in contrast with the results found for silky shark and yellowfin tuna
by Shono (2008), where a Tweedie model gave the best results. More importantly, the SMM
method examined in this study is similar to the one used by most survey indices used as basis for
management advice in ICES, including the three species considered.

The advantage of using the proposed DLN model over the SMM was further confirmed by
carrying out stock assessments using the indices – higher precision on estimates of SSB and F̄
was obtained with the DLN indicating that it provided the more accurate index.
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Although indices from the SMM are simple to compute and do not need to be updated back
in time once new data are available, it has certain shortcomings compared to a proper statistical
model such as the DLN model. One problem, which has long been known, is the sensitivity to
extraordinary large catches (Pennington, 1996). When such huge catches occur at the end of the
time-series, as they did in our examples, it will lead to overly optimistic biomass estimates. An-
other problem is the inability of the SMM to control for effects such as depth, gear, environmental
factors etc. on the catch rate, although these effects were, although statistically significant, minor
compared to the effect of large catches for the cases in this study. These problems are all well
described in the literature (Pennington, 1996; Stefansson, 1996; Maunder and Punt, 2004), al-
though the majority have applied area stratification and/or GLM methodology in place of GAMs
to deal with spatial heterogeneity and uneven sampling effort. Recent studies (Berg and Kris-
tensen, 2012; Maxwell et al., 2012) have advocated the use of GAMs and 2D-splines to replace
area stratification, which, in addition to providing more accurate estimates using fewer param-
eters, alleviates the modeller of problems with selecting the strata and possibly the subsequent
problems of having few or missing data points for some combinations of years and strata. The
suitability of GAMs to interpolate missing values is of particular relevance to the IBTS survey
considered in this study, since in the later years the survey area was expanded to the south. There
are (at least) three possible options if one wishes to include these additional hauls in the index
calculations: 1) Define one big southern stratum that includes at least one haul in all years and
assume homogeneity 2) extrapolate abundances in the years with missing data from neighbor-
ing sampled regions, or 3) if there is a consistent spatial pattern between years, then estimate
a time-invariant spatial effect as in the present study and use this to predict the missing values.
The choice between these options should be based on the validity of the associated assumptions.
For instance, if there is a high degree of spatial correlation but with varying positions of high
abundance areas one of the two first options might be more appropriate, whereas given a highly
consistent spatial pattern option three should be preferred. If the expansion of the surveyed area
is substantial, extrapolation should be done with caution.

The second problem addressed in this paper was whether it was reasonable to assume un-
correlated observations within years and/or time-constant variances for the indices. Utilizing the
estimated standard deviations on the log-indices from the DLN model in the assessment model
did not change the results much regardless of the variance parameterization. One obvious reason
could be, that the estimated SDs were rather constant through time. Also, there is a fundamen-
tally different interpretation of the SDs from the DLN models and those from the assessment
model (Maunder and Starr, 2003), i.e. the main source of the assessment SD is the discrep-
ancy between the measured survey abundance and the true population, and not the measuring
uncertainty from the experiment itself. In contrast to the estimated SDs, including the estimated
correlations improved the likelihood of the data substantially, and did prove to have some impact
on the assessment results. Although our motivation is the same as in Walters and Punt (1994)
and Myers and Cadigan (1995), our method differ in that we are using bootstrap estimates from
DLN model to estimate the correlations as opposed to estimating the correlation structure within
the assessment model. When estimated within the assessment model using indices only, the in-
formation from the individual hauls is not included, and therefore the only option is to assume a
simple correlation structure with few extra parameters due to the limited number of data points.
An important reason why including correlations among age groups can improve assessments is
given in Myers and Cadigan (1995): Say we observe higher abundances than expected in the final
year of the older age groups and these are known to be positively correlated with the youngest
age group, then we can utilize this information to heighten the estimates of the youngest age
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group even though this cohort has only been observed once. However, the estimated correlations
in this study were found to be greatest between the oldest age groups whereas the estimates of
the youngest age group were often nearly uncorrelated with those of the older age groups. As-
suming a common correlation among age groups as in Walters and Punt (1994) and Myers and
Cadigan (1995) in this situation would be problematic – it could improve the estimates of older
age groups at expense of the youngest, which is undesirable for forecasting purposes.

The second problem addressed in this paper was whether it was reasonable to assume un-
correlated observations within years and/or time-constant variances for the indices. Utilizing the
estimated standard deviations on the log-indices from the DLN model in the assessment model
did not change the results much regardless of the variance parameterization. One obvious reason
could be, that the estimated SDs were rather constant through time. Also, there is a fundamen-
tally different interpretation of the SDs from the DLN models and those from the assessment
model (Maunder and Starr, 2003), i.e. the main source of the assessment SD is the discrep-
ancy between the measured survey abundance and the true population, and not the measuring
uncertainty from the experiment itself. In contrast to the estimated SDs, including the estimated
correlations improved the likelihood of the data substantially, and did prove to have some impact
on the assessment results. Although our motivation is the same as in Walters and Punt (1994) and
Myers and Cadigan (1995), our method differ in that we are using bootstrap estimates from DLN
model to estimate the correlations as opposed to estimating the correlation structure within the
assessment model. When estimated within the assessment model using indices only, the informa-
tion from the individual hauls is not included, and therefore the only option is to assume a simple
correlation structure with few extra parameters due to the limited number of data points. An im-
portant reason why including correlations among age groups can improve assessments is given
in Myers and Cadigan (1995): Say we observe higher abundances than expected in the final year
of the older age groups and these are known to be positively correlated with the youngest age
group, then we can utilize this information to highten the estimates of the youngest age group
even though this cohort has only been observed once. However, the estimated correlations in
this study were found to be greatest between the oldest age groups whereas the estimates of the
youngest age group were often nearly uncorrelated with those of the older age groups. Assuming
a common correlation among age groups as in Walters and Punt (1994) and Myers and Cadigan
(1995) in this situation would be problematic – it could improve the estimates of older age groups
at expense of the youngest, which is undesirable for forecasting purposes.

We should note, that several alternative methods exist for dealing with the problems discussed
in this study. In so-called integrated assessment models (Maunder and Punt, 2004) the raw data
is handled within the assessment model, i.e. age-length relationships and index calculations
are computed as part of the assessment instead of as a preprocessing step like in the present
study. The advantage of this is that the uncertainty from the preprocessing step can be easily
propagated onto the final assessment output (at least when this is formulated as a maximum
likelihood problem). However, assessment models are often, as in this study, quite complex
and computer intensive, so reducing the dimensionality of the data in advance by preprocessing
can be necessary. This study shows, that in order to avoid too much loss of information, it
is important to consider not only point estimates from the preprocessing step, but to include
standard deviations and correlations as well, and to continuously re-evaluate such preprocessing
steps. Also, we must recommend that the SMM is no longer used to create indices of abundance
for the highly aggregated stocks considered in this study.
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Calculation of age-length keys

Age-length keys are estimated using the spatially varying continuation ratio
logit model described in [Berg and Kristensen(2012)]. Briefly, the procedure
consists of estimating the probability distribution of age as a smooth func-
tion of length and geographical coordinates for each combination of year
and quarter. Given K age groups, the continuation ratio model can be esti-
mated by combining K− 1 separately fitted binomial models, which models
the conditional probability, π of a fish being of age a given that it is at least
of age a. The model used for the conditional probabilities is

logit(πayq[xi]) = αayq + βayqli + sayq(loni, lati) (1)

where i denotes the ith fish, l denotes the length of the fish, (lon, lat) the
geographical coordinates where the haul was taken (longitude and latitude),
sa is a thin plate spline in two dimensions, and (αa, βa) are ordinary regres-
sion parameters to be estimated. Subscripts y and q have been included
here to indicate that each combination of year and quarter should have a
distinct set of parameters to account for differences in population structure.
The amount of smoothness imposed on the spline is selected using the BIC
criterion.

Supplemental Tables

Lognormal Q1 Gamma Q1 Tweedie Q1 Lognormal Q3 Gamma Q3 Tweedie Q3

LogLik -72644.72 -74605.70 -80790.58 -38616.95 -39517.39 -44946.36
edf 714.91 889.02 606.87 596.88 707.59 533.42
AIC 146719.25 150989.45 162794.91 78427.65 80449.97 90959.56
BIC 152574.06 158270.18 167764.95 83201.18 86108.96 95225.63

Table 1: Sprat: Statistics for model selection.

Lognormal Gamma Tweedie Lognormal 2 Strat.Mean

1 0.29 0.04 0.16 0.30 0.17
2 0.32 0.35 0.32 0.03 -0.01
3 0.21 0.15 0.15 0.06 0.07

Avg 0.27 0.18 0.21 0.13 0.08

Table 2: Sprat: Internal consistencies for Q1
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Lognormal Gamma Tweedie Lognormal 2 Strat.Mean

1 0.59 0.37 0.33 0.72 0.25
2 0.55 0.41 0.37 0.48 0.17
3 0.68 0.72 0.26 0.65 0.17

Avg 0.60 0.50 0.32 0.61 0.20

Table 3: Sprat: Internal consistencies for Q3

Lognormal Gamma Tweedie Lognormal 2 Strat.Mean

1 0.77 0.70 0.68 0.73 0.60
2 0.48 0.57 0.49 0.36 0.27
3 0.54 0.62 0.60 0.51 0.48
4 0.29 0.57 0.57 0.26 0.51

Avg 0.52 0.62 0.59 0.47 0.46

Table 4: Sprat: External consistencies between Q1 and Q3

Lognormal Q1 Gamma Q1 Tweedie Q1 Lognormal Q3 Gamma Q3 Tweedie Q3

LogLik -92717.73 -98242.00 -108218.05 -84566.42 -87351.84 -94750.61
edf 1105.15 1475.23 975.95 1111.25 1404.63 942.28
AIC 187645.76 199434.46 218388.00 171355.35 177512.93 191385.77
BIC 197144.57 212114.13 226776.30 180693.18 189316.02 199303.70

Table 5: Herring: Statistics for model selection.

Lognormal Gamma Tweedie Lognormal 2 Strat.Mean

1 0.78 0.77 0.80 0.75 0.45
2 0.60 0.58 0.52 0.63 -0.06
3 0.56 0.50 0.37 0.58 -0.16
4 0.51 0.41 0.25 0.43 0.00

Avg 0.61 0.56 0.48 0.60 0.06

Table 6: Herring: Internal consistencies for Q1

Lognormal Gamma Tweedie Lognormal 2 Strat.Mean

1 0.66 0.63 0.71 0.71 0.60
2 0.78 0.73 0.78 0.71 0.60
3 0.71 0.64 0.73 0.54 0.74
4 0.58 0.51 0.60 0.53 0.71

Avg 0.68 0.63 0.71 0.62 0.66

Table 7: Herring: Internal consistencies for Q3
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Lognormal Gamma Tweedie Lognormal 2 Strat.Mean

1 0.60 0.63 0.67 0.49 0.47
2 0.78 0.68 0.71 0.74 0.41
3 0.62 0.48 0.49 0.52 0.31
4 0.57 0.43 0.38 0.49 0.54
5 0.37 0.50 0.40 0.28 0.54

Avg 0.59 0.54 0.53 0.50 0.46

Table 8: Herring: External consistencies between Q1 and Q3

Lognormal Q1 Gamma Q1 Tweedie Q1 Lognormal Q3 Gamma Q3 Tweedie Q3

LogLik -116092.89 -119248.16 -127048.47 -86692.51 -88571.49 -94994.59
edf 1091.92 1201.12 852.29 1074.62 1141.80 798.69
AIC 234369.61 240898.55 255801.52 175534.27 179426.58 191586.56
BIC 243754.68 251222.18 263126.98 184564.30 189021.09 198297.98

Table 9: Whiting: Statistics for model selection.

Lognormal Gamma Tweedie Lognormal 2 Strat.Mean

1 0.72 0.79 0.85 0.80 0.87
2 0.82 0.87 0.90 0.87 0.95
3 0.70 0.68 0.78 0.79 0.93
4 0.69 0.68 0.73 0.74 0.77

Avg 0.73 0.76 0.82 0.80 0.88

Table 10: Whiting: Internal consistencies for Q1

Lognormal Gamma Tweedie Lognormal 2 Strat.Mean

1 0.88 0.84 0.84 0.89 0.87
2 0.91 0.92 0.90 0.89 0.85
3 0.93 0.91 0.88 0.83 0.85
4 0.78 0.76 0.79 0.72 0.83

Avg 0.87 0.86 0.85 0.83 0.85

Table 11: Whiting: Internal consistencies for Q3
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Lognormal Gamma Tweedie Lognormal 2 Strat.Mean

1 0.94 0.92 0.91 0.94 0.88
2 0.77 0.84 0.86 0.80 0.89
3 0.85 0.83 0.85 0.87 0.82
4 0.86 0.83 0.84 0.86 0.74
5 0.75 0.70 0.66 0.75 0.57

Avg 0.83 0.82 0.82 0.84 0.78

Table 12: Whiting: External consistencies between Q1 and Q3
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Supplemental Figures

The following distribution maps (or “concentration maps”) should be in-
terpreted as follows: The haul positions associated with each bin contain
20% of the total catch, and the (0.8,1.0] bin contains the minimum num-
ber of hauls that will account for the 20%, the (0.8,1.0] and (0.6,0.8] bins
combined contain the minimum number of hauls that will account for 40%
of the catch, and so on. For a more precise mathematical definition see
[Lewy and Kristensen(2009)].
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Supplemental Figure 1: Herring: Distribution map for ages 1 (top left), 2
(top right), 3 (bottom left), and 4 (bottom right) in Q1.
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Supplemental Figure 2: Herring: Distribution map for ages 1 (top left), 2
(top right), 3 (bottom left), and 4 (bottom right) in Q3.

6

134 Paper IV



0 50 100 150 200 250

−6

−5

−4

−3

−2

−1

0

1

Depth

s(
D

ep
th

,4
.1

1)

0 50 100 150 200 250

−3

−2

−1

0

1

2

3

4

Depth

s(
D

ep
th

,4
.7

8)

50 100 150 200 250

−3

−2

−1

0

1

2

3

Depth

s(
D

ep
th

,4
.9

4)

50 100 150 200 250

−4

−3

−2

−1

0

1

2

Depth

s(
D

ep
th

,5
.1

2)

Figure 1: Herring: Depth effect for ages 1 (top left), 2 (top right), 3 (bottom
left), and 4 (bottom right) in Q1

7

135



50 100 150 200

−3

−2

−1

0

1

Depth

s(
D

ep
th

,4
.3

4)

50 100 150 200

−2

−1

0

1

Depth

s(
D

ep
th

,5
.7

9)

50 100 150 200

−4

−3

−2

−1

0

1

Depth

s(
D

ep
th

,5
.8

2)

50 100 150 200

−3

−2

−1

0

1

Depth

s(
D

ep
th

,5
.8

7)

Figure 2: Herring: Depth effect for ages 1 (top left), 2 (top right), 3 (bottom
left), and 4 (bottom right) in Q3
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Figure 3: Herring: Time of day effect for ages 1 (top left), 2 (top right), 3
(bottom left), and 4 (bottom right) in Q1
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Figure 4: Herring: Depth effect for ages 1 (top left), 2 (top right), 3 (bottom
left), and 4 (bottom right) in Q3
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Figure 5: Herring: Estimated standard deviations on log(I) from bootstrap-
ping Q1.
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Figure 6: Herring: Estimated correlation matrices on log(I) from bootstrap-
ping Q1.
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Figure 8: Herring: Estimated correlation matrices on log(I) from bootstrap-
ping Q3.
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Figure 9: Herring: survey standardized residual plots from the fitted assess-
ment models.
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Supplemental Figure 3: Sprat: Distribution map for ages 1 (top left), 2 (top
right), 3 (bottom left), and 4 (bottom right) in Q1.
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Supplemental Figure 4: Sprat: Distribution map for ages 1 (top left), 2 (top
right), 3 (bottom left), and 4 (bottom right) in Q3.
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Figure 10: Sprat: Depth effect for ages 1 (top left), 2 (top right), 3 (bottom
left), and 4 (bottom right) in Q1
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Figure 11: Sprat: Depth effect for ages 1 (top left), 2 (top right), 3 (bottom
left), and 4 (bottom right) in Q3

19

147



5 10 15 20

−0.5

0.0

0.5

1.0

1.5

2.0

TimeShotHour

s(
T

im
eS

ho
tH

ou
r,5

.3
8)

5 10 15 20

−0.5

0.0

0.5

1.0

1.5

2.0

TimeShotHour

s(
T

im
eS

ho
tH

ou
r,4

.6
4)

5 10 15 20

−1

0

1

2

TimeShotHour

s(
T

im
eS

ho
tH

ou
r,4

.0
4)

5 10 15 20

−1

0

1

2

TimeShotHour

s(
T

im
eS

ho
tH

ou
r,3

.7
7)

Figure 12: Sprat: Time of day effect for ages 1 (top left), 2 (top right), 3
(bottom left), and 4 (bottom right) in Q1
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Figure 13: Sprat: Depth effect for ages 1 (top left), 2 (top right), 3 (bottom
left), and 4 (bottom right) in Q3
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Figure 14: Sprat: Estimated standard deviations on log(I) from bootstrap-
ping Q1.
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Figure 15: Sprat: Estimated correlation matrices on log(I) from bootstrap-
ping Q1.
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Figure 16: Sprat: Estimated standard deviations on log(I) from bootstrap-
ping Q3.
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Figure 17: Sprat: Estimated correlation matrices on log(I) from bootstrap-
ping Q3.

25

153



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

1
2

3
4

5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1
2

3
4

5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

1
2

3
4

5

1995 2000 2005 2010

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

1995 2000 2005 2010

LN
 C

or
r.

LN
 U

nc
or

r.
S

tr
at

.M
ea

n

Q1 Q3

Figure 18: Sprat: survey standardized residual plots from the fitted assess-
ment models.
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Supplemental Figure 5: Whiting: Distribution map for ages 1 (top left), 2
(top right), 3 (bottom left), and 4 (bottom right) in Q1.

27

155



● ●

● ●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●●
●●

●● ●

● ●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

0 5 10

52

54

56

58

60

62

64

Longitude

La
tit

ud
e

● ●

● ●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●●
●●

●● ●

● ●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

(0,0.2]
(0.2,0.4]
(0.4,0.6]
(0.6,0.8]
(0.8,1]

● ●

● ●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●●
●●

●● ●

● ●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

0 5 10

52

54

56

58

60

62

64

Longitude
La

tit
ud

e

● ●

● ●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●●
●●

●● ●

● ●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

(0,0.2]
(0.2,0.4]
(0.4,0.6]
(0.6,0.8]
(0.8,1]

● ●

● ●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●●
●●

●● ●

● ●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

0 5 10

52

54

56

58

60

62

64

Longitude

La
tit

ud
e

● ●

● ●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●●
●●

●● ●

● ●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

(0,0.2]
(0.2,0.4]
(0.4,0.6]
(0.6,0.8]
(0.8,1]

● ●

● ●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

● ●●
●●

●● ●

● ●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

● ●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

0 5 10

52

54

56

58

60

62

64

Longitude

La
tit

ud
e

● ●

● ●
●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●●
●●

●● ●

● ●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●●

●

● ●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

(0,0.2]
(0.2,0.4]
(0.4,0.6]
(0.6,0.8]
(0.8,1]

Supplemental Figure 6: Whiting: Distribution map for ages 1 (top left), 2
(top right), 3 (bottom left), and 4 (bottom right) in Q3.
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Figure 19: Whiting: Depth effect for ages 1 (top left), 2 (top right), 3
(bottom left), and 4 (bottom right) in Q1
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Figure 20: Whiting: Depth effect for ages 1 (top left), 2 (top right), 3
(bottom left), and 4 (bottom right) in Q3
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Figure 21: Whiting: Time of day effect for ages 1 (top left), 2 (top right), 3
(bottom left), and 4 (bottom right) in Q1
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Figure 22: Whiting: Depth effect for ages 1 (top left), 2 (top right), 3
(bottom left), and 4 (bottom right) in Q3
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Figure 23: Whiting: Estimated standard deviations on log(I) from boot-
strapping Q1.
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Figure 24: Whiting: Estimated correlation matrices on log(I) from boot-
strapping Q1.
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Figure 25: Whiting: Estimated standard deviations on log(I) from boot-
strapping Q3.
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Figure 26: Whiting: Estimated correlation matrices on log(I) from boot-
strapping Q3.
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Figure 27: Whiting: survey standardized residual plots from the fitted as-
sessment models.
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Joint assessment modelling of two herring stocks

subject to mixed fisheries.

Casper Willestofte Berg Anders Nielsen

April 24, 2013

Abstract

We consider the problem of joint stock assessment of two stocks of
herring with similar visual appearance, but with different origins and
genes. There is a geographic zone in the middle separating the two
stocks, where specimens of both stocks are found in the same hauls in
what can be referred to as mixed fisheries.

We perform simulation and estimation of fishing mortalities and
biomasses in three areas (two homogeneous and one mixed) using a
state-space model formulation, where transport between areas occurs
implicit between time-steps. The data used for the analysis consists
of area-disaggregated commercial and survey catch-at-age numbers, as
well as samples of the stock proportions from the mixing area.

Surveys covering multiple areas, such that catchability parameters
could be assumed equal across areas, were important in estimating the
abundance in the mixing area. Variation in relative year-class abun-
dances between stocks explained the main variation in the observed
composition in the mixing area, as opposed to changes in the spatial
distribution of the two stocks between the three areas. The main ad-
vantages of our approach are 1) It does not require knowledge about
movement rates e.g. from tagging experiments, 2) It requires fewer
parameters than models which explicitly incorporate movement, 3)
Unusual large cohorts observed in either stock are accounted for in the
predictions of future catches in the mixing area.

1 Introduction

This work describes a stock assessment model featuring two stocks and three
areas, where mixing between the two stocks occurs in the area in the middle.
The purpose of this model is to provide an improvement over running two

1
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separate single stock assessments using data that have been split by stock ac-
cording to subsamples of the catches (the current practice for the case study,
ICES (2012)) as well as a simple alternative to models that explicitly incor-
porate movement. Also, unlike the split single stock assessment approach,
this model provides estimates of fishing mortality and numbers-at-age by
stock in the mixing area, which can aid management decisions.

Ignoring sub-populations and movement in stock assessments may lead
to local overexploitation (Kell et al., 2009; Montenegro et al., 2009; Goethel
et al., 2011), but these are often hampered by the lack of high resolution
data that are needed to facilitate the analyses.

Atlantic herring in the North Sea and Western Baltic are currently as-
sessed as two separate stocks (ICES, 2012), although several smaller sub-
stock exist (Mariani et al., 2005; Bekkevold et al., 2007). These two stocks
are characterised by differing spawning locations and their timing of spawn-
ing, the North Sea stock are mainly autumn spawners whereas the West-
ern Baltic stock are spring spawners. North Sea autumn-spawning herring
(NSAS) larvae drift into Skagerrak and the northern part of Kattegat (ICES
area IIIa, see figure 1), which acts as nursery area until they reach sexual
maturity at around age 2, at which time they leave the nursery area to spawn
in the North Sea. The Western Baltic spring spawners (WBSS) perform age
and season dependent feeding migrations into area IIIa, which leads to the
appearance of both stocks in the same hauls (Ulrich et al., 2012). This puts
this stock complex in the category of “natal homing with spatial overlap”
using the classification by Goethel et al. (2011). NSAS and WBSS herring
can be discriminated with a relatively high degree of confidence by otolith
analysis (Mosegaard and Madsen, 1996; Clausen et al., 2007), and samples
are routinely collected from the fisheries in order to apportion the catches
to either stock. The two stocks are currently assessed separately using par-
titioned data on the basis of these samples, although restrictions on total
allowable catch (TAC) are set for each of the areas shown in figure 1 (ICES,
2012). This procedure makes it quite complicated to give advice on the TAC
in IIIa (ICES, 2010). No estimate of fishery mortality exist for this area,
and the two separate assessments provide no direct means of predicting the
future catch composition in IIIa, so the most recent yearly average split
proportions are used for short-term projections.

This paper presents an integrated assessment of these two herring stocks,
where the fishery and mixing process are explicitly accounted for. By doing
this, we can present estimates of fishing mortality and numbers-at-age in
all three areas (i.e. including the mixing area), as well as an alternative
framework for providing predictions of the future catch composition here.
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Figure 1: Map of areas defining the North Sea stock (blue), Western Baltic
stock (red), and the mixing area, IIIa (purple).

Also, the uncertainty in the splitting proportions is quantified and accounted
for in the calculations of all quantities of interest.

We examine the hypothesis, that the variations in observed split propor-
tions in the mixing area can be explained by differences in relative cohort
strength between the two stocks. The idea is illustrated in figure 2: let
(π(s),N (s)) denote the proportion π of stock s with a total abundance of
N , that is located inside the mixing area during a time-step. The values of
π(s) are the same in a) and b), but the size of the NSAS cohort is doubled
from a) to b) resulting in a substantial change in the proportion of autumn

3
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IIIa
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Figure 2: Illustration of how observed proportions in the mixing area (middle
column) can be driven by changes in the larger population [left column,
doubled from a) to b)].
a) π(1) = 0.1, π(2) = 0.5, N (1) = 5, N (2) = 1, pAS = 0.5.
b) π(1) = 0.1, π(2) = 0.5, N (1) = 10, N (2) = 1, pAS = 0.67.

spawners, pAS . An alternative hypothesis, that changes in π(s) over time is
responsible for the changes in split proportions, is also examined.

The assessment model is an extension of the single stock state-space
model described in Berg et al.. State-space models are appealing because
they can separate process from observation errors and are well suited to
handle missing observations, which has led to their increased use within
the field of stock assessment and ecology in general (Gudmundsson and
Gunnlaugsson, 2012; Pedersen et al., 2011).
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2 Materials and Methods

2.1 Data

The data consist of survey indices and commercial catches by age and area,
as well as samples of the catch composition in the mixing area. Auxiliary
information about weight, the proportion of sexually mature individuals, and
natural mortality by age and stock is also needed. The auxiliary information
is assumed to be known in advance and without error, whereas the data is
assumed to contain random noise. This data are similar to the current
assessments, so we refer the reader to ICES (2012) and the supplementary
materials for a more detailed description of these. However, time-series
of survey data calculated by area using the areas defined in figure 1 were
not immediately available, so these were calculated using the methodology
described in Berg and Kristensen (2012) and Berg et al..

2.2 Assessment model

We consider two stocks, s = 1, 2, each having A age classes a = 1 . . . A.
Furthermore, we consider three areas k = 1 . . . 3, where individuals be-
longing to stock s = 1 can be located in either area k = 1 or 2, but not
k = 3, and individuals belonging to stock s = 2 can be located in area
k = 2 or 3, but not k = 1. The state vector consists of the log-transformed

number of individuals in each age class for each stock, logN
(s)
a , the log-

transformed fisheries mortalities in each area logF
(k)
a , and finally the logit-

proportion of age class a from stock s that is located in the mixing area

(k=2), β
(s)
a = log

(
π
(s)
a

1−π(s)
a

)
. The logit transformation is useful here, since

the unit interval for π is stretched to cover the whole real axis for β. Some
age classes may be grouped together with respect to F and β to reduce the
number of parameters.

The system equations are (with age index omitted):

logNs,t = log
(
Ns,t−1e

−Zs,t−1
)

+ εN,s,t (1)

logFk,t = logFk,t−1 + εF,k,t (2)

βs,t = βs,t−1 + εβ,s,t (3)

5
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and the observation equations are:

logCk,t = log

(∑

s

[
Fk,t
Zs,k,t

(1 − e−Zs,k,t)Ns,k,t

])
+ εC,k,t (4)

log If,k,t = log

(
Qf,k,te

Df/365

(∑

s

e−Zs,k,tNs,k,t

))
+ εI,f,k,t (5)

logit(pAS,t) = logit

(
π(1)N (1)

π(1)N (1) + π(2)N (2)

)
+ εpAS ,t (6)

where C denotes catch in numbers, I denotes indices of abundance from
scientific surveys carried out at day Df , and pAS is the proportion of autumn
spawners in the mixing area. Subscript k denote area, s stock, t time, and
f is fleet. Z = F +M is the total mortality (fishing + natural). The model
parameters consist of process variances (σ2N , σ

2
F , σ

2
β), observation variances

(σ2C , σ
2
I , σ

2
p), and catchability parameters Q. All model parameters may

be grouped together with respect to fleets, areas, ages or stocks, but only
older age groups within the same survey fleet and survey fleets operating in
multiple areas were considered as candidates for grouping. Model reduction
by grouping of parameters was tested using likelihood ratio tests and the
final model was validated by inspection of standardized residuals.

2.3 Simulation study

Since the state-space model describes how the latent states change trough
time and how data are related to the states through probability distributions,
it is straight-forward to simulate artificial data given the parameters and the
initial state. Simulation of data followed by estimation can be used to test,
whether it is even possible estimate the quantities of interest given the data,
i.e. whether the model is identifiable. To this end, we simulated numerous
data sets of same size and similar characteristics to the real data.

2.4 Software

All data preprocessing was handled in R (R Development Core Team, 2012),
and trawl survey data was handled using the DATRAS package (Kristensen
and Berg, 2012). The stock assessment model was fitted using ADMB
(Fournier et al., 2012). The source code can be obtained by contacting
the corresponding author.
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3 Results

3.1 Simulation study

The simulation study revealed, that it was difficult to achieve convergence
unless catchabilities could be assumed equal across two surveys covering the
mixing area and the Western Baltic respectively. When this assumption was
made, it was generally (but not always) possible achieve convergence of the
model, and in that case the model was able to reconstruct the true latent
states from the data and the coverage of the estimated confidence bounds
appeared reasonable.

3.2 Estimation results

The estimated time-series of log-numbers-at-age for the three areas are
shown in figure 3. We note, that the largest NSAS cohort was recruited
in 2001, and that this cohort remained strong through all age groups, but
that recruitment has been low in the following time period.

The estimated proportions of the stocks inside the mixing area, π, (figure
4) reveal, that the only significant part of the NSAS population that occupy
the mixing area is the 1 and 2-year-olds, whereas ages 0 and 3+ of NSAS
origin in IIIa constitute close to zero percent of the total NSAS population
(top row). There is generally little temporal development in the proportions
of the two stocks occupying the mixing area (top and bottom rows), except
for age 1 of the WBSS stock (bottom row, second column), where a slight
positive trend is observed. Despite the small changes in π over time, the
observed mixing proportions, pAS , exhibit pronounced temporal variation
(figure 4, middle row). The large 2001 NSAS cohort and the subsequent
poor recruitment is clearly reflected in the estimates of pAS as well as in
the observations, which supports the hypothesis that the variations in ob-
served split proportions in the mixing area can be explained by differences
in relative cohort strength between the two stocks.

The estimated average fishing mortalities (F̄ ) by area display different
trends over time (5). While F̄ (1) and F̄ (2) (North Sea and mixing area) have
dropped substantially from the beginning to the end of the time-series, the
same is not true for F̄ (3). The level of fishing pressure is estimated to be
substantial higher in the mixing area than the two other areas. The esti-
mates are, however, also quite uncertain and dependent on the assumption
of equal catchabilities across area 2 and 3, so this might be an artifact of
this assumption.

7
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Figure 3: Estimated time-series of log-numbers-at-age for the three areas
with 95% marginal confidence limits. Notice the distinct M-shaped recruit-
ment pattern around year 2000 in the top figure (NSAS) rippling through
the age-groups, and that the same pattern can be found in the mixing area
(middle figure).

The estimated observation errors for each of the survey time-series reveal,
that the acoustic surveys (NS-Acous and GERAS) contain significantly less
noise than all of the trawl surveys (figure 6).
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Figure 4: Top row: Estimated proportions of stock 1 (NSAS) inside the mix-
ing area by age. Middle row: Estimated (black) proportions of NSAS in the
mixing area. Red crosses indicate observed values. Bottom row: Estimated
proportions of stock 2 (WBSS) inside the mixing area by age. Columns
represent age groups and Solid lines indicate 95% confidence intervals.

4 Discussion

The incorporation of movement, sub-populations and spatial structure in
stock assessments is still the exception rather than the rule. Lack of long
time-series of data in high spatial and temporal resolution is a major obstacle
in this respect, since this is a prerequisite for many spatially explicit models
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Figure 5: Average fishing mortality by area (black=NSAS, red=IIIa (mix),
green=WBSS).

(Kleiber and Hampton, 1994). Tagging data provide a good source of infor-
mation about movement rates, and these have successfully been integrated
into stock assessment models (Sibert et al., 1999; Hampton and Fournier,
2001; Goethel et al., 2011). However, tagging data are not always available,
so alternative methods are still needed. The present analysis should be seen
as a first step in a transition from a methodology using two single stock
assessments using partitioned data, and as an option when tagging data are
not available. The proposed model is able to produce an estimate of the fish-

10

177



●

●

●

●

●

●

●

●

●

●

●

●

M
LA

I

M
IK

IB
T

S
−

N
S

−
Q

1

H
E

R
A

S

G
E

R
A

S

N
20

IB
T

S
−

III
a−

Q
3

N
S

−
A

co
us

IB
T

S
−

III
a−

Q
1

IB
T

S
−

N
S

−
Q

3

M
IK

−
III

a

S
D

22
24

−
2.

0
−

1.
5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Figure 6: Estimated values of the logarithm of the observation standard
deviations including 95% confidence intervals.

ing mortality time-series as well as numbers-at-age in the mixing area, which
has not been done before. It captures the main dynamics of the signal in the
observed mixing proportions, which stems from large recruitment events in
the more abundant of the two species considered. The maximum likelihood
framework enables us to draw inferences about changes in the state-vector
over time, and the state-space formulation of the model permits separation
of process and observation error, such that different data sources and be
combined and weighted according to the ML-estimate of their observation
error. This is important in many applications besides this one, where quality
of different data sources varies greatly. Many stock assessment models, and
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especially spatially explicit ones, often ignore either process or observation
error (Quinn et al., 1990; Goethel et al., 2011) due to the added complexity.
Advanced software packages that can effectively handle both types of error
are in rapid development (Pedersen et al., 2011; Fournier et al., 2012), and
the present analysis would have been nearly impossible without the ADMB
tool used – more than 50 parameters were estimated (as well as several
hundred latent states) in less than one hour on a standard laptop.

It was often not possible to achieve proper convergence of the model,
unless two surveys covering two different areas could be assumed to have
equal catchabilites. This result underlines the importance of having over-
lapping replicates in space and time when different research vessel types are
used, as this proved essential in this example. Such data overlaps permits
estimation of the relative efficiency of different vessels/gear types, and since
survey data are relative measures of abundance, equal catchability may be
assumed after rescaling the catches by the efficiency of the vessel that caught
it. Designers of survey experiments should therefore aim for such overlaps
whenever possible.

We did not perform single species assessments to compare results with,
so we cannot infer anything from this analysis about how the method com-
pares to split single species assessments with respect to estimation accuracy.
However, this model can, unlike the two single stock assessments, capture
and predict radical changes in the mixing proportions by age, as a result of
the eventual strong cohort a from large recruitment event is rippling down
the catch-at-age matrix for one of the stocks.

The problem of jointly assessing two spatially overlapping populations
with natal homing is not uncommon, nor is the situation where no or little
tagging information is available to estimate movement rates. Our proposed
model may therefore prove useful in many other cases than the one exam-
ined.
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Online Supplemental Materials for “Joint

assessment modelling of two herring stocks subject

to mixed fisheries”

Casper W. Berg and Anders Nielsen

Input data

Surveys

This section describes the scientific surveys conducted in the different areas
of interest.

North Sea

IBTS Q1 and Q3
The International Bottom Trawl Survey (IBTS) has been carried out in a
standardized way since in the first quarter of the year since 1984, although
indeces are available back to the early 1970s. From 1991 to 1996 the survey
was carried out in all four quarters, and since 1997 in the first and third
quarter only, Simmonds (2009).

MLAI
The Multiplicative Larvae Abundance Indeces (MLAI) is based on different
larvae surveys conducted during the spawning season. Due to changes in
the sampling design this index is based on a model described in Groeger
et al. (2001). This index has been used for many years as an indicator of
spawning-stock biomass (SSB), Simmonds (2009).

MIK
During the IBTS Q1 sampling for large herring larvae is also carried out,
which is used to create the so-called MIK-index (Methot Isaacs-Kidd). It
provides an estimate of the number of larvae from the autumn spawning
that have survived through the winter, and has been shown to be a good
indicator of recruitment, ICES (2009).

Acoustic survey
Since 1989 a standardized acoustic survey has been carried out covering
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the North Sea, Skagerrak and Kattegat (IIIa). This dataset can be accessed
through the FishFrame database and includes information about the propor-
tion of spring and autumn spawners, ICES (2009) Annex 3. This survey has
been found to be the most consistent of the North Sea surveys, Simmonds
(2009).

IIIa

MIK
Same as for the North Sea. HERAS
The Herring acoustic survey (HERAS) from 26 June to 10 July covers the
area in the Skagerrak and the Kattegat as well as an “Norwegian” HERAS
area (see figure 1 in Payne et al. (2009)). This index is used in the WBSS
assessment after the data has been split into a spring-spawner and autumn-
spawner components. In Payne et al. (2009) it was found that this survey
is internally consistent for 3-6 ringers, so only these values are used in the
official WBSS assessment from 1993 and onwards.
IBTS Q1
Takes place in January/February. This survey is not used in the cur-
rent WBSS-assessment, because the WBSS population is at the spawning
grounds/nursery areas outside IIIa at that time of year, Payne et al. (2009).
IBTS Q3
Takes place in late July-late September. Even though this survey should
cover the WBSS population reasonably well, it is not used in the current
WBSS assessment. No significant correlations among consecutive age classes
for the same cohort were found in Payne et al. (2009).

Western Baltic

A joint German-Danish acoustic survey, (GERAS) is carried out between 2
and 21 October in the Western Baltic covering Subdivisions 21, 22, 23 and
24. All individuals in this survey are assumed to be of WBSS origin. Only
ages 1-3 from 1994 and onwards (except 2001) are used in the assessment.
N20
The N20 larval survey is conducted in weekly intervals during the spawn-
ing season (March to June) in the Greifswalder Bodden near Rügen, and is
available from 1992 and onwards.

BITS in SD2224
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This Baltic trawl survey is not used for the current assessment of Western
Baltic herring, but since there is an overlap in time and space with the
BITS survey in Q1 and the IBTS in IIIa, it is possible to estimate a vessel
independent survey index for both regions (i.e. the catchability may be
assumed equal for the IIIa and SD2224 sub-areas). This means, that we
have information about the relative abundance between these two areas,
which greatly enhances the utility of these two data sources.

Natural mortality

The natural mortality is assumed to be known, as it usually not possible to
estimate both natural and fishery mortality.

For WBSS, natural mortality was assumed constant over time and equal
to 0.3, 0.5, and 0.2 for 0- ringers, 1-ringers, and 2+ -ringers respectively.
The estimates of natural mortality were derived as a mean for the years
1977-1995 from the Baltic MSVPA (ICES (2009) p. 166).

For NSAS, the natural mortalities have been held constant from 1957 to
date in the ICES Assessments (ICES (2009) p. 521) at 1.0, 1.0, 0.3, 0.2 and
0.1 from ages 0 to 4+ respectively.

It seems natural to let mortalities be specific to areas instead of stocks.
But this creates some problems, as mortalities used by the current assess-
ments are quite different, and we therefore need to come up with some
common mortalities in the mixing area. One might also argue, that we
cannot use the same mortalities for the same ringer-group between stocks,
because the two stocks have quite different sizes in the same ringer-group –
a 1-ringer NSAS has approximately the same weight as a 2-ringer WBSS.

Mixing samples

Before 1998, herring were identified as SS or AS by vertebral counts. From
1998 and up til today stock identification is done by examinig otolith mi-
crostructure, which is less error prone and requires fewer samples Mosegaard
and Madsen (1996).

There are two sources of mixing samples: Samples of commercial land-
ings taken at the habours, and samples taken by research vessels. The latter
is only available at the times of the acoustic surveys in the summer, whereas
commercial samples are taken througout the year.

As a simple start, we will consider the stock proportions constant within
a year, although this a very crude assumption. Therefore we will only con-
sider commercial samples of spawner type.
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From the proportions used to divide the catch by stock in the usual
assessments, which are performed on landings by quarter, we can calculate
the landed proportions of autumn spawners pAS by year and age by a simple
weighted mean:

pAS,a,y =

4∑

q=1

La,y,qpAS,a,y,q

La,y
(1)
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Abstract

A continuous time stochastic version of the Schaefer biomass dynamic model is developed,
which allows for estimation of both process and observation error even given varying sample
times. The model relies on data on catches (removals) and (relative) indices of abundance, and
a unique feature of this model is that observation errors as well as missing observations are
allowed for both data types. The model is applied to simulated data as well as real data on
South Atlantic Albacore and 8 North Sea fish stocks. The results show that it is most often
not possible to separate process from observation noise, unless hundreds of years of data are
available. The examined stocks all appear to have been more or less over-exploited in the past,
leading to biomasses well below that of maximum productivity. However, recent drops in the
exploitation rates have led to all North Sea stocks except cod being currently harvested close to
FMSY , and hence the stocks are predicted to rebuild given that the current exploitation rates
are maintained.

1 Introduction

Biomass models (sometimes called surplus production models, or simply production models) dis-
tinguish themselves from other models of populations of fish stocks by characterizing the current
state of the entire population by a single number (typically the biomass of the population). This is
a quite crude characterization of a population, since it does not specify the age/size composition of
the population. Nevertheless, these models are useful in data-poor situations where only the mass
of the catches is recorded, and are still frequently used (Punt and Szuwalski (2012)). The models
have also formed the basis for the concept of maximum sustainable yield (MSY), which is used as
a key aim for fisheries management all over the world (United Nations (1982)).

A minimum of two time-series is needed for each population under examination:

1. The removals from the population, i.e. the amount of commercial catches (C).

2. A biomass index I, which is a relative measure of the total population, or estimates of the
absolute biomass B.

These models have typically been formulated in discrete time, and often considering observation-
error or process-error only (Polacheck et al. (1993)). The models are of the form

By+1 = (By + g(By) − Cy) eεy (1)

Iy = qBye
ηy (2)
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and the most widespread choice of the surplus production function is g(B) = rB(1−B/K) (Schaefer,
1954), as well as the Fox g(B) = rB(1 − logB/ logK) (Fox, 1970), and Pella-Tomlinson g(B) =
r
pB (1 − (B/K)p) (Pella and Tomlinson, 1969). Here, B is the biomass, Cy is the catch during
year y, Iy is a relative biomass index, q is a constant proportionality factor (catchability), r is
the intrinsic rate of growth, and K is the carrying capacity (unexploited equilibrium biomass).
The process error εy ∼ N(0, σ2ε ) describes random deviations from the expected development in
biomass, which is to be distinguished from observation error, ηy ∼ N(0, σ2η), on the biomass index
I. Observation error (or measurement error) describes the discrepancy between the underlying
true state and the observed data, whereas process error (or system error) describes how the system
in future states will randomly deviate from process equation, regardless of whether the states are
known without error at the present. We will consider only the Schaefer model in the following.

The total catch over a small time step may be further described as the product of the fishing mor-
tality and biomass dCt

dt = FtBt. Setting dBt/dt equal to zero and solving for B gives the equilibrium

biomass K − KFt
r , which multiplied by F gives the equilibrium catch (or yield). Observation error

on the total catch is usually ignored in this type of model (although Chen and Andrew (1998) is
one exception).

Taking the derivative with respect to F in the yield expression, setting it equal to zero and solving
for F maximizes the yield and hence gives us the reference point FMSY = r

2 , and by plugging FMSY

into the expression for the equilibrium biomass, BMSY = K
2 .

Process error estimators (i.e. assuming ση = 0) are easy to compute since this is simply a multiple
linear regression problem, but these have been shown to be less precise than observation error
estimators (σε = 0) (Polacheck et al., 1993). State-space models are a class of models where both
process and observation error may be present, although estimation in these models is much more
difficult, especially in non-linear or non-Gaussian cases (Pedersen et al., 2011). In state-space
model states (in this context Bt ) as well as observations are random variables, and the likelihood
is the probability of the observations, for which all possible state trajectories have been integrated
out. A compromise between observation-error only and the state-space approach is the total-error
method (Ludwig et al., 1988), also known as errors-in-variables. In contrast, the total-error method
considers only one specific trajectory of states, and requires prior specification of the ratio of the
variances, i.e. σε

ση
= w, where w is some chosen constant (Punt, 2003; de Valpine and Hilborn,

2005). The total error method emerged as an improvement over methods that ignore either process
or observation error, although it is known to give asymptotically biased parameter estimates and
inaccurate confidence regions (de Valpine and Hilborn, 2005). The state-space approach should
therefore be preferred over the others, and advanced statistical software tools such as the BUGS
language (Spiegelhalter et al., 2003) and ADMB (Fournier et al., 2012) have made it possible to
estimate parameters embedded in state-space models with relative ease (see Pedersen et al. (2011)
for an example using both). These high level languages relieves the modeller of having to program
his own (extended or unscented) Kalman filter (Reed and Simons, 1996; Punt, 2003) or Gibbs
sampler, and thus helps minimize the risk of errors.

Although the state-space model may by identifiable, i.e. given increasingly large amounts of data the
parameter estimates will converge to their true values, there may often not be enough data points
to separate the two types of error. For example, when Meyer and Millar (1999) analyzed the data
set presented in Polacheck et al. (1993) using a Bayesian approach and the winBUGS software, the
posterior distribution of the amount of process error was nearly identical to the prior distribution,
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indicating very little information in the data. de Valpine and Hilborn (2005) found similar results
for the hake data set also presented in Polacheck et al. (1993). Regardless, it is important to
attempt to separate the two types of error to obtain reliable point estimates as well as confidence
intervals. In fact, when using the common assumption that the noise is multiplicative (Punt, 2003),
the reference points FMSY and BMSY depend on the amount of process error (Bousquet et al.,
2008). Although based on a model with a product-of-betas process error, Bousquet et al. (2008)
note that for small amounts of process error (σ ≤ 0.25) this model is approximately equal to a
lognormal process error with the same variance, and give the following corrected reference points:

FMSY =
r

2
− 2(2 − r)

(4 − r)2
σ2 +O(σ3) (3)

E(Bt) =
K(r − F )

r

(
1 − (r − F )−1σ2

2 − r + F
+O(σ3)

)
(4)

This result states that the equilibrium biomass and yield are decreasing functions of the process
error σ, and hence underlines the importance of separating the two types of error.

In this paper we will formulate the Schaefer model using a stochastic differential equation (SDE).
That is, we will shift from a discrete time formulation to using a continuous time formulation. A
distinct advantage by using the continuous time formulation is the ability to handle varying sample
times. In other words, observed commercial landings or survey CPUEs may be recorded at any
time of the year and used as data for the estimation process without having to change the model.
Discrete time models can in principle be adjusted to time-varying sample times by changing the size
of the time steps appropriately, but this typically involves much more coding and may change the
interpretation of some parameters, which is undesirable for purposes of comparison. We perform
parameter estimation in our model using CTSM-R (Juhl et al., 2013; Kristensen et al., 2004), which
makes it possible to reproduce our results using minimal coding effort. CTSM-R is still relatively
unknown within the field of ecology (although one example is (Møller et al., 2011)). In a time
with increasing public and political demands for sustainable harvest of renewable resources, and
where concepts such as MSY is being written into legislation everywhere, it is important to have
easy-to-use tools for quantifying these reference points. In particular, it is important to correctly
quantify the uncertainty on these reference points, such that the precautionary principle can be
applied – i.e. in face of great uncertainty the strongest protective measures should be chosen. This
work provides such a tool for ecologist while emphasizing the importance of recognizing all potential
sources of error.

2 Materials and Methods

We formulate the Schaefer model as an SDE, such that the biomass dynamics as well as the catches
occur in continuous time and are both subject to random perturbations. To enable separation of
process error and observation error on the catch, we need an assumption of about the development
of fishing mortality F over time. For simplicity we choose a random walk process to represent this
development, such that the collected process equations in our continuous time stochastic version
are:
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dBt = Bt

(
r − r

K
Bt − Ft

)
dt+ σBBtdWt

d log(Ft) = σFdVt

where Wt and Vt are independent standardized Brownian motions.

It is however more convenient to consider the log-transformed SDE, as it ensures a positive popu-
lation, by introducing

Zt = log(Bt). (5)

Using this we get the following (Lamperti)-transformed SDE,

dZt =

(
r − r

K
eZt − Ft −

1

2
σ2B

)
dt+ σBdWt, (6)

for which the noise term does not depend on the state, Bt. The term −1
2σ

2 reflects the result from
Bousquet et al. (2008), i.e. that the mean of the stationary distribution of Zt given a constant Ft
depends on σ. This is seen by taking expectation on both sides of the transformed SDE:

E

(
dZt
dt

)
= E

(
r − r

K
eZt − Ft −

1

2
σ2
)

+ E

(
σdWt

dt

)

0 = E

(
r − r

K
eZt − Ft −

1

2
σ2
)

E(Bt) =
K(r − F − 1

2σ
2)

r

However, the expression by Bousquet et al. (2008) in (4) is a more precise approximation than the
above.

In addition to the process equations, we need to relate the processes to observations through some
observation equations. For survey indices the observation equation is identical to the logarithm of
(2). The observation equation for the catches (removals) is less straightforward. We could imagine
the catch process being described by another SDE:

dCt = exp (logBt + logFt) dt+ σCdWC,t

However, we do not observe the accumulated catches from the beginning of the time-series up
to time t, i.e. Ct, directly, but rather accumulated catches over shorter time periods, often a
year. That is, if we denote the true accumulated catch from time y − 1 to y by ∆Cy we have
∆Cy =

∫ y
y−1 FtBtdt = Cy − Cy−1.

Since neither B nor F are constant over time in the continuous time formulation, the catch integral
over a whole year depends on all the states in that time frame. Although it is possible to project
the states in small time steps and accumulate the catches, it is only possible to relate observations
to the state vector at one point in time in CTSM-R, so instead we choose to approximate the catch
integral with

log ∆Cy ≈ logFy− 1
2

+ logBy− 1
2

(7)
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That is, we evaluate the F and B processes half-way through the year, and approximate the integral
of the product of the two series simply by the product evaluated in the middle of the time step.
The approximation is illustrated in Figure 1. This approximation is exact when dBt

dt = 0 and
dFt
dt = 0, since B and F are constants in that case and can therefore moved outside the integral.

This is appealing since MSY calculations are based upon precisely the scenario where these two
differentials are zero. The approximation here is of course also applicable to observations of catches
that are accumulated over other periods than a year – the midpoint is simply changed and the
catch equation is multiplied by dt. We may even have changing periods, e.g. catches by year in the
beginning of the time-series and quarterly catches at the end, without changing the model at all
thanks to the continuous time formulation.

Using this approximation, the observation equations become

log(Bt) = log(It) + log(q) + εI,t (8)

log(∆Cy) = logFy− 1
2

+ logBy− 1
2

+ εC,y (9)

where εI,t ∼ N(0, σI) and εC,y ∼ N(0, σC).

Due to the relatively short time-series of fisheries data that are typically available, it is often not
possible to estimate both process and observation error. When this is the case, the likelihood
function will be flat in a banana shaped region containing equally likely combinations of values
for σB and σI , ranging from observation error only to process error only (de Valpine and Hilborn,
2005). Rather than proceeding with parameter estimates on the boundary of their feasible space
(e.g. nearly zero variances), it is preferable to fix some parameters. In analogy with the total-error
method we will therefore fix the ratio of the variances:

σI = ασB (10)

σC = βσF (11)

where α, β are fixed positive constants.

2.1 Uncertainties on FMSY and BMSY

When dealing with estimated quantities it is essential to provide an assessment of the uncertainty of
the estimates, and these will also facilitate any subsequent statistical tests. The variance-covariance
matrix of the parameters is approximated in CTSM-R as in most other applications, that is by evalu-
ating the Hessian of the likelihood function at the maximum (Kristensen et al., 2004). The normal
approximation is more appropriate for parameters that are not strictly positive such as r, K, and
variances, so these should be log-transformed prior to estimation (see source code in the Appendix).
The variance-covariance matrix for log r, logK and log σ can then be used in combination with the
Delta method (Oehlert, 1992) to obtain a confidence ellipsis for (logBMSY , logFMSY ), and hence
also the “confidence banana” for (BMSY , FMSY ).

2.2 Model validation

One-step ahead residuals were tested for autocorrelation at lag 1 using the Ljung-Box test (Ljung
and Box, 1978).
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Figure 1: Excerpt of five years from simulated trajectories of the continuous time processes B and
F (top panel) as well as the instantaneous catch rate C (bottom row). The top panels are overlaid
with the estimated trajectories (thick lines). An approximation to the integral of the instantaneous
catch over a year is given by F ·B in the middle of a year, which is illustrated by the vertical lines
in the bottom panel. The observed catches are shown as crosses.

2.3 Applications

We apply the proposed SDE formulation of the Schaefer model to i) The South Atlantic albacore
data set presented and analyzed in Polacheck et al. (1993), and Meyer and Millar (1999), ii)

6

193



simulated data, and iii) Data from 8 stocks in the North Sea. In the last application biomass
indices are replaced with estimates of total biomass from the SMS model (ICES, 2011), which is
a stochastic age-based multi-species model (Lewy and Vinther, 2004). The simulations (ii) are
carried out using an Euler scheme and the parameters estimated in (i) to ensure realistic values.
Estimated quantities are compared with their true values using absolute relative errors as in Punt
(2003); Punt and Szuwalski (2012). The following number of data points are tested 30, 60, 120,
240, and 480, using 100 simulations for each value.

3 Results

3.1 Case study 1: South Atlantic Albacore

Polacheck et al. (1993) analyzed this data set using using estimators that assume observation
error or process error only, while Meyer and Millar (1999) used a Bayesian discrete time state-
space model, where informative priors were specified for all parameters except q, which facilitated
separation of the two types of error. A preliminary analysis using the methodology presented in
this paper revealed that it is not possible to separate process from observation error (parameter
estimates were on their bounds with very large associated uncertainties). Hence, we fix the process
to observation error ratio by setting α = 4 (similar to the results obtained in Meyer and Millar
(1999)) and β = 1. To test the sensitivity of these assumptions we repeat the analysis using other
values for (α, β). Table 1 compares our results with those from Polacheck et al. (1993) and Meyer
and Millar (1999). Our estimates lie somewhere between the observation- and process error only
estimators. The results are further illustrated in Figure 2. We note that the stock was close to
the carrying capacity at the beginning of the time-series, which explains the declining biomass
even though the fishing mortality was below FMSY most of the time. In the last years the fishing
mortality approached the upper red line F = r− 0.5σ2, which marks the maximum F that will not
lead to eventual extinction of the species.

The lower panel indicates, that the relative quantities B1990/BMSY and F1990/FMSY are not very
sensitive to the choice of α, β, while the rather large confidence regions are somewhat affected. Due
to the low process error (σB = 0.054) the differences between the deterministic reference points
and (3) and (4) are negligible. No significant autocorrelation were found in the residuals.

3.2 Simulation study

The simulation study showed that the model is identifiable, i.e. that the parameter estimates
converge to their true values given an increasing amount of data points. Figure 3 illustrates this for
the two key quantities FMSY and BMSY , although it is also apparent, that quite long time-series of
observations are needed in order to obtain relatively precise estimates. Similar results were obtained
for the remaining parameters. Table 2 suggests, that several hundred years (or time-steps) of data
are often needed for all parameters to be estimable. When estimation failed, one or more of the
variance parameters could not be identified, which means that process- and observation error could
not be separated with any reasonable confidence.

7

194 Paper VI



Observation error model Process error model Bayesian State-space model CTSM-R

K 239.60 153.40 279.80 200.65
r 0.33 0.62 0.29 0.40

q · 104 26.71 43.72 23.89 30.04
B1990 75.51 50.04 83.97 63.47
P1990 0.32 0.33 0.30 0.32
MSP 19.65 23.78 19.26 20.01
EMSP 61.40 70.90 60.86 66.42

Table 1: Comparison of parameter estimates and key management quantities: The first three
columns are taken from Meyer and Millar (1999) (Table 2), whereas the last column is our CTSM-
R solution (with α = 4, β = 1. B1990 is the estimated biomass in 1990, P1990 is the same number
divided by K, and MSP = rK/4 and EMSP = r/2q.

No. data points 30 60 120 240 480
Estimable proportion 0.22 0.40 0.56 0.89 1.00

Table 2: Proportion of successful estimations from the simulation study. An estimation was deemed
successful when no parameter bound had any significant effect on the final parameter estimates.

3.3 Case Study 2: North Sea

The results from the North Sea stocks are illustrated in Figures 4 and 5. Unlike the results from the
South Atlantic Albacore data set, all stocks appear to have been depleted well below the carrying
capacity (and hence also BMSY - the green line) from the beginning of the time series, and most
stocks appear to have been overfished in the past. The carrying capacity could not be reliably
estimated for many of the stocks, indicated by the very wide confidence ellipses in the BMSY

direction (x-axis, column 4). Despite the large uncertainties on (BMSY , FMSY ), the current state
of the stocks are still outside the confidence ellipses. That is, although the fishing mortalities have
dropped to levels around FMSY for all stocks except cod and sprat in the recent years, all stocks are
still depleted well below BMSY . In other words, the North Sea stocks have been seriously overfished
in the past leading to biomasses well below the point of maximum yield, but recent drops in the
exploitation rates have led to sustainable levels of fishing mortality for most stocks, and hence the
stocks are expected to rebuild given the current fishing pressure.

The results are somewhat sensitive to whether the catchability q can be assumed known or not
(figures 4 and 5, column 4). Particularly the sole stock have an estimate of q that is substantially
different from 1, which is the expected value since we are using absolute biomass estimates from
the SMS model rather than relative indices. The assumption that q = 1 relies on another set
of assumptions about natural mortality in the SMS assessment model used to produce the total
biomass input for our model, so this discrepancy could be caused by wrong assumptions about
natural mortality in the SMS model. We should also note, that except for haddock, the residuals
(either from catches, biomass indices, or both) failed the test for independence for all of the North
Sea stocks. This is somewhat disturbing, as this means that there is autocorrelation present in
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Figure 2: Estimated/observed biomass (B, top row, green line indicates BMSY ), Fishery mortality
(F , 2. row, green line indicates FMSY , red line is r− 0.5σ2 ), log catches (logC, row 3), and row 4
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(circle), and (Beq, F1990) (plus symbol). α is the assumed ratio between process and observation
error, i.e. α = 4 corresponds to observation error being the predominant error source.

the residuals and hence the models cannot be formally validated. It is however not too surprising
that some autocorrelation is present considering the simple model structure, which completely
ignores the age composition in the population. Different age compositions will lead to different
rates of growth/reproduction and may hence explain why autocorrelation is present. Another
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Figure 3: Box plots of the absolute relative errors on FMSY and BMSY as a function of the number
of data points available for estimation.

possible source of autocorrelation could be missing covariates such as environmental forcings and
multispecies effects which were not considered in this model, although the latter were actually
included in the SMS model, which produced the biomass input data. Finally, the bias resulting from
the approximation in (9) will be substantial when sudden changes in biomass or fishing mortality
are present. Such changes are apparent for e.g. North Sea herring, so these results should be
interpreted with caution.

q Cod Had Her Pla Sai Sol Spr Whi

σB 1 0.09 0.27 0.05 0.10 0.10 0.07 0.19 0.16
σF 1 0.13 0.11 0.43 0.08 0.11 0.15 0.26 0.11
σF q̂ 0.12 0.10 0.31 0.08 0.11 0.17 0.25 0.11
σB q̂ 0.09 0.27 0.10 0.10 0.10 0.04 0.19 0.14

Table 3: Estimated process standard deviations.

4 Discussion

We have presented a continuous time stochastic formulation of the Schaefer biomass dynamic model.
Using an approximation to the catch equation we have shown how to perform parameter estimation
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Figure 4: Estimated/observed biomass (B, column 1), Fishery mortality (F , column 2), log catches
(logC, column 3), and column 4 contains the estimate of (BMSY , FMSY ) with the 95% confidence
ellipsis (triangle), (B2011, F2011) (circle), and (Beq, F2011) (plus symbol). Rows 1 through 4 represent
Cod, Haddock, Herring and Plaice.

in this model using the CTSM-R software package, which is a powerful tool for maximum likelihood
estimation in continuous time stochastic state space models. The model was validated through a
simulation study. Varying sample times and missing observations are naturally handled within this
framework unlike for the most typically used estimation techniques. The model can be represented
in a few lines of code using CTSM-R (see Appendix), which makes it easy for others to reproduce our
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Figure 5: Same as figure 4 but for Saithe, Sole, Sprat and Whiting (rows 1 through 4).

results or adapt the code to other data sets. Another distinct feature of this model is the ability to
handle observation error on catches as well as biomass indices, as errors on the catches (removals)
are usually ignored. Since fishing mortality is included as a state variable, our model also allows
for missing observations of biomass as well as of catches. The latter is unique for this model, and
not possible in models where the catch is assumed to be known without error.

The fishing mortality was assumed to follow a random walk, which suffices for the situation where
catches are aggregated over a year. If catches are available on a finer time-scale and there is a
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seasonal pattern in exploitation, the random walk assumption could be replaced with some periodic
function or functions of covariates such as commercial effort. If pulse harvest events are present
semi-discrete models should be considered (Colvin et al., 2012).

While the simulation studies showed that the model is identifiable, separation of process and ob-
servation error was difficult and often required several hundred data points. This is in agreement
with the results found in de Valpine and Hilborn (2005). In this case, rather than just assuming
no process error, we must recommend a sensitivity analysis and application of the precautionary
principle, since using the wrong estimator may result in serious bias (Chen and Andrew, 1998).
However, we found that all our estimates were lying between previously found estimates assuming
either no process or no observation error.

The estimates of the key management reference points BMSY and FMSY were found to be quite
uncertain for many scenarios, which is in line with the results found in Punt (2003) and Punt
and Szuwalski (2012). Nevertheless, for data-poor stocks where age- and size-composition data are
not available, biomass production models remain useful tools for fisheries management. Given the
many possible choices of estimator, shape of production function, and assumptions about variance
parameters, it is useful to have different well tested off-the-shelf tools to test the validity/sensitivity
of all assumptions made, and to quantify the uncertainties associated with any quantity used for
management. By formulating the Schaefer model using a set of SDEs and using state of the art
software for parameter estimation (CTSM-R), we have provided a fast and flexible framework for
estimation in biomass dynamic models.
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5 Appendix

library(ctsmr)

## read in data

data=scan("pola.dat",comment.char="#")

N=data[1];

catch=data[2:(2+N-1)]

cpue=data[(2+N):(2+2*N-1)]

## initial states

B0 = exp(5.5)

F0 = exp(-2.75)

## initial parameters

logK=5.4

logr=-1

sig11=0.05 ## B proc. std. dev.

sig22=0.01 ## F proc. std. dev.

model <- ctsm$new()

model$addSystem( dB1 ~ (exp(logr) - exp(logr-logK+B1) - exp(F1) - 0.5*exp(2*sig11))*dt + exp(sig11)*dw1 )

model$addSystem( dF1 ~ exp(sig22)*dw2 )

model$addObs(b1 ~ fakein*B1 + logq)

model$addObs(c1 ~ B1+F1)

## ctsmr requires at least one input, so make a fake one consisting of a vector of ones.

model$addInput(fakein)

model$setVariance(b1b1 ~ alpha*exp(2.0*sig11))

model$setVariance(c1c1 ~ beta*exp(2.0*sig22))

## set initial parameters and bounds (init,lower,upper)

model$setParameter(B1=c(log(B0),log(B0/1000),log(B0*1000)),

F1=c(log(F0),log(F0/1000),log(F0*1000)),

logr=c(logr,logr-log(100),logr+log(100)),

logK=c(logK,logK-log(1000),logK+log(1000)),

sig11=c(log(sig11),log(sig11/1000),log(sig11*1000)),

sig22=c(log(sig22),log(sig22/1000),log(sig22*1000)),

alpha=c(1),

beta=c(1),

logq=c(0,-10,10)

)

model$setOptions(con=list(solutionMethod="adams",nIEKF=1))

## rearrange data for catch approximation

tt=seq(1,N+0.5,length.out=2*N)

nn=length(tt)

obspadC = rep(NA,nn);

obspadC[seq(2,nn,by=2)]=log(catch)

obspadB = rep(NA,nn);

obspadB[seq(1,nn,by=2)]=log(cpue);

obs2=cbind(tt,obspadB,obspadC)

colnames(obs2)<-c("t","b1","c1")
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data1 <- as.data.frame(cbind(obs2, fakein=1))

data1=rbind(data1,c(24,NA,NA,1))

## estimate

res <- model$estimate(data1, threads=2)

print(summary(res,extended=T))

smooth=smooth.ctsmr(res)
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