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ABSTRACT: This letter describes the use of a power-optimized

cascode configuration for obtaining maximum output power at
millimeter-wave (mm-wave) frequencies for a two-way combined power

amplifier (PA). The PA has been fabricated in a high-speed InP double
heterojunction bipolar transistor technology and has a total active
emitter area of 68.4 lm2. The experimental results demonstrate a small

signal gain of 9.8 dB and saturated output power of more than 18.6
dBm at 72 GHz with a peak power-added efficiency of 12%. The benefits
of the power optimized cascode configuration over the standard cascode

configuration at mm-wave frequencies are confirmed by both simulations
and experimental results. VC 2013 Wiley Periodicals, Inc. Microwave Opt

Technol Lett 55:1178–1182, 2013; View this article online at

wileyonlinelibrary.com. DOI 10.1002/mop.27477
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1. INTRODUCTION

A bottleneck for emerging millimeter-wave (mm-wave) wireless

communication systems in the E, W, and G-band is the avail-

ability of high power amplifiers (PAs) at these frequencies. Tar-

get specifications for PAs in mm-wave wireless systems are dif-

ficult to meet with silicon-based devices due to their low

breakdown voltage and low-power density. Recently, a number

of GaN high electron-mobility transistor (HEMT)-based E-band

PAs demonstrating Watt-level output powers have been pub-

lished [1, 2]. Despite the fact that mm-wave PAs based on heter-

ojunction bipolar transistor (HBT) technologies reported to date

delivers less output power than their HEMT counterparts, high-

speed InP double heterojunction bipolar transistor (DHBT) tech-

nology is well-suited for power applications and allows a high

level of integration [3]. Furthermore, the potential for power

amplification beyond 200 GHz has recently been demonstrated

using InP DHBT technology [4].

For mm-wave InP DHBT PAs, the cascode cell is typically the

preferred configuration due to its higher power gain compared to

the common-emitter (CE) and common-base (CB) configurations

[3, 5–7]. At similar device bias conditions, the cascode cell should

ideally be able to deliver twice the output power compared to a

CE-based cell because the voltage swing from the two cascode

devices sum together at the output. This condition, however, is

rarely obtained in practice for two reasons. First, the output power

is limited mainly by the saturation of the CB device. Second, the

low impedance level seen toward the emitter of the CB device will

lead to a nonoptimal loading of the CE device. As a result, the out-

put power from the CE device is rather low as the optimal load-

line trajectory is not achieved. In Ref. 8, it was proposed to use a

small-valued capacitor at the base of the cascode cells CB device

to delay its saturation by capacitive voltage division. It was also

shown that inclusion of an additional inductance to form a com-

plete interstage matching network between the devices resulted in

an optimal output power for a distributed PA in the DC-12-GHz

frequency range. The concept of interstage matching between devi-

ces can even be extended to multiple stacked devices. In Ref. 9,

four interstage-matched SiGe HBT devices were used to implement

a high voltage/high power architecture at 30 GHz. The high output

power potential of this approach was proven using an experimental

load-pull setup. The first fully integrated mm-wave PA using the

interstage matching network to improve the output power of a

three level FET stack at 60 GHz was recently reported in Ref. 10.

In this letter, it is described how the interstage matching con-

cept can be applied to optimize the power performance of an

InP DHBT cascode cell at mm-wave frequencies. A two-way

combined PA targeting the lower E-band wireless frequency

range (71-76 GHz) is designed using the power-optimized cas-

code configuration. The high-power density obtained from meas-

urements on the PA confirms the benefits of the interstage-

matched cascode over the standard cascode configuration at

mm-wave frequencies. To the best of the authors’ knowledge,

our work represents the first InP DHBT-based PA and the high-

est operation frequency for any PA using the power-optimized

cascode configuration.

2. InP DHBT TECHNOLOGY

The InP DHBT devices used in this work were fabricated in a

triple mesa self-aligned process. The device technology features

a hexagonal emitter with a drawn width of 0.7 lm and targets

high-swing mixed-signal ICs for operation speed at 100 Gbit/s

and above [11]. Multifinger devices with breakdown voltage of

BVceo>4.75 V are available for power applications. The current

gain (H21) and maximum available/stable gain (MAG/MSG) for

a three-finger device is shown in Figure 1. The three-finger de-

vice shows a cut-off frequency of fT � 258 GHz and MAG �
10.4 dB at 72 GHz when biased at Vce ¼ 2.5 V and Ic ¼ 45

mA. This bias point was chosen to maximize the output power

under class-A operation with the constraint of being well within

the safe-operation area of the three-finger device. The multifin-

ger devices have been modeled by combining individual single-

finger device models with an external parasitic network. Each

finger is modeled using the UCSD HBT model modified slightly

for better adoption to the InP DHBT devices considered [12].

An excellent agreement between measured and modeled charac-

teristics is shown in Figure 1, all the way up to the highest mea-

surement frequency of 110 GHz.

3. CIRCUIT DESIGN

3.1. Interstage-Matched Cascode Cell
The cascode cell with the proposed interstage matching network

is shown in Figure 2. The interstage matching network consists

of a shunt capacitor Cp located at the base of the CB device and

a series inductor Ls located between the CB and CE devices.

Contrary to normal design practice, the shunt capacitor Cp do

not act as an RF short at the design frequency but serve to
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reduce the voltage swing impressed across the base-emitter junc-

tion of the CB device. Furthermore, the shunt capacitor

increases the real part of the impedance looking toward the CB

device, whereas the inductance Ls increase its imaginary part.

The resistance Rb ensures that the effect of Cp is not shorted by

the decoupling capacitor at the base supply. To reduce its load-

ing effect, it should be chosen according to Rb � 1/xCp. The

element values of the shunt capacitance Cp and series inductance

Ls can be optimized for maximum output power using nonlinear

simulations near the 1-dB compression point. Figure 3 shows

the reflection coefficient Ci at 73.5 GHz for a standard cascode

cell and a cascode cell with interstage matching using three-fin-

ger devices biased at Vcc ¼ 5.0 V, Vb ¼ 3.35 V, and Ic ¼
45mA. As observed, the effect of the interstage matching net-

work is to move the reflection coefficient Ci to the location of

the optimum load reflection coefficient for the CE device. The

optimum values for the components in the interstage matching

network are Cp ¼ 230 fF, Ls ¼ 12 pH, and Rb ¼ 110 X. The ca-

pacitance value is easily realized on-chip using MIM capacitors,

whereas the low inductance value can be implemented by using

a fork structure. The benefits of the interstage-matched cascode

cell on the large-signal performance are shown in Figure 4.

Compared to the standard cascode cell, the interstage-matched

cascode cell is seen to go into saturation at a higher output

power level. This also has the effect of increasing the output

power at the 1-dB compression point. The negative feedback

effect caused by the shunt capacitor Cp reduces the linear power

gain. However, the power gain at saturated power levels is

actually higher for the interstage-matched cascode cell. There-

fore, the interstage-matched cascode cell shows significantly

higher peak power-added efficiency (PAE) compared to the

standard cascode cell. Other benefits of the interstage-matched

cascode cell are increased low-frequency stability due to the re-

sistor Rb and reduced sensitivity toward layout parasitic induct-

ance in the base access of the CB device due to the effect of the

small-valued shunt capacitance Cp.

3.2. Two-Way Combined PA Design
To further increase the output power, multiple interstage-

matched cascode cells can be combined in parallel. Figure 5

shows a two-way combined PA including matching structures at

the input and output. Base-ballasting circuitry is included for

thermal feedback. Small-valued resistors are placed between

individual cells and into the bias line circuitry to prevent insta-

bilities. A photograph of the two-way combined PA is shown in

Figure 6. The chip size is 1.5 � 2.4 mm2 including pads. The

transmission lines are implemented as coplanar waveguides, and

all the circuits were simulated using an EM-circuit cosimulation

approach in Agilent ADS.

4. MEASUREMENT RESULTS

The performance of the PA has been measured on-wafer using

110-GHz GSG probes from GGB industries for the input and

output. Bias for the chip was provided through decoupled DC

Figure 1 Measured and modeled maximum available/stable gain

(MAG/MSG) and current gain (H21) for three-finger InP DHBT device.

The device is biased at Vce ¼ 1.5 V and Ic ¼ 45 mA. The dashed line

with slope 20-dB/decade represents the extrapolated H21 curve. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com]

Figure 2 Schematic of cascode cell with interstage matching network.

Ci represents the reflection coefficient between stages

Figure 3 Reflection coefficient at 73.5 GHz for standard cascode cell

(o) and cascode with interstage matching network (x). The optimal com-

mon-emitter load reflection coefficient at 73.5 GHz is also shown (þ).

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com]
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probes from cascade. During measurements, the circuit was bi-

ased from a 5 V supply, drawing a current of 90 mA. The bias

voltage for the CB stage was set to 3.35 V. The small-signal

performance was measured using an Anritsu ME7808B broad-

band vector network analyzer (VNA) calibrated to the probe tips

using a calibration standard substrate. Figure 7 shows the meas-

ured and simulated S-parameters. Despite a slight downshift of

the measured gain peak to 67.7 GHz, the PA still shows a gain

larger than 8 dB in the lower E-band frequency range from 71

to 76 GHz. At 72 GHz, the measured gain is 9.8 dB while the

input return loss is 11.5 dB. As the developed InP DHBT model

was shown to be highly accurate under small-signal operation,

the difference between measurement and EM-circuit co-simula-

tion is believed to come from inaccuracy in the definition of the

layer stack used for the EM simulation and influence from inter-

nal port parasitics.

The large-signal characterization of the PA was done using a

custom-made setup able to deliver approximately þ12 dBm of

input power at the probe-tip in the lower E-band frequency

range. The measured power is corrected for losses in the setup.

Figure 8 shows the measured and simulated large-signal per-

formance at 72 GHz. The saturated output power is expected to

be somewhat larger than 18.6 dBm as it is seen that the input

power is not sufficient to fully saturate the PA. Using a total

active emitter area of 68.4 lm2, the corresponding output power

density is therefore at least 1.06 mW/lm2. The measured PAE

peaks around 12% at 72 GHz. The output power at 1-dB com-

pression is around 17 dBm. The measured large-signal perform-

ance is reasonably well-predicted by the EM-circuit cosimula-

tion approach.

For comparison purposes, a two-way combined PA using the

standard cascode configuration was also implemented. Details

related to the design and performance of the two-way combined

PA using the standard cascode configuration including circuit

schematic and chip photograph can be found in Ref. 13. The

downshift in frequency for the standard cascode-based PA was

observed to be somewhat larger compared to the PA with the

interstage-matched cascode so its large-signal performance is

measured at 69.6 GHz where the circuit is well-matched. Fur-

thermore, the standard cascode-based PA is biased at a quiescent

current of 77.8 mA in the experiment, which is around 15%

lower than the quiescent bias current used for the PA with inter-

stage-matched cascode. This was necessary to avoid thermally

induced device breakdown during the large-signal measurements

Figure 5 Schematic of two-way combined cascode cell with interstage matching employing three-finger devices

Figure 6 Microphotograph of fabricated two-way combined PA. The

chip size is 1.5 � 2.4 mm2. [Color figure can be viewed in the online

issue, which is available at wileyonlinelibrary.com]

Figure 4 Simulated power gain, output power (POUT), and power

added efficiency (PAE) at 73.5 GHz for standard cascode cell and cas-

code cell with interstage matching network. [Color figure can be viewed

in the online issue, which is available at wileyonlinelibrary.com]
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where the supply current raises dynamically at high input power

levels. The thermally induced device breakdown is believed to

be caused by the early saturation of the CB device in the stand-

ard cascode configuration which also results in a large increase

in the base current for this device. Table 1 compares the meas-

ured performance of the two implemented InP DHBT PA’s. The

benefits of the interstage-matched cascode configuration in terms

of power gain, output power, and PAE for implementing mm-

wave InP DHBT PAs are clearly seen. The higher output power

for the PA with interstage-matched cascode configuration leads

to almost a factor three improvement in the power density.

From circuit simulations, the standard cascode configuration was

expected to have larger small-signal gain than the interstage-

matched cascode but the experimental results shows that this is

not the case. Although part of this unexpected observation may

be explained by the large frequency shift and low-quiescent bias

current for the PA with standard cascode, the main reason for

the reduction of the power gain is believed to come from the

sensitivity toward parasitic inductance in the base access line

connecting to the three-finger CB device with its rather low im-

pedance level. The interstage-matched cascode configuration is

more robust against this parasitic inductance due to the effect of

the small-valued shunt capacitance Cp.

5. CONCLUSION

In this letter, a two-way combined InP DHBT PA using power-

optimized interstage-matched cascode configuration was

reported. The PA demonstrates 9.8 dB of small signal gain at 72

GHz. The measured saturated output power at this frequency is

larger than 18.6 dBm and it has a peak PAE of 12%. The high

power gain, output power, and PAE obtained from the two-way

combined PA clearly shows the benefits of the interstage-

matched cascode configuration over the standard cascode for

InP DHBT PAs at mm-wave frequencies. Furthermore, the PA

with interstage-matched cascode configuration demonstrates bet-

ter robustness against layout parasitics and thermal breakdown.
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(GHz)
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P1dB
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Psat
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(%)

Power

Density
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interstage matched

cascode
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Two-way combined
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ABSTRACT: This article describes the design of on-chip bandpass

filter (BPF) with split ring resonators (SRRs) for millimeter wave
application. SRR is one of the metamaterial structures commonly used in
designing the passive component and is used to improve the

performance of the device. In this design, the BPF is designed with two
(2) and five (5) SRRs to analyze the effect of SRRs toward enhancing the

performance of the BPF. The SRRs are constructed along the resonator
line below the BPF structure on the second lowest metal. In this article,
it is shown that the magnetic resonance frequency shifted and leaded to

improvement in the insertion loss of BPF as the number of SRRs
increased to five. For BPF with 5-SRRs, the insertion loss is 2.02 dB

with return loss better than 30 dB, whereas for BPF with only 2-SRRs,
the insertion loss is 3.29 dB with return loss better than 50 dB. VC 2013

Wiley Periodicals, Inc. Microwave Opt Technol Lett 55:1182–1185,

2013; View this article online at wileyonlinelibrary.com. DOI 10.1002/

mop.27499

Key words: bandpass filter; millimeter wave; insertion loss; return loss;

SRRs

1. INTRODUCTION

Up to now, unlicensed frequency band of 60 GHz has become

great attention to many researchers. But, as the frequency

increases, one will face serious signal loss in the passive device,

resulting higher attenuation due to low resistivity of the silicon

substrate. This would be very difficult for designers to imple-

ment the device, because it requires very high area and very

large path loss. Due to this, several attempts had been made to

reduce the losses as well as to shrink the chip size. Among other

techniques, slow wave propagation technique is reliable, because

it will provide higher quality factor (Q), low cost, and low

attenuation to the design [1].

Consumers’ demand of low cost, power efficient, reliable,

and small form factor become increasing nowadays. To reduce

cost and achieve compact size, high-level integrations are pre-

ferred. Power added efficiency (PAE) is an important metric in

designing a power amplifier (PA) as a first step of designing a

bandpass filter (BPF). It is a measure of PA’s ability to convert

the dc power of the supply into the signal power delivered to

the load. PAE is maximized by minimizing the total power dis-

sipation providing a desired output power to the system and can

be summarized as Eq. (1).

PAE ¼ Pout dBmð Þ � Pin dBmð Þ
Pdc dBmð Þ � 100 (1)

BPF is a very important passive device in transmission sys-

tem. Recently, many BPFs designed for 60 GHz waveband

CMOS has been introduced by researchers [2–4]. However,

these designs have several disadvantages such as high insertion

loss, inadequate selectivity response, larger chip size, and wider

bandwidth.

With the unique properties of negative leff(x) and negative

eeff(x) concept, metamaterial structures become particular con-

cern in millimeter-wave technology. Metamaterials can be

defined as structures that provide electromagnetic properties not

found naturally in media that provide enhancement of magnetic

and dielectric properties [4]. Researches in metamaterial behav-

ior can be categorized into two main approaches: split ring reso-

nators (SRRs) as proposed in Ref. 5 and left and right hand

(LH) theory in transmission line concept in Ref. 6. Theoreti-

cally, metamaterial ‘‘substance’’ was first proposed by Viktor

Veselago in 1967 with left-handed criteria and ability to exhibit

negative l and e. However, due to nonexistence of substances

with l < 0, his theory could not be experimentally verified.

Pendry et al. then introduced the SRRs medium and showed that

metallic wires aligned along the direction of wave propagation

could lead to negative permittivity (e < 0) material [7]. Later,

Smith et al. successfully achieved both negative parameters in

GHz range using arrays of SRRs that form a ‘‘left-handed’’ me-

dium [5].

In transmission line theory, LH-TL is implemented using se-

ries of capacitors and shunt inductances. This type of metamate-

rial is normally used in planar microstrip circuit devices. LHM

has unique properties of materials especially in controlling elec-

tromagnetic waves and has negative refraction, opposite radia-

tion pressure, backward propagation characteristic (opposite po-

larity of phase and group velocities), and ability to transform

wave manipulation devices and system [7].

In this article, BPFs, as shown in Figure 1, are designed with

2-SRRs and 5-SRRs on pattern ground of the CMOS 0.18 lm

technology. The SRRs are placed on the second lowest metal. It

shows that the number of SRRs effects the performance of the

BPF in terms of insertion and return losses. By placing 2-SRRs

with distance apart, the insertion loss of BPF is 3.29 dB with

return loss <59 dB. Meanwhile, for BPF with 5-SRRs, the inser-

tion loss reduces to 2.02 dB with return loss <30 dB due to sev-

eral factors that will be mentioned later.

2. BPF AND SRR

2.1. BPF
The proposed BPF used an open loop ring resonator, designed

with total length of L1 and L2, which is half wavelength of the

guided waves. Bottom silicon substrate loss tangent may cause

electric coupling between the metal layer and the bottom loss

substrate, which subsequently play down the performance of the

microstrip line components at higher-frequency ranges. To avoid

this phenomenon, bottom metal layer (M1) is used to construct

the ground shield layer. Furthermore, the patterned ground
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