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Abstract: In this paper designing a controller for trailing edge flaps (TEF) as well as optimizing
its position on the wind turbine blade will be considered. An integrated design approach will be
used to optimize both TEF placement and controller simultaneously. Youla parameterization will
be used to parameterize the controller and the plant. The goal is to maximize blade root bending
moments while minimizing actuator activity. An optimization with linear matrix inequalities
(LMI) constraints will be used to optimize the H∞ norm of the system.
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1. INTRODUCTION

In recent decades there has been increasing interest in
green energies of which wind energy is one of the most
important. Wind turbines are the most common wind
energy conversion systems (WECS) and are hoped to be
able to compete with fossil fuel power plants on energy
price in the near future. However this demands better
technology to reduce the electricity production price. One
way to decrease the electricity production price is to reduce
structural fatigue and therefore increase the lifetime of the
wind turbine. Recent studies have shown that employing
trailing edge flaps on wind turbine blades can decrease fa-
tigue loads on the blades. There have been several research
in this area tackling the problem of designing trailing edge
flaps (Andersen, 2010), (Castaignet et al., 2011) and ().
In this paper we try to design trailing edge flaps for a
wind turbine using an integrated design approach where
we optimize the flap radial position on the blade and
also its length while optimizing the controller. In order to
formulate the integrated design problem we parameterize
the plant and the controller using Youla parameterization
(Tay et al., 1998). The paper is organized as follows: In
section 2.1 the problem will be stated and design objectives
will be given. In section 2.2 controller parameterization
and optimization will be discussed and finally in section
2.3 plant parameterization and optimization will be given.
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Fig. 1. Plant and controller parameterized

2. PROPOSED INTEGRATED DESIGN METHOD

2.1 Problem formulation and design objectives

We want to optimize plant and controller parameters
together in the design process. One way to make the
problem solvable is to formulate two different optimization
problems and solve them iteratively. We start be an
initial guess, then firstly we optimize controller parameters
given a fixed plant model and then we optimize plant
parameters, given a fixed controller. To do so, consider
figure 1. In this figure input output relationships could be
written as: (

s
z
y

)
=

(
P11 P12 P13

P21 P22 P23

P31 P32 P33

)(
r
w
u

)
(1)

r = S(R)s (2)

u = K(Q)y (3)

In which S(R) is used to denote parameters of the plant
as the transfer function R and K(Q) is used to denote
parameters of the controller as the transfer function Q.
Having this, the integrated design problem can be cast



Fig. 2. Integrated design for a SISO system

into the following optimization problem:

min
Q,R
‖Hzw‖∞ (4)

In which we try to minimize the H∞ norm of the transfer
function Hzw from disturbance w to exogenous output z.
To do so, we can iterate between optimizing the plant and
the controller. which are:

HP
zw = Fu(Fl(P,K(Q)), S(R)) (5)

HC
zw = Fl(Fu(P, S(R)),K(Q)) (6)

Fl and Fu denote lower and upper linear fractional trans-
formations (LFT) respectively. Therefore the optimization
algorithm becomes:

• Step 1: Optimize controller parameters

min
Q
‖Hzw‖∞ (7)

• Step 2: Optimize plant parameters

min
R
‖Hzw‖∞ (8)

• Step 3: Check termination conditions, if satisfied
terminate else go to step 1.

We start by defining a simple SISO example. The system
interconnection is shown in figure 2.

2.2 Controller Optimization

Controller Parameterization Having a plant model (ei-
ther from a first guess or result of an optimization), we are
now in a position that we can optimize the controller. To
do so we start by writing down the transfer matrix for the
system with disturbances and input/output.(

z
y

)
=

(
C11 C12

C21 C22

)(
w
u

)
(9)

Therefore the transfer function from w to z becomes:

HC
zw = C11 + C12K(1−KC22)C21 (10)

Now if we parameterize the controller K using Youla
parameterization as:

K =
Uq +NqQ

Vq +MqQ
(11)

In which Uq, Vq, Nq and Mq are calculated by coprime
factorization of C22:

C22 = G22 +G21(1− SG11)−1SG12 (12)

C22 = NqM
−1
q (13)

And solving the following Bezout equation:

NqUq +MqVq = 1 (14)

Using the parameterization given in (11), the transfer
function HC

zw could be written as:

HC
zw = C11 + C12QC21 (15)

For a SISO system given in figure 2, we know C11, C12, C21

and C22 are:

C11 = 1 (16)

C12 = 1 (17)

C21 = G22 +G21(1− SG11)−1SG12 (18)

Coprime factorization of state space models After formu-
lating the transfer functions from w to z for parameterized
controller as follows:

HC
zw = C11 + C12QC21

Now it is time to find coprime factorization of C22. One
way to do this, is to first find a state space realization of
it which we denote as:

C22 =

(
Ac Bc

Cc Dc

)
Next step is to calculate normalized coprime factorization
of this transfer functions which can be calculated by the
following formula (Vidyasagar, 1987): For a state space
realization of G(s) normalized coprime factorization of G
is:

(Nl(s) Ml(s))
s
=

(
A+HC B +HD H

R−1/2C R−1/2D R−1/2

)
Where:

H
∆
= −(BDT + ZCT ), H

∆
= I +DDT

In which Z is the solution to the following algebraic Riccati
equation:

(A−BS−1DTC)Z + Z(A−BS−1DTC)T

− ZCTR−1CZ +BS−1BT = 0

In which:

S
∆
= I −DTD

Another way is to design a stabilizing controller, e.g.
using LQG theory (Doyle et al., 1992), and then use
that controller and coprime factorization of the plant to
parameterize all the stabilizing controllers. For the transfer
function C22 we have a state space realization as:

C22 =

(
A B
C D

)
And we need to find state space realizations for N,M,X
and Y such that we have:

C22 =
N

M
, NX +MY = 1

We do not go into the details here and give the final
transfer functions in terms of state space matrices of a
realization of the transfer function C22 and matrices F and
H are found such that A + BF and A + HC are stable,
found for example using LQG method.

M(s) =

(
A+BF B

F 1

)
N(s) =

(
A+BF B
C +DF D

)
X(s) =

(
A+HC H

F 0

)
Y (s) =

(
A+HC −B −HD

F 1

)
Optimization problem So far we have formulated the
optimization problem of the form:

Controller optimization: min
Q
‖HC

zw‖∞ (19)



Knowing thatHC
zw is an affine functions of Q (see equation

(15)), now we proceed to formulate and solve an opti-
mization problem of the form given below, which is the
optimization problem (19) after parameterization.

min
X(s)∈RH∞

‖Y0(s) + Y1(s)X(s)Y2(s)‖∞ (20)

X(s) is a transfer function which is in infinite dimensional
RH∞. However in order to be able to solve the optimiza-
tion problem we approximate the solution with a finite
dimensional parameterized transfer function of the form:

X(s) =

nq∑
i=1

αiXi(s) (21)

In which for example we formulate Xi’s as:

Xi =

√
2a

s+ 1

(
s− a
s+ a

)i−1

(22)

we are optimizing only the parameters αi in the transfer
function X(s), therefore we can write:

X(s) =

(
Ax Bx

Cx(α) Dx(α)

)
(23)

In order to simplify, the transfer function given in (20) can
be written as (knowing it is a SISO system):

Y (s) = Y0(s) + Y1(s)X(s)Y2(s) (24)

= Y0(s) + Y1(s)X(s) (25)

In which we have replaced Y1(s)Y2(s) with Y1(s).

LMI formulation For minimizing H∞ norm of a transfer
function, having its state space realization we can solve the
following optimization problem:

min γ (26)AT
y P + PAy PBy CT

y

? −γI DT
y

? ? −γI

 ≺ 0 (27)

P � 0 (28)

In which:

Y (s) =

(
Ay By

Cy Dy

)
(29)

Now we need to find the state space realization of Y (s)
parameterized in terms of parameters of the transfer
function X(s). And for that matter we use the following
equations:

W1 +W2 =

A1 0 B1

0 A2 B2

C1 C2 D1 +D2

 (30)

W1W2 =

A1 B1C2 B1D2

0 A2 B2

C1 D1C2 D1D2

 (31)

Therefore we have:

Y (s) = Y0(s) + Y1(s)X(s) (32)

=

(
A0 B0

C0 D0

)
+

(
A1 B1

C1 D1

)(
Ax Bx

Cx(α) Dx(α)

)
(33)

=

(
A0 B0

C0 D0

)
+

 Ax BxC1 BxD1

0 A1 B1

Cx(α) Dx(α)C1 Dx(α)D1


(34)

=

A0 0 0 B0

0 Ax BxC1 BxD1

0 0 A1 B1

C0 Cx(α) Dx(α)C1 D0 +Dx(α)D1

 (35)

And then we get the following matrices for the LMI
optimization.

Ay =

(
A0 0 0
0 Ax BxC1

0 0 A1

)
By =

(
B0

BxD1

B1

)
(36)

Cy(α) = (C0 Cx(α) Dx(α)C1) Dy(α) = D0 +Dx(α)D1

(37)

2.3 Plant Optimization

A set of linearized transfer functions for a trailing edge flap
can be found using system identification. The set could be
written as:

H(s) =
(s+ z1(r, d))(s+ z2(r, d))

(s+ p1(r, d))(s+ p2(r, d))
(38)

In which r is the distance from the root of the blade and
determines TEF placement and d determines the size of
the TEF. The equation (38) shows that poles and zeros of
the TEF are functions of r and d and we can determine
these functions by running a number of experiments with
different values of r and d, and using system identification
to find poles and zeros of the transfer function. The goal
is to solve the following optimization problem:

Plant optimization: min
r,d
‖HP

z w‖∞
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