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Topological Fluid Dynamics: Theory and Applications
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aDepartment of Mathematics, Technical University of Denmark, 2800 Lyngby, Denmark
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cDepartment of Engineering Science & Mechanics, Virginia Tech, Blacksburg, VA 24061, USA

Abstract

Hassan Aref, who sadly passed away in 2011, was one of the world’s leading researchers in the dynamics and equilibria of point

vortices. We review two problems on the subject of point vortex relative equilibria in which he was engaged at the time of his

death: bilinear relative equilibria and the geometry of the three-vortex problem as it relates to equilibria. A set of point vortices is

in relative equilibrium if it is at most rotating rigidly around the center of vorticity, and the configuration is bilinear if the vortices

are placed on two orthogonal lines in the co-rotating frame. A very complete characterisation of the bilinear case can be obtained

when one of the lines contains only two vortices. The classic three-vortex problem can be viewed anew by considering the dy-

namics of the circle circumscribing the vortex triangle and the interior angles of that triangle. This approach leads naturally to the

observation that the equilateral triangle is the only equilibrium configuration for three point vortices, regardless of their strength

values.

c© 2012 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of K. Bajer, Y. Kimura, & H.K. Moffatt.

Keywords: Point vortices; relative equilibria; vortex crystals

1. Introduction

Hassan Aref passed away suddenly in his home on the 9th of September, 2011, just a few weeks before his 61st

birthday. With Hassan’s death the fluid dynamics community lost a great and original scientist. We have also lost a

good friend, an inspiring mentor and teacher, and a prominent leader and organiser. An overview of Hassan Aref’s life

and work can be found in [1]. A favourite topic of Hassan was the dynamics of point vortices, and he made numerous

fundamental contributions to this subject. The present paper focuses on two problems in this field that he was involved

in at the time of his death: relative equilibria of point vortices arranged on perpendicular lines [2] and a geometric

analysis of the three-vortex problem.

We dedicate this paper to the memory of Hassan Aref.
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2. Relative equilibria

Representing a point vortex as a complex number z, the equations of motion of N vortices moving in the velocity

field they generate on each other are [3]

dzα
dt

=
1

2πi

N∑
β=1

′ Γβ

zα − zβ
, α = 1, . . . , N. (1)

Here the overbar means complex conjugation and the prime on the summation sign means that β = α is excluded.

The parameters Γα are the circulations of the vortices. It is easy to see that the complex quantity

Q+ iP =
N∑

α=1

Γαzα (2)

is an integral of the motion. Assuming that the total circulation of the vortices is non-zero, we define the center of

vorticity

zcv =
Q+ iP∑N
α=1 Γα

(3)

and choose the coordinate system such that zcv = 0; that is, we have

N∑
α=1

xα =

N∑
α=1

yα = 0, (4)

where zα = xα + iyα.

A relative equilibrium of the vortices is a configuration where the vortices rotate as a rigid body with constant

angular velocity around the center of vorticity. In the following, we will assume that all vortices are of identical

strength. Inserting zα(t) = zα(0)e
iΩt yields, after a suitable scaling of time, the following system of algebraic

equations

zα =
N∑

β=1

′ 1

zα − zβ
α = 1, . . . N. (5)

There is a substantial body of research on the solution of these equations. A classical result by Stieltjes states that if

n vortices in relative equilibrium are placed on a line, they must be located at the roots of the nth Hermite polynomial

Hn. Also many solutions where the vortices are placed on concentric circles are known [4]. See [3] for a review.

While the search for analytic solutions to Eqns. (5) naturally starts with configurations with some symmetry,

asymmetric configurations can be found numerically. A breakthrough was achieved by Aref & Vainchtein (1998) [5]

who produced configurations with no apparent symmetry. Configurations with n vortices were found by starting with

a relative equilibrium having n − 1 vortices of strength 1 and one vortex with very small strength ε at a co-rotating

point, that is, at a stagnation point in the co-rotating frame. Increasing the parameter ε by a small amount, a new

adjacent relative equilibrium is sought. If this procedure succeeds, increasing ε all the way to 1, a relative equilibrium

with identical vortices results. Both symmetric and asymmetric configurations were found by this method.

More recently Aref & Dirksen (2011) [6] numerically found relative equilibria that are very close to being sym-

metric. For two examples, see Fig. 1. Numerical computations are performed with 300 digits to ensure that the

asymmetric solutions are not spurious.

3. Bilinear relative equilibria

While the general problem of solving Eqns. (5) is surprisingly difficult, some progress was recently made on

bilinear equilibria, that is, configurations where the vortices are placed on two orthogonal lines. This was the topic of



5 Peter Beelen et al.  /  Procedia IUTAM   7  ( 2013 )  3 – 12 

Fig. 1. Black dots show two analytical symmetric relative equilibria, with 31 and 14 vortices respectively, on regular polygons. The superimposed

smaller white dots show numerically found asymmetric solutions very close to the symmetric ones. Reproduced from [6] by permission.

a paper that was submitted for publication less than two weeks before Hassan Aref’s death [2]. Here we review the

main results of that work.

Choosing the two lines as the real and imaginary axes of the complex plane, we consider a configuration of n
vortices on the real axis at the points xα and m vortices on the imaginary axis at the points iyβ . In the following, a

key role will be played by the ‘generating polynomials’ p and q defined by

p(z) =
n∏

α=1

(z − xα), q(z) =
m∏

γ=1

(z − iyγ). (6)

Using Eq. (5), it can be shown that p and q fulfil the bilinear differential equation

pq′′ + 2p′q′ + p′′q + 2z(pq′ − p′q) + 2(n−m)pq = 0. (7)

Conversely, if p is a polynomal of degree n with n distinct real roots and q is a polynomial of degree m with m distinct

imaginary roots which fulfil Eq. (7) the roots of p and q represent a vortex system in relative equilibrium.

An example is illuminating. Let us consider a configuration with n = 4 vortices on the real axis and m = 2
vortices on the imaginary axis. From Eq. (4) it follows that the generating polynomials have the form

p(z) = z4 + a2z
2 + a1z + a0, q(z) = z2 + η2, (8)

with η > 0. Inserting these expressions in Eq. (7) and collecting terms of the same order in z yields

z4 : 15− 2η2 + 2a2 = 0,

z3 : a1 = 0,

z2 : 3η2 + 3a2 + 2a0 = 0,

z : (η2 + 3)a1 = 0,

z0 : (2η2 + 1)a0 + η2a2 = 0.

From the first four equations we get

a1 = 0, a2 = η2 − 15/2, a0 = −3η2 + 45/4, (9)

and, after some simplifications, from the last equation,

20η4 − 48η2 − 45 = 0. (10)

This equation has one positive solution η2, and we find

η2 =
3

10
(4 +

√
41), a0 =

9

20
(17− 2

√
41), a2 =

1

10
(−63 + 3

√
41). (11)
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With this, we find the following roots of p and q, corresponding to vortex positions in a relative equilibrium,

± 1
2

√
3
5

[
21−

√
41−

√
2
(
71−

√
41
)] ≈ ±0.6961177525,

± 1
2

√
3
5

[
21−

√
41 +

√
2
(
71−

√
41
)] ≈ ±1.9734444009,

±
√

3
10 (4 +

√
41) i ≈ ±1.7666174660 i.

The example above is a special case of a relative equilibrium where the vortices on the imaginary axis are symmet-

rically placed relative to the real axis. For the general case of even m we have a number of basic properties – proofs

are given in [2].

Theorem 1 Let q(z) be a polynomial of even degree, m, of the form

q(z) = (z2 + η21) . . . (z
2 + η2m/2), (12)

where 0 < η1 < . . . < ηm/2 are given. Assume there exists a polynomial solution, p(z), of the ODE

pq′′ + 2p′q′ + p′′q + 2z(pq′ − p′q) + 2(n−m)pq = 0, (13)

where n is a positive integer. Then

1. p(z) is of degree n

2. All zeros of p(z) are simple, and p(z) and q(z) have no common zeros

3. p(z) is an even function of z for n even, an odd function for n odd

4. All zeros of p(z) are either real or part of a complex conjugate pair

5. Any other polynomial solution to Eq. (13) is proportional to p(z)

6. p(0) �= 0 for even n

If the generating polynomial P (z) = p(z)q(z) for the total vortex system is introduced, the differential equation

Eq. (7) can be rewritten in the form

− d

dz

[
e−z2 dP

dz

]
+ r(z)P = 0 where r(z) = e−z2

⎡
⎣−2(n+m) + 8

m/2∑
j=1

η2j
z2 + η2j

⎤
⎦ . (14)

This has a form which allows the use of the Sturm comparison theorem, which we need in the following version:

Theorem 2 (Sturm comparison theorem) Let L1 and L2 be two differential operators defined on R by

L1(u) = − d

dz

[
k(z)

du

dz

]
+ r1(z)u(z), (15a)

and

L2(v) = − d

dz

[
k(z)

dv

dz

]
+ r2(z)v(z), (15b)

where k(z), r1(z) and r2(z) are real-valued functions on R, k(z) ≥ 0, r1(z) and r2(z) are continuous, and k(z) is
continuously differentiable. Let x1 and x2 be two consecutive zeroes of a nontrivial solution, u(z), of L1(u) = 0. If
on the open interval x1 < z < x2 we have r1(z) > r2(z), then every solution v(z) of L2(v) = 0 has a zero in this
interval.

Several applications of this theorem will appear in the following. The first one is
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Theorem 3 Let P (z) be a polynomial solution to Eq. (14). Then P (z) has at least n−m+ 2 mutually distinct real
zeros. In particular, for m = 2, P (z) has exactly n mutually distinct real zeros.

Outline of proof Comparing Eqn. (14) with

− d

dz

[
e−z2 dP1

dz

]
+ r1(z)P1 = 0 where r1(z) = −2e−z2

(n−m) (16)

which is the Hermite equation of order n−m, we have r1(z) > r(z). Letting P1 = Hn−m be the (n−m)th Hermite

polynomial , which is a solution to Eqn. (16) it follows from Theorem 2 that a polynomal solution P to Eqn. (14) has

n − m − 1 roots between the n − m roots of Hn−m. A closer examination of the proof of the Sturm comparison

theorem yields another two real roots of P , one above and one below the interval of roots of Hn−m. Finally, a parity

argument using the facts that complex roots of p come in conjugate pairs according to Theorem 1, a final real root of

P is found.

�

3.1. Two vortices on the imaginary axis

For m = 2 the theorem states that the polynomial p has exactly the n distinct roots needed to ensure they represent

a vortex configuration in relative equilibrium. The result is the best possible. In the next section we will discuss an

example with m = 4 and n = 5 which has only three real zeros, and hence is a solution to Eqn. (7) but does not

correspond to a vortex configuration.

We now restrict to the case m = 2 and n arbitrary. Thus, we have

p(z) = anz
n + · · ·+ akz

k + · · · . (17)

With A = η2 > 0 we obtain a linear recursion relation for the ak from the generalised Hermite equation (7),

A(k + 2)(k + 1)ak+2 + [(k + 2)(k + 1) + 2A(n− k − 2)]ak + 2(n− k + 2)ak−2 = 0. (18)

Collecting the ak in a vector a, this can be rewritten as a matrix equation

MA,na = 0 (19)

where MA,n is an
([

n
2

]
+ 1

)× ([
n
2

]
+ 1

)
matrix, depending on A and n. One can show that, for fixed n,

|M0,n| = (n+ 2)! > 0 and |MA,n| → −∞ for A→∞. (20)

By continuity it follows there exists an A such that |MA,n| = 0 and hence a non-trivial coefficient vector a solving

Eq. (19). The value of A is actually unique, which can be shown by a simple application of the Sturm comparison

theorem. The polynomial P (z) = (z2 +A)p(z) solves the differential equation

− d

dz

(
e−z2 dP

dz

)
+ e−z2

[
−2(n+ 2) + 8

A

z2 +A

]
P = 0. (21)

Assume there are solutions P1(z) for A = A1 and P2(z) for A = A2, A1 > A2 > 0. Since
A1

z2 +A1
>

A2

z2 +A2
for z �= 0 the Sturm comparison theorem applies. The polynomial P1 has n real roots, and P2 must then have n − 1
roots between them. Again, an examination of the proof of the comparison theorem yields that there are further two

roots of P2 outside the interval of roots of P1, giving in total n + 1 real roots of P2. But this is in contradiction with

P2 being of degree n. Thus we have

Theorem 4 For n = 1, 2, . . . there is exactly one value of η2 = An > 0 such that the differential equation

(z2 + η2)p′′ − 2z(z2 + η2 − 2)p′ + 2[nz2 + (n− 2)η2 + 1]p = 0,

has a non-zero polynomial solution p(z).
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10 20 30 40 50 60

10

20

30

40

n
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Fig. 2. Numerical determination of A determined in Theorem 4 as a function of n. The full line shows A = 2
3
n + 1

2
. Reproduced from [2] by

permission.

Fig. 2 shows the distribution of A as a function of n from a numerical solution of |MA,n| = 0. A linear trend is

very clear. Indeed, we can show

Theorem 5 For the unique An determined in Theorem 4 the asymptotics is given by

α ≡ lim
n→∞

An

n
=

2

3
. (22)

Outline of proof Again, the Sturm comparison theorem plays a central role. The starting point is the equality

2

n

n∑
j=1

(
2An/n+ 4

(
x
(n)
j /

√
2n

)2
)−1

+
1

2An
= 1 (23)

which can be derived from Eqn. (5) without too much difficulty. Here x
(n)
j is the jth positive root of the polynomial

p. Since An →∞ as n→∞ it follows that

lim
n→∞

2

n

n∑
j=1

(
2α+ 4

(
x
(n)
j /

√
2n

)2
)−1

= 1. (24)

It is well-known that the roots ξ
(n)
j of the Hermite polynomial Hn are bounded by

√
2n such that the normalized roots

ξ
(n)
j√
2n

lie in the interval [−1, 1]. The basic idea is now to show that these approximate the normalized roots of p which

occur in Eqn. (24) so well that we can replace them here, that is,

lim
n→∞

2

n

n∑
j=1

(
2α+ 4

(
ξ
(n)
j /

√
2n

)2
)−1

= 1. (25)

This is indeed true; From the Sturm comparison theorem it is easy to see that the roots of p and Hn+2 are interlaced.

This is not quite what is needed, but with a few extra arguments the results follows.

Replacing the roots of p with roots of Hn is useful because the asymptotic density of ξ(n)/
√
2n is known. Calogero

and Perelomov [7] have shown that it is given by

ρ(ξ) =
4

π

√
1− ξ2 (26)

in the sense that

lim
n→∞

2

n

n∑
j=1

f
(
ξ
(n)
j /

√
2n

)
=

∫ 1

−1

f(ξ)ρ(ξ)dξ (27)
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for any continuous function f . Applying this to Eqn. (25) yields

2

π

∫ 1

−1

√
1− ξ2

α+ 2ξ2
dξ = 1 (28)

from which one finds α = 2/3. �

3.2. More than two vortices on the imaginary axis

For m > 2 Theorem 3 does not guarantee the existence of physically relevant solution P (z) to Eqn. (14). Also it

is not clear that one can choose values η2j such that Eqn. (14) has a polynomial solution. Numerical evidence seems to

indicate though that at least for m = 4 such values can be found. For example for m = 4 and n = 5, Eqn. (14) turns

out to have a polynomial solution when (numerically) (η21 , η
2
2) = (8.71216620306513, 13.204163923109789), with

solution say P1(z) but also when (η21 , η
2
2) = (2.09464882278818, 6.90535117721182), with solution say P2(z). Let

us also write equation (14) in these cases as L1(P1) = 0 and L2(P2) = 0. Both polynomials P1(z) and P2(z) have at

least 5− 4 + 2 = 3 real roots according to Theorem 3. However, we can use Theorem 2 and compare the differential

operators L1 and L2. Since P1(z) has at least 3 real roots, we can conclude that P2(z) has at least 5 real roots. It turns

out that P1(z) has exactly three real roots, which means that P1(z) does not give rise to a bilinear relative equilibrium

of nine vortices, while P2(z) does.

Let us in general assume that for m > 2 and m even one can find a sequence of m/2-tuples (η21,k, η
2
2,k, . . . , η

2
m/2,k)

for k = 1, . . . ,m/2 fulfilling η2j,k < η2j,� for all j = 1, . . . ,m/2 and k < 	. Each tuple defines a differential operator

Lk from Eqn. (14), and we assume that Lk(P ) = 0 has a polynomial solution Pk(z). According to Theorem 3, Pk(z)
has at least n−m+2 roots. However, using Theorem 2 consecutively on the operators L1, L2, . . . , Lm/2, one would

be able to conclude that Pk(z) has at least n−m+ 2k real roots. Therefore the polynomial Pm/2(z) would give rise

to a physically relevant solution. We do not know if such tuples exists for any m > 2.

4. The geometry of an equilibrium vortex triangle

If the system under consideration consists of three vortices, one can consider an alternative formulation to (1) that

is based on the geometry of the triangle with vertices at the vortex locations. Here we we give an overview of work

on this topic that was in progress at the time of Hassan Aref’s death.

Previous geometrical solutions focused on describing the evolution of the vortex triangle in terms of the side lengths

and the enclosed area [8, 9, 10, 11]. With the three lengths defined by

s21 = |z2 − z3|2, s22 = |z3 − z1|2, s23 = |z1 − z2|2, (29)

the equations governing the evolution of these sides in time are [8]

ds21
dt

=
2Δ

π
Γ1

s23 − s22
s22s

2
3

,
ds22
dt

=
2Δ

π
Γ2

s21 − s23
s23s

2
1

,
ds23
dt

=
2Δ

π
Γ3

s22 − s21
s21s

2
2

, (30)

where the triangle area Δ is given by

16Δ2 = 2s22s
2
3 + 2s23s

2
1 + 2s21s

2
2 − s41 − s42 − s43. (31)

In an alternative view, the geometry of the vortex triangle can be given in terms of the interior angles and the prop-

erties of the circle that circumscribes the vortex locations [12], as shown in Fig. 3. Here we consider this formulation

in examining the equilibrium configurations of three vortices when the vortex locations are not collinear. The known

equilibrium configurations of this type have the vortices placed at the vertices of an equilateral triangle. The geometric

analysis presented here shows in a straightforward way that the equilateral triangle is the only possible (non-collinear)

equilibrium configuration for three vortices with arbitrary strengths.

Let R be the radius and Z = X + iY be the center of the circumcircle passing through the vortex locations, as

illustrated in Fig. 3. Then the vortex locations can be written as

z1 = Z +Reiϕ1 , z2 = Z +Reiϕ2 , z3 = Z +Reiϕ3 , (32a)



10   Peter Beelen et al.  /  Procedia IUTAM   7  ( 2013 )  3 – 12 

ϕ1

ϕ2

ϕ3

AB

C

Z

x

y

z1z2

z3
Fig. 3. Definition of the geometrical variables in the vortex triangle.

where ϕα measures the angle made by the position vector of vortex α with respect to the x (horizontal) axis. We

exclude collinear configurations from this analysis, so that the vortex positions given by (32a) are well defined. We

assume that the vortices are labeled anticlockwise, so that the interior angles of the triangle are given by

ϕ2 − ϕ1 = 2C, ϕ3 − ϕ2 = 2A, ϕ1 − ϕ3 = 2B − 2π. (32b)

These interior angles are constrained by the geometry to satisfy

A+B + C = π. (33)

These angles are related to the lengths of the triangle sides via

s1 = 2R sinA, s2 = 2R sinB, s3 = 2R sinC, (34a)

and we will make use of the relation

R =
s1s2s3
4|Δ| . (34b)

The equation of motion for R can be obtained through manipulation of the equations of motion for the vortex

positions (1). For example, substituting the notation (32) into the equation for vortex 1 gives

dz1
dt

=
1

2πiR

(
Γ2

eiϕ1 − eiϕ2
+

Γ3

eiϕ1 − eiϕ3

)
=
−ie−iϕ1

2πR

(
Γ2

1− ei2C
+

Γ3

1− e−i2B

)
. (35a)

The complex conjugate of this expression can be rewritten as

Ż e−iϕ1 + Ṙ+ iRϕ̇1 =
1

4πR

[
Γ2 cotC − Γ3 cotB + i(Γ2 + Γ3)

]
, (35b)

where the overdot denotes the time-derivative. The real component of this equation, together with the similar relations

for the velocity components of vortices 2 and 3, can be written in matrix form as

⎡
⎣cosϕ1 sinϕ1 1
cosϕ2 sinϕ2 1
cosϕ3 sinϕ3 1

⎤
⎦
⎡
⎣ẊẎ
Ṙ

⎤
⎦ =

1

4πR

⎡
⎣Γ2 cotC − Γ3 cotB
Γ3 cotA− Γ1 cotC
Γ1 cotB − Γ2 cotA

⎤
⎦ . (35c)

Using the constraint (33) with (35c), one can determine the equation for Ṙ in terms of the angles A,B,C to be

8πR
dR

dt
= Γ1 cotB cotC(cotB−cotC)+Γ2 cotC cotA(cotC−cotA)+Γ3 cotA cotB(cotA−cotB).(36)
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For equilibrium configurations with finite (constant) R, the right-hand-side of (36) must be zero, giving a second

constraint on the values of A,B,C independent of the value of R. Cases in which R varies with time can also be

considered, and we plan to address this analysis in a subsequent publication. For equilibrium configurations with

finite (constant) R, the right-hand-side of (36) must be zero, giving a second constraint on the values of A,B,C
independent of the value of R.

Now consider the equations governing the time evolution of A,B,C. By differentiating (34a) we have, for exam-

ple,

cotA
dA

dt
=

1

2R sinA

ds1
dt
− 1

R

dR

dt
. (37)

From the equations of motion for the sides (30) we have

ds1
dt

=
Γ1Δ

πs1

s23 − s22
s23s

2
2

=
Γ1

8πR

cos(2B)− cos(2C)

sinB sinC
=

Γ1

4πR
sinA(cotB − cotC). (38)

Substituting (36) and (38) into (37) gives

dA

dt
=

Γ1(1−cotB cotC)(cotB−cotC)−Γ2 cotC cotA(cotC−cotA)−Γ3 cotA cotB(cotA−cotB)

8πR2 cotA
, (39)

and equivalent expressions can be obtained for the evolution of angles B and C.

For equilibrium configurations, Ṙ = 0 in (37), and (39) reduces to

dA

dt
=

Γ1

8πR2

cotB − cotC

cotA
; (40a)

the equivalent equations for Ḃ and Ċ are

dB

dt
=

Γ2

8πR2

cotC − cotA

cotB
, (40b)

dC

dt
=

Γ3

8πR2

cotA− cotB

cotC
. (40c)

Thus, the requirement of a triangular equilibrium configuration in which Ȧ = Ḃ = Ċ = Ṙ = 0, together with

the constraint in (33), requires that A = B = C = π/3. This result shows that the equilateral triangle is the only

equilibrium configuration of three vortices that are not collinear.

5. Conclusions

The problem of finding relative equilibrium configurations of point vortices is rich and interesting. We are far from

any general theory of the structure of the solution set, even in the case of identical vortices, and there seems to be a

need for new mathematical techniques. Through one of Hassan Aref’s last papers [2] the Sturm comparison theorem

was introduced in this topic, giving a series of rigorous results on bilinear equilibria. The hope is that this approach

will yield further results. For example, we have only touched upon cases with more than m = 2 vortices on the

imaginary axis, and perhaps something can be said about multi-linear configurations.

While the three-vortex problem is very well understood, there are still new facets worth examining. The new

geometrical approach to this problem that we have discussed throws light on this classical problem from a different

perspective. It allows us to obtain known equilibrium solutions in a straightforward manner, and suggests that a similar

approach may be fruitful for investigating the equilibria of vortex N -gons with N > 3.

Indeed, point vortex dynamics in general is a wonderful place for interaction between fluid mechanics and a large

and growing range of mathematical ideas. We sorely miss the insight that Hassan Aref provided in leading such

investigations.



12   Peter Beelen et al.  /  Procedia IUTAM   7  ( 2013 )  3 – 12 

References

[1] Borisov A, Meleshko V, Stremler M, van Heijst G. Hassan Aref (1950-2011). Regular and Chaotic Dynamics. 2011;16(6):671–684.

[2] Aref H, Beelen P, Brøns M. Bilinear Relative Equilibria of Identical Point Vortices. Journal of Nonlinear Science. 2012;22(5):849–885.

[3] Aref H, Newton PK, Stremler MA, Tokieda T, Vainchtein DL. Vortex crystals. Advances in Applied Mechanics. 2003;39:1–79.

[4] Aref H, van Buren M. Vortex triple rings. Physics of Fluids. 2005;17(5):057104.

[5] Aref H, Vainchtein DL. Point vortices exhibit asymmetric equilibria. Nature. 1998;392(6678):769–770.

[6] Dirksen T, Aref H. Close pairs of relative equilibria for identical point vortices. Physics of Fluids. 2011;23(5):051706.

[7] Calogero F, Perelomov A. Asymptotic density of the zeros of Hermite polynomials of diverging order, and related properties of certain singular

integral operators. Lettere Al Nuovo Cimento. 1978;23(18):650–652.
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