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Implementation and applications of a finite-element model for
the contact between rough surfaces

K. Pouliosa,∗, P. Klita

aTechnical University of Denmark, Department of Mechanical Engineering, Solid Mechanics Nils
Koppels All , Building 404, 2800 Kgs. Lyngby

Abstract

Due to the rough nature of real mechanical surfaces, the contact between elastic bodies
occurs at several size scales. Statistical and fractal contact models can take a wide range
of roughness wavelengths into account, without additional computational cost. How-
ever, deterministic models are more straightforward to understand and easier to extend
to more complex cases like contacting bodies that demonstrate elasto-plastic behaviour.
This paper presents a finite-element model for studying the frictionless contact between
nominally flat rough surfaces. Apart from a description of the model implementation,
results from a series of calculations corresponding to theoretical and real life applications
are included. Numerically generated surface topographies but also roughness measure-
ments from a stylus instrument are used as input for the model. Elastic and perfectly
elastic-plastic materials are included in the examples. Among the presented results one
can find the distribution of the contact pressure at the interface and diagrams of the real
area of contact as a function of the nominal contact pressure.

Keywords: real contact area, finite-element, micro-contact

1. Introduction

Problems in contact mechanics can be roughly classified into two categories. The
ones that refer to non-conformal contacting surfaces and those that treat the contact
between macroscopically conformal surfaces. The latter case can often be reduced to a
contact between rough but nominally flat surfaces. This kind of problem has many real
life applications involving friction, wear and electrical or thermal conduction and was
extensively studied since the classical works of Bowden & Tabor [1], Archard [2] and
Greenwood & Williamson [3].

The real area of contact was very early identified as a key parameter in understand-
ing and quantifying the phenomena that occur in the contact between conformal rough
surfaces. For this reason a big number of either statistical or deterministic models were
suggested for the calculation of the real area of contact and possibly the corresponding
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pressure distribution across and within a large number of contact spots. Statistical and
fractal models work with surface parameters while deterministic models require a rep-
resentative surface sample in form of a topography matrix that is either measured or
numerically generated.

Most of the fundamental questions that modern models for contact between rough
surfaces are expected to solve in a quantitative manner, are already discussed in the
three classical papers cited above. The role of the real contact area in the calculation of
an approximately load independent coefficient of friction is highlighted in [1]. Moreover,
even if that work overestimated the importance of plastic deformation in the asperities
contact, plastic deformation is still a parameter which modern models often need to take
into account in order to represent reality precisely. Archard in [2] states the importance
of the surface topography in predicting a nearby linear relation between the normal load
and the real contact area even under purely elastic deformations. For approximating
such a relation he resorts to a multi-scale consideration of the surface roughness, in a
way similar to modern fractal models. Finally Greenwood & Williamson show in [3] that
an approximately linear relation between the real contact area and the normal load can be
demonstrated even in a single size-scale consideration if a realistic statistical distribution
of the asperities heights is taken into account. Ever since, this is recognized as the major
effect in predicting how the real area of contact grows with the load.

More recent rough surface contact models consist to a large extent in refinements of
the Greenwood & Williamson model, mainly in the directions of including inter-asperity
interactions, variable asperity curvature and plasticity, see e.g. [4] and [5]. Models that
intend to include multiple size-scales normally deviate from the Greenwood & Williamson
approach. Typical examples are the fractal model proposed by Majumdar & Bhushan in
[6] and the one introduced by Persson in [7].

With respect to deterministic contact models, most of them are based on either an
elastic half-space or a finite-element formulation, see e.g. [8], [9] and [10],[11] respectively.
The present work includes implementation details and applications of a finite-element
based model, that is capable of calculating the deformations, the contact pressure distri-
bution and the real contact area between flat rough surfaces of two elasto-plastic bodies
that are in contact under normal loading.

2. Methods

2.1. Continuous problem formulation

In continuum mechanics, the deformations u1 and u2 of two elastic bodies identified
through the indices i = 1 and 2 can be studied by considering the following equations:

∇σi(ui) + fi = 0 (1)

σi(ui) = Aiεi(ui) (2)

in the corresponding domains Ωi shown e.g. in Fig. 1.
With σ denoting the three by three stress tensor, Eq. (1) expresses the forces equilib-

rium in the bulk material under field forces f and Eq. (2) represents a constitutive law
for elastic deformations with A and ε corresponding to the elasticity and the linearized
strain tensors respectively.
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Figure 1: Deformable bodies in contact

Additionally, homogeneous Dirichlet conditions on the boundaries ΓD,i and surface
normal forces ti on the boundaries ΓN,i can be expressed through the following equations
respectively:

ui = 0 , on ΓD,i (3)

σN,i = ti , on ΓN,i (4)

with the stress component σN,i in direction ni normal to the body surface, defined as:

σN,i(ui) = σi(ui)ni (5)

For studying the contact interaction between the two elastic bodies, the non-penetration
condition can be described on a portion ΓC,1 of the surface of the first body by using the
so-called Karush-Kuhn-Tucker conditions:

σN,1(u1) ≤ 0 , on ΓC,1 (6)

gN (u1, u2) ≥ 0 , on ΓC,1 (7)

gN (u1, u2)σN,1(u1) = 0 , on ΓC,1 (8)

with the normal gap gN between the bodies, defined as:

gN (u1, u2) = gN0 − (u1 − P1(u2))n1 (9)

The variable gN0 corresponds to the initial gap between the unloaded bodies and P1

represents a projection operation on the surface of the first body. In the case of Eq. (9)
the projected quantity is the displacement field u2.

Eq. (6) enforces that only compressive stresses can be exerted between the contact-
ing bodies and Eq. (7) enforces the actual non-penetration condition. Finally, Eq. (8)
expresses that at a specific point either contact will occur or the contact pressure will be
zero. A more detailed description of the fundamental problem formulation can be found
in [12].

3



2.2. Finite-element discretization

For geometrically complex contacting bodies, the problem stated in the previous
section cannot be solved analytically and is typically discretized by using the finite-
element method. In the case of a nominally flat rough surface and for relatively small
roughness asperity slopes the complexity of the geometry cannot justify resorting to a
finite-element model, half-space models can solve this problem in a more efficient way,
see e.g. [9]. However, if the effect of asperity slopes has to be taken into account or if
the bulk material is expected to deform plastically, the finite-element method provides a
very straightforward approach in solving this problem.

Two further steps that are typically required before the actual discretization are the
conversion of the problem statement into the corresponding weak formulation and the
introduction of Lagrange multipliers in Eq. (6) to (8). Both these steps are described in
detail in [13] and [14]. With respect to the discretization of the contact conditions, the
latter paper describes two possible approaches, a nodal one that enforces Eq. (6) to (8)
at each finite-element node and an integral one that enforces the condition in an average
sense over the contacting face of each finite-element. In the present work the integral
approach is used.

The final form of this problem after its conversion into a series of linear steps according
to the Generalized-Newton-Method algorithm presented in [13], is described below: Kk

1 0 CN,1
0 Kk

2 CN,2
BkN,1 BkN,2 Dk

 ·
 δu1

δu2
δλN

 =

 Rk1
Rk2
Rkλ

 (10)

 uk+1
1

uk+1
2

λk+1
N

 =

 uk1
uk2
λkN

+ α ·

 δu1
δu2
δλN

 (11)

with the index k corresponding to the current step of the iterative solving process.
The factor α for calculating the next iteration step is determined by performing a

line search operation. For linear elastic bulk materials the stiffness sub-matrices Ki

are actually independent of the iteration index k. However, for elasto-plastic materials
they have to be recalculated at every iteration and can be expressed as Ki(ui). Sub-
matrices CN,i are constant and sub-matrices BN,i and D change as the contact area
changes during the numerical iterations and can actually be written as BN,i(u1, u2, λN )
and D(u1, u2, λN ). The right-hand-side terms of Eq. (10) are also functions of u1, u2
and λN .

All components that were described in this subsection are available in the public
domain finite-element library GetFem++ 1 that was utilized for the implementation of
the present model.

2.3. Mesh generation

Fig. 2 shows the mesh discretization used in the model consisting of two rectangular
parallelepiped blocks corresponding to the two contacting bodies. Each block is dis-
cretized using 8-node hexahedral elements and is divided in layers of different mesh size.

1http://download.gna.org/getfem/html/homepage/
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Figure 2: Finite-element mesh

Instead of using transition elements, the continuity between the non-matching meshes of
neighbouring layers is enforced by applying additional constraints using Lagrange multi-
pliers defined on the finite-element nodes of the finest of the neighbouring layers. More
details and examples about this technique for connecting non-matching meshes can be
found in [15].

The parameters describing the mesh of each block consist of the block dimensions lx,
ly, lz, the number of elements in z direction per layer, nz, and the mesh sizes dx, dy
and dz at the finest mesh layer. The mesh size in the other layers is determined by a
coarsening factor as close to the value of two as possible and the number of layers is such
that the prescribed block height lz is fulfilled.

For each block, the roughness topography of the contacting surface is read as a matrix
stored in a file and is applied to the nodes of the finest mesh layer as displacements in
the z direction weighted by a factor of one for the nodes on the surface and decreasing
to zero for the nodes at the interface with the second mesh layer.

2.4. Boundary conditions

All results presented later in this paper correspond to a normal loading between the
upper and the lower blocks. This condition is achieved by fixing the z displacement of
all nodes on the bottom surface of the lower block and loading the top surface of the
upper block with a uniform load in z direction. The movement in x and y directions
for both the bottom surface of the lower block and the top surface of the upper block is
restricted in an average sense, this means that the individual nodes are free to move in
these directions but the average movement over each surface is zero.
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The blocks shown in Fig. 2 correspond to only a small, possibly representative, por-
tion of the two bodies in contact. In order to take this into account and assuming that
macroscopically the contact pressure distribution is uniform, periodicity conditions are
introduced to the model. The lateral block surfaces in the positive and negative x direc-
tions are connected together and this is also the case for the other two lateral surfaces
perpendicular to the y direction. The connection is implemented through elimination
of finite-element nodes. The DOFs corresponding to one of the connected surfaces are
removed and replaced by the corresponding DOFs of the opposite surface. The resulting
model should ultimately be interpreted as a rectangular array of infinite blocks like the
ones shown in Fig. 2 extending in x and y directions.

2.5. Material properties

Two different material laws, that were already implemented in the GetFem++ library,
are supported by the present model. Ideally elastic isotropic materials, expressed by
Eq. (2), and perfectly elastic-plastic materials can be taken into account.

Plastic deformation can be considered only in the context of a time dependent process,
where the previous time or load step provides the current deformations and stresses,
u0 and σ0 respectively, as a reference. In this case, a hypothetical elastic relationship
between the deformations and stresses can be expressed in incremental sense with respect
to the current state as:

σ̃(u) = σ0 +A(ε(u)− ε(u0)) (12)

Eq. (12) is equivalent to Eq. (2) with the body index i omitted for the sake of sim-
plicity. According to the closest-point projection method described in [16, chap. 10.7],
plastic behavior of a material can be taken into account by projecting the hypotheti-
cal elastic stresses σ̃ to the space of admissible stresses. By introducing the yield limit
σy with respect to the Von Mises yield criterion, the constitutive law for a perfectly
elastic-plastic material behavior can be expressed based on Eq. (12), as:

σ(u) =

{
σ̃ , for σ̃vm ≤ σy

σ̃m +
σy

σ̃vm
· σ̃d , for σ̃vm > σy

(13)

whereby, the hydrostatic and deviatoric stress tensors, σ̃m and σ̃d, are defined respectively
as following:

σ̃m =
σ̃11 + σ̃22 + σ̃33

3
· I (14)

σ̃d = σ̃ − σ̃m (15)

and the scalar function representing the Von Mises stresses can be defined using the
euclidean norm of σ̃d:

σ̃vm =
√

3/2 · |σ̃d| (16)

Considering the incremental nature of plasticity phenomena, if at least one of the
contacting bodies is expected to deform plastically, the corresponding Eq. (2) is replaced
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by Eq. (13) and a series of quasi-static load steps, beginning from the unloaded state,
has to be simulated.

It should be noted that both the elastic and the elasto-plastic material laws, that
were included in the present model, are based on the assumption of geometric linearity
that is valid only for small deformations.

2.6. Performance

As described in section 2.4, each of the blocks shown in Fig. 2 can be interpreted as
part of a periodic space that consists of infinite repetitions of the considered block in
form of a rectangular array. In order for the model to represent reality adequately, the
dimensions lx and ly of each block must be higher than the longest wavelength of interest
that is pronounced on the corresponding real surface. In case that this wavelength can be
identified as a deterministic pattern on the surface, the corresponding block dimension
has to be an exact multiple of it. Additionally, the mesh discretization sizes dx and
dy should be lower than the shortest wavelength of interest on the corresponding real
surfaces and directions. For this reason, a very high number of elements nx = lx/dx
and ny = ly/dy is necessary in order to cover a range of roughness wavelengths as
wide as possible. Therefore, the model size in terms of DOFs and the corresponding
computational cost are considerably high.

The following measures were taken in order to reduce the computational cost:

• Use variable mesh size in the depth direction in order to reduce the complexity of
the problem.

• Reduce the number of Newton-Raphson iterations by using robust contact algo-
rithms like the one mentioned in section 2.2.

Additionally, the computational time was reduced by resorting to parallel computing:

• Carry out the assembly of the tangent matrix and the right hand side of Eq. (10)
on multiple cpu-cores in parallel.

• Use multiple cpu-cores for the solution of the linear system (10) in each iteration
step by utilizing a parallel solver like MUMPS [17] and [18] in our case.

3. Results and discussion

In this section a series of examples are presented in order to compare the implemented
model with the Greenwood & Williamson theory, show its utility for real life applica-
tions and give an impression about the computational performance that can be achieved
utilizing publicly available numerical tools.

3.1. Comparison with Greenwood & Williamson

In order to compare with the Greenwood & Williamson theory [3], surface topogra-
phies that fulfil the corresponding assumptions were generated numerically. Fig. 3 illus-
trates the sum topography of the contacting surfaces for the four examples presented in
this section and Fig. 4 shows the individual topographies corresponding to the upper and
lower contacting surfaces for examples 3 and 4. In all cases the dimensions of the surface
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samples are lx = 1.8 by ly = 1.8 mm, and the surfaces include 81 spherical bumps of
constant radius.

In the first two examples, one of the contacting surfaces is rigid and flat, whereas
the other contacting surface is provided with bumps of radius equal to 1 mm arranged
in a rectangular array. The discretization length is dx = dy = 0.02 mm for the first
example and dx = dy = 0.01 mm for the second one. Apart from the different mesh
size, examples 1 and 2 are identical. The heights of the spherical bumps were generated
randomly according to a normal distribution with standard deviation of 0.7 µm. The
bulk material is considered isotropic and ideally elastic corresponding to steel against
steel and with the Young’s modulus E = 1.05 · 105 N/mm2 and Poisson’s ratio ν = 0.3
representing an equivalent elastic body in contact with a rigid body.

The third example takes two elastic bodies into account with E = 2.1 · 105 N/mm2

and ν = 0.3, provided with spherical bumps like in the first two examples but with
radius equal to 2 mm and height standard deviations of 0.43 µm and 0.55 µm for the
upper and the lower contacting surfaces respectively. In this way the equivalent radius
for the contact between two bumps is equal to 1 mm and the standard deviation of the
sum of the two surfaces will correspond to

√
0.432 + 0.552 ≈ 0.7 µm. This choice makes

this example statistically equivalent to the first two ones.
The fourth example has similar characteristics to the third one. The same material

parameters, bump radius and bump height distribution samples were utilized, however
the locations of the surface bumps between the two surfaces do not match each other.
They are generated by a random function following the uniform distribution with the
additional constraint that the overlap with any pre-existing bump will not exceed 40%
of the bump meniscus radius.

The simulation results for examples 1 to 4, corresponding to applied nominal pressures
of 3, 6, 12, 18, ... up to 48 MPa, are summarized in Fig. 5. In all cases the calculated
real area of contact increases almost proportionally with the applied nominal pressure.
For a perfectly linear relationship the mean pressure, defined as the total normal load
divided by the real contact area, would remain constant. However, the right graph in
Fig. 5 shows that there is a small increasing tendency in the mean pressure for increasing
nominal pressure.

A comparison of the real contact area and mean pressure curves between examples
1 and 2 shows that the relatively coarse mesh used in the first example can give results
that do not deviate more than 5% from the ones with a twice as fine mesh size. This
justifies the use of the same discretization length also in examples 3 and 4 and gives an
impression about the expected accuracy for these calculations as well.

The diagrams in Fig. 5 also include the real contact area and the mean pressure calcu-
lated according to the Greenwood & Williamson theory. The match with the numerical
results, especially for the fine mesh of example number 2, is relatively good. The real
contact area calculated by the finite-element model seem to be in general lower than the
one predicted by the theoretical model. It should be noted however, that the limitation
of the Greenwood & Williamson theory of not accounting for the interaction between
the roughness asperities is, by the nature of the finite-element model, not possible to
reproduce. Nevertheless, at least for examples 1 to 3, the provided distance between
neighbouring bumps indicates that for moderate loads the interaction between them is
limited.

8



(a) cases 1 and 2 (b) sum for case 3 (c) sum for case 4

µm

Figure 3: Combined surface topographies used in examples 1-4

(a) case 3, upper (b) case 3, lower (c) case 4, upper (d) case 4, lower

µm

Figure 4: Individual surface topographies used in examples 3 and 4

(a) (b)

Figure 5: Calculated real contact area (a) and mean contact pressure (b) for examples 1
to 4
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(a) cases 5 and 7 (b) cases 6 and 8

Figure 6: Surface topographies used in examples 5 to 8

3.2. Polymer against steel

Examples 5 to 8 refer to surface topographies that were measured on real specimens
and are illustrated in Fig. 6. The upper topography on each graph corresponds to
the surface of a polyethylene-terephthalate polymer pin used in a pin-on-disc test-rig
[19], whereas the lower one represents the corresponding steel disc surface. The left
graph illustrates the initial contacting surfaces and the right one shows the measured
contacting surfaces after 40 m of sliding under nominal pressure of 6 MPa. In all cases,
the dimensions of the surface samples are lx = 0.53 by ly = 0.47 mm and the direction of
sliding between the pin and the disc is parallel to the y axis. On the initial pin surface
turning marks from the machining can be distinguished whereas the final surface seems
to have adopted a topography that matches the steel disc surface.

Examples 5 and 6 corresponding to the initial and final surface topographies re-
spectively, were calculated including the plastic deformation of the pin material. The
properties of the purely elastic disc material were E = 2.1 · 105 N/mm2 and ν = 0.3,
whereas the pin bulk material was assumed to exhibit a perfectly elastic-plastic behaviour
with E = 3.5 · 103 N/mm2, ν = 0.43 and yield strength limit σy = 75 N/mm2.

Examples 7 and 8 represent the same conditions like cases 5 and 6 respectively with
the only modification of removing the yield strength limit and considering the polymer
perfectly elastic. This is an academic case serving as a reference for demonstrating the
effect of plastic deformation on the real contact area and the solving performance of the
model.

The loading conditions for examples 5 and 6 include an increase of the normal load
in steps corresponding to nominal pressures of 3, 6, 12, 18 and 24 MPa and a consequent
decrease following the same steps in reverse order. Examples 7 and 8 include exclusively
elastic materials, hence the decreasing load phase was omitted as it was expected to give
identical results as the increasing load phase. Fig. 7 shows the relationship between the
applied nominal pressure and the calculated real area of contact on the upper diagrams
and the mean contact pressure on the lower diagrams. The diagrams on the left and the
right side of the figure refer to the initial and final surface topographies respectively.

One can observe that during the unloading phase of examples 5 and 6 the real area
of contact is higher than during loading and consequently the mean contact pressure
is lower. The difference between the loading and the unloading branch of the curves
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(a) (b)

(c) (d)

Figure 7: Calculated real contact area (a,b) and mean contact pressure (c,d) for examples
5 to 8
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Figure 8: Contact pressure distribution on the disc surface for example 5 at 24 MPa

indicates the extend of permanent deformations due to plasticity and it is higher in
the case of the initial pin surface (see example 5) than for the final one (see example
6). According to [20], that studies the impact of plastic deformation on the contact area
ratio during the unloading phase, the span between the loading and the unloading branch
increases with increasing plasticity index ψ. It is difficult to define a plasticity index for
examples 5 and 6 because the corresponding surfaces do not fulfil the assumptions of
[3]. However the transition from the surfaces in Fig. 6 (a) to the more conformal ones in
Fig. 6 (b) corresponds to a reduced peak curvature radius and consequently to a lower
plasticity index.

Examples 7 and 8 show that by neglecting the plastic deformation of the polymer the
calculated real area of contact is reduced and the mean contact pressure becomes higher.
The difference with respect to examples 5 and 6 respectively is another indicator of the
extent of plastic deformation and it is clearly higher in the case of the initial pin surface
(compare examples 5 and 7).

An interesting observation can be extracted from graph (b) of Fig. 7 which shows that
during the loading phase no plastic deformation occurs up to a nominal pressure level
of 6 MPa. The two curves that were calculated with elastic and elasto-plastic conditions
respectively coincide up to this pressure. This is in accordance with the testing conditions
of the pin in the real set-up. Since the pin was loaded with a nominal pressure of 6 MPa,
any plastic deformation that would occur under this load has already occurred during the
running-in of the pin within the sliding distance of 40 m. The pin topography shown in
Fig 6 (b) should already include this permanent deformation, so that no further plastic
deformation is expected without a further increase of the load.

Fig. 8 shows the distribution of the contact pressure over the disc surface for the
contact with the original pin under the maximum nominal pressure of 24 MPa. The
corresponding mean contact pressure that can be read from Fig. 7 (c) is around 325 MPa.
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example DOFs calculation
wall-clock

time

iterations
per load

step

peak
memory

usage
1 138096 1h 24min 3.8 0.85GB
2 551376 29h 42min 6.3 3.67GB
3

267936
2h 25min 3.2 2.58GB

4 2h 40min 3.2 2.60GB
5

426976

12h 47min 10.9 4.52GB
6 11h 17min 7.4 3.80GB
7 5h 20min 3.1 3.75GB
8 4h 28min 2.8 3.67GB

Table 1: Summary of model size, calculation time, Newton-Raphson iterations and mem-
ory usage

3.3. Performance

Table 1 summarizes the sizes of the calculated examples in terms of DOFs, the cal-
culation times, the average number of Newton-Raphson iterations per load-step and the
peak memory usage for each calculation. All calculation times in the table are wall-
clock times for parallel runs on 10 cpu-cores. These results should not be considered
as accurate benchmarking data but they can serve as indicative values for the overall
performance of the model as well as for a rough comparison between the different cases
presented above.

Concerning the number of DOFs listed in the table, it should be noted that the major
part of the model DOFs describes the displacements field in the contacting blocks. A
smaller portion corresponds to Lagrange multipliers that are necessary for describing the
contact condition, the continuity between the different mesh layers and the enforcement
of the Dirichlet boundary condition at the bottom of the lower block.

A comparison between the first two examples shows that a mesh refinement by a
factor of two causes an increase in the number of DOFs by a factor of approximately
four. Because of the variable mesh size in the depth direction the total number of DOFs
depends on the second instead of the third power of the refinement factor. Nevertheless,
the impact of the increased number of DOFs on the computational time is high.

For examples 7 and 8 to be comparable with examples 5 and 6 in terms of perfor-
mance, the data contained in Table 1 include the decreasing load phase also for these
purely elastic cases even if the results are identical with the same load steps during the
increasing load phase. It seems that including plasticity for one of the two contacting
bodies increases the computation time by a factor around 2.5. This change should be
attributed to the similar increase in the number of Newton-Raphson iteration per load
step and not to the higher computational cost of the stiffness matrix assembly in each
iteration as one may expected.

3.4. Multi-scale

Considering the above listed model sizes and calculation times it becomes evident
that in order to model bigger surface samples while maintaining very short wavelength
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components of the surface roughness, several millions of DOFs may be necessary, making
the memory requirements and the calculation times increase considerably.

A different approach to this problem would be the implementation of a multi-scale
model. The interaction between the asperities in longer wavelengths could be taken into
account in a coarse mesh while the asperities in contact could be calculated individually
with a finer mesh that takes shorter wavelengths into account. The here presented model
could be utilized as a fundamental building element for the implementation of such a
multi-scale reduced model, similar to the one presented in [21].

4. Conclusions and future work

In this paper the theoretical foundation and some implementation details of a finite-
element model for the frictionless contact between nominally flat rough surfaces were
presented. A series of calculation examples have shown that a model based on publicly
available numerical libraries can achieve decent performance and provide sensible and
useful results.

The first part of the calculated examples aimed to compare the model with the Green-
wood & Williamson theory. The results demonstrated a relatively good agreement with
the theory. The real area of contact increases approximately proportional with the ap-
plied load while the mean contact pressure increases only slightly.

In the second part of the calculated examples, real surface topographies and an elasto-
plastic material behaviour were considered. The corresponding results seem to be coher-
ent. The extent of plastic deformation is higher for less conformal contacting surfaces.
Moreover, the model predicted correctly that loads higher than the ones applied during
the operation of the real surfaces are necessary in order to cause further plastic deforma-
tion to the measured after the operation surfaces. It was also shown that for the specific
materials pair studied in these examples, neglecting plasticity would have a significant
influence on the calculated area of contact and mean contact pressure.

As a future work, the presented model is intended to be extended by including friction
in form of shear stresses between the contacting surfaces and by implementing a multi-
scale calculation scheme. A further interesting application of the presented model would
be to study the changes in the asperity heights distribution on unloaded surfaces that
contain plastically deformed asperities.
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