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a b s t r a c t

In this article we demonstrate the use of self-assembled peptide nanotube structures as
masking material in a rapid, mild and low cost fabrication of polymerized p-toluenesulfo-
nate doped poly(3,4-ethylenedioxythiophene) (PEDOT:TsO) nanowire device. In this new
fabrication approach the PEDOT:TsO nanowire avoids all contact with any organic solvents
otherwise traditionally used in clean room fabrication. This can be achieved due to the
intriguing properties of the self-assembled peptide nanotubes utilized as a dry etching
mask for the patterning of the PEDOT:TsO nanowire. The peptide nanotubes, despite
remaining stable during the reactive ion etching procedure, can be dissolved rapidly in
water afterwards. The fabricated PEDOT:TsO nanowire devices exhibit excellent electrical
characteristics. Finally, the potential of PEDOT:TsO nanowires as temperature sensors has
been demonstrated and the high resolution of the sensor was illustrated.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Since the original article on silicon nanowire demon-
strating the potential of these new types of biosensors
was published more than a decade ago [1] the field of sil-
icon nanowires has received a lot of attention and many
articles exploring this specific field have been published
[2–5]. However, the fabrication costs of the nanowire de-
vices still are a challenge hindering the full exploration of
the nanowire devices as biosensors for diagnostic use [6].
One of the approaches explored to face this challenge has
been the fabrication of nanowires in cheaper materials,
for instance conductive polymers such as polyanaline [7–
9] and poly(3,4-ethylenedioxythiophene) (PEDOT) [10–
12]. The benefits of the cheaper nanowire devices have
been demonstrated in various applications ranging from
chemical gas and liquid sensors [13,14], over temperature
sensors [15] to biosensors [16–18]. However, the fabrica-

tion procedure for the polymer nanowire devices still is
challenging and/or time consuming due to the incompati-
bility of the polymers with organic solvents used in tradi-
tional nanofabrication techniques [19]. Recently, we have
demonstrated the use of self-assembled diphenylalanine
peptide nanotubes (PNT’s) as dry etching masks for the
low cost, mild and rapid clean room fabrication of silicon
nanowire devices [20,21]. Diphenylalanine self-assembled
peptide nanostructures are biological entities able to self-
organize in a rapid way under mild conditions. Its on-chip
fabrication, structural and electrical characterization,
manipulation and application in the development of bio-
sensors were recently reported [22–26]. In this work we
have demonstrated the rapid fabrication of polymerized
p-toluenesulfonate doped poly(3,4-ethylenedioxythio-
phene) (PEDOT:TsO) nanowire devices (the whole process
can be conducted in approximately 5 h) based on the
self-assembled PNT lithography. The benefit of this fabrica-
tion procedure is that any contact between PEDOT:TsO and
organic solvents, such as acetone, can be avoided since the
PNT’s dissolve rapidly in Milli Q water after the dry etching
pattern transfer [27].
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2. Materials and methods

2.1. Chemicals

The lyophilized diphenylalanine dipeptide powder was
purchased from Bachem (product number: G-2925). All
other chemicals utilized were purchased from Sigma–
Aldrich.

2.2. PEDOT:TsO preparation

260 ll Baytron C (40% FeIIItosylate in butanol), 80 ll
butanol, 6 ll pyridine and 8.8 ll EDOT were thoroughly
mixed and spun on the substrate wafer with 4000 rpm
for 60 s. The coated wafers were heated to 70 �C for
10 min to evaporate the inhibitor Pyradine and start the
polymerization process. The wafers were finally rinsed in
de-ionized water to wash away excess reactants. This pro-
cedure ensures a PEDOT:TsO film thickness of 75 nm.

2.3. Preparation of diphenylalanine peptide nanotubes

The PNT’s were prepared from a stock solution, where
the lyophilized form of the peptide monomers was dis-
solved at a concentration of 100 mg/ml in 1,1,1,3,3,3-hexa-
fluoro-2-propanol (HFP). The HFP stock solution was
diluted to a final peptide concentration of 2 mg/ml in water
in which process the PNT’s are formed. Fresh stock solution
was prepared prior to experiments to avoid pre-aggregates.

2.4. Spin casting procedure

The PNT’s were positioned across the electrodes in a
spin casting procedure as described in [20]. In short, the
solution containing the newly formed PNT’s is dropped in
individual drops on the spinning substrate. This spin cast-
ing procedure ensures that the PNT’s on the surface of the
wafer are oriented along the axial direction. In this work a
spin rate of 4000 rpm was utilized in all the experiments.

2.5. Reactive Ion etching procedure

The reactive ion etching procedure was conducted in a
STS Cluster System C010 with a pressure of 300 mTorr
and a power of 100 W. For the patterning of the PEDOT:TsO
an oxygen based plasma was used (98 SCCM O2 and 20
SCCM N2). The wafers were subjected to the plasma for
15 s, which was enough to etch through the thin PEDOT:T-
sO layer.

2.6. Visualization

All scanning electron microscopic (SEM) images were
acquired using a Zeiss SUPRA� 40 VP operated in the in-
lens mode with an acceleration voltage of 3 kV. The atomic
force microscopy (AFM) measurements were conducted
using a PSIA XE 150 in both tapping (for topography imag-
ing) and contact (for conductive recordings with a tip bias
of 0.7 V) mode. The conductive AFM images were acquired
with a Cr/Pt coated cantilever (ContE-Al, Budget Sensors)

with a force constant of 0.3 N/m. The current between
the AFM tip and sample was measured using an inverting
current amplifier and one of the analog–digital converter
inputs of the AFM controller.

2.7. Electrical readout

The impedance of the PEDOT:TsO nanowire device was
recorded with a custom build lab view controlled experi-
mental set-up, as described in [3]. In this set-up the current
through the PEDOT:TsO nanowire is externally amplified
using a low-noise current preamplifier model: SR570 from
Stanford Research Systems and finally recorded using a Na-
tional Instruments data acquisition card model BNC-2111.

3. Results and discussion

3.1. Fabrication of PEDOT:TsO nanowires

In a previous work, we have demonstrated the use of
the diphenylalanine PNT’s as a dry etching mask for the
fabrication of poly silicon nanowires [20,21]. One of the
benefits of utilizing the PNT’s besides the low cost and ra-
pid fabrication process is that they can be removed in Milli
Q water after processing [27]. In this way, acetone tradi-
tionally required for the removal of photoresists, can be
avoided. This enables the patterning of new types of mate-
rials normally incompatible with such organic solvents. In
this work, a modified version of this fabrication procedure
has been utilized for the rapid and low cost fabrication of
PEDOT:TsO nanowire devices. In fact the entire fabrication
procedure can be conducted in approximately 5 h yielding
at the moment around 200 ready to use PEDOT:TsO nano-
wire devices. In Fig. 1, the fabrication steps in the process
are illustrated. The first and most time consuming part of
the fabrication was the deposition and patterning of the
gold electrodes and contact pads allowing electrical con-
nection to the PEDOT:TsO nanowires. In this work 90 nm
of gold was deposited on 500 nm thick silicon dioxide layer
grown from a bare silicon wafer utilizing a 10 nm chro-
mium adhesion layer. The metal layers were patterned in
a traditional lift off procedure. The only difference being
that the wafer was dipped in a 5% buffered hydrofluoric
acid solution for 20 s prior to metal deposition. This ensure
a smooth corner on the edge of the gold electrodes to pro-
vide electrical connection between the electrodes and the
PEDOT:TsO nanowire. In the second step, the PEDOT:TsO
layer was spin coated on the wafer with a spin rate of
4000 rpm followed by a post backing step as explained
above. The PNT’s forming the dry etching mask were posi-
tioned across the electrodes in a modified spin casting
technique described in [20]. In this manipulation proce-
dure the PNT’s aligned according to the axial direction on
the wafer. The gold electrodes were positioned perpendic-
ular to this direction. In this way the aligned peptide nano-
tubes were able to bridge the gap at the electrode position
and not at other locations in order to avoid potential short
circuits as described in our previous work [20]. The final
step in the fabrication process was to transfer the pattern
of the self-assembled peptide nanotubes to the spin coated

K.B. Andersen et al. / Organic Electronics 14 (2013) 1370–1375 1371



PEDOT:TsO layer. After pattern transfer the PNT’s were
removed in pure Milli Q water.

3.2. Characterization of PEDOT:TsO nanowires

The fabricated PEDOT:TsO nanowire devices were char-
acterized using both SEM and AFM. A SEM image of a PED-
OT:TsO nanowire spanning the gap between two gold
electrodes is shown in Fig. 2a. Fig. 2b displays a zoom of
the contact between the PEDOT:TsO nanowire and the gold
electrode illustrating the smooth step coverage of the PED-
OT:TsO nanowire across the step from the oxide substrate
to the top of the gold electrodes. The large contact area be-
tween the gold electrodes and the PEDOT:TsO nanowire
and the smooth coverage of the step from the electrode
to the substrate by the PEDOT:TsO, as seen in the figure,
ensured proper electrical contact in the devices. This is also
evident from the small impedance and linear current volt-
age characteristics, even at room temperature, of these de-
vices as described below. In Fig. 2c, a topography image of
the surface of the PEDOT:TsO nanowire recorded with an
AFM in tapping mode is shown. Based on the line profile
shown in Fig. 2d, the height of the PEDOT:TsO nanowire
can be determined to be 75 nm. In this image the surface
roughness of the PEDOT:TsO nanowire is also clearly seen.
The roughness of the surface introduces a larger surface to
volume ratio than comparable flat nanowires and should
therefore increase the sensitivity of the measurements.
Using conductive AFM the complete removal of the PNT’s
from the PEDOT:TsO surface after etching was verified as
seen in Fig. 3b. From this AFM image it is seen that the sur-
face of the PEDOT:TsO nanowire is highly conductive and
hence the isolating PNT’s must have dissolved.

3.3. Electrical characterization

From the SEM images in Fig. 2a and b a continuous con-
nection between the PEDOT:TsO nanowire and the gold

surface without any fracture in the structure can be seen,
indicating a good electrical connection. To verify this, the
current–voltage relationship of a single PEDOT:TsO nano-
wire was recorded and plotted in Fig. 3a for a range of dif-
ferent temperatures. From this plot is clear that an ohmic
electrical contact between the gold contact pads and the
PEDOT:TsO nanowires was established as the current volt-
age relation was linear. The proper electrical contact is en-
sured by the large contact area between the PEDOT:TsO
nanowires and the gold electrodes combined with the
smooth corner of the electrodes. The major difference, be-
tween this and previous fabrication approaches, is that the
PEDOT:TsO in this case is first spin coated on the elec-
trodes and patterned at the electrodes yielding the good
electrical contact. In Fig. 3b, an image acquired with con-
ductive AFM is included to show the complete removal of
the isolating peptide nanotubes from the surface of the
PEDOT:TsO.

3.4. Temperature measurements

Finally, to demonstrate the potential of the PEDOT:TsO
nanowires they were used as temperature sensors. The
impedance of the PEDOT:TsO nanowire was monitored as
the temperature was changed. In Fig. 4a, the impedance
of the wire is plotted as a function of the temperature of
the solution in which the PEDOT:TsO nanowires devices
wrapped in a thin polymer foil were submerged (deter-
mined by external temperature sensing). In this experi-
ment, a linear correlation between the impedance of the
PEDOT:TsO nanowires and the external temperature was
seen. From this plot it is also evident a low noise level in
the PEDOT:TsO nanowire, corresponding to less than
0.05 �C. This is further demonstrated in Fig. 4b where the
impedance is monitored while the temperature is changed
0.2 �C. As a result of this change in temperature the imped-
ance of the PEDOT:TsO nanowire increased more than 8
times the noise level. Note that in this measurement no

Fig. 1. Illustration of the fabrication procedure developed in this work. In this approach the gold electrodes were initially defined by a lift off procedure. The
PEDOT:TsO was spin coated on the wafer and finally the peptide nanotubes were spin casted on the coated wafer to ensure proper alignment of the
structures to the electrodes. In the last step the pattern of the nanotubes was transferred to the PEDOT:TsO layer in a reactive ion etching procedure and
finally the peptide nanotubes were dissolved in Milli Q water. The process can be completed in approximately 5 h.
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shielding of the signal was conducted to mimic the situa-
tion in real temperature sensing environments. Performing

the measurements in a faraday cage would result in an
even smaller noise level and hence higher sensitivity.

Fig. 2. Visualization of the fabricated PEDOT:TsO nanowire structures with the gold contact pads visible. A SEM image of the whole PEDOT: TsO nanowire
spanning the gap between two of the gold electrodes is seen in (a). In (b) a zoom of the contact area between the PEDOT:TsO nanowire and the gold contacts
is shown. In this image it is seen that the PEDOT:TsO nanowire covers the step of the gold contact very well, which is also evident in the electrical recordings
presented below. In (c) a AFM image of the junction between the PEDOT:TsO nanowire and the gold contact pads is seen. In (d) a line scan covering the
PEDOT:TsO wire is included to verify the height of the fabricated PEDOT:TsO nanowire. From this scan the thickness of the nanowire can be estimated to
75 nm.

Fig. 3. I–V curves for the nanowire devices at different temperatures is plotted to demonstrate the completely linear ohmic behavior of the PEDOT:TsO
nanowire indicating a good contact between the gold electrodes and the PEDOT:TsO nanowire (a). In (b) an image acquired with conductive AFM is included
to show the complete removal of the isolating peptide nanotubes from the surface of the PEDOT:TsO.
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During the experiments it was also noted that the response
time of the PEDOT:TsO nanowire temperature sensor was
shorter than that of the traditional external temperature
sensor. Therefore in Fig. 4 the response time of the PED-
OT:TsO nanowire device is investigated by the repeated
change of external temperature of the wire. From this mea-
surement it is seen that within 10 s the PEDOT:TsO nano-
wire device has equilibrated to the new temperature. The
fast response of the PEDOT:TsO nanowire stem from the
small thermal mass of the wire. In the specific experi-
ments, in fact, the major part of the thermal mass and
hence the major contribution to the response time stems
from thermal mass of the substrate wafer on which the
PEDOT:TsO nanowire is fabricated. The PEDOT:TsO nano-
wire itself has a thickness of 50 nm, a length of 10 lm
and a width in the order of 500 nm and hence the volume
of the wire is only 0.25 lm3 compared to the �1017 lm3 of
the substrate. In comparison with other temperature sen-
sors such as strings and bimetallic geometries relying on
optical readout [20,28–30], the PEDOT:TsO nanowire only
requires a 2 point electrical readout that, due to the small

impedance, in principle can be read using a multimeter
depending on the desired precision. Temperature measure-
ment with nanowire structures is not a new principle and
has previously been demonstrated with both PEDOT nano-
wires [15] and nanowires of other materials [31–33]. The
PEDOT:TsO nanowire fabricated in this work has a much
lower resistivity than the previously demonstrated nano-
wire devices. Therefore the readout procedure for the
nanowire devices fabricated in this work is easier and as
mentioned above can be conducted with a standard 2 point
electrical read out procedure. The main benefit is however
the easy fabrication scheme demonstrated in our work
allowing the fabrication of nanowire devices in less than
half a day.

The very low contact resistance between the gold elec-
trode and the PEDOT:TsO nanowire ensure very sensitive
measurements since the dominant change to the imped-
ance of the device is the impedance of the PEDOT:TsO
nanowire. Hence, any smaller change in the impedance in
the gold contact pads and electrodes due to the tempera-
ture change can be disregarded. In order to utilize the

Fig. 4. To demonstrate the potential of these PEDOT:TsO nanowire devices they have been utilized as temperature sensors. In (a), the relationship between
temperature and impedance is plotted and from this plot it is seen that the temperature-impedance relation is linear. In (b), the sensitivity of the
PEDOT:TsO nanowire device to temperature changes is illustrated. In this case the temperature was changed with 0.2 �C which resulted in a signal change of
more than 8 times the noise floor. To determine the response time of the PEDOT:TsO nanowire devices to changes in external temperatures the impedance
of the nanowire was continuously monitored as the device was transferred between two water baths with different temperatures as seen in (c). Within a
few seconds the impedance has changed to the new value. Note that the major part of the response time in this setup stems from the thermal mass of the
substrate on which the PEDOT:TsO nanowire is fabricated. The response time of the wire itself is much faster.
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PEDOT:TsO nanowires as biosensors in liquid conditions
one will have to pattern a passivation layer covering the
gold electrodes to ensure no parasitic current through
the medium in which the sensors are operated.

4. Conclusions

In this work, we have combined the benefits of bottom
up fabrication using self-assembled peptide structures for
the patterning of PEDOT:TsO nanowires with the benefits
of top down fabrication of macroscopic gold electrode pat-
terns to provide contact pads for reliable electrical contact.
In this way we have demonstrated a rapid and low cost
fabrication method for the preparation of PEDOT:TsO
nanowire devices (the entire fabrication process can be
conducted in approximately 5 h). The fabrication proce-
dure of the PEDOT:TsO layer avoided the use of organic sol-
vents due to the easy removal of the peptide nanotubes in
water. The fabricated PEDOT:TsO nanowires were used as
sensitive sensors to measure temperature changes (down
to 0.05 �C changes can be detected with the current setup)
with a fast response time (in this setup approximately
10 s).
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