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Summary (English)
This thesis deals with the development and appliation of models for deision-making under unertainty to support the partiipation of renewables in eletri-ity markets.The output of most renewable soures, e.g., wind, is intermittent and, further-more, it an only be predited with a limited auray. As a result of theirnon-dispathable and stohasti nature, the management of renewables posesnew hallenges as ompared to onventional soures of eletriity. Fousing inpartiular on short-term eletriity markets, both the trading ativities of mar-ket partiipants (produers, retailers and onsumers) and the deision-makingproesses of system and market operators are hallenged.As far as produers are onerned, partiipation in eletriity markets imposesthem to make their trading deisions with a ertain advane in time as omparedto energy delivery. Sine their atual output is unertain at the time of bidding,the trading problem for a renewable power produer translates into a stohastioptimization problem, whose objetive is the maximization of the expeted rev-enues. In this thesis, we onsider the trading problem for a wind power produerboth in markets with low penetration of renewables, where the produer is aprie-taker, and in markets where the produer ats as a prie-maker.Owing to the demand response initiatives to be undertaken in future powersystems, the operation of eletriity retailers and the behavior of onsumers arealso going to be in�uened by renewable power prodution. Another fous of thisthesis is on time-varying prie mehanisms to make the most of end onsumers'�exibility. In partiular, the problem of managing optimally a virtual power



iiplant equipped with renewable prodution failities and �exible onsumers isaddressed through ontrol-by-prie. In a similar setup, the optimal trading (andpriing) problem for a retailer onneted to �exible onsumers is onsidered.Finally, market and system operators are hallenged by the inreasing penetra-tion of renewables, whih put stress on markets that were designed to aommo-date a generation mix largely dominated by onventional soures. Indeed, thetraditional market design, based on the sequential learing of suessive market�oors and on deterministi rules and riteria, is haraterized by higher andhigher degrees of suboptimality and lower reliability as the penetration of re-newables inreases. This work ontributes to the state-of-the-art by proposingnew mehanisms for day-ahead dispath and reserve determination in marketswith high penetration of renewables, on the basis of stohasti riteria.



Summary (Danish)
Denne afhandling beskæftiger sig med udviklingen og anvendelsen af stokastiskemodeller for beslutningsproesser, som vil understøtte integrationen af vedva-rende energi i elmarkeder.Produktionen fra de �este vedvarende elkilder, herunder vind, er uregelmæssigog stokastisk, og derudover kan den kun forudsiges med begrænset nøjagtighed.Som følge heraf indebærer driften af vedvarende energikilder helt nye udfordrin-ger i forhold til konventionelle elkilder. Med hensyn til short-term elmarkeder erder væsentlige udfordringer både i handlingsaktiviteterne for markedsdeltagere,herunder produenter, detailhandlere og forbrugere, og i beslutningsproessernefor markeds- og systemsoperatører.Produenternes deltagelse i elmarkeder kræver, at deres handelsstrategi bestem-mes, inden leveringen af energi forefalder. Da den fremtidige produktion fravedvarende elkilder er usikker, når produktionen bliver udbudt på markedet, erhandelsproblemet et stokastisk optimeringsproblem, hvis mål er maksimeringenaf indtægterne i gennemsnit. I denne afhandling fokuserer vi på handelspro-blemer for vindenergiproduenterne såvel i markeder med lav penetration afvedvarende energi, hvor produenterne er prie-takers, som i markeder med enhøj penetration, hvor de er prie-makers.På grund af de initiativer som skal indføre �eksibelt forbrug (demand response)i fremtidens elsystemer, vil detailhandlernes drift og forbrugernes vaner værepåvirket af vedvarende energiproduktion. Et andet fokusområde i afhandlingener anvendelsen af dynamiske priser for at udnytte forbrugernes �eksibilitet. Vistuderer især problemet at styre et virtuelt kraftværk optimalt bestående af



ivvedvarende energiproduktionsfailiteter og pris�eksible forbrugere. Desuden ervi optaget af et lignende problem, hvor en detailhandler, som forsyner pris�ek-sible forbrugere, skal optimere sin markedsstrategi.Endeligt er vi optaget af, hvordan markeds- og systemsoperatører udfordresaf den stigende penetration af vedvarende energi, som belaster de nuværendeelmarkeder, der oprindeligt var konstrueret til at håndtere en blandet produktionfra konventionelle elkilder. Jo højere en penetration af vedvarende energi, jo meresuboptimal og mindre pålidelig er den traditionelle markedsstruktur, der baserersig på sekventielle markeds learing proedurer og på deterministiske kriterier.I den forbindelse bidrager denne afhandling til det aktuelle tekniske niveau vedat foreslå nye stokastiske metoder for fastsættelsen af produktionsplan samtreservesstørrelse i markeder med høj penetration af vedvarende energi.
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Chapter 1 Introdution
As far as power systems are onerned, we live in probably the most interestingyears sine the late nineties, when liberalization took plae.Enouraged by international agreements aiming at reduing CO2 emissions, andbaked by larger and larger shares of the soiety, renewable energy has expe-riened an unpreedented growth in industrialized ountries during the reentyears. This impressive development an partly be explained by the favorable in-entives renewables were granted in the early stages of their deployment. Underthese shemes, renewable power produers are allowed to ontribute to powergeneration and at the same time sidestep most of the drawbaks and the risksimplied by partiipation in the market.In parallel to their massive deployment, the per unit ost of renewable energyhas onstantly dereased, and is approahing grid parity for some tehnologieslike wind and solar. Hene, renewables are able to, and asked to, ompete in themarketplae with onventional soures of energy, despite being fundamentallydi�erent from these soures. Indeed, renewable soures, with the exeptionof hydro and biofuels, are non-dispathable, i.e., their output annot or anonly partly be modulated on demand, and their prodution is stohasti, andtherefore hard to predit in advane.As a result of the large-sale deployment and of the peuliar features of renew-



4 Introdutionables desribed above, there is an inreasing need for mathematial tools thatan model their impat on, as well as failitate their optimal partiipation in,eletriity markets.1.1 Thesis ObjetiveThis thesis aims at developing tools to e�iently manage renewable soures inthe framework of liberalized eletriity markets. In an eonomi perspetive, ef-�ieny an be interpreted as ahieving minimum ost, maximum soial welfareor maximum revenue. In mathematial terms, this translates naturally into op-timization problems. Furthermore, owing to the unertain and non-dispathablenature of renewable soures, their partiipation in eletriity markets an onlybe modeled and optimized properly by making use of tools aounting for theirstohastiity. Hene, the natural hoie for tools to attak this type of problemsonsists in methods of optimization under unertainty.As a motivation to this work, we �rst desribe the impat that renewable souresurrently have on eletriity markets. Owing to their inreasing penetrationin power systems, and to their peuliar harateristis previously mentioned,renewable soures are expeted to have a substantial impat on the market, e.g.,on the power �owing on transmission lines and on the market-learing pries.Papers A and B fous on the development of stohasti models based on non-linear regression tehniques [CD88℄ to quantitatively desribe the underlyingrelationships between renewable power and market quantities. The fous ofthese two papers is on modeling rather than optimization, whih is the oreof this thesis. Hene, their ontribution onsists in showing how renewablesalready have a signi�ant impat on eletriity markets.The management of renewables in eletriity markets omprises two omple-mentary sides. On the one side are the market partiipants, mainly produers,retailers and onsumers, who either own renewable prodution apaity or are,more or less diretly, in�uened by it. On the other side are the market opera-tors and the transmission system operators, whih fae the hallenging problemof operating the market and the transmission grid e�iently and safely as theontribution from renewables inreases. Both problems are addressed in thisthesis.The problem of renewable power produers seeking to optimize their revenues ineletriity markets is onsidered �rst. The unertain nature of their prodution,oupled with the advane in time required to partiipate in eletriity markets,result in a problem of optimization under unertainty. Paper C onsiders the



1.1 Thesis Objetive 5ase where the produer is a prie-taker in the market, whih has a ertaina�nity with the well-known newsvendor problem [RS64℄. Then, we abandon theprie-taker assumption and onsider the optimization problem of a renewablepower produer having an impat on pries in Paper D. Suh problem is modeledas a Mathematial Program with Equilibrium Constraints (MPEC) [GCF+12℄.As far as retailers and onsumers are onerned, fundamental hanges in theway they operate and behave will be brought about in the years to ome bydemand response initiatives. Being suh programmes aimed at inreasing thepossibility for integrating renewables, the point of view of demand (retailers andonsumers) is partiularly relevant to this work. In this respet, Papers E andF onsider the joint problem of retailers and onsumers that interat by meansof dynami pries, broadast by the former partiipant, and �exible demand.More spei�ally, in Paper E, we model the ase of a retailer optimally man-aging a virtual power plant omprising both stohasti generation and �exibleonsumers exposed to dynami pries. In Paper F, we onsider the hierarhialrelationship between �exible onsumers and a prie-setting retailer, whih ex-hanges power with an in�nite market. The models in both papers are basedon MPECs.Market and transmission system operators are also hallenged by the develop-ment of renewables as they are alled to lear and operate markets e�iently,despite the inreasing share of non-dispathable and stohasti power in thesystem. The �traditional� way of learing subsequent markets, energy-only oromprising energy and reserve apaity, in a sequential fashion based on de-terministi priniples is known to be suboptimal when stohasti produers areinvolved. In Paper G, we onsider a learing proedure for a two-stage (day-ahead and balaning) energy-only market, based on MPECs and on stohastiprogramming priniples [BL11℄. Furthermore, in Paper H, we onsider the jointoptimization of reserve and day-ahead dispath. Suh a problem is approahedmaking use of robust optimization [BBC11℄, in order to guarantee e�ieny inthe worst-ase realization of the unertain renewable prodution.As a �nal omment, it should be mentioned that most of the papers inludedin this dissertation are spei�ally targeted to wind power, among all renewablesoures. There are two reasons for this. The �rst one is that wind power isby far the most ommon stohasti, non-dispathable renewable soure in theworld nowadays, partiularly in Denmark where the share of wind power in theprodution mix is about 30%. The seond reason is that, among these renew-ables soures, wind was the �rst one having to partiipate in markets. However,the results we present ould be easily generalized to solar, wave and tidal power,whih share many harateristis of wind power, i.e., the stohasti and non-dispathable nature �rst, along with intermitteny and spatial distribution inthe system.



6 Introdution1.2 Thesis OutlineThe thesis is strutured as follows. Part I is a report introduing and summa-rizing the papers. Within this part, Chapter 2 omprises a brief introdution toeletriity markets, in partiular to the Nordi market, Nord Pool, and to howrenewables partiipate in it. Chapter 3 introdues the methodologies employedin the thesis: Mathematial Programs with Equilibrium Constraints (MPECs),stohasti programming and robust optimization. A summary of the main re-sults obtained in the papers is given in Chapter 4. Finally, Chapter 5 onludesPart I.Part II is a olletion of publiations inluding the following papers.Paper A is a journal artile aepted for publiation in IEEE Transationson Power Systems. It deals with modeling the impat of wind powerprodution in Germany on European ross-border �ows, making use ofnonlinear regression oupled with prinipal omponent analysis.Paper B is an invited paper presented at the IEEE Power and Energy SoietyGeneral Meeting 2012, whih disusses an analysis similar to the one inPaper A, also inluding results showing the impat of German wind powerprodution on power �ows in Austria, and of the foreast of wind powerprodution on market pries in Western Denmark and in the German EEXmarket.Paper C is a journal artile published in Wind Energy in 2012. This paperdeals with the determination of the optimal trading strategy for a prie-taker wind power produer, and inludes a realisti test-ast simulatingthe trading ativity during a period of 10 months in Eastern Denmark.Paper D is a journal artile aepted for publiation in IEEE Transations onPower Systems. This paper deals with the optimal trading strategy fora wind power produer that is a prie-maker in the balaning market. Italso presents results obtained from a ase study based on Nord Pool.Paper E is a paper presented at the 12th IAEE European Energy Conferene in2012. The topi of this paper is the optimal management of a virtual powerplant omprising wind power prodution failities and �exible onsumersresponsive to dynami pries.Paper F is a journal artile published in Energy Eonomis in 2013. It presentsa hierarhial optimization model for determining the optimal marketstrategy for a retailer supplying �exible demand, whih is responsive todynami pries.



1.2 Thesis Outline 7Paper G is a journal artile submitted to European Journal of OperationalResearh. It presents a novel day-ahead market-learing model for energy-only markets, aounting for the projeted balaning osts of deviationsfrom stohasti produers, and onstrained by equilibrium onditions thatguarantee ost-reovery for �exible produers.Paper H is a tehnial report, whih deals with the joint determination ofday-ahead energy and reserve dispath making use of robust optimization.



8 Introdution



Chapter 2
Eletriity Markets

Eletriity is a fundamental resoure in modern soieties. We make use of itontinuously to satisfy our basi household needs. Besides, eletrial power is thebakbone of our eonomy, as it is key for the ativity in both the manufaturingand the servie industry.Beause of the importane of eletriity in our soiety, it is essential that thewhole hain of proesses from the generation to the delivery of power to theend onsumers is managed in a reliable and ost-e�ient manner. In a largenumber of industrialized ountries, this is urrently performed in the frameworkof eletriity markets.In this hapter, we review brie�y the history of liberalization of the eletriitysetor and desribe the main harateristis of eletriity markets in Setion2.1. Then, the struture of the Nordi power exhange, Nord Pool, is skethedin Setion 2.2. Setion 2.3 disusses the impat of renewables on eletriitymarkets and some of the hallenges they pose. Finally, demand response isbrie�y introdued in Setion 2.4.



10 Eletriity Markets2.1 Liberalization of the Eletriity SetorUntil the last two deades of the 20th entury, power systems worldwide wereorganized in a entralized fashion. State-owned, vertially-integrated utilitieswere in harge of the whole hain of ativity related to eletrial power: genera-tion, transmission, distribution and retail. Furthermore, suh utilities ated asmonopolies in all these �elds.The organization of power systems as state monopolies remained pratially un-hallenged until the end of the last entury. The �rst steps towards the reationof modern eletriity markets were taken by the Chiago Boys in Chile in 1982,during the Pinohet ditatorship, with the separation of generation and distribu-tion ativities (unbundling), the introdution of ompetition between produers,as well as of trading and priing of eletriity aording to the prodution ost(marginal priing).As far as Europe is onerned, the �rst ountries to liberalize the eletriitysetor were the UK, with the reation of an eletriity market in England andWales in 1990, and Norway in 1991. Australia (Vitoria and New South Walesmarket, 1994) and New Zealand (1996) were also among the �rst movers. TheUnited States followed with the liberalization of markets in California (CalPX),New York (NYISO), Pennsylvania, New Jersey and Maryland (PJM) by the endof the entury [Wer06℄. Eletriity markets worldwide have been implementedin a variety of ways, whih would be impossible to review here. However, theseimplementations share a number of ommon features.The �rst ommon feature is the separation of generation, transmission, distri-bution and retail ativities. Markets promote ompetition in generation andretail, while transmission remains a monopoly managed by non-ommerial or-ganizations (System Operators, in short SOs).Trading of eletriity is organized in pools or exhanges, where produers andpossibly retailers and large onsumers submit bids for energy delivery to, orwithdrawal from, the grid. Commonly, the preferred marketplae for short-term transations is a day-ahead market, often referred to as forward marketin the United States and as spot market in Europe. Later adjustments of day-ahead ontrats are possible in intra-day markets, and �nally in the balaningmarket, whih is also alled real-time or regulation market. Contrat lengthstypially over one hour or half an hour. Furthermore, most markets providelearing servies for �nanial ontrats (forward, options and derivatives).In general, liberalization is onsidered to have improved the e�ieny of powersystems' management, leading to lower pries for eletriity, and to have solved



2.2 The Nord Pool Market 11the overinvestment problem typial of entralized power systems [Wer06℄. How-ever, the implementation of eletriity markets has not been free of failures,see for example the risis in California at the beginning of the entury [Bor02℄.Currently, the traditional market design is hallenged by the growth in installedrenewable apaity, as we disuss in Setion 2.3.We refer the reader to [Wer06℄ for a more detailed history and desription ofeletriity markets.In the next setion, we introdue the main features of the Nordi eletriitymarket, Nord Pool. This market is ommonly addressed in the researh papersinluded in Part II of this thesis.2.2 The Nord Pool MarketThe Nord Pool market, originally named Statnett Marked AS, was reated inNorway in 1991, after the Norwegian parliament imposed the deregulation ofthe eletriity setor. The geographial sope of the market has extended grad-ually during the years. In 1996, Sweden joined the market to form the �rstinternational power exhange worldwide, whih was then renamed as Nord PoolASA. Finland and Denmark joined in 1998 and 2000, respetively. The Baltiountries are urrently in the proess of being integrated. Estonia and Lithuaniahave already joined as bidding areas of Nord Pool in 2010 and 2012, respetively,while Latvia is planning to join the marketplae in the near future [Nor13a℄.Nord Pool provides learing servies for the short-term eletriity markets. Fur-thermore, it also serves as learinghouse for �nanial produts (forward, futures,derivatives, et.). The two types of ativities have been separated in 2010, whenNasdaq OMX aquired the �nanial learinghouse and onsultany servies se-tions of Nord Pool, now alled Nasdaq OMX Commodities Europe, while theshort-term eletriity market ativities are arried out by Nord Pool Spot ASA.The latter ompany is jointly owned by the Transmission System Operators(TSOs) of the ountries partiipating in the exhange.Being the fous of this thesis on short-term markets, we desribe their funtion-ing in this setion, while the �nanial market is disregarded. First, we presentthe energy markets, i.e., the the day-ahead, intra-day and balaning markets,aording to their sequential order. Then, we deal with apaity markets at theend of the setion.More information on the history of Nord Pool, and on the funtioning of the



12 Eletriity Marketsdi�erent markets, an be found in [Nor13b℄ and [Nor13℄.2.2.1 Day-ahead MarketThe day-ahead market in Nord Pool is named Elspot. It is organized as a two-sided aution where produers, retailers and large onsumers submit bids fordelivery and withdrawal of eletriity throughout the following day. Marketpartiipants must submit 24 bids in total, i.e., one for eah hour of the followingday. Eah bid is spei�ed as a set of prie-quantity pairs, indiating the amountof energy the partiipant is willing to purhase or sell at a given prie.The deadline for submitting bids is at noon of the day preeding the atual deliv-ery. After this, Nord Pool lears the market by 12:45, publishing the prie(s) andommuniating the prodution and onsumption shedules to eah produer. Inorder to lear the market, Nord Pool determines aggregate sale and purhaseurves by sorting the sale bids aording to inreasing pries, and the purhasebids in the inverse order. The intersetion between the two urves sets the sys-tem prie. If all transmission onstraints are satis�ed, this prie applies for thewhole system: all the sale (purhase) o�ers whose prie is not greater (lower)than this prie are aepted, and this determines the day-ahead shedule. Themarket-learing proedure is illustrated in Figure 2.1.
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Figure 2.1: Market learing in Nord Pool based on the purhase and saleurves submitted for the 12th trading period of the 7th September2011. Data from [Nor13℄If transmission bottleneks arise as a result of the prodution and onsumption
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(b) De�it areaFigure 2.2: Market splitting through impliit autionsplan implied by the appliation of a unique system prie, Nord Pool Spot pro-eeds with the so-alled market splitting proedure. In this proedure, di�erentmarket pries are alulated in market areas linked by ongested transmissionlines. Area pries are alulated through an impliit aution. Aggregate sup-ply and demand urves are determined for eah market area where ongestionarises. If the area is in surplus of prodution, the transmission apaity is on-sidered as a prie-independent purhase bid, thus shifting the purhase urve tothe right. The result is an inrease in the area prie and, onsequently, a largerprodution and lower onsumption. On the other hand, if the area is in de�itof prodution, the transmission apaity from other Nord Pool areas enters asa prie-independent supply bid, thus shifting the sale urve to the right anddereasing the area prie. The situation is skethed in Figure 2.2.The number and geographial extension of the prie areas is prede�ned in NordPool. There are �ve prie zones in Norway, four in Sweden, two in Denmarkand a single prie area for eah of the other ountries (Finland, Estonia andLithuania). Basially, the borders between area pries are drawn where themain transmission bottleneks are loated in the power grid. The prie zones inNord Pool are illustrated in Figure 2.3.The priing rules in Nord Pool impose that the day-ahead prie be equal through-out eah individual prie zone, despite the fat that internal transmission linesmay be ongested. Suh a priing system is referred to as zonal priing. Inontrast, market pries an be di�erent at eah node of the grid when the nodalpriing system is employed. In suh a system, the prie of eletriity mirrorsthe marginal inrease in the ost for serving load at any given node of the grid.
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LTFigure 2.3: Bidding areas in Nord Pool Spot. Figure from [Nor13℄2.2.2 Intra-day MarketThe Elbas market allows intra-day trading in Nord Pool after the learing of theday-ahead market. Trading in Elbas starts at 14:00 on the day before deliveryand is allowed until one hour in advane for any trading period of the day. Theorganization of the intra-day market in Nord Pool is di�erent from that of anexhange. Indeed in this market, bid and ask o�ers are mathed around thelok on a �rst-ome, �rst-served basis, rather than being leared in one shot atthe gate losure.Intra-day markets are indiated by many as a fundamental trading �oor toallow the large-sale integration of renewables [Web10℄. Nevertheless, Elbas hasa very low liquidity, as its trading volume rounds 1% of the total onsumptionin Sandinavia. This �gure is in line with the liquidity of most other Europeanintra-day markets, with the notable exeption of the Iberian MIBEL market.



2.2 The Nord Pool Market 152.2.3 Balaning MarketThe balaning market ensures that prodution equals onsumption at any timeperiod in the Nordi region as a whole. This implies that all unwanted devia-tions from the prodution and onsumption plans resulting from the day-aheadand intra-day markets are o�set by the ativation of regulating power from othermarket partiipants. The balaning market failitates trading aross di�erentprie areas of Nord Pool. However, the ativation of regulating bids in a ertainprie area is responsibility of the relevant national Transmission System Opera-tor (TSO), whih ensures the stability of the system frequeny at 50Hz withinits prie area(s).The distintion between regulating and balaning power is fundamental. BalaneResponsible Parties (BRPs) are allowed to submit bids for regulating power until45 minutes before delivery. These bids an be for up-regulation (produtioninrease or onsumption derease) or down-regulation (prodution derease oronsumption inrease). On request of the TSO, these bids must be ativatedwithin a period of 15 minutes. In Denmark, regulating power is then paidaording to the marginal priing priniple, with the prie being set as the prieo�er of the highest (lowest) bid ativated for at least 10 onseutive minutes inase of prevailing up- (down-)regulation in the system. Bids that are ativatedfor less than 10 minutes, or that are in the opposite diretion to that of theoverall system imbalane for the hour, are pried aording to the pay-as-bidrule.Unwanted energy deviations from the aggregated shedules after trading in theday-ahead and intra-day markets onstitute balaning power. These imbalanesare settled ex post aording to the metered prodution and onsumption of themarket partiipant. In the Nordi market, the one-prie rule applies to devia-tions in onsumption, while the two-prie rule applies to prodution imbalanes.In the one-prie model, all power imbalanes are settled at the balaning marketprie, i.e., the marginal ost of regulating power for the hour. This implies thatan unwanted deviation in the opposite diretion as ompared to the systemimbalane is atually rewarded by a prie that is more attrative than the day-ahead prie (higher for positive deviation, lower for negative). On the ontrary,in the two-prie system the balaning market prie applies only to deviations inthe same diretion as the system's. This implies that:
• If the system is in de�it of power (up-regulation), a produer with anegative unwanted deviation (underprodution) must pay the balaningprie, whih is higher than the day-ahead prie, while it reeives the day-ahead prie for a positive unwanted deviation (overprodution).



16 Eletriity Markets
• In the ase of power surplus (down-regulation), a produer pays the day-ahead prie for an unwanted underprodution, while it reeives the bal-aning market prie, whih is lower than the day-ahead prie, for positiveunwanted deviations.The reader is referred to [Ene08℄ for further information.2.2.4 Capaity MarketsDay-ahead, intra-day and balaning markets are energy markets, in that thepayment to or from the market operator is proportional to the amount of energyatually delivered to or withdrawn from the grid. In addition to energy markets,apaity markets are in plae in Nord Pool to guarantee the availability ofsu�ient regulating power in the market.The apaity markets are managed by the national TSOs. In Denmark, thereexist separate apaity markets for primary, seondary and tertiary (or man-ual) reserve. The primary reserve market is leared daily at 15:00 on the daybefore operation, while the seondary reserve one is leared on a monthly basis.Instead, the market for tertiary reserve is leared everyday at 9:30. The aep-tane of a reserve bid in the latter market obliges a produer to submit an o�erin the regulation market of at least the same size.Produers partiipating in apaity markets are paid proportionally to the avail-able apaity (MW). The apaity prie is equal to the prie of the most expen-sive bid aepted in the market.The interested reader is referred to [Ene12℄ for further details on the funtioningof apaity markets in Denmark.2.2.5 On the Clearing Sequene and ProeduresAn important aspet of energy and apaity markets is the relationship betweentheir market-learing proedures.In Nord Pool, and in many other eletriity markets, the di�erent markets de-sribed above are leared sequentially and in a deterministi fashion. For exam-ple, the day-ahead market is leared on the basis of the bids reeived from pro-duers and generators, whih are known with ertainty by the market operator.



2.3 Impat of Renewables on Eletriity Markets 17On the other hand, there is no regard to the projetion of the market-learingdeision on the future ost for the system, e.g., in terms of imbalane. The ap-pliation of suh a straightforward deterministi rule responds to the importantriterion of transpareny of sheduling and priing. However, a stohasti rite-rion suh as the minimization of the total expeted ost would result in a highersoial welfare (in expetation) as soon as renewables penetrate the system, asshown in [PZP10℄. The issue is addressed in Paper G in this thesis.Similarly, the market for manual reserve is leared before the day-ahead marketand aording to deterministi riteria (e.g., the n−1 riterion). In ontrast, thejoint optimization of day-ahead dispath and reserve is advoated in [MCPR09℄,whih shows that signi�ant ost redutions an be ahieved by employing astohasti programming approah. In this dissertation, the topi is addressedin Paper H making use of robust optimization.2.3 Impat of Renewables on Eletriity MarketsIn a global perspetive, renewable power has been growing at an astonishingpae in the reent years. In partiular, wind power has been a booming industrythat experiened an almost exponential growth in installed apaity worldwide[Glo12℄.Denmark has been at the forefront of the development in wind power. Havingenjoyed the �rst-mover advantage with respet to the deployment of this pro-dution tehnology, this ountry has one of the highest shares of wind powerprodution worldwide. Figure 2.4 illustrates the evolution in time of the umu-lative installed wind power apaity in Denmark, along with the share of windin the total annual eletriity generation, whih urrently rounds 30%.As a side e�et of aommodating a large share of renewables, Nord Pool hasexperiened the impat that suh soures have on eletriity markets. This ispartiularly true for the Danish prie areas DK1 and DK2, where most of thewind power prodution failities are installed.Muh of the impat of renewables on eletriity markets an be explained by theso-alled merit order e�et. Sine their marginal ost is basially zero (or evennegative if inentive shemes award prie premia to renewables on top of thelearing prie), the o�er from renewable produers enters the aggregate supplyurve from the left-hand side. This implies that renewables are sheduled beforeonventional power produers.
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Figure 2.4: Development of installed wind power apaity and wind powerpenetration in Denmark over the last two deades. Figure from[Ene13b℄The output from renewables diretly in�uenes the market prie as a result.Sine their prodution is intermittent, the aggregate supply urve for the systemis shifted to the left in ase of low prodution from renewables, and to the rightin ase of high renewable outturn. As illustrated in Figure 2.5, this has ane�et on the intersetion between the supply and demand urves. In periodswith high renewable power prodution, the amount of sheduled prodution andonsumption inreases, and the market prie is low. On the ontrary, periodswith low renewable power prodution are haraterized by higher pries andlower prodution and onsumption shedules.An impliation of the e�et of renewable power prodution on pries is thatregions where a high output from renewables is foreast tend to have lowerpries than regions with lower renewable prodution or penetration. In turn,prie di�erentials trigger power �ows from low-prie areas to high-prie ones.Sine renewable power prodution is one of the drivers of the market prie, wean expet it to have an e�et on regional power �ows as well.Given the stohasti nature of renewable power prodution, its impat on ele-triity markets, e.g., on pries and �ows, is also stohasti. Furthermore, thesee�ets have a nonlinear nature as well. For example, the relationship betweenrenewable power prodution and the prie is dependent on the shape of theaggregate supply and purhase urves. Similarly, one an expet a nonlinear
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Figure 2.5: The merit order e�et and the impat of renewables on the learingprie in an eletriity exhangeimpat of renewable output on power �ows.In Papers A and B, the impat of renewable power prodution on eletriitymarkets is studied by making use of nonlinear regression tehniques presentedin [CD88℄. This allows to determine models desribing the average behavior ofdependent variables (e.g., market pries and power �ows) as nonlinear funtionsof explanatory variables (e.g., wind power penetration).The relation between foreast wind power penetration, de�ned as the ratio be-tween the wind power output and load, and the day-ahead prie is one of theissues explored in Paper B. Figure 2.6, whih is extrated from the paper men-tioned above, illustrates this relation in the Western Danish (DK1) prie area ofNord Pool. Notably, the day-ahead prie is dereasing with wind power penetra-tion, as a onsequene of the merit order e�et desribed above. Furthermore,the relation is nonlinear.Paper A onsiders the impat of wind power prodution in Germany on theross-border power �ows among European ountries. Figure 2.7 shows themodel desribing the relationship between foreast wind power penetration inGermany, time of the day and the power �ow in the interonnetion betweenWestern Denmark (DK1 area) and Norway (NO2 area). As one an see, power�ows on average from Norway towards Denmark when low levels of wind powerpenetration are expeted in Germany, while the situation is reversed with highlevels of wind power prodution. Indeed, lower power pries turn Germany andDenmark into net exporters of eletriity. On the ontrary, the Norwegian gen-eration mix, nearly entirely onsisting of hydro units [Nor12℄, is �exible enoughto lower the prodution, onsequently allowing for power import.The results in Papers A and B on�rm that renewables, and in partiular windpower, have already beome an important player in eletriity markets. As suh,
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Figure 2.6: Relation between the foreast wind power penetration and day-ahead market prie in the Western Danish (DK1) area of NordPool. Plot from Paper B
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Figure 2.7: Impat of foreast wind power penetration in Germany on power�ow between the Danish DK1 area and the Norwegian NO2 area.Plot from Paper A



2.4 The Role of Demand Response 21they are hallenging the traditional ways markets are operated.The unertain nature of renewable soures, suh as wind and solar power, in-reases the need for bakup power to ope with the unpredited �utuationsof power prodution. This results in an inreasing need for liquidity in mar-kets whose gate losure approahes real-time, as well as for an e�ient use ofthe resoures partiipating in these markets. The balaning market is partiu-larly important to renewable power produers, as it allows them to adjust theirontrats so that they math their atual output. Similarly to the ase of theday-ahead prie, renewable power prodution impats the prie at the balan-ing market, too. Inreasing the liquidity of intra-day markets [Web10℄, andimproving the funtioning of reserve markets [MCPR09℄ are also paramount toimprove the e�ieny of eletriity markets highly penetrated by renewables.In partiular, inreasing the e�ieny of markets through improved deisionmaking under unertainty is the topi of Papers G and H.Another feature of renewables, namely their intermitteny, is ontributing toreshaping eletriity markets. While solar power prodution peaks at noon, windpower prodution is generally higher during the night. Inreasing renewablepower penetration requires a higher degree of �exibility in power systems, asthey must be apable of operating safely even when the output from renewablesis low. As far as the supply side is onerned, this an be aomplished byinstalling power plants with large ramping apaity and by deploying storagefailities. Besides, the onsumption side o�ers great potential to inrease system�exibility through the development of demand response initiatives.2.4 The Role of Demand ResponseFigure 2.8 illustrates a situation that is beoming more and more ommon inWestern Denmark (DK1 area of Nord Pool): wind power prodution exeedstotal onsumption during valley hours. Situations like this normally result inzero or even negative eletriity pries. In turn, low pries signal that inreasingpower supply during these hours has low value for the soiety, thus disouraginginvestment in new renewable prodution apaity.Demand response has reently emerged as a measure to aommodate inreasingpenetration of renewables in power systems by making use of the available re-soures more e�iently. Basially, ommerial as well as residential onsumersare to be involved in the eletriity market and inentivized to adapt to aninreasingly intermittent supply.
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Figure 2.8: Wind power prodution and onsumption in Western Denmark(DK1) during the last week of February 2012. Data from [Ene13a℄Generally demand response initiatives are grouped into either diret ontrol orindiret ontrol. The former group omprises initiatives aimed at granting TSOs,or other market entities with similar objetives, the right to diretly modulatethe demand by means of rationing or disonneting individual onsumers, orgroups of. Typially onsumers involved in these programmes are proteted bya ontrat �xing how often they an be disonneted or rationed.Indiret ontrol implies the use of eonomi inentives so that demand adapts tothe stohasti and intermittent prodution. In pratie, this would be done bybroadasting time-varying pries to the onsumers (time-of-use prie or dynamireal-time prie). This topi is onsidered in Papers E and F.The implementation of demand response requires the installment of infrastru-ture allowing ommuniation to the onsumers (one way or bidiretional), andof onsumer applianes able to adapt their onsumption to the broadast sig-nals. This infrastrutural upgrade of the grid and of the onsumer applianesis often assoiated with the notion of smart grid.Besides the tehnial hallenges involved with the infrastrutural developmentsjust mentioned, demand response poses di�ult hallenges also in terms of mar-ket design. First of all, the introdution of prie-inentives will onfer dynamiproperties to the demand, by inreasing its ross-elastiity aross di�erent timeperiods, whih needs to be modeled and aounted for by the poliy-makers.Furthermore, demand response will require the oordination of a large numberof onsumers and distributed generators spread around the system, with furtherompliations imposed by the tight apaity onstraints that haraterize the



2.4 The Role of Demand Response 23power grid at the distribution level. For these and other reasons, demand re-sponse is onsidered one of the most hallenging topis of power systems researhin the years to ome.We refer the interested reader to [THL10℄ for a detailed desription of the de-mand response initiatives urrently implemented and planned in Europe.
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Chapter 3
Optimization UnderUnertainty

Beause of the stohasti nature of renewable soures, their e�ient managementin eletriity markets alls for the use of tools for optimization under unertainty.In this hapter, we review some elements of optimization theory that support themathematial developments in the papers inluded in this dissertation. Setion3.1 summarizes some basi notions of optimization and of linear programming.Mathematial Programs with Equilibrium Constraints (MPECs) are introduedin Setion 3.2. Then, we introdue the framework of stohasti programmingin Setion 3.3. Finally, Setion 3.4 deals with robust optimization. Examplesfousing on eletriity markets are proposed throughout the hapter to illustratehow these optimization tools are employed in the papers in Part II.



26 Optimization Under Unertainty3.1 Fundamentals of OptimizationThe general mathematial formulation of an optimization problem is the follow-ing one: Minimize
x

f(x) (3.1a)s.t. g(x) ≤ 0 , (3.1b)
h(x) = 0 . (3.1)Bold fonts indiate vetors, matries and vetor-valued funtions. In order toavoid tedious de�nitions for every optimization model, we will hereinafter as-sume that all the elements are de�ned properly, i.e., in this ase f(·) : Rn → R,

g(·) : Rn → R
l, h(·) : Rn → R

m, and 0 is a zero-valued vetor of the propersize.The simplest instane of the general optimization problem (3.1) is obtainedwhen the funtions f(·), g(·) and h(·) are linear. A linear program (LP) an beformulated as follows: Min.
x

cTx (3.2a)s.t. AIx ≤ bI , (3.2b)
AEx = bE , (3.2)where AI, AE, c, bI and bE are matries and vetors of appropriate size.Linear programs (LPs) model a wide variety of real-world problems. In Ex-ample 3.1, we show how a network-onstrained market-learing problem an bemodeled as an LP. Notie that very large LPs an be solved using ommeriallyavailable software.3.1.1 Duality in Linear ProgrammingLet us assoiate the vetor µ ≤ 0 to the inequalities (3.2b), and the vetor λ,free in sign, to the equalities (3.2). Both vetors are sized so that one elementof the vetor orresponds to one onstraint. The following problem is the dual



3.1 Fundamentals of Optimization 27version of problem (3.2), whih is referred to as primal :Max.
µ,λ

bTI µ+ bTEλ (3.3a)s.t. AT
I µ+AT

Eλ = c , (3.3b)
µ ≤ 0 . (3.3)The dual variables µ and λ an be interpreted as marginal osts. Indeed, theyrepresent the per unit hange in the optimal value of the objetive funtion(3.2a) if the right-hand side of the assoiated onstraint is inreased marginally.Naturally µ ≤ 0, sine a marginal inrease of any element of bI would result ina larger feasible spae for (3.2).In a market employing the marginal priing rule, dual variables are of partiularimportane as they serve to prie the traded ommodity.The following duality results are well known in linear programming. We reportthem without proof and refer the reader to [LY08℄ for further detail.Theorem 3.1 (Weak Duality) If x is feasible for (3.2), and µ,λ are fea-sible for (3.3), then cTx ≥ bTI µ+ bTEλ.Theorem 3.2 (Strong Duality) If the primal problem has a �nite optimalsolution x∗, so does the dual problem and at optimality it holds that cTx∗ =

bTI µ
∗ + bTEλ

∗.Sine the dual of the dual problem is again the primal problem, the onverse ofthe previous theorem holds trivially.3.1.2 Karush-Kuhn-Tuker ConditionsDuality results similar to the ones of linear programming are available for non-linear onvex optimization problems. However, in this dissertation we only dealwith Karush-Kuhn-Tuker optimality onditions for onvex problems, and referto [BSS06℄ for a general introdution to duality theory.Let us onsider the general formulation (3.1), and suppose that f(·), g(·) areontinuously di�erentiable and onvex, and h(·) is a�ne.



28 Optimization Under UnertaintyThe Lagrangian funtion for problem (3.1) is the following:
L(x,µ,λ) = f(x) + µTg(x) + λTh(x) . (3.4)Under the assumptions above, as well as some onstraint quali�ation1, thefollowing Karush-Kuhn-Tuker (KKT) onditions are neessary and su�ientfor optimality for problem (3.1):
∇xf(x) + µ

T∇xg(x) + λ
T∇xh(x) = 0 , (3.5a)

g(x) ≤ 0 , (3.5b)
h(x) = 0 , (3.5)
µ ≥ 0 , (3.5d)
µTg(x) = 0 . (3.5e)Equation (3.5a) are stationarity onditions. Constraints (3.5b) and (3.5) en-fore feasibility of the primal problem, while (3.5d) is a feasibility ondition ofthe dual problem. Finally, (3.5e) enfores omplementary slakness.The dual vetors µ and λ retain the interpretation of marginal osts disussedin Setion 3.1.1. It should be underlined, however, that the dual variables asde�ned in (3.5) have opposite sign as ompared to the relative de�nition inthe dual of a linear problem (3.3). These de�nitions are rather typial of theliterature on the subjet.In the remainder of this dissertation, we will make use of the ⊥ operator in thefollowing ompat notation for onstraints (3.5b), (3.5d) and (3.5e)

0 ≥ g(x) ⊥ µ ≥ 0 . (3.6)Example 3.1 (Network-onstrained market-learing problem) The fol-lowing LP represents a single-period market-learing problem in an eletriitypool. Its output is the optimal generation dispath in view of the transmission1Constraint quali�ations are needed for ensuring that KKT onditions are neessary foroptimality. This is veri�ed, for example, if g(·) is a�ne. Another ommon onstraint qual-i�ation requires linear independene of the gradients of ative inequality onstraints and ofequality onstraints. We refer the reader to speialized books on optimization, for instane[BSS06℄



3.1 Fundamentals of Optimization 29onstraints in the network.Min.
p,δ

∑

k

ckpk (3.7a)s.t. ∑

k∈ΦG
i

pk −
∑

j∈ΦN
i

Bij(δi − δj) =
∑

m∈ΦL
i

lm −
∑

q∈ΦW
i

wq : λi , ∀i , (3.7b)
pk ≤ Pk : µk , ∀k , (3.7)
Bij(δi − δj) ≤ Tij : σij , ∀i, j ∈ ΦN

i , (3.7d)
pk ≥ 0 , ∀k . (3.7e)In model (3.7), we index with k the o�ers for prodution, with m the loads, with

q the renewable power produers, with i and j the nodes of the transmissionnetwork. Eah produer bids a set of pairs (Pk, ck), where the former element isthe size of the prodution blok and the latter one the minimum aepted priefor the blok. Variables pk represent the deision of the market operator on theenergy dispath for eah prodution blok. The parameters lm and wq representthe load and the renewable power prodution.The objetive funtion (3.7a) represents the prodution ost for the dispathedquantities. Constraints (3.7) and (3.7e) enfore that the dispath is within thelimit spei�ed by the bid and nonnegative, respetively. The situation in abseneof transmission onstraints is skethed in Figure 3.1. In this ase, the minimum-ost dispath is determined by the intersetion between the total net demand andthe aggregate supply urve.
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Figure 3.1: Market-learing in absene of transmission onstraintsIn order to model the transmission grid, we de�ne the set ΦG
i of generatorsloated at node i. Similarly, ΦW

i is the set of renewable power produers at node
i, ΦL

i the set of loads at the same node, while the set ΦN
i ontains the nodes



30 Optimization Under Unertainty
j onneted to i by a transmission line. We represent linearly the �ow on theinteronnetion between i and j as the produt between the line suseptane Bijand the di�erene between the voltage angles δi − δj at the ends of the line.Inequality (3.7d) enfores the transmission limit between nodes i and j, whihmust be lower than the line apaity, Tij , in absolute value. Finally, equation(3.7b) enfores the power balane at eah node i, by setting the di�erene betweenprodution and power �owing out of the node equal to the net nodal onsumption.The dual problem for the network-onstrained market-learing model writes as:Max.
λ,µ,σ

∑

i


 ∑

m∈ΦL
i

lm −
∑

q∈ΦW
i

wq


λi +

∑

k

Pkµk +
∑

i

∑

j∈ΦN
i

Tijσij (3.8a)s.t. λs(k) + µk ≤ ck : pk , ∀k , (3.8b)
∑

j∈ΦN
i

Bij(−λi + λj + σij − σji) = 0 : δi , ∀i , (3.8)
µk ≤ 0 , ∀k , σij ≤ 0 , ∀i, j ∈ ΦN

i , (3.8d)where s(k) is the index of the node where produer k is loated.The determination of the optimal value of the dual variables λ is of partiularsigni�ane. At optimality, λ∗i indiates the per unit hange in the objetivefuntion value of (3.7) for a demand inrease at node i. It should be notiedthat this is preisely the de�nition of marginal prie. In a market with nodalpriing, the optimal value of the dual vetor λ∗ provides the prie of eletriityat eah loation of the power grid.Figure 3.1 illustrates the situation when no ongestion ours in the grid. Themarginal prie of eletriity is equal to the highest-prie o�er aepted. If de-mand is inreased by a onstant, the purhase urve is shifted to the right. Thisimplies an inreased ost for the system equal to the size of the shift times theper unit ost of prodution of the last unit dispathed.The Lagrangian for the network-onstrained market-learing problem (3.7) is thefollowing:
L =

∑

k

ckpk +
∑

i

λi


∑

k∈ΦG
i

pk −
∑

j∈ΦN
i

Bij(δi − δj)−
∑

m∈ΦL
i

lm +
∑

q∈ΦW
i

wq




+
∑

k

µk(pk − Pk) +
∑

i

∑

j∈ΦN
i

σij (Bij(δi − δj)− Tij)−
∑

k

αkpk . (3.9)



3.1 Fundamentals of Optimization 31Notie that we assigned the dual variables α ≥ 0 to the nonnegativity de�nitionof p in the above derivation of the Lagrangian.From (3.9), we obtain the following stationarity onditions:
∂L

∂pk
= ck + λs(k) + µk − αk = 0 , ∀k , (3.10a)

∂L

∂δi
=
∑

j∈ΦN
i

Bij(−λi + λj + σij − σji) = 0 , ∀i . (3.10b)The primal equality onstraints
∑

k∈ΦG
i

pk −
∑

j∈ΦN
i

Bij(δi − δj) =
∑

m∈ΦL
i

lm −
∑

q∈ΦW
i

wq , ∀i , (3.11)also appear in the set of KKT onditions.We an write the omplementarity onditions in a ompat form, inluding theprimal inequality onstraints and the nonnegativity de�nitions of the dual vari-ables, as follows:
0 ≤ µk ⊥ pk − Pk ≤ 0 , ∀k , (3.12a)
0 ≤ σij ⊥ Bij(δi − δj)− Tij ≤ 0 , ∀i, j ∈ ΦN

i , (3.12b)
0 ≤ αk ⊥ −pk ≤ 0 , ∀k . (3.12)Variables α are in fat slaks. We an get rid of them by reasting onditions(3.10a) and (3.12) as follows:

0 ≤ pk ⊥ ck + λs(k) + µk ≥ 0 , ∀k . (3.13)We onlude the example with the following omments.
• Constraints (3.11), the inequalities on the right-hand side of the ⊥ operatorin (3.12a) and (3.12b), as well as the ones on the left-hand side of ⊥ in(3.13) onstitute the de�nition of the feasible spae of the primal problem(3.7).
• Equation (3.10b), the inequalities on the left-hand side of ⊥ in (3.12a)and (3.12b), as well as the ones on the right-hand side of ⊥ in (3.13)orrespond to the de�nition of the feasible spae of the dual problem (3.8),after a rede�nition of all the dual variables with a hange in sign.



32 Optimization Under Unertainty
• The ⊥ operator implies that either an inequality of the primal (dual) prob-lem holds stritly, i.e., with the equal sign, or the orresponding dual (pri-mal) variable is zero, or both. Suh onditions are referred to as omple-mentary slakness.3.2 Mathematial Programs with EquilibriumConstraintsA relatively reent area of optimization where KKT onditions are used ex-tensively is the one of Mathematial Programs with Equilibrium Constraints(MPECs). In this setion, we onsider the use of MPECs to model bilevel pro-grams, i.e., optimization problems onstrained by other optimization problems.The reader is referred to [LPR96℄ and [GCF+12℄ for an in-depth treatment ofthe subjet.3.2.1 MPEC FormulationThe general formulation of a bilevel program is the following:Max.

x,y
θ(x,y) (3.14a)s.t. φ(x,y) ≤ 0 , (3.14b)
ψ(x,y) = 0 , (3.14)
y ∈ argmin

z

{f(x, z) s.t. g(x, z) ≤ 0 ,h(x, z) = 0} . (3.14d)The fundamental di�erene with respet to the general optimization problem(3.1) is the enforement of the optimality onditions (3.14d). This way, weembed a lower-level optimization problem into another, upper-level one. Theproblems are interdependent, sine in general the upper-level objetive funtion(3.14a) and onstraints (3.14b) and (3.14) depend on the lower-level deisionvariables y. Vieversa, the objetive funtion and the onstraints of the lower-level problem (3.14d) depend on the upper-level variable x. It should be re-marked that model (3.14) ould aommodate several lower-level optimizationproblems, simply by onatenating multiple optimality onditions of the type of(3.14d).Under the assumption that KKT onditions are neessary and su�ient for op-timality of the lower-level problems, the bilevel program (3.14) an be reast asa single-level optimization problem. This is ahieved by replaing the optimality



3.2 Mathematial Programs with Equilibrium Constraints 33onditions (3.14d) with the orresponding KKT onditions (3.5). However, thesolution of the single-level program is ompliated by the fat that KKT on-ditions are in general nonlinear and non onvex, as they involve ross produtsbetween variables in (3.5e).If the feasible spae of the lower-level problems is de�ned by a�ne equality andinequality onstraints, and if the partial derivatives of the objetive funtionwith respet to the deision variables are also a�ne, a linear reformulation ofthe KKT onditions involving binary variables is available [FM81℄. For example,a omplementarity ondition of the type (3.6) an be reast as follows:
g(x) ≤ 0 , (3.15a)
g(x) ≥ −iM1 , (3.15b)
µ ≥ 0 , (3.15)
µ ≤ (1− i)M2 , (3.15d)
i ∈ {0, 1} . (3.15e)The binary variable i fores at least one between g(x) and µ be equal to 0, asrequired by (3.5e).Notie that for the above reformulation to be valid within a bilevel problem ofthe type (3.14), the onstants M1 and M2 must be large enough so as not toleave its solution out of the feasible spae of (3.15).If, besides the assumption on the lower-level problems in the paragraph above,

θ(·), φ(·) and ψ(·) are linear, one an reast the bilevel problem (3.14) as asingle-level, Mixed-Integer Linear Program (MILP). Optimization problems ofthis type an be solved with ommerially available software.Example 3.2 (O�ering problem in a market with nodal priing) Inthis example, we onsider a simpli�ed ase of the trading problem for a renewablepower produer in a single market �oor, organized as an eletriity pool whererenewable power enters the supply urve from the left-hand side, by o�eringprodution at its zero marginal ost. Without loss of generality, we onsiderproduer 1, loated at node s(1). We assume for the sake of simpliity that themaximum renewable power prodution W1 is known with ertainty at the timeof bidding. However, the produer has the possibility of withdrawing produtionfrom the market in order to exerise market power.Under these assumptions, the optimal o�er w∗
1 solves the following bilevel prob-lem. It should be notied that in the formulation below, we employ the de�nitionof the dual variables in (3.8), whih requires a hange in sign as ompared tothe standard derivation of the KKT onditions in Example 3.1. The former



34 Optimization Under Unertaintyformulation is preferred, beause nodal pries are equal to the dual variables λi.Instead, if the de�nition of the dual variables as in the KKT formulation wereemployed instead, pries would be equal to −λi.Max.
w1,p, δ,
λ,µ,σ

λs(1)w1 (3.16a)s.t. 0 ≤ w1 ≤W1 , (3.16b)∑

k∈ΦG
i

pk −
∑

j∈ΦN
i

Bij(δi − δj) =
∑

m∈ΦL
i

lm −
∑

q∈ΦW
i

wq , ∀i , (3.16)
pk − Pk ≤ 0 , ∀k , (3.16d)
Bij(δi − δj)− Tij ≤ 0 , ∀i, j ∈ ΦN

i , (3.16e)
pk ≥ 0 , ∀k , (3.16f)
ck − λs(k) − µk ≥ 0 , ∀k , (3.16g)
∑

j∈ΦN
i

Bij(−λi + λj + σij − σji) = 0 , ∀i, j ∈ ΦN
i , (3.16h)

µk ≤ 0 , ∀k , σij ≤ 0 , ∀i, j ∈ ΦN
i , (3.16i)

pk − Pk ≥ −z
1
kM , ∀k , (3.16j)

µk ≥ −(1− z
1
k)M , ∀k , (3.16k)

Bij(δi − δj)− Tij ≥ −z
2
ijM , ∀i, j ∈ ΦN

i , (3.16l)
σij ≥ −(1− z

2
ij)M , ∀i, j ∈ ΦN

i , (3.16m)
ck − λs(k) − µk ≤ z

3
kM , ∀k , (3.16n)

pk ≤ (1− z3k)M , ∀k , (3.16o)
z1k, z

3
k ∈ {0, 1} , ∀k , z

2
ij ∈ {0, 1} , ∀i, j ∈ ΦN

i . (3.16p)The objetive funtion (3.16a) is the pro�t of renewable power produer 1,given by the multipliation of the relevant nodal prie λs(1) with the o�er w1.Constraint (3.16b) ensures that the o�er is a feasible prodution value. Con-straints (3.16)�(3.16f) de�ne the feasible spae of the primal problem (3.7).Furthermore, the onstraints of the dual problem in Example (3.8) are inludedas (3.16g)�(3.16i). Finally, onstraints (3.16j)�(3.16p) omprise the lineariza-tion of the omplementarity onditions.We remark that the model above is nonlinear, owing to the bilinear produtbetween λs(1) and w1 in the objetive funtion.Trading problems formulated as MPECs are often nonlinear as a result of theprodut between primal and dual variables, where the former are o�ers, and thelatter pries. In the following example, we show how in some ases the probleman be linearized by making use of the strong duality results in Theorem 3.2.



3.2 Mathematial Programs with Equilibrium Constraints 35Reformulations of this type are used in Papers D, F and H.Example 3.3 (Linearization of the objetive funtion via strong du-ality) Let us onsider the objetive funtions of the primal and of the dualversions of the market-learing problem (3.7) and (3.8), respetively, presentedin Example 3.1. Owing to the strong duality theorem, the two objetive funtionvalues are equal at optimality, i.e.,
∑

k

ckpk =
∑

i


 ∑

m∈ΦL
i

lm −
∑

q∈ΦW
i

wq


λi +

∑

k

Pkµk +
∑

i

∑

j∈ΦN
i

Tijσij . (3.17)Solving the previous equation for λs(1)w1 yields:
λs(1)w1 =

∑

i


 ∑

m∈ΦL
i

lm −
∑

q∈ΦW
i

\1

wq


λi+

∑

k

Pkµk+
∑

i

∑

j∈ΦN
i

Tijσij−
∑

k

ckpk .(3.18)The expression on the right-hand side of (3.18) is linear, sine lm, ∀m and
wq, q 6= 1 are onstant parameters in the optimization problem of renewablepower produer 1. Therefore, problem (3.16) an be reformulated by replaingthe objetive funtion (3.16a) with the right-hand side of (3.18). The resultingproblem is a MILP.3.2.2 MPEC AppliationsBilevel programs and their reformulation as MILPs are used extensively in thisdissertation.
• In Paper D, we model the trading problem of a wind power produer thatis a prie-maker in the balaning market as a bilevel program. The lower-level problem represents the learing of an aution-based balaning market.The upper-level problem is the one of a wind power produer optimizingits o�er urve in order to maximize revenues from the day-ahead and thebalaning markets. Example 3.2 presents a simpli�ed formulation similarto the one in Paper D.
• Paper E models as an MPEC the hierarhial relationship between a vir-tual power plant operator and the �exible onsumers in a demand responseframework. In the upper-level problem, the virtual power plant's operator



36 Optimization Under Unertaintysets the onsumer prie. The lower-level problem is the one of a onsumerwho deides on the optimal onsumption shedule on the basis of a utility,where the eletriity ost is weighted by the omfort resulting from poweronsumption.
• A similar approah is used in Paper F, where the prie-setting entity inthe upper-level problem is a retailer whose objetive is the maximizationof the pro�ts.
• Paper G onsiders a two-stage market-learing problem aounting forthe projeted osts of the day-ahead dispath on the real-time systemoperation in a stohasti programming fashion, see also Setion 3.3. Thelearing onditions of a traditional day-ahead market aution are thenimposed, thus rendering the problem a bilevel one.
• In Paper H, we jointly onsider the day-ahead dispath and reserve deter-mination in a network-onstrained aution in a robust optimization frame-work. As Setion 3.4 lari�es, robust optimization aims at determining asolution that is feasible for any realization of unertain parameters, andoptimal in the worst-ase instane. In mathematial terms, this trans-lates into multilevel problems of the min-max type, whih an be ast asMPECs.3.3 Stohasti ProgrammingIn pratie, it is seldom the ase that all the parameters of an optimizationproblem are known with ertainty at the time of making a deision. This ispartiularly true of eletriity markets inluding renewable power generationfailities. Indeed, owing to the struture of the markets desribed in Chapter 2,some deisions have to be made in advane, e.g., the day-ahead trading deisionsfor a produer or sheduling deisions for a market or system operator. Thissetion introdues stohasti programming, whih is one of the most establishedframeworks for optimization under unertainty.3.3.1 Formulation of a Stohasti Programming ProblemUnder the assumption that unertain parameters take values in a disrete prob-ability spae, whih is typial of stohasti programming, a two-stage stohasti



3.3 Stohasti Programming 37(linear) program with reourse writes as:Min.
x,yω

cTx+
∑

ω

πω × qTωyω (3.19a)s.t. Ax = b , (3.19b)
Tωx+Wωyω = hω , ∀ω . (3.19)In model (3.19), the parameters qω, Tω , Wω and hω are unertain. Model(3.19) aommodates for a disrete number of realizations or senarios ω of theunertain parameters, eah of whih ours with probability πω .The deision variable x represents the vetor of �rst-stage or here and nowdeisions, whih are made before the realization of the unertainty. Variables yωare seond-stage or reourse deisions, whih adapt depending on the realizationof the unertainty. Indeed, the subsript ω indiates that there is a set of suhvariables for eah realization of the unertain parameters.Constraints (3.19b) involve only �rst-stage variables, while (3.19) link themwith the reourse deisions. Naturally, there is one set of onstraints of thelatter type for eah realization of the unertainty. First-stage variables haveassoiated ost cTx, while reourse variables have ost qTωyω . The objetivefuntion (3.19a) represents therefore the expeted value of the ost.Example 3.4 (Two-stage network-onstrained market-learing) As anexample of the use of stohasti programming in relation with eletriity marketmodeling, we present a two-stage market-learing model where the day-aheaddispath represents the �rst-stage deision, while the reourse deision is the re-dispath in the balaning market. Suh a model was originally presented in asimilar form in [PZP10℄, and onstitutes the basis for the model presented inPaper G.Min.
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kω ≥ 0 , ∀k, ω , (3.20h)

Bij(δ
B
iω − δ

B
jω) ≤ Tij , ∀i, j ∈ ΦN

i , ω , (3.20i)
rUkω ≥ 0, rDkω ≥ 0 , ∀k, ω . (3.20j)The �rst term in the objetive funtion (3.20a) represents the ost of the day-ahead dispath. This deision is onstrained by (3.20b)�(3.20e), whih orre-spond to the onstraints in model (3.7). We remark that the load and renewablepower prodution on the right-hand side of the day-ahead balane equation areforeasts of stohasti values. We indiate this with the symbol ̂ over the pa-rameters.Variables rUkω and rDkω represent the redispath (prodution inrease and derease,respetively) of produer k in senario ω at the balaning stage. These variablesare adaptable to the realization of the stohasti load and renewable power pro-dution, and are therefore reourse deisions. The seond term in the objetivefuntion (3.20a) represents the expeted ost, or bene�t in the ase of produtionderease, of redispath at the balaning stage.The voltage angle at node i in senario ω at the balaning stage is indiated with

δBiω. Furthermore, lmω and wqω are the realizations of load and renewable powerprodution. Hene, onstraint (3.20f) enfores, along with (3.20b), the powerbalane ondition at the balaning stage. Constraints (3.20g) and (3.20h) ensurea feasible redispath for eah prodution blok k. Transmission onstraints at thebalaning stage are enfored by (3.20i). Constraints (3.20j) de�ne nonnegativevariables.The framework of stohasti programming is naturally extendable to nonlinearprograms with an appropriate reformulation of the linear terms and onstraintsin (3.19) into the more general nonlinear ase. A partiular instane of interestfor this dissertation is that of stohasti MPECs, whih is relevant when oneor more parameters of the lower-level problem is subjet to unertainty. Inthis ase, then, several lower-level problems should be onsidered, i.e., one persenario. The general formulation (3.14) an be extended in order to aount



3.3 Stohasti Programming 39for stohasti parameters as follows:Max.
x1,x2
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}
,

∀ω , (3.21d)where x1 is the set of upper-level �rst-stage deision variables, x2
ω the upper-level reourse variables and yω the deision variables for eah senario ω. Itshould be remarked that there is one lower-level problem (3.21d) for eah se-nario, whih implies that one set of KKT onditions should be inluded persenario.The reader is referred to [KW94, BL11℄ for thorough introdutions to stohastiprogramming. Further details on stohasti MPECs are available in [GCF+12℄.3.3.2 Appliations of Stohasti ProgrammingSeveral papers presented in this dissertation make use of stohasti programmingmodels.

• The bilevel model presented in Paper D, whih determines the optimaltrading strategy of a wind power produer that is a prie-maker in the bal-aning market, is in fat a stohasti MPEC. Indeed, the market-learingproblem at the balaning stage is dependent on the realization of windpower prodution and system deviation, both of whih are stohasti.We model this unertainty by inluding the equilibrium onditions of amarket-learing problem for eah senario for these two variables.
• Paper E presents an MPEC where the upper-level problem onsists in theminimization of the imbalane for a virtual power plant. The latter de-pends on the stohasti amount of wind power prodution, whih is mod-eled by employing senarios. The problem is formulated in a stohastiprogramming fashion, aiming at the minimization of the expeted imbal-ane over the senario set.
• The model in Paper F is a stohasti MPEC. Indeed, the lower-level prob-lem for the onsumers involves the optimization of a utility that dependson weather-related variables. Therefore, multiple lower-level problems areonsidered.
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• Paper G presents a stohasti programming model for learing of day-ahead markets aounting for the ost of ations at the balaning stage (re-ourse deisions), with the addition of further equilibrium onstraints. Thebasi two-stage market-learing model, without equilibrium onstraints, isintrodued in Example 3.4 as an instane of the use of stohasti pro-gramming in relation with eletriity market modeling. In the ase ofPaper G, the lower-level problem is deterministi, sine the day-aheadmarket-learing only depends on the bids submitted by the market players.Therefore, there is only one instane of this problem. On the ontrary, theupper-level problem onsiders the projeted ost of the day-ahead deisionat the balaning stage, whih is minimized in expetation in a stohastiprogramming fashion.
• Paper C is also related to stohasti programming sine it deals with thetrading problem of a prie-taker wind power produer. However, senar-ios are not employed in this work, as there exists an analytial solution tothe problem. In pratie, the full probability distribution of wind powerprodution is used to determine the optimal solution. A stohasti pro-gramming version of the problem would approximate the optimal resultobtained.3.4 Robust Adaptable OptimizationAn alternative framework to stohasti programming when dealing with prob-lems of optimization under unertainty is robust optimization, whih is the fousof this setion.3.4.1 Formulation of a Robust Adaptable OptimizationProblemIn its original formulation, robust optimization aims at determining a solutionto a mathematial program that is feasible under any realization of the stohas-ti parameters within an unertainty set and/or optimal in their worst-aserealization [BBC11℄.In this work, we onsider the framework of robust adaptable optimization, whihis the natural ounterpart of stohasti programming with reourse in the frame-work of robust optimization. A linear problem of robust adaptable optimization



3.4 Robust Adaptable Optimization 41writes as follows:Min.
x

cTx+ Max.
q,T,W,h

Min.
y

qTy (3.22a)s.t. Tx+Wy = h , (3.22b)s.t. (q,T,W,h) ∈ U , (3.22)s.t. Ax = b . (3.22d)The multilevel struture of problem (3.22) is typial of problems of robust op-timization. The deision variables of the upper-level minimization problem area set of �rst-stage deisions, x. Just as in the ase of stohasti programming,suh variables annot adapt to the realization of the stohasti parameters q,
T, W and h. The lower-level problem aims at the minimization of the ostof reourse qTy, provided that the feasibility onstraints (3.22b) are satis�edunder the urrent realization of the unertainty. It should be notied, though,that di�erently from the ase of stohasti programming, where there is a setof reourse deisions per senario, there is only one suh set in robust adapt-able optimization. This represents the optimal reourse deision in responseto the worst-ase realization, i.e., the realization of the unertain parameters
(q,T,W,h) in the set U that yields maximum ost of reourse. This worst-aserealization is enfored by the mid-level maximization problem.Naturally, the hoie of a meaningful unertainty set U is just as important torobust optimization as the generation of realisti senarios is to stohasti pro-gramming. On the other hand, the strutural omplexity of robust adaptableoptimization problems hinders the use of sophistiated unertainty sets, as mul-tilevel problems of the type of (3.22) beome quikly intratable. In pratiepolyhedral or elliptial unertainty sets are employed in the literature on thesubjet [BBC11℄.In the following example we formulate the joint determination of the day-aheaddispath and reserve as a robust optimization problem. This topi is the fousof Paper H, whih we refer to for further detail.Example 3.5 (Robust day-ahead dispath and reserve determina-tion) Let us onsider the problem of jointly determining the day-ahead dispath
p and the reserves RU for up-regulation and RD for down-regulation. Indiatingwith Q(·) the ost of the redispath deision in the worst-ase realization of theunertainty, whih is a funtion of the �rst-stage deision, the problem writes
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k ≥ 0 , ∀k . (3.23f)The per unit ost assoiated with reserve are indiated in the objetive funtion(3.23a) with CU
k and CD

k for up- and down-regulation, respetively. The produ-tion onstraints are updated to (3.23) and (3.23d), so as to guarantee that theproduer an atually deliver the ontrated amount of reserve if neessary.The funtion Q (p,RU,RD, δ
) embeds the mid- and lower-level problems, whihis expliit in the general formulation (3.22) for a robust adaptable optimizationproblem. This funtion an be expressed in extended form as follows:
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rUk ≥ 0, rDk ≥ 0 , ∀k . (3.24f)The max-min problem in (3.24a) ensures that the redispath ost is minimizedin the worst-ase realization of load and renewable power prodution in the un-ertainty set U . Constraints (3.24) and (3.24d) enfore that the redispath isno greater than the amount of reserve ontrated at the day-ahead stage.



3.4 Robust Adaptable Optimization 433.4.2 Appliations of Robust Adaptable OptimizationThe only appliation of robust adaptable optimization in this dissertation isin Paper H. The problem onsidered in this work is very similar to the oneformulated in Example 3.5. The aim is the minimization of the total ost in theday-ahead and balaning markets in the worst-ase realization of the unertainwind power prodution at di�erent nodes of the network. To solve the resultingthree-level min-max-min problem, we employ a utting-plane algorithm [KJ60℄,whih onverges to the optimal solution in a �nite number of steps.
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Chapter 4 Appliation Results
In this hapter, we gather the highlights of the researh presented in Part II ofthis dissertation. The struture of the hapter is the following.In Setion 4.1, we onsider the problem of determining optimal trading strategiesfor wind power produers. Firstly, the prie-taker ase is addressed in Setion4.1.1, whih disusses results from a simulation based on real data and foreastsfor Nord Pool. This work is fully presented in Paper C. Then in Setion 4.1.2,we address the trading problem for a produer with the apability of altering thebalaning market outome with its bidding strategy, and summarize the resultsof the ase study presented in Paper D.Setion 4.2 onsiders a market environment that inludes end onsumers respon-sive to dynami priing. In Setion 4.2.1, we look at the operation problem of avirtual power plant that onsists of a wind power prodution faility and �exibledemand, whih is ontrolled by means of a prie signal. Then, we onsider thejoint bidding and priing model for a retailer trading with an in�nite eletriitymarket and providing eletriity to �exible onsumers in Setion 4.2.2. Thehighlights we present in this setion summarize the results of the ase studiesin Papers E and F.Finally, Setion 4.3 is dediated to optimal market dispath with stohastirenewable soures. In Setion 4.3.1, we onsider the stohasti-programming-



46 Appliation Resultsbased model to lear the day-ahead market, aounting for the projeted osts ofregulation in the balaning market, presented in Paper G. Then in Setion 4.3.2,we onsider the robust optimization model in Paper H, aimed at determiningthe day-ahead dispath and the purhase of reserves. Throughout Setion 4.3,we present the highlights of the simulations inluded in Papers G and H, whihare based on the IEEE Reliability Test-System [GWA+99℄.4.1 Trading Strategies for Stohasti Power Pro-duersPapers C and D address the problem of optimal trading for a wind power pro-duer in short-term eletriity markets. While the ase of wind power is spei�-ally addressed, most of the onlusions ould easily be extended to other renew-ables that are stohasti and non-dispathable, suh as solar and wave power.When onsidering this problem, we make the following two assumptions.
• There is no interdependene between o�ers for di�erent market periods.This implies that the optimal o�er for eah time period an be determinedindependently from the others by making use of a stati, single-periodmodel.
• The intra-day market is disarded from the analysis in view of its very lowliquidity, as disussed in Setion 2.2.2.Under these two simpli�ations, we �rst disuss the results in a prie-takersetting in Setion 4.1.1. Then, we onsider the prie-maker ase in Setion4.1.2.4.1.1 Trading Stohasti Prodution as a Prie-TakerWhen stohasti power produers o�er in short-term eletriity markets, theyvery rarely trade in a single market �oor. Being their prodution unertain,they most likely need to take orretive measures in the balaning market afterhaving traded in the day-ahead market, so as to align their ontrats for deliverywith their atual output.In a prie-taker setting, the main driver in the determination of the optimalo�er is the di�erene between the day-ahead and the balaning market pries.



4.1 Trading Strategies for Stohasti Power Produers 47Atually, sine these pries are stohasti, we are interested in the expeted valueof their di�erene. For example, in a market employing the one-prie systemfor imbalanes desribed in Setion 2.2.3, the produer's problem of biddingas a prie-taker redues to a rather trivial arbitrage problem. Indeed, if theproduer expets a higher prie in the balaning market than in the day-aheadmarket, then it should not o�er at all in the day-ahead market, and sell its wholeprodution in the balaning market. On the other hand, if a lower balaningmarket prie is expeted as ompared to the day-ahead one, the produer shouldo�er as muh as possible in the day-ahead market. Then, it would eventuallybuy bak the eletriity it is not able to produe from the balaning market ata lower prie.In Paper C, we onsider a two-prie balaning market, whih onstitutes a moreinteresting ase than the one-prie system in a prie-taker framework. We as-sume that the prie di�erene between the day-ahead and the balaning marketis unorrelated with the output of the produer, whih is reasonable sine theproduer is a prie-taker. Under the assumptions above, it is shown that theoptimal day-ahead o�er is̃
W ∗
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 , (4.1)where F−1

Wk
is the quantile funtion for the distribution of stohasti power pro-dution, and ψ̂(↓)

k (ψ̂(↑)
k ) is the expetation of the di�erene between the down(up)-regulation prie and the day-ahead prie.In the ase study presented in Paper C, we test the strategy (4.1) for a windpower produer in a realisti setting simulating the funtioning of the NordPool market over a 10 month period. We onsider atual data for pries in theperiod between Marh and the end of the year 2008. Furthermore, we employprobabilisti foreasts for wind power prodution, needed to model the quantilefuntion in (4.1), issued aording to the method in [PK10℄. As far as the marketpries are onerned, foreasts from [Jón12℄ are used.As a benhmark to test the performane of the optimal o�er (4.1), we onsidera strategy that is traditionally used by wind power produers partiipating inthe day-ahead market: o�ering the onditional expetation of the distributionof wind power prodution. Figure 4.1 illustrates the inrease in umulativerevenues per installed MW, as ompared to o�ering the onditional mean overthe period onsidered in the ase study. The starred solid line indiates the o�erin (4.1). As one an see, this strategy yields a higher revenue ompared to thease where the produer o�ers the onditional mean. The improvement totallsabout e 100 per MW of installed apaity in the 10 months onsidered in the
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p,0.2Figure 4.1: Inrease in net umulative revenues for a prie-taker produer om-pared to o�ering the onditional mean (point foreast) with thestrategies proposed in Paper CAnother result in Figure 4.1 that is worth mentioning is that the strategy (4.1) isexposed to the risk of signi�ant losses in single trading periods, whih results inthe vertial drops of the starred solid line in the �gure. As disussed in detail inPaper C, this is due to the prie foreasts being unorret in those tradingperiods. This auses the produer, aordingly to (4.1), to take a �wrong�position (either long or short) with a large exposure, e.g., by o�ering loseto zero or to the nominal apaity at the day-ahead market.To overome this problem, we propose that the o�er (4.1) be onstrained so asto limit its deviation from the onditional mean foreast. It should be remarkedthat the onditional mean foreast is a risk-averse bid by de�nition, as it min-imizes the expeted squared deviation of wind power prodution. We proposetwo di�erent onstraining strategies. In the �rst one, the o�er (4.1) is boundedwithin a band entered around the onditional mean, and whose diameter isde�ned as a perentage of the onditional mean itself. In the seond onstrain-ing strategy, we impose limits in the probability spae, by allowing the quantilein (4.1) to deviate by at most 0.1 or 0.2 from the quantile orresponding tothe predited onditional mean. In Figure 4.1, the umulative improvement inrevenues is illustrated with lines with irular and square markers for the for-mer onstraining strategy, and with lines without markers for the latter one.Furthermore, we employ solid lines for tighter onstraints and dashed lines for



4.1 Trading Strategies for Stohasti Power Produers 49looser ones. As one an see, onstraining the bid about the onditional meanredues the risk of losses stemming from single trading periods, resulting insmoother revenue improvements in the �gure. Furthermore, suh onstrainedstrategies are not only risk-averse, but they also yield better performane thanthe strategy (4.1) in the period onsidered, by reduing the impat of biases inthe foreasts.Further �nanial results for the produer are inluded in Table 4.1. The im-balane osts in the seond olumn refer to the opportunity osts of a strategy,ompared to bidding with perfet information on the atual realization of windpower prodution. As one an see, strategy (4.1) redues the imbalane osts byover 2%. However, this strategy is outperformed by the onstrained strategies,whih further ut imbalane osts up to roughly 6% with tighter onstraints and8% with looser onstraints.A di�erent view of the strategies presented above is given in Table 4.2, whihillustrates their impat on the wind power produer's imbalane. The totalproduer's deviation in the �rst olumn is broken down into two parts. The�rst one, whih appears in the seond olumn in the table, represents deviationsthat are traded at the day-ahead prie in the balaning market. The seondpart are the imbalanes that are traded at the balaning market prie. Theseimbalanes are inluded in the third olumn, whose header is �penalty�, sinethe produer is worse o� with the balaning market prie than with the day-ahead one. As disussed in Setion 2.2.3, the former type of imbalanes arebene�ial to the system, sine ontrarily to the ones of the latter type, theyhelp it restore balane between prodution and onsumption. As one an notie,strategy (4.1) and the strategies employing looser onstraints inrease the totalimbalane of the produer. However, none of the onstrained strategies inreasesigni�antly the imbalane in the penalized diretion as the strategy in (4.1)does. This is another pratial reason for preferring a onstrained strategy, assystem operators often monitor the o�ers of wind power produers to ensurethat their imbalane be not too large.4.1.2 Trading as a Prie-Maker in the Balaning MarketIn Paper D, we abandon the prie-taker assumption and onsider a wind powerproduer whose o�ering strategy impats pries in the balaning market. To thisend, we develop a bilevel model based on stohasti MPECs, see Setions 3.2and 3.3. The upper-level problem in this model represents the o�ering problemof a wind power produer, while the lower-level one is the balaning-marketlearing, whih inludes stohasti parameters. In this paper, we onsider aone-prie system for priing imbalanes. This results in a setup similar to the
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esults
Strategy Net revenue Imbalane ost Imbalane ostper installed MW per installed MW redution(e/MW) (e/MW) (%)Conditional mean 94436.40 4076.51 0.00Equation (4.1) 94529.96 3982.95 2.30Constrained (±10% value) 94684.18 3828.74 6.08Constrained (±20% value) 94784.27 3728.64 8.53Constrained (±10% probability) 94670.78 3842.13 5.75Constrained (±20% probability) 94768.55 3744.37 8.15Table 4.1: Eonomi results for a prie-taker wind power produer in the test-ase in Paper C



4.1 Trading Strategies for Stohasti Power Produers 51Strategy Energy imbalane (h)Total Day-Ahead prie PenaltyConditional mean 484.92 277.71 207.21Equation (4.1) 755.29 498.66 256.62Constrained (±10% value) 495.91 286.72 209.19Constrained (±20% value) 519.70 304.85 214.85Constrained (±10% probability) 488.94 281.93 207.00Constrained (±20% probability) 514.62 301.74 212.87Table 4.2: Energy imbalane for a prie-taker wind power produer in the test-ase in Paper C. Values in hours of operation at nominal apaityone in Example 3.2, although the lower-level problem models the learing of thebalaning market rather than the day-ahead one. Furthermore, the upper-levelproblem is extended by allowing the possibility of o�ering prie-quantity urvesrather than single quantities.In order to evaluate the performane of the optimal strategy, we employ threealternative o�ers for benhmarking, namely, the onditional mean and medianforeasts, as well as the zero o�er. We remark that, as brie�y explained in theprevious setion, the optimal day-ahead market bid for a prie-taker stohastipower produer in a one-prie system is either zero or the nominal apaity. Inpartiular, the optimal o�er is zero if the expetation of the di�erene betweenthe day-ahead and the balaning market prie is negative, while it is the nominalapaity if it is positive. However, the nominal apaity proves to be highlysuboptimal in the ases we study. We refer to Paper D for a omprehensivedisussion.The results we summarize here are obtained through a ase study based onthe Nord Pool market. Indeed, we model the system deviation and the supplyurve of the balaning market using atual market data. As far as wind poweris onerned, we employ Beta distributions to model its unertain prodution,as proposed in [FGRM05℄.By employing the parameters α = 3.78 and β = 1.62 for modeling the dis-tribution of wind power prodution, and onsidering an installed apaity of
300MW, we obtain that the optimal o�er is totally inelasti (i.e., there is noprie di�erentiation of the o�er) and equal to

x = 76.69MWh . (4.2)Notie that that suh a value is a very low quantile (with proportion 0.01) ofthe wind power prodution distribution. However, it is important to remark



52 Appliation Resultsthat under the prie-maker assumption, the optimal o�er is neither zero nor thenominal apaity as in the prie-taker ase.Table 4.3 shows the expeted �nanial improvement obtained with o�er (4.2) asompared to the benhmarks desribed above. Remarkably, this o�er improvesthe expeted revenues by 1.5% as ompared to the zero o�er, and slightly over
3% with respet to the onditional mean or median.Pro�t improvement w.r.t.mean (%) median (%) zero (%)3.08 3.25 1.58Table 4.3: Finanial results obtained using the optimal bid for a prie-makerwind power produer in the ase study in Paper DFigure 4.2 illustrates how the optimal o�ering urve hanges as a funtion of thepenetration of the produer in the market. These results are obtained in sim-ulations where we hange this penetration by resaling the installed generationapaity of the produer. As one an see in the �gure, the o�ering urve movesto the right as market penetration inreases. This is onsistent with what onewould expet intuitively. Indeed, the pries a produer gets for deviations in aone-prie market get loser and loser to the ones of a two-prie market as itspenetration inreases. For example, if the onsidered produer were the only oneausing imbalane, then its deviation would always be of the same sign as thesystem's, beause these two quantities oinide. Therefore, the produer wouldalways reeive or pay the balaning market prie both in a one-prie system(by de�nition) and in a two-prie system (sine its deviation is always in thesame diretion as the system's). As seen in the previous setion, the optimalo�er yielded by (4.1) in a two-prie system is a entral quantile of the distri-bution of wind power prodution when the expeted prie di�erene betweenday-ahead and up- and down-regulation prie are omparable. Therefore, weexpet intuitively that the optimal o�er of a wind power produer in a one-priemarket tends to the entral quantiles of the predited output distribution as thepenetration of the produer inreases. What we see in Figure 4.2 is a transitionbetween a low-penetration ase, omparable to a prie-taker ase in a one-priemarket where the optimal o�er is zero, to a high-penetration ase, where theoptimal o�ering urve is loser to the median of the wind power distribution.A similar sensitivity analysis, performed with respet to the rank orrelationof the wind power prodution with the aggregate deviation from other marketpartiipants, yields interesting results. Figure 4.3 shows the optimal o�eringurve with di�erent values of rank orrelation between wind power prodution
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Figure 4.2: Day-ahead o�er urves with di�erent levels of market penetrationof the prie-maker produer in the ase study in Paper Dand residual system deviation. We observe that the o�ering urve shifts to theleft as the orrelation inreases, whih mathes intuitive reasoning. Indeed, ifthe wind power prodution and the system deviation had a rank orrelationequal to -1, then o�ering the median would ause the wind power produer toalways have a deviation of a di�erent sign ompared to the system's (assuminga symmetri distribution for system deviation). By doing this, the produerwould always reeive a better prie than the day-ahead one for its imbalane.Therefore, from an intuitive point of view, quantiles lose to the median wouldyield a high performane with negative values of orrelation. As orrelationinreases, the o�er urve moves to the left-hand side of the �gure, indiatingthat the produer hedges from the penalties for underproduing. In a marketwith a hokey-stik supply urve, as the one onsidered in the ase study, thepenalties for underproduing tend to be higher than the ones for overproduing.This is beause the ost of ativating additional prodution units is higher thanthe ost savings for reduing the prodution from already dispathed units.4.2 Optimal Demand-Side ManagementPapers E and F fous on problems of demand-side management with dynamipriing. The problems in both papers are formulated as MPECs, where thelower-level problem is a utility maximization problem of an end onsumer ex-posed to dynami pries, and �exible as far as the onsumption for heating isonerned. The upper-level problems are the one of a virtual power plant oper-ator in Paper E and the one of a retailer ating as an intermediary between the
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ρ = 0.7Figure 4.3: Day-ahead o�er urves with di�erent levels of orrelation betweenthe wind power output of the prie-maker produer and the resid-ual system deviation in the ase study in Paper Deletriity markets and the end onsumers in Paper F.4.2.1 Managing a Virtual Power PlantIn Paper E, we onsider the problem of a virtual power plant (VPP) operator,whih owns wind power prodution failities and is assoiated to a number ofloads that are �exible in their onsumption for heating.The �exible load reeives from the operator of the virtual power plant a dy-nami prie signal, and solves a utility-maximization problem where the ost ofeletriity prourement is weighted against a quadrati loss funtion that pe-nalizes the deviation from a referene temperature. The heating dynamis forthe onsumer are modeled by using a disrete-time state-spae model [Mad07℄.This onstitutes the lower-level problem. The upper-level problem � the VPPoperator's � deides on the optimal dynami prie signal to be sent out tothe onsumers. Its objetive is the minimization of the absolute value of theeletriity imbalane aused by the deviation of wind power prodution withrespet to the day-ahead foreast. This is aomplished by shifting the �exibleonsumption in time through an appropriate prie signal. In pratie, the VPPoperator exploits the �exibility of demand response to absorb �utuations ofstohasti power prodution, therefore reduing the impat on the system ofwind power's limited preditability.



4.2 Optimal Demand-Side Management 55Simulations of the model are presented in Paper E, where we make use of se-narios for wind power prodution issued aording to the method in [PMN+09℄.The optimization is arried out in a rolling horizon fashion. First, the priesignal is optimized for a ertain time horizon. Then, the deision for the �rsthour is implemented and the horizon is rolled one period forward.Figure 4.4 shows the dynamis of relevant variables in the simulation during24 hours by omparing the ase with dynami prie to the ase with a �xedprie equal to e 0.2/kWh. As one an notie in Figure 4.4(a), the variableprie allows the VPP to smooth out most of the imbalane due to the windpower foreasting errors. The only imbalanes that annot be absorbed bythe �exible onsumption take plae when the load is already zero, see Figure4.4(b), and annot be redued any further to over the underprodution of windpower with respet to the day-ahead foreast. Furthermore, the imbalane issmoothed out without ausing a large di�erene in the dynamis of the indoortemperature for the end onsumer in Figure 4.4(), i.e., without jeopardizingonsumer's omfort. Figure 4.4(d) shows the dynamis of the prie, whih isbounded between e 0.1/kWh and e 0.3/kWh. Generally, the day-ahead foreastoverestimates the atual wind power prodution during the onsidered period.Hene, the VPP operator disourages exessive onsumption by feeding theonsumer pries in the high end of the range.Table 4.4 summarizes the results for the day of simulation illustrated in Figure4.4. Compared to the �xed-prie situation, the setup with dynami prie and�exible load redues imbalanes for the VPP by more than half. The onsumerdisomfort aused by deviations of the temperature from the referene inreasesonly slightly, as we already pointed out in the disussion above. However, in thisase the ost for the onsumer inreases sensibly, owing to the high pries onaverage to disourage onsumption. Under the assumption that the foreastingerror is symmetri for wind power, we expet as many periods haraterizedby overprodution with respet to the foreast, and therefore by low pries, asperiods where the wind power plant underprodues. Thus, the inreased ost forthe onsumers during the latter periods, whih we highlighted in the example,should be ounterbalaned by periods where ost is atually redued in the longrun.4.2.2 Optimal Strategy for Retailers Supplying Prie-Responsive DemandA bilevel setup similar to the one presented in the previous setion is onsid-ered in Paper F. The lower-level problem is still the one of a onsumer whoseeletriity demand for heating is �exible, and whose dynamis an be desribed
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Variable price(d) Consumer prieFigure 4.4: Dynamis of relevant quantities during the simulation of manage-ment of a virtual power plant in Paper Eby a state-spae model. However, in the upper-level problem we now look at apro�t-maximizing retailer rather than at a virtual power plant. The retailer atsas an intermediary: it trades in the day-ahead and in the balaning markets,and then provides eletriity to its ustomers. The demand from �exible on-sumers is in�uened by the dynami prie signal, whih is a deision variable ofthe retailer. Furthermore, the retailer deides on the amount of eletriity to bepurhased in the market at eah stage, so as to minimize the ost of providingpower to its ustomers.The results of a number of simulations are presented in Paper F. The �rst ob-jetive of these simulations is to assess the apability of this setup to shift theload towards periods of low prie in the wholesale eletriity market. Note thatas a result of the market mehanisms illustrated in Setion 2.3, pries are lowerin periods haraterized by high prodution from renewables. Hene, a shift ofa signi�ant part of the load to low-prie periods implies a more e�ient use ofrenewables. Figure 4.5 illustrates the prie and the onsumption dynamis forthree load types with di�erent �exibility, de�ned as the willingness to aept atemperature deviation from a referene. In pratie, di�erent levels of �exibil-



4.2 Optimal Demand-Side Management 57Unit Fixed prie Variable prieExpeted total imbalane kWh 6.79 2.98Consumer ost e 3.57 4.77Consumer disomfort (e) 0.11 0.13Table 4.4: Overall results of the simulations of management of a virtual powerplant spanning one day with rolling horizon in the ase study inPaper Eity are enfored by de�ning di�erent bands for the indoor temperature, withinwhih there is no penalty in the onsumer's utility funtion. In Figure 4.5, theonsumer types are presented in order of dereasing �exibility. It should benotied that the dynamis in this �gure are stohasti, sine we onsider uner-tainty in the model by employing senarios. As one an see, a signi�ant partof the onsumption takes plae at night, when pries are lower in the wholesalemarket, indiating that the retailer passes the wholesale market inentive on tothe onsumer.Furthermore, we ompare the dynami priing setup previously disussed to twoother priing shemes whih are urrently in use: the �xed-prie sheme wherethe onsumer prie is onstant throughout the day, and the time-of-use (TOU)sheme, where the prie is higher during peak hours and lower during valleyhours. For onsisteny, we enfore the average dynami and time-of-use priesbe equal to the onstant �xed prie.Table 4.5 summarizes some �nanial results of the simulation for the retailer. Asone an notie, the setup with dynami prie yields both the highest revenuesfrom ustomer payments, and the lowest total osts for the retailer among thethree setups onsidered. In partiular, both the prourement osts (i.e., ostsunder perfet information) and the imbalane penalties (i.e., the opportunityost for not being able to foreast the onsumption perfetly at the day-aheadstage) are minimized through the use of dynami priing. As a result, pro�tsare highest under dynami priing. The setup with time-of-use prie yields theseond lowest osts in the wholesale market, indiating a rather e�ient use ofgeneration resoures ompared to the �xed-prie ase. Finally, the retailer rev-enues under the time-of-use sheme are lowest. This indiates that this shemeis partiularly favorable to �exible onsumers. In ontrast, the setup with dy-nami priing yields the highest onsumer payment as long as the average dailyprie is onstant aross the onsidered prie shemes. Hene, further rewardsfor �exibility, e.g., reduing the average dynami prie, should be thought of forrewarding onsumers under this priing sheme.
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Figure 4.5: Flexible onsumption (l) patterns for the onsumer types withdynami prie π̃ sent by the retailer in the simulation in Paper FTable 4.6 sheds light on the impat of di�erent levels of onsumer �exibility onthe �nanial results. To this end, we onsider three di�erent distributions ofthe onsumers among the three onsumer types haraterized by di�erent levelsof �exibility. As one an notie, the total ost for the onsumers as a whole in-reases as the level of �exibility dereases. In partiular, the prourement oststo satisfy the �exible part of the load (i.e., heating) are partiularly sensitive,while the osts for the in�exible part of the load (all the other applianes) aremore or less stable. This is not only aused by a redution in onsumption, butalso by the fat that more �exible onsumers pay lower pries to the retailer. In-deed, the average prie paid for heating purposes drops sensibly with inreasingonsumer �exibility.



4.3 Market Dispath in Presene of Renewables 59Retailer performane PriingFixed TOU DynamiRevenues 3.4205 3.3164 3.5049perfet information 1.0970 1.0781 1.0680Costs imbalane penalties 0.0096 0.0088 0.0083total 1.1067 1.0868 1.0763Pro�ts 2.3139 2.2296 2.4286Table 4.5: Market performane of the retailer in the simulations with �xed,time-of-use and dynami prie in Paper F. All the values are aver-ages for the onsidered senarios expressed in eConsumer result index Unit FlexibilityHigh Medium Low�exible load e 0.5517 0.7180 0.8757Costs in�exible load e 2.7969 2.7868 2.7767total e 3.3486 3.5049 3.6524Prie �exible load e/kWh 0.1870 0.1885 0.1921in�exible load e/kWh 0.2060 0.2053 0.2045Table 4.6: Consumer results in simulations with di�erent demand �exibility inPaper F. All the values are averages for the onsidered senarios4.3 Market Dispath in Presene of RenewablesMarket and system operator's problems are addressed in Papers G and H. Theformer of these papers addresses the problem of determining an e�ient day-ahead dispath of stohasti produers, aounting for its impat on the balan-ing operations. In Paper H, we onsider the joint determination of the day-aheadand reserve dispath in presene of renewables in the market.4.3.1 Improved Day-Ahead Sheduling of RenewablesAs shown in [PZP10℄, there is potential for reduing expeted system opera-tion osts if the traditional sequential dispath of the day-ahead and balaningmarkets desribed in Setion 2.2.5 is replaed by a two-stage day-ahead dis-path based on priniples of stohasti programming, of the like of the modelpresented in Example 3.4. However, models of this type present some issues ofrevenue adequay, as onventional �exible produers reover their osts only in



60 Appliation Resultsexpetation but not under any realization of the unertainty. In Paper G, weshow that similar improvements in the expeted system ost an be ahieved bya onventional day-ahead market-learing if the dispath of renewable stohastiproduers is arefully hosen, instead of being equal to the mean foreast of windpower prodution, whih is still the urrent pratie in many markets worldwide.To determine the optimal dispath of renewable produers, we propose a bilevelmodel where unertainty is handled using stohasti programming. This modelis similar to the two-stage one in Example 3.4, with the addition of the equilib-rium onditions of a lassial day-ahead market-learing as onstraints. Notiethat, as we disuss in Paper G, the latter measure ensures revenue adequay foronventional produers regardless of the realization of stohasti prodution.The model is tested on a modi�ed version of the IEEE Reliability Test-System[GWA+99℄, whih inludes two wind power produers, and ompared both tothe sequential day-ahead and balaning market-learing, and to the two-stagemarket-learing presented in [PZP10℄. Figure 4.6 illustrates the expeted systemost, whih aggregates osts at the day-ahead and at the balaning stage, forthe three learing proedures as a funtion of wind power penetration in the sys-tem, in two di�erent ases of orrelation between the stohasti prodution fromthe two wind power produers in the system. As one an notie, the onven-tional sequential market-learing (ConvD) has the worst performane among thethree models in expetation. Naturally, the two-stage market-learing (StohD)yields the lowest ost in expetation, sine ConvD is suboptimal and the pro-posed bilevel model (ImpD) is a onstrained version of StohD. However, theperformane of ImpD is rather lose to the optimal one. In partiular, the ex-peted ost is a dereasing funtion of the penetration of wind power in thesystem. This is not the ase with the onventional sequential dispath ConvD.Indeed, after a ritial point indiated with a dashed vertial line in the �gure,the expeted ost starts inreasing as more wind power apaity is integrated inthe system. Remarkably, the proposed market-learing model (ImpD) is apableof better oping with situations where the renewable stohasti produers arepositively orrelated with eah other.Table 4.7 summarizes the results of the ase study presented in Paper G interms of pro�ts for some of the �exible onventional produers that provideregulation. As one an see, these produers reover their osts in expetationin the two-stage market-learing model (StohD), but inur losses in some re-alizations of the output of stohasti produers. Furthermore, the probabilityof inurring losses for the units displayed in the table is remarkably high. Withthe sequential market-learing (ConvD) and the proposed sheme (ImpD), theonventional produers are guaranteed ost reovery in any realization of thestohasti output of produers in the system. Notie, however, that the modelwe propose has a more balaned behavior in terms of expeted revenues foronventional produers. On the ontrary, the onventional dispath yields very
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62 Appliation Resultshigh returns for the �exible produers, at the expense of the renewable produ-ers, whih pay too high regulation osts as a result of the ine�ient day-aheaddispath of the market. Unit1 6 11 12ConvD Expetedpro�t ($) 379.8 359.7 724.9 389.1StohD Expetedpro�t ($) 45.6 48.4 99.7 64.9Averagelosses ($) −17.4 −10.9 −17.6 −11.5Probabilitypro�t < 0 0.81 0.71 0.71 0.75ImpD Expetedpro�t ($) 170.2 263.7 531.6 178.7Table 4.7: Highlights of pro�ts for some of the produers that provide regula-tion in the ase study in Paper G, with a wind penetration equalto 38% and a orrelation ρ = 0.35 between the two wind powerproduers
4.3.2 Robust Day-Ahead and Reserve Dispath in Pres-ene of RenewablesThe sequential and deterministi manner with whih the reserve and the day-ahead markets are leared in the market organization desribed in Setion 2.2.5beomes more and more suboptimal as stohasti renewable soures penetratethe market. On the ontrary, the joint determination of the amount of reserveapaity and the forward shedule in a stohasti programming framework isadvoated in [MCPR09℄ to inrease the e�ieny of market operation.Starting from the assumption that the reserve and dispath shedules must bejointly robust to the unertain realization of stohasti prodution in order toavoid ostly load-shedding events, Paper H proposes an approah based on ro-bust adaptable optimization, see Setion 3.4. The proposed model builds on theone in Example 3.5. Its objetive is the minimization of the total ost inurredin the reserve, day-ahead and balaning market in the worst-ase realization



4.3 Market Dispath in Presene of Renewables 63of the unertain prodution from wind power generators. We onsider generalpolyhedral unertainty sets to model the stohasti generation for a number ofwind power produers in the grid. In the remainder of this setion, we reportthe highlights of a ase study where the proposed model is applied to a modi-�ed version of the 24-bus IEEE Reliability Test-System [GWA+99℄ inluding sixwind power produers. The stohasti programming ounterpart of the sameproblem is onsidered as a benhmark for disussion.In Table 4.8, the system ost is reported for both the robust optimization and thestohasti programming approah. The ost inurred at the balaning stage (forredispath, load-shedding and their total) is reported both in expetation and inthe worst-ase senario. To guarantee a fair omparison, the input senarios tothe stohasti programming approah follow a trunated Gaussian distribution,while the model based on robust optimization onsiders the support of thisdistribution as the unertainty set.Let us now omment the results in Table 4.8. Firstly, the robust optimiza-tion approah yields more onservative results than the stohasti programmingone in terms of upward reserve. Indeed, the latter must be su�ient to overthe negative deviation, i.e., an underprodution, from wind power produersin any irumstane envisaged in the unertainty set. On the other hand, therobust optimization approah dispathes no downward reserve, beause this isnot needed in the worst-ase realization of wind power output, whih is ne-essarily an underprodution in ases where there is no ost assoiated to windspillage like in the onsidered example. In expetation, the robust optimizationapproah is not as e�ient as the stohasti programming one, whih is optimaland thus ahieves the lowest total ost. However, the proposed approah tradeso� a slight inrease in the expeted system ost (about 2.8%) with an inreasedrobustness, resulting in a drop in total system ost by over two thirds in theworst-ase realization of the unertainty.A similar omparison is presented in Table 4.9. This table reports the sys-tem ost in a ase where the foreast distribution for the unertainty used inthe stohasti programming approah (a trunated Gaussian) is di�erent fromthe atual one (a uniform distribution with the same support). Sine the twodistributions share the same support, the dispath obtained with the robustoptimization approah does not hange as ompared to the one in the previousase. Remarkably, in this ase the robust optimization model obtains lower ostsin expetation than the stohasti programming one, whih is penalized by a rel-atively large load-shedding ost. These results suggest that the performane ofthe stohasti programming approah degrades more quikly than the one of itsrobust ounterpart if the senarios used as input underestimate the probabilityin the tail of the atual distribution of the unertainty. However, in the onversease where the senarios overestimate the weight in the tail of the distribution,



64 Appliation ResultsCost Robust Optimization Stohasti ProgrammingDispath 17 897.52 17 512.07Upward reserve 489.72 355.59Downward reserve 0 130.28Total day-ahead 18 387.25 17 997.95Expetation Worst-ase Expetation Worst-aseRedispath 339.32 2989.46 147.82 2634.55Load-shedding 0 0 72.83 43 586.85Total balaning 339.32 2989.46 220.64 46 221.40Total aggregate 18 726.56 21 376.72 18 218.59 64 219.34Table 4.8: Comparison of system ost with the robust optimization and thestohasti programming approahes based on a simulation in PaperH. Values in $stohasti programming may retain lower system ost in expetation. We referto Paper H for further results.Cost Robust Optimization Stohasti ProgrammingDispath 17 897.52 17 512.07Upward reserve 489.72 355.59Downward reserve 0 130.28Total day-ahead 18 387.25 17 997.95Redispath (exp.) 576.75 335.06Load-shedding (exp.) 0 923.26Total balaning (exp.) 576.75 1258.32Total aggregate (exp.) 18 964.00 19 256.27Table 4.9: Comparison of system ost (only in expetation for the balaningmarket) with the robust optimization and the stohasti program-ming approahes with inaurate predition of the distribution ofthe unertainty, based on a simulation in Paper H. Values in $



Chapter 5 Conlusions andPerspetives
In this dissertation, we address several problems of deision-making under un-ertainty for the optimal management of stohasti and non-dispathable renew-ables in eletriity markets. In partiular, we onsider both the point of view ofmarket players, i.e., produers, virtual power plant operators and retailers, andthe one of market and system operators. By making use of tools of optimizationunder unertainty, namely stohasti programming, stohasti bilevel program-ming and robust optimization, we show that the market value of renewables anbe inreased through improved deision making.5.1 Overview of the ContributionAssuming the point of view of renewable power produers employing stohasti,non-dispathable soures, in partiular wind, we �rst fous on the determinationof optimal short-term trading strategies in Papers C and D. The partiipationin eletriity markets envisages trading in multiple �oors with di�erent gatelosures, some of them with a substantial advane in time to the delivery ofeletriity. This, oupled with the unertain nature of stohasti renewable



66 Conlusions and Perspetivessoures of eletriity, renders the determination of the optimal o�ering strategya problem of optimization under unertainty.In Paper C, we show that there exists an analytial solution to the tradingproblem when the produer partiipates as a prie-taker both in the day-aheadand in the balaning markets. Similarly to the newsvendor problem [RS64℄,the optimal solution is a ertain quantile of the predited distribution of thestohasti prodution, whih depends on the expetation of the pries in thetwo market �oors. Through a test-ase based on the Nord Pool market, weon�rm the theoretial superiority of this quantile-based strategy with respetto the onditional mean foreast, whih has been used traditionally by stohastipower produers. However, we show that better �nanial results are obtainedin the test-ase by onstraining the quantile-based strategy in a band enteredabout the onditional mean of the output distribution. This result highlights theexposure of the quantile-based bid to large losses stemming from single tradingperiods, and its suboptimality when the foreasts employed for deision-makingare inaurate. Note that this is a pratial problem also typial of stohastiprogramming.To render the prie-taker assumption unneessary, we employ the framework ofmathematial programming with equilibrium onstraints (MPEC) [LPR96℄. InPaper D, we onsider a similar trading problem, where the impat of the stohas-ti produer's o�er on the balaning market is aounted for by embedding theequilibrium onditions of the learing problem of this market. Sine the latteris stohasti, we onsider the optimality onditions for multiple market-learingproblems in a stohasti MPEC [GCF+12℄. Beause these optimality onditionsan be linearized by using binary variables [FM81℄, this results in a very largeombinatorial problem. In Paper D, we show that the model is tratable in arealisti ase study. Furthermore, the optimal solution results in signi�antlyimproved revenues in expetation for the produer.The omplementary point of view of demand-side management is also addressedin this dissertation. Spei�ally, we onsider how the introdution of dynamipries for end onsumers would impat the strategy of virtual power plant (VPP)operators and retailers trading in the wholesale market, and result in a moree�ient use of the resoures. We model problems of this type as hierarhialoptimization problems, whih we ast as MPECs where the upper-level opti-mization problem, i.e., the VPP operator's or the retailer's, sets a dynami priesignal and the lower-level one, i.e., the onsumer's, optimizes the onsumptionplan.In Paper E, we onsider the ase of a VPP operator that owns stohasti powerprodution failities and supplies onsumers that are �exible in their load forheating. The dynami prie signal is employed to ontrol the onsumption from



5.1 Overview of the Contribution 67the �exible onsumers, with the objetive of minimizing the expeted value ofthe imbalane resulting from the stohasti power prodution. We show thatthe need to resort to the balaning market is drastially redued as imbalanesan be smoothed out by exploiting the onsumers' �exibility. However, modelsof this type su�er from two drawbaks. The �rst one is the omplexity ofMPEC models already disussed above. The seond one is the need for a reliablemodel of the onsumers' dynamis and preferenes to be used in the lower-levelproblem. In pratie, a big modeling and lustering e�ort is required for areal-world appliation of models of this type.A problem similar to the one desribed above, and with the same pratialdrawbaks just mentioned, is onsidered in Paper F. In this work, however, weonsider a pro�t-maximizing retailer in the upper-level problem instead of a VPPoperator. Through a ase study, we show that by employing a dynami priesignal to exploit onsumer �exibility, the retailer ost for purhasing eletriityat the wholesale market is redued. This fat signals that a more e�ient use ofthe prodution resoures is made. However, we highlight that only the retailerbene�ts from the inreased e�ieny, while the onsumers are better o� withother prie shemes than the dynami one, e.g., a time-of-use tari�.Finally, this dissertation addresses the hallenges that stohasti, non-dispathable renewable soures pose to the market and system operators. In-deed, traditional deterministi tools for solving the day-ahead energy, and pos-sibly reserve, dispath problems are inreasingly suboptimal as a growing pene-tration of renewables in the system alls for ostlier operations in the balaningmarket. We onsider solutions based on stohasti programming and on robustoptimization to takle problems of this type.In Paper G, we onsider the optimal day-ahead dispath of stohasti produ-tion in a two-stage energy-only market. We build on the two-stage stohasti-programming-based model proposed in [PZP10℄, whih is known to yield thelowest expeted ost but also to guarantee ost reovery for the produers andthe market operator only in expetation, and not in any realization of the uner-tainty. The model we propose aims at the minimization of the expeted systemost, omprising the ost at the day-ahead and at the balaning markets, as theone in [PZP10℄, and inludes in an MPEC fashion the optimality onditions of atraditional day-ahead market-learing, where the dispath of the stohasti pro-duers is �xed. This guarantees ost reovery in any realization of the unertainprodution, while it still retains most of the gains of the stohasti programmingapproah in [PZP10℄ ompared to the traditional sequential, deterministi pro-edure for market-learing urrently employed. Among the disadvantages of theproposed model, however, is the additional omplexity introdued by embed-ding the optimality onditions in an MPEC, whih have a mixed-integer linearreformulation and therefore result in a ombinatorial problem.



68 Conlusions and PerspetivesFinally in Paper H, we onsider the problem of jointly determining the day-aheadenergy and reserve dispath, whih is studied using a stohasti programmingapproah in [MCPR09℄. With respet to the latter work, we take an alternativepath and formulate the problem in the framework of robust adaptable optimiza-tion [BBC11℄. This approah is partiularly relevant within this ontext, as theresulting energy and reserve dispath is immune to the worst-ase realizationof the unertain power prodution, thus resulting in no load-shedding events.We show that the robust solution is slightly suboptimal in omparison with thedispath obtained from the orresponding stohasti programming model. How-ever, the former is not only better immunized to the worst-ase realization of theunertainty than the latter, but it may also perform better if the atual distribu-tion of the stohasti prodution is di�erent from the foreast one. Notie thatthis ase is partiularly relevant, as modeling aurately the stohasti produ-tion from several renewable power produers spread in the network, aountingfor their orrelation, is a rather hallenging task. Furthermore, we experienethat the robust optimization model has better omputational performane thanits stohasti programming ounterpart in the ase study onsidered. However,it should be pointed out that the formulation we propose is limited to polyhedralsets for the stohasti power prodution, as the use of more omplex unertaintysets hinders a straightforward solution of the problem.5.2 Future ResearhThe researh works presented in this dissertation open the way to future researhin di�erent diretions.As far as the problem of trading renewable power is onerned, we an identifya number of improvements to our models. First of all, it would be of greatinterest to extend the prie-maker assumption, whih so far is limited to thebalaning market, to the day-ahead market as well. The assumption in ourmodel is justi�ed by the larger volumes traded in the day-ahead market thanin the balaning market. However, we an envisage situations in the futurewhere single renewable power produers will be able to in�uene the day-aheadprie formation. Furthermore, the inlusion of di�erent market �oors in themodel, e.g., the intra-day and/or the futures and derivatives markets, would beof great relevane. In partiular, the intra-day market is seen as key to a su-essful large-sale integration of renewables, and a ombination of trading in thismarket and in the �nanial markets ould redue the risk exposure of renewablepower produers. Another diretion for future researh is modeling trading asa prie-maker in a two-prie market. This would onstitute not only a valuableoperational tool for renewable power produers, but also a signi�ant ontribu-



5.2 Future Researh 69tion to the debate on the design of balaning markets. Besides, the inlusionof a network representation in the o�ering model would be an improvement ofpartiular importane to markets with nodal priing, whih are very popular inthe United States. Finally, it would be espeially interesting to onsider the op-timal trading strategy of a portfolio inluding both renewable and onventionalsoures. This is of partiular relevane nowadays, as the inreasing integrationof distributed generation and the envisaged development of demand responseare promoting the onept of virtual power plant.Needless to say, extensions of the researh arried out on demand-side manage-ment for virtual power plant operators and retailers in a dynami-prie frame-work are also possible. A straightforward improvement of the presented modelswould be the development of more sophistiated desriptions of the onsumerbehavior, inluding other soures of �exible onsumption than heating. Besides,building algorithms to luster the large number of onsumers assoiated to a re-tailer or to a virtual power plant is paramount for the pratial use of bilevelmodels of the type we propose, as these models are omputationally expensive.In view of pratial appliations with short look-ahead time and/or involvinga large number of onsumers, it would also be espeially important to proposealternative models, e.g., based on ontrol theory, to determine appropriate priesignals for the onsumers. Finally, modeling ompetition among retailers in ademand response framework with dynami priing would be a relevant extensionof the presented work. This would be partiularly important as future marketdesign might not only render residential onsumers prie-responsive, but alsoinrease their awareness and market power, as aggregators of onsumers may beallowed to negotiate diretly with retailers.The market-learing models proposed in this dissertation open up several di-retions of future researh as well. First of all, a relevant extension wouldbe the inlusion of di�erent markets in the proposed learing proedures, e.g.,the reserve market, and/or the �exible ramping markets urrently under de-velopment [AAR+12℄, whih ould yield higher e�ieny and reliability for thesystem. Another improvement would be the development of alternative meth-ods to determine the day-ahead dispath of stohasti produers while reduingthe omputational burden for the market operator. Indeed, the bilevel modelpresented su�ers the omputational problems already mentioned, whih ompli-ate its pratial appliation to large-sale problems. Finally, the use of robustoptimization in the ontext of the determination of the day-ahead energy and re-serve dispath opens up interesting researh diretions. Indeed, this frameworkrequires the de�nition of unertainty sets for stohasti renewable produtionin di�erent sites of the system. Therefore, there is a need to develop stohastitools to model suh sets. Besides, advanes are needed to formulate and solveoptimization models that allow for more sophistiated unertainty sets thanpolyhedral ones, e.g., ellipsoidal sets.
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A.1 Introdution 75Impat of Wind Power Generation on EuropeanCross-Border Power FlowsMaro Zugno1, Pierre Pinson1, Henrik Madsen1AbstratA statistial analysis is performed in order to investigate the re-lationship between wind power prodution and ross-border powertransmission in Europe. A dataset inluding physial hourly ross-border power exhanges between European ountries as dependentvariables is used. Prinipal omponent analysis is employed in or-der to redue the problem dimension. Then, nonlinear relationshipsbetween foreast wind power prodution as well as spot prie in Ger-many, by far the largest wind power produer in Europe, and power�ows are modeled using loal polynomial regression. We �nd thatboth foreast wind power prodution and spot prie in Germany havesubstantial nonlinear e�ets on power transmission on a Europeansale.A.1 IntrodutionDriven by the need to omply with stringent international agreements, whihaim at reduing the environmental impat of energy prodution as well as energydependene, the deployment of renewable energy in Europe has grown at anunpreedented pae in the reent years. Among renewable soures, wind powerplays a entral role both for its impressive tehnologial development and forits expansion. Partiular features of wind power, like its stohasti and non-dispathable nature and its very low marginal ost, render it very di�erent fromthe more onventional soures of energy.Due to its low marginal ost, wind power prodution has the onsequene oflowering market pries via the so-alled �merit-order e�et� [1℄. This is beausewind power enters the energy supply funtion from the left, or, in an alternative1DTU Informatis, Tehnial University of Denmark, Rihard Petersens Plads, bld. 305,DK-2800 Kgs. Lyngby, Denmark



76 Paper Ainterpretation, redues the load and thus shifts the intersetion between supplyand load to the left, thus pushing more expensive soures of energy out ofthe prodution shedule. Simulation with market models in [2℄ and statistialanalysis in [3℄ on�rm the prie redution e�et of wind power. The latter workalso shows that the driving variable of this mehanism is wind power foreastrather than atual prodution, sine the former one is used when produers bidon the market.The European transmission network is omposed of �ve di�erent synhronouszones, whih in turn gather several interonneted national and internationalenergy markets. These are organized with di�erent rules and haraterizedby di�erent generation portfolios; furthermore limate onditions vary widelyaross Europe. In these onditions signi�ant prie di�erentials are likely todevelop between areas, and therefore also signi�ant �ows of power from areaswith low power prie to areas where energy is more expensive. Thus by in-�uening energy pries, wind generation also drives �ows of power from areaswith temporarily favorable onditions for wind power prodution to areas withhigher prie level, be it due to a high demand or an expensive generation mix[4℄. Massive investments are planned in order to inrease the transmission limitsbetween ountries of the EU in the years to ome [5℄.Among the hallenges for a suessful integration of high penetration of windpower are the variability of its power output and the limited auray of windpower foreasting [6, 7℄. Both these problems an be addressed by aggregatingthe power output of wind farms distributed over a wide region. Indeed due to thelower variability of wind power prodution in Europe as ompared to generationfrom a single region, more than 20% of the European demand ould be overedby wind power without signi�ant hanges in the system [8℄. Furthermore fore-ast errors an be drastially redued by the so-alled �smoothing e�et� ofaggregation, as disussed in [9℄. Investigations of this type generally assumein�nite transmission apaity, while as [10℄ points out, the interation betweenwind power prodution and transmission onstraints should be aounted for, ifthese phenomena are to be analyzed at a European sale.In this ontext, modeling how wind power prodution interats with the �ow ofenergy in large international power systems is partiularly appealing. Modelsof this type are needed when planning investments in new wind power or trans-mission apaity. From an operational point of view, they an help the proessof sheduling ross-border power exhanges.Power system models have been developed and simulated in the literature inorder to study the e�et of inreasing penetration of wind power on Europeanross-border �ow. Suh models are simulated in [10℄ in order to study theongestion of individual interonnetions in di�erent senarios of wind power



A.1 Introdution 77penetration in Europe. A similar intent is pursued in [11℄, with the fous beingon o�shore wind power, and in [12℄, where opulas are employed to simulatewind power prodution at di�erent loations. Besides, the e�et of wind foreasterrors on the unertainty of ross-border �ows has been investigated in [13℄.As opposed to simulation using market and grid models, this work follows atop-down statistial approah based on historial data, along the lines of themethod employed in [14℄. Among the advantages of this approah is the rela-tive simpliity, sine no detailed modeling of the underlying physial strutureof the power system is required. On the other hand, the reliane on historialdata implies the impossibility of extrapolating the analysis out of the range ofobservations. In this paper a method for analyzing the impat of wind-relatedvariables (external variables) on the European ross-border �ows (dependentvariables) is developed and employed. The fous is direted towards the ef-fet of foreast wind power prodution in Germany, whih, besides being thelargest produer of wind energy in Europe, is entrally loated and highly in-teronneted with the neighboring ountries. As Germany�along with otherountries in Northern Europe�is setting ambitious targets for installed windpower apaity already by 2020 [15℄ the presented methodology will allow toassess how future deployment of wind power in this important region will af-fet the European transmission grid, pinpointing its limitations and possiblebottleneks.The methodology proposed in this work follows three steps. First, PrinipalComponent Analysis (PCA) is employed in order to redue the size of the prob-lem, whih would otherwise require the analysis of a large number of �ows. PCAdetermines the most signi�ant modes of the �ow dataset, i.e. the diretions inwhih it shows most of its variation. The dimension redution is then performedby seleting a redued set of modes, whih aount for a large fration of thevariane of the original dataset. At a seond stage, loal polynomial regressionis applied on this basis in order to model the interation between the externalvariables and the hosen modes of the �ow dataset. The �nal step onsists inmapping the results of the analysis bak from the redued basis to the originalspae, i.e. the individual ross-border �ows.This paper is strutured as follows. The dataset used in this work is brie�yintrodued in Setion A.2, and the hoie of the explanatory and dependentvariables is motivated. Setion A.3 desribes the employed methodology. InSetion A.4 we disuss the results of the appliation of this method on theavailable dataset. Finally, onluding remarks and possible future extensions ofthis work are provided in Setion A.5.



78 Paper AA.2 DatasetThe dataset employed in this work spans a period of 3 years from January 2006until the end of Deember 2008. Sine during the winter daylight savings onlyone measurement is available for the dupliated hour, 26301 hourly observationsare available in total both for dependent and explanatory variables.A.2.1 Dependent variablesPhysial hourly ross-border power �ows between 34 European and borderingextra-European ountries form the set of the dependent variables used in thiswork. This onsists of 70 �ows in 2006, 72 in 2007 after the addition of the tie-lines onneting Bulgaria-Maedonia and Estonia-Finland, and 74 in 2008 afterthe addition of the Norway-Netherlands and Greee-Turkey interonnetions.Sine the analysis to arry out needs data to be available for the whole periodfor all the interonnetions, the set of physial �ows is restrited to the original70 interonnetions established as of 2006. Furthermore, data are missing forsigni�ant parts of the period 2006�2008 in other two �ows. The �nal dataset istherefore restrited to 68 ross-border interonnetions. Given the low numberof disarded �ows ompared to the total, suh disard has a limited impat.Finally, a data leaning proedure indiated the presene of outliers stemmingfrom phenomena of di�erent nature. Exeptionally high or low values for mostEuropean �ows were reorded during the UCTE system split on the 4th Novem-ber 2006, see [16℄. Similarly, unusual �ows an be observed during the winterswith from daylight savings to solar time for most interonnetions. Finally,a small number of loal, single-hour spikes involving few adjaent �ows is ob-served, possibly stemming from smaller tehnial failures. Suh limited numberof outliers is removed from the dataset leaving 26281 hourly observations.A.2.2 Explanatory variablesFor the reasons mentioned in Setion A.1 the fous of the analysis is diretedtowards wind power prodution in Germany. As [3℄ states, the driving variableto be onsidered when analyzing the e�et of wind power is the produtionforeast rather than the atual prodution. Indeed the former is used whenbidding wind power at the spot market, where the prie is settled. Sine bothwind power foreasts and load a�et the spot prie, it is of interest to analyzetheir ombined e�et on the ross-border �ow of power. Therefore the �rst



A.3 Methodology 79explanatory variable to be onsidered in the analysis is the foreast wind powerpenetration
r̂t =

Ŵt

Lt
, (A.1)where Ŵt is the wind power prodution foreast and Lt the load, both ag-gregated for Germany as a whole. Both these variables are available in theonsidered dataset for the whole 2006�2008 period. It should be notied thatwind power in Germany developed onstantly in the onsidered period. Indeed,the installed apaity grew from 18.4 GW at the beginning of 2006 to 23.9 GWat the end of 2008 [17℄. Nevertheless, the impat on this study is limited owingto the fat that wind power penetration is employed rather than a saling of theprodution with respet to the total installed apaity.An alternative approah is the diret use of the spot prie in Germany as anexplanatory variable. The e�et of wind power is then onsidered in an indi-ret way, under the assumption that wind power foreast, or penetration, isnegatively orrelated with the spot prie, as shown in [3℄. Although the oreof the analysis presented in this paper onsiders the wind power penetrationas explanatory variable, we provide an example using the eletriity prie inSetion A.4.2.The time series of spot pries in the German eletriity market (EEX) is har-aterized by sparse spikes reahing out to around e2500/MWh. As a way tosolve this issue, among other bene�ts, logarithmi transformation is ommonlyemployed when dealing with prie time series, see e.g. [18℄. The time series oflogarithmi pries an be generated through the transformation

P lt = log (1 + Pt) . (A.2)This way the distane between the sparse high pries is shrunk, while the relativedistane between the denser low pries is inreased. As a side e�et, handlingnegative pries is not possible under the logarithmi transformation. In thedataset, 15 pries at the end of the year 2008 turned out to be negative. Thesevalues are disarded from the dataset, whih is therefore further redued to26266 observations. Alternatively, a shifted log transformation [19℄ ould beemployed without requiring the exlusion of negative pries.A.3 MethodologyAlthough the study of a power network ould be performed by independentlyanalyzing eah single �owgate, several reasons point at other options. First,



80 Paper Astudying a wide power system like the European one would require the analysisof a large number of �ows, with negative onsequenes on the dimensionality ofthe problem. Furthermore, due to the net struture of power systems several�ows an be highly orrelated due to e.g. loop �ows. This means that partof the analysis arried out by independently onsidering eah interonnetionwould be redundant. On top of that, noise an render less visible the objetof the investigation. As Setion A.3.1 explains, PCA is used here in order tooverome these issues.One a redued set of prinipal omponents is indiated by PCA, statistialregression is employed on the redued basis in order to model the dependenestruture between �ows and external variables. As power systems are omplexand nonlinear, their study requires nonlinear regression tehniques. Loal poly-nomial regression was suessfully applied in [14℄ to perform an analysis similarto the one in this work, though only onsidering the Austrian power system.The same tehnique, whih is introdued in Setion A.3.2, is used in this work.The reader interested in a deeper presentation of loal polynomial regression isreferred to [20℄.A.3.1 Prinipal omponent analysisPCA is a tehnique that is often used when dealing with multivariate datain order to redue the problem dimension, see [21℄. Problem simpli�ation isobtained by seleting a redued basis of orthogonal variables, whih aount formost of the variane in the dataset. Let us denote with the vetor Xt the valuesof the N physial hourly ross-border �ows at time t. Let us also assume that
T hourly values are available for eah interonnetion. The entered version X̃tof the multivariate time-series of the power �ows is given by

X̃t = Xt − X̄ , (A.3)where X̄ is the vetor of the mean values of the N �ows. The ovariane matrix
C of the �ows an be omputed as

C =
1

T

T∑

t=1

X̃tX̃
T
t . (A.4)The eigenvetors of the ovariane matrix C form a new orthogonal basis forthe �ow dataset. In pratie, suh eigenvetors represent modes of the dataset,i.e. groups of �ows that often exhibit a similar behavior. By ordering theeigenvetors so that the orresponding eigenvalues are arranged in a dereasingfashion, one ensures that the higher the ranking of a vetor in the new basis,



A.3 Methodology 81the higher the fration of total variane of the dataset it explains. This is atrivial result of the fat that these frations and the eigenvalues are linearlyproportional.The prinipal omponents are obtained by seleting the �rst n eigenvetors inthe new ordered basis. Although the hoie of n is arbitrary, there are severalriteria for this seletion, e.g. the method of the average eigenvalue and the sreegraph method, whih are disussed in [21℄. The latter method, whih basiallyonsists in a graphial disrimination between small and large eigenvalues, hasbeen used in this work. As a onsequene of this seletion, only the n diretions(or modes) of the �ow spae with the largest variane are retained in the analysis,while the remaining N − n are disarded. This is done sine the modes withlarger variane arry most of the statistial information while the ones withsmaller variane an often be assoiated with noise.Let us denote with Yi, i = 1, . . . , n the prinipal omponents of the dataset.These form a redued orthonormal basis for the original �ows, and one analways write the entered �ow observations X̃t as a linear ombination of thePCs Yi's plus an error term ǫt, whih has zero mean and �nite variane
X̃t =

n∑

i=1

αi,tYi + ǫt ∀t , (A.5)In other words, we ahieve a similar statistial representation of the original �owdataset through linear projetion from the redued spae of the PCs. Generallyspeaking, the higher the fration of the original variane is retained with thehosen PCs, the more aurate suh representation will be. More preisely, it isto be underlined that the variane is a full desription of the statistial informa-tion ontained in a dataset only under the assumption of joint normality. Whenthe original variables (�ows) do not follow a multivariate normal distribution,the omparison between the variane of the original dataset and the varianeof its projetion on the PC spae is an indiator of the amount of the retainedstatistial information up to moments of order 2. In the ase that higher ordermoments of the residuals are large in omparison to the original signal, alter-natives to PCA should be onsidered, e.g. Independent Component Analysis(ICA) [22℄.The advantage of using PCA is now learly visible, as it is possible to representevery multivariate �ow observation X̃t, whih is N -dimensional, with a set of noe�ients αi,t, where n < N .It should be pointed out that PCA is often arried out on entered and stan-dardized variables, i.e. by diagonalizing the orrelation matrix R rather thanthe ovariane matrix C. The hoie of using the ovariane matrix is motivated



82 Paper Aby the fat that in this way the information on the magnitude of the �ows isnot lost in the division rij = cij/(σX̃i
σX̃j

). This is learly an advantage in thisase as all the dependent variables (�ows) are measured in the same unit, and,as Setion A.4 underlines, this hoie allows a more intuitive interpretation ofthe prinipal omponents. Furthermore, as [23℄ points out, arrying out PCAon the ovariane matrix an better isolate the strongest variations in a datasetwith uniform units.Finally, it is important to remark that data might present signi�ant trendswhen longer datasets (i.e., spanning several years) are employed. For example,an inrease in demand ould introdue slow variations in power �ows. In thatase, simply entering the multivariate �ow dataset as in (A.3) might reveal itselfinadequate to remove suh trends. To this end, one might �lter the dataset ofpower �ows so that low-frequeny dynamis are disarded from the analysis.A.3.2 Loal polynomial regressionThe model of Eq. (A.5), representing the power �ows as a linear ombination ofthe prinipal omponents of the dataset, an be modi�ed in order to aount forthe e�et of explanatory variables ut, e.g. the foreast wind power penetration r̂tand the transformed eletriity prie P lt . This is done by allowing the oe�ients
αi of the prinipal omponents to vary as funtions of ut

X̃t =
n∑

i=1

αi(ut)Yi + ǫt ∀t . (A.6)In this work loal polynomial regression, see e.g. [20℄, is employed in order tostudy the funtional forms of the αi(ut) oe�ients. This tehnique allows to�t a urve or a surfae (depending on whether ut is formed by one or moreexplanatory variables) to these relationships by loally approximating them aslow-order polynomials. Although in priniple ut ould be of any dimension m,for pratial appliations this vetor should be sized reasonably. For exampleit is not possible to visualize the oe�ients αi(ut) if m > 2. Furthermore, theomputational time inreases with the dimension of this vetor.The �rst step of the tehnique onsists in the de�nition of a grid in the spaeof the explanatory variable u. The grid is formed here by hoosing l equallyspaed quantiles in eah dimension of u. Let us indiate with ui the time seriesof the i-th explanatory variable, sorted in inreasing order. We are interestedin the quantiles with the following probabilities
pk =

k

l
−

1

2l
k = 1, . . . , l . (A.7)



A.3 Methodology 83Let us de�ne hk = Tpk + 1/2, where T is the sample size. If hk is an integer,the k-th quantile uki is the hk-th point in the sorted sequene ui. Otherwise, itan be estimated with the following linear interpolation
uki = ui,⌊hk⌋ + (hk − ⌊hk⌋)

(
ui,⌊hk⌋+1 − ui,⌊hk⌋

)
, (A.8)where the seond subsript on the u's indexes a ertain element of the vetor

ui.A grid is then formed by onsidering the lm ombinations of points
(uk11 , u

k2
2 , . . . , u

km
m ) where ki = 1, 2, . . . , l for i = 1, 2, . . . ,m. Alternatively,equally spaed uki ould be used with no onsequenes on the remainder ofthe methodology presented here.Weighted least-squares regression is then performed loally at eah point of thegrid. A set of q data points, where 1 ≤ q ≤ T , is used for regression. Thesepoints, alled neighbors, are the q losest points to the onsidered point of thegrid. Naturally the neighbors seletion proedure requires that a suitable metri

ρ is de�ned on the explanatory variable spae. Hereafter the Eulidean distaneis adopted, after variables measured in di�erent units are normalized. Theratio h = q/T ≤ 1 between the onsidered number of neighbors and the totalnumber of data points is referred to as bandwidth. High bandwidths inreasethe smoothness of the regression, with the trade-o� of an inreased bias of theregressed model. In this work a bandwidth h = 0.2 is used.A weight funtion has to be de�ned in order to assign higher importane to theobservations (X̃t,ut), whose values of the explanatory variables are the losestneighbors of the grid point. Among the many possibilities, a weight funtionbased on the triube funtion is hosen here
w(z) =

{
(1− z3)3 0 ≤ z < 1 ,

0 otherwise . (A.9)One should notie that w(z) is non-inreasing for positive z. Let us name u
j
#the j-th point of the grid and with uj its q-th furthest neighbor. Sine ρ(uj ,uj#)is at a maximum in the onsidered neighborhood, the weight funtion

f j(u) = w

(
ρ(u,uj#)

ρ(uj ,uj#)

) (A.10)is well de�ned. Indeed it assigns non-inreasing weights to points with inreasingdistane from u
j
#. A weight of 1 is assigned to the grid point uj#, while uj andall the points outside the neighborhood have 0 weight.



84 Paper AWeighted least squares regression, see [24℄, is employed loally for eah point
u
j
# of the grid. Eah observation (X̃t,ut) is weighted aording to the weightfuntion in (A.10). The output of weighted least squares regression is a loalmodel for αi(ut), approximated as a �rst order polynomial of the explanatoryvariables. The model is determined aording to a weighted least squares ri-terion, whih ensures that the modeling error ǫt is minimized in a onsistentway.After this proedure is arried out for all the points in the grid, a urve or surfae
α̂i(ut) is �tted from the individual loal approximations. Suh a �t models thebehavior of the oe�ients αi(ut) of the prinipal omponents in the wholespae of interest as funtions of the explanatory variables. Conlusions ould bedrawn diretly from the shape of the regression surfae of the αi(ut)'s, providedthat the prinipal omponents an be easily interpreted. As an alternative, onean hoose to map the analysis bak to the original spae of the non-entered�ows, obtaining the models X̂(ut)

X̂(ut) =

n∑

i=1

α̂i(ut)Yi + X̄t . (A.11)This way regression urves or surfaes are obtained for eah individual �ow inthe dataset.A.4 ResultsThis setion presents the results obtained from the appliation of the methodproposed in Setion A.3 to the dataset desribed in Setion A.2. Clearly, anal-yses of this type depend heavily on the availability and on the quality of largedatasets, whih are not always publily available. Although datasets for power�ows, wind power prodution and load are available for ertain eletriity mar-kets, e.g., PJM [25℄ and the European markets [26℄, the olletion of suhdatasets require the oordination of a number of entities so as to ensure onsis-teny in terms of sampling frequeny, sampling time and time-span. Obviously,this is a limitation for the readers willing to perform a similar study, but unableto interat with the entities owning the data.A.4.1 Prinipal omponent analysisThe results of PCA applied to the dataset of the ross-border �ows show thatit is possible to express most of the original variane with a limited number of



A.4 Results 85prinipal omponents (PCs). By using the sree-graph method, see [21℄, the 8PCs with highest variane are seleted. The riterion used ensures that furtherinlusion of PCs would not inrease sensibly the umulative fration of varianeexplained by the set.Table A.1 summarizes the harateristis of the seleted omponents. Its se-ond olumn reports the fration of total dataset variane explained by eah ofthe PCs individually, while the third olumn shows the umulative fration ofvariane jointly explained by seleting the �rst i PCs. It is seen that almost
2/3 of the total variane are explained by the �rst 4 PCs. Furthermore, theseleted set of 8 PCs explains 82.11% of the original variane, despite the dra-mati redution in size of the problem from the original 68 �ows to 8 modes. InTable A.1: Individual and umulative fration of variane explained by the

i-th prinipal omponent and by the prinipal omponents up tothe i-th one respetivelyPrinipal Individual fration Cumulative frationomponent of variane [%℄ of variane [%℄1 28.89 28.892 18.83 47.733 10.55 58.284 7.69 65.975 5.53 71.506 4.83 76.327 2.97 79.298 2.81 82.11relation to the disussion on the non-normality assumption in Setion A.3.1, itis stressed that di�erent statistial desriptions, suh as the omparison of theinterquantile ranges of the �ows and their residuals, showed a similar behavioras the one illustrated in Table A.1 for the variane.The analysis of the struture of the PCs gives further insight into the hara-teristis of the European power system. Indeed when PCA is arried out on theovariane matrix, see the disussion in Setion A.3.1, the struture of the PCsoften o�ers a physial interpretation. Let us denote with Yi the i-th PC. It isa vetor of 68 elements
Yi = [Yi,1 . . . Yi,68]

T , (A.12)where Yi,j represents the weight of the j-th individual �ow in the i-th PC. Largeweights of the same sign on a PC show that the orresponding �ows tend to



86 Paper Adeviate from their mean in the same diretion; onversely they tend to deviatein opposite diretions if their weights have di�erent signs.Fig. A.1 shows the struture of the �rst PC as an example. In this illustrationthe widths of the arrows in the map of Europe are saled, so that eah of themis proportional to the weight Y1,j of the respetive j-th ross-border �ow in the�rst PC. As one an see, the main ontribution to this �rst PC is given by thesimultaneous �ow of power diretly from Switzerland to Germany, diretly fromFrane to Germany and by the �ow from Frane to Germany through Belgiumand the Netherlands. The fat that this mode alone explains almost 30% ofthe variation of the dataset signals the importane of the power �ow betweenFrane and Germany on a European sale.The seond and third PC, not shown here for the sake of brevity, o�er interestinginterpretations, too. The seond PC is mainly omposed of power �owing fromGermany to the Nordi region, and internally in Sandinavia from Sweden toNorway. A possible interpretation ould be that heap power is �owing fromontinental Europe to Norway so that water an be kept stored in the Norwegianhydro dams, or the other way around when ontinental Europe imports powerfrom Norway. A seond signi�ant pattern in this prinipal omponent, althoughless important, is the �ow of power through Switzerland in the North to Southdiretion. Furthermore, the main trend in the third PC is the �ow of powertowards Italy from Frane, both diretly and through Switzerland, and fromGermany, through Switzerland and to a lesser extent Austria.A.4.2 Regression urves for prinipal omponentsRegression urves or surfaes modeling the behavior of the αi(ut) oe�ientsin (A.6) as funtions of the multivariate input ut are readily obtained by usingloal polynomial regression.Fig. A.2 shows the urve modeling the behavior of the α1(r̂t) oe�ient as afuntion of wind power penetration in Germany. The urve learly represents themean trend of the relationship between the two variables, and not a deterministimodel of them. Therefore one should expet observations to be spread aroundthis urve, due to their stohastiity and dependeny on other variables notaounted by the model. Nevertheless one an draw some intuitive onlusionsfrom this mean trend, also as a result of the interpretability of the �rst prinipalomponent. In Setion A.4.1 it is underlined how the main trend in this modeis the power �ow from Frane and Switzerland to Germany. As one an see inFig. A.2, the orresponding oe�ient tends to derease rather sensibly whenwind power penetration in Germany inreases. The impliation is that the
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PC coefficient = 0.4
PC coefficient = 0.3
PC coefficient = 0.2
PC coefficient = 0.1

PC coefficient = 0.5

Figure A.1: Map of Europe showing the weight of eah single entered physial�ow X̃i in the �rst prinipal omponent Y1. The width of thelines in the �gure is proportional to the oe�ient of the respetive�ow in Y1
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Figure A.2: Regression on the oe�ient α1(ut) of the �rst prinipal ompo-nent relative to wind power penetration in Germanyhigher r̂t in Germany, the lower its import of power2.Similar onlusions an be drawn from the regression on the oe�ients of theother PCs, whih are not shown here. For instane, the value of α2 rises as r̂tinreases, indiating an inreased �ow of power from Germany to the Nordiregion and, less markedly, to Switzerland.Regression urves modeling the behavior of the PC oe�ients as a funtion ofthe logarithmi spot prie in Germany an be obtained in exatly the same fash-ion. Fig. A.3 shows the α2 oe�ient modeled as a funtion of this independentvariable. The results an again be interpreted quite intuitively. Indeed, the re-gression urve shows that high values of �ow from Germany to Sandinavia arein average ahieved with low spot prie level at the EEX market. The oe�ientthen dereases as pries rise in Germany, and its sign hanges when log(1 + Pt)approahes 4.The approah is easily extendable to the ase where the independent variable
ut is multivariate. Fig. A.4 shows the regression surfae modeling α1(ut) as afuntion of ut = [r̂t, ht], where ht is the day-time. The latter variable appearsto in�uene the oe�ient, too, as higher �ow values are obtained during hourswhere onsumption peaks. Not surprisingly the dereasing trend relative to2It is to be noted that at this time only qualitative onlusions an be drawn. For example,one annot distinguish when Germany is importing or exporting. Therefore, the statementould be rephrased to �the higher r̂t in Germany, the higher its export of power�.
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Figure A.3: Regression on the oe�ient α2(ut) of the �rst prinipal ompo-nent relative to the logarithm of spot prie in Germanywind power penetration is on�rmed at every hour of the day.A.4.3 Regression urves for power �owsSo far only intuitive onlusions based on the struture of the PCs have beendrawn, sine the regression was arried out on their oe�ients αi. By applying(A.11) it is possible to perform similar analyses on the spae of interest, i.e.the original spae of power �ows. Indeed regression urves or surfaes for theoe�ients sum up to urves and surfaes for eah single �ow.Fig. A.5 shows the regression for the �ow between the Danish DK1 area, i.e.the Jutland peninsula and the Funen island, and Norway (NO). The surfaemodels the relationship between this �ow and wind power penetration in Ger-many as well as day-time. It is seen that, as wind power penetration inreases,DK1 passes from importing power from Norway to exporting power. There-fore the statistial model on�rms the intuitive eonomi reasoning aordingto whih the �exible Norwegian hydro plants withhold their prodution whenenergy pries are low due to signi�ant wind power penetration, and inreasetheir prodution when pries are high.Models for the total net power �ow of a ountry or ontrol area an be de-termined as the signed sum of the models for individual �ows. This an help
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Figure A.4: Regression on the oe�ient α2(ut) of the �rst prinipal ompo-nent relative to wind power penetration in Germany and day-timeshed some light on the behavior of individual power systems as a reation toinreased wind power prodution. Fig. A.6 shows the example of the Austrianpower system. It is seen that Austria is on average a net power exporter forlow levels of wind power penetration in Germany, while it is a net importerwith high wind power penetration. This is partly aused by the �exibility ofthe Austrian generation portfolio, whih is largely dominated by hydro plants.One more, the statistial model shows how the market pushes hydro powerproduers to provide arbitrage servies as wind power prodution inreases thevolatility of market pries.A.4.4 Sensitivity of the Results to the Presene of TrendsAs mentioned in the last paragraph of Setion A.3.1, the presene of trends inthe dataset might be an important pratial issue when performing analysesbased on PCA. Indeed, in the latter methodology, de�ned in Setion A.3.1, thedataset is entered by subtrating the mean. When onsidering long datasetsspanning several years, low frequeny dynamis ought to be removed from thedataset by employing a low-pass �lter.Some relevant �gures for the onsidered period 2006�2008 in Germany are re-ported in Table A.2. Suh table is useful to get a preliminary assessment of thepresene and of the magnitude of trends. Notably, despite a onstant inrease in
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Figure A.5: Regression urve modeling the relationship between the power�ow from the ontinental part of Denmark (the Jutland penin-sula and the Funen island, area ode DK1) and Norway (NO) asfuntion of wind power penetration in Germany and day-time
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Figure A.6: Regression urve modeling the relationship between the net power�ow of Austria as funtion of wind power penetration in Germanyand day-time



92 Paper Ainstalled wind power apaity in the period, the total annual wind power outputin Germany delined between 2007 and 2008. Besides, the growth in eletriitydemand almost stopped between these two years. As a result, the ratio betweenthese two quantities is not monotoni in the onsidered period.Table A.2: Total annual wind energy prodution, total annual load and theirratio in Germany during the period 2006�2008Quantity 2006 2007 2008Total wind energy prodution [TWh℄ 34.31 42.36 41.67Total load [TWh℄ 489.03 496.59 497.61Ratio 0.0702 0.0853 0.0837Table A.2 shows no steady, slow-dynamis inrease in the ratio between totaldemand and wind power prodution, as one may expet intuitively in light ofthe onstant inrease in installed wind power apaity. However, the signi�antswings in total annual wind power prodution, e.g., between 2006 and 2007,might still impat the analysis. The remainder of this setion disusses thisimpat through a detailed analysis of the models performed on a year-to-yearbasis.A measure to validate the models (A.11) obtained for the �ows is the Normal-ized Root Mean Squared Error (NRMSE), whih an be alulated for eahinteronnetion j as follows:
NRMSEj =

√
∑

T
t=1(X̂j(ut)−Xj,t)

2

T

maxt {Xj,t} −mint {Xj,t}
. (A.13)The value in the numerator in (A.13) is the Root Mean Squared Error (RMSE),i.e., the average squared deviation of the �ow model X̂j(ut) from the atualobservations. The term in the denominator is a saling fator normalizing allthe �ows to the range of their observations.In order to assess the impat of trends in the dataset, NRMSE is alulated foreah �ow in the dataset, �rst by employing data for the whole period 2006�2008,then onsidering data for one single year at a time. This an be done simplyby modifying the time indies in the sum in (A.13). It should be remarked thatthe dominating prinipal omponents obtained in these studies are onsistentthroughout the years.The results of this analysis are shown in Fig. A.7. The average value of NRMSEaross the �ows is roughly 15-20%. More interestingly, NRMSE seems to be



A.4 Results 93rather stable aross the onsidered years for eah interonnetion. This indiatesthat the impat of trends in the dataset is not so ritial for the appliationonsidered. Indeed if this were the ase, one would expet that the performaneof the models would swing signi�antly aross subsets of the dataset.
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Figure A.7: Normalized Root Mean Squared Error (NRMSE) for every inter-onnetion for the whole 2006�2008 period, and for eah year inthe period individuallyA.4.5 Regional AnalysisThe models shown up to this point onsent an analysis of the e�et of explana-tory variables on eah individual �ow or ountry. We now group the results ob-tained for individual interonnetions in di�erent geographial regions: North,South, West and East of Germany.Table A.3 reports the average value of the models for the �ows obtained forNorthern Europe for values of wind power penetration in Germany from 0%to 25% with step inreases of 5%. Spline interpolation of the models at thedesired wind power penetration levels was required, due to the de�nition of thegrid in the explanatory variable spae, whih is based on quantiles. For thesake of onsisteny, all the �ows are direted in the South to North diretion(so that negative �ows indiate �ow of power southwards). The pattern emerg-ing from the analysis is quite lear. At low levels of wind power penetration,Germany is importing power from the Nordi ountries through any available in-



94 Paper ATable A.3: Modeled average ross-border �ows North of Germany as funtionsof German wind power penetrationAverage Flow Wind Power Penetration [%]
[MWh/h] 0 5 10 15 20 25DE-DK1 -803 -485 -410 -465 -372 -199DE-DK2 -276 -86 -39 -63 -24 55DE-SE -276 -102 -46 -61 -13 67DK1-NO -636 -255 -119 -83 40 179DK1-SE -228 -54 14 23 64 116DK2-SE -510 -117 44 76 210 356teronnetions, where power �ows in the North to South diretion indeed. ThisNorth-South �ow tends to drop, though, as wind power penetration inreasesin Germany. For example, the average �ow in the two interonnetions betweenDenmark and Sweden is reversed at a penetration as low as 10%, also due toa likely inreased prodution from the Danish wind turbine �eet. The sametrend is seen for all the �ows shown in Table A.3. When penetration reahes25%, power is �owing in the South to North diretion in all the interonnetionsexept the one between Germany and DK1, where the perentage of installedwind power on the total prodution apaity is even higher than in NorthernGermany.Let us now onsider the �ows direted southwards from Germany, inluded inTable A.4. It is lear that the higher the wind power penetration in Germany,the more this ountry exports to its diret neighbors to the South: Switzer-land and Austria. As opposed to the situation in the Nordi region, the trendseems to stop at the diret neighbors. Indeed, there is no lear pattern in theinteronnetion between Switzerland and Italy, whih is somewhat stable at3000MWh/h. Furthermore, although the power �ow between Austria and Italyinreases, this trend is marginal due to the low apaity of this line. A possibleexplanation for this phenomenon is the high installed hydro power apaity inSwitzerland and Austria, whih onfers extra �exibility to their power systemsin omparison to e.g. Denmark, whih is similarly loated in the middle betweenGermany and the Nordi region. Finally, it appears that there is a loop-�owin the power transit from Germany to Switzerland through Austria, as the �owfrom the last to the seond ountry is positively orrelated with German windpower penetration.Clear trends emerge as well from the analysis of power �ows to the West of Ger-many in Table A.5. At null wind power penetration in Germany, the Netherlandsimports power both from this ountry and from Frane through Belgium. When



A.4 Results 95Table A.4: Modeled average ross-border �ows South of Germany as funtionsof German wind power penetrationAverage Flow Wind Power Penetration [%]
[MWh/h] 0 5 10 15 20 25DE-CH 759 1390 1733 2096 2435 2680CH-IT 3064 2715 2917 3206 3277 3213DE-AT 212 423 565 728 930 1136AT-CH 422 545 618 697 774 836AT-IT 158 156 161 166 168 168Table A.5: Modeled average ross-border �ows West of Germany as funtionsof German wind power penetrationAverage Flow Wind Power Penetration [%]

[MWh/h] 0 5 10 15 20 25DE-NL 1583 2131 2316 2498 2580 2582NL-BE -352 132 313 568 810 953BE-FR -1284 -852 -685 -452 -173 55DE-FR -1919 -1571 -1510 -1368 -1175 -1029DE-CH 759 1390 1733 2096 2435 2680FR-CH 463 760 916 996 1084 1174penetration reahes 5%, the Netherlands only import power from Germany onaverage, as the diretion of the �ow to Belgium is reversed. In the same fashion,the Frenh export of power to Belgium drops, even turning into a slight importwhen wind power penetration reahes 25% in Germany. This ountry importspower from Frane in all the ases shown in Table A.5, but this import is gradu-ally halved from about 2000MWh/h to 1000MWh/h at the extreme olumns inthe table. This fat disproves the belief that there is a loop �ow arrying powerfrom the North to the South of Germany through Frane, at least on a ountrylevel. Aording to Table A.5, the loop �ow appears to be a bit souther thanthat. Indeed the power �ow from Frane to Switzerland appears to inrease asGerman wind power penetration rises, while at the same time the diret im-port of Switzerland from Germany is heightened, as we already ommented onearlier.The situation in Eastern Europe is summarized in Table A.6. The trends inthis region are more omplex, also due to the huge number of ross-border�ows. Proeeding in the analysis from North to South, we see that there is aninreasing power export from Germany to Poland as wind power penetration



96 Paper ATable A.6: Modeled average ross-border �ows East of Germany as funtionsof German wind power penetrationAverage Flow Wind Power Penetration [%]
[MWh/h] 0 5 10 15 20 25DE-PL 414 414 473 582 660 700PL-CZ 779 819 885 951 947 888PL-SK 312 330 375 425 452 451CZ-DE 877 1033 1026 958 902 852CZ-AT 589 655 720 799 848 874CZ-SK 784 680 736 834 865 850SK-HU 801 897 987 1078 1137 1163HU-HR 488 614 686 759 826 873HR-SI 113 381 474 531 597 641SI-IT 365 477 525 561 577 575SI-AT -176 -44 -23 -19 19 68rises in the former ountry. Nevertheless, most of the extra power importedby Poland is exported in turn to Slovakia and the Czeh Republi. The latterountry, a net exporter of energy on average, sees an inreasing part of its exportshifting to Austria and, to a lesser extent, to Slovakia from Germany, as windpower penetration rises in this ountry. The inreased power imported fromNorth by Slovakia is then exported in the South diretion through Hungary andCroatia to Slovenia. Finally it is seen that Slovenia imports less and less powerfrom Austria, and exports more and more power to Italy as the German windpower penetration inreases.A.5 ConlusionIn this work a statistial method for analyzing the impat of wind power inGermany on European ross-border power �ows is presented and applied.The problem dimension is suessfully redued by applying Prinipal Compo-nent Analysis (PCA). Besides, PCA indiates the most important modes ofphysial power �ow in the European system. These modes are the �ows arry-ing power from Frane to Germany, both diretly and through Belgium and theNetherlands, the �ow from Germany to Sandinavia and the one from Germanyin the South diretion. This on�rms the entrality of Germany in the study ofthe European power system.



A.5 Conlusion 97Loal polynomial regression is employed on the PCs both with respet to foreastwind power penetration and spot prie in Germany. It is shown that both theexternal variables have a remarkable impat on the �ows. Indeed an inrease inforeast wind power penetration auses a fall in the German import of power (orrise in the export), while rising spot pries have the opposite e�et. Furthermore,espeially in the ase of EEX spot prie, non-linearities are evident in theserelationships.From a global perspetive, it is seen that variations of wind power penetration inGermany have signi�ant e�ets on power �ows in Europe. Indeed import andexport patterns between ountries hange signi�antly, and loop �ows originate.Furthermore, while some of the interonnetions bene�t from an inreasing fore-ast wind power penetration in Germany, i.e. the ones linking the main averageexporters to Germany (Frane and, at least at low wind power levels, San-dinavia), the stress on other interonnetions, e.g. the ones linking Germanyto the South of Europe, inreases as more and more wind power is produedin Germany. Analyses like the one presented in this paper an ontribute tothe state-of-the-art by quantitatively assessing suh global phenomena, whoseunderstanding is urrently limited to a qualitative or intuitive level.Clearly, the study presented in this paper ould be performed thanks to theavailability of datasets for wind power prodution, onsumption and power �ows,whih is in general not straightforward, with the notable exeptions of the PJMmarket [25℄ and ENTSO-E [26℄. It is hoped that in the near future, onvinedby the results of data-driven researh studies like this one, TSOs and marketoperators will strengthen their e�ort to make more and more datasets of thistype available to researhers worldwide.Possible appliations of the methodology proposed in this paper are related toboth long- and short-term problems. Long-term problems that ould bene�tfrom analyses of this type inlude deisions on investment in new wind powerapaity and in grid expansion. As far as the short-term problems are onerned,this methodology ould support the proess of sheduling ross-border �ows aswell as the assessment of risk in interonneted power systems.The desribed methodology has been employed for analysis only. In the futurethough, suh a modeling approah ould also be used in onnetion with powersystem models or foreasting tools. Suh tools would have to be alibrated withthe results of data-driven analysis, as the one shown in this paper, for simulatingEuropean power �ows as a funtion of appropriate explanatory variables, whihould inlude the nominal power apaity of a ertain ountry, market pries,et.
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B.1 Introdution 105Statistial Analysis of the Impat of Wind Poweron Market Quantities and Power FlowsPierre Pinson1, Tryggvi Jónsson2, Maro Zugno1, Juan Miguel Morales3,Henrik Madsen1AbstratIn view of the inreasing penetration of wind power in a numberof power systems and markets worldwide, we disuss some of theimpats that wind energy may have on market quantities and ross-border power �ows. These impats are unovered through statistialanalyses of atual market and �ow data in Europe. Due to the di-mensionality and nonlinearity of these e�ets, the neessary oneptsof dimension redution using Prinipal Component Analysis (PCA),as well as nonlinear regression are desribed. Example appliationresults are given for European ross-border �ows, as well as for theimpat of load and wind power foreasts on Danish and Germaneletriity markets.B.1 IntrodutionWind power apaities are rapidly expanding in a number of ountries, maybemost notieably in Europe, the US and China. This is failitated by diret andindiret inentives, for instane in the form of feed-in tari�s or of prioritizationin eletriity pools. Both variability and limited preditability of that renew-able energy soure will yield a radial shift in the paradigms of power systemsmanagement. The parallel development of other forms of renewable energy e.g.solar and wave, may ontribute to dampen or inversely magnify the undesirablee�ets of wind power on the physial operation of power systems as well asmarket harateristis. A reent status of the deployment of renewable energyapaities worldwide is available in [1℄.1DTU Informatis, Tehnial University of Denmark, Rihard Petersens Plads, bld. 305,DK-2800 Kgs. Lyngby, Denmark2ENFOR A/S, Lyngsø Allé 3, DK-2970 Hørsholm, Denmark3Centre for Eletri Power and Energy, Tehnial University of Denmark, Elektrovej, bld.325, DK-2800 Kgs. Lyngby, Denmark



106 Paper BEletriity network and markets were designed based on a long history of dealingwith various forms of dispathable generation, for whih the onepts of unitommitment, eonomi dispath, ontingeny analysis made sense in view ofthe tehnial harateristis of the physial units. The inreasing penetration ofwind power hallenges these praties, owing to its impat on market quantitiesand ross-border �ows. As an illustrative example, the impat of wind powerpreditability is now regularly aounted for in network expansion and futureo�shore grid studies [2, 3℄. It is of utmost importane to properly haraterizeand model the e�ets of wind on markets and power �ows before we may be ableto projet ourselves in the future with senarios of substantial renewable energypenetration. For the example of Denmark, the objetive is to have 50% of theeletriity onsumption met by wind energy by 2025 [4℄. This has triggered anumber of tehnial and eonomial analyses foused on market value, invest-ment and power �ows, as in [5℄ for instane. Note that game-hangers may alsoappear, most likely in the form of various forms of demand-side management [6℄.Both meteorologial and eonomial e�ets are at the roots of this impat: (i)wind power generation over a region is diretly in�uened by the geographialoverage of weather systems, while (ii) wind energy has a diret onsequene onmarket quantities due to the so-alled merit-order e�et whih plaes wind atthe very left of the market supply urves. Complex network e�ets then add onto yield the �nal power �ows. In view of the omplexity brought in by all theseombined aspets, system studies of the e�et of wind on market quantities andpower �ows may neessitate relying on rude simpli�ations and on simulations.Reent examples of these detailed system studies partly based on simulationsinlude [7℄ for the ase of the UK system in 2020 and [8℄ onentrating on theSwiss power system at the horizon 2030. Toy model simulations an atuallyhighlight some of the e�ets of wind on eletriity markets, as in [9℄. Simpli�edsystem and toy models may however mask some of the e�ets that are aimed atbeing unovered. This is the reason why inversely, statistial ex-post analyses ofsome of the key variables an already give a fair piture, without looking at aomplete modeling of all meteorologial, market and network e�ets. Examplestatistial analyses of market quantities were for instane performed in [10, 11℄and [12℄ for the ase of the Danish and Spanish eletriity markets, respetively.In this paper, we review the methodologial aspets neessary for the statisti-al analysis of the impat of wind power on market quantities and power �ows(Setion B.2). Espeially, we insist on the nonlinear nature of this impat, andon its potential nonstationarity. In parallel, owing to the potentially large di-mensions of datasets to be analysed, we also disuss dimension redution (basedon Prinipal Component Analysis) that may prove neessary when looking atpower �ows over the whole eletriity network of a region. Subsequently, anexample appliation to the ase of the Nord Pool (Western Denmark ontrolzone - DK1) and EEX (Germany) markets onsidered in Setion B.3. Similarly



B.2 Methodologial aspets 107in Setion B.4, we look at the ase of power �ows related to the Austrian on-trol blok, and of ross-border power �ows over the whole ENTSO-E (EuropeanNetwork of Transmission System Operators for Eletriity) system. The paper�nally ends in Setion B.5 with onlusions, impliations of the �ndings, as wellas perspetives for future work.B.2 Methodologial aspetsIn this Setion we review some statistial modeling onepts neessary for thevarious appliations overed in the following, that is, the impat of wind on bothmarket quantities and power �ows. These onepts inlude nonlinear regressionbased on loal polynomial models, as well as PCA for dimension redution.B.2.1 Nonlinear regression with loal polynomial modelsWhatever the variables of interest, the set of observations onsists of time-seriesof measurements. We denote by {yt}, t = 1, . . . , T , the observed time-series forthe response variable, and by x⊤
t = [x1t . . . x

i
t . . . x

m
t ] the vetor of m explanatoryvariables at time t. In a pratial setup, the response variable may be the day-ahead eletriity prie or the overall system balane of a TSO's network, andgenerated wind power the explanatory variable for instane.The relationship between explanatory and response variables is written in theform of a general regression model,

yt = θ(xt) + ǫt, t = 1, . . . , T. (B.1)The noise term {ǫt}, i = 1, . . . , T , is a sequene of independent and identiallydistributed (i.i.d.) random variables with unknown distribution F . It is assumedthat F has a zero mean and a �nite variane σ2
ǫ . In general, it is assumed thatboth x- and y-values an be normalized. Therefore, they are all ontained inthe unit interval, while ǫt ∈ [−1, 1], ∀t.Based on the onept of loal polynomial regression, it is assumed that θ maybe loally approximated by k-order polynomials. Most ommon instanes ofloal polynomial regression inlude kernel smoothing (k = 0) and loal linearregression (k = 1). Note that in pratie, the urse of dimensionality imposesthat the dimension of x has to be low, say less than 3 (for a disussion on thatissue, see [13, pp. 83-84℄).
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θ is approximated at a number of �tting points, hosen based on a rule of thumbor after onsideration of the data distribution. Let us fous on a single �ttingpoint x̃ = [x̃1, . . . , x̃m] only. The k-order loal polynomial approximation zt ofthe vetor of explanatory variables xt is given by:

z⊤t = p⊤
k (xt). (B.2)For instane if k = 1, p1(xt) = [1 xt].In parallel, write θ the vetor of loal oe�ients at x̃, so that loally at x̃ oneobtains the following linear model

yt = z⊤t θ, t = 1, . . . , T, (B.3)whih is then �tted by minimizing a weighted loss of the form
θ̂ = argmin

θ

T∑

t=1

wtρ(yt − z⊤t θ) (B.4)with the wt weights assigned by a Kernel funtion, i.e.
wt = K(xt, x̃) =

∏

i

ω

(
|xit − x̃

i|i
hi

)
. (B.5)In the above, |.|i denotes a hosen distane on the i-th dimension of x (typiallythe Eulidean distane), and h = [h1 . . . hm] is the bandwidth for that par-tiular �tting point x̃. As an example, ω an be de�ned as a triube funtion,

ω(v) =

{
(1− v3)3, v ∈ [0, 1]
0 , v > 1

, (B.6)as introdued and disussed in e.g. [14℄. This type of estimation proeduremay also be made adaptive in order to aount for smooth temporal hanges inthe regression, if aiming at aounting for seasonal variations in the e�ets ofinterest for instane. The weights in Eq. (B.4) would then inlude a time deay,e.g. in the form of exponential forgetting, in order to gradually disount olderobservations.For the �tting of these loal linear models, the type of regression will deideupon the loss funtion to be minimized. In the ase where the mean e�et isto be modelled, they are to be �tted using weighted least-squares. ρ then takesthe form of a quadrati loss funtion, suh that
ρ(ǫ) = ǫ2/2. (B.7)



B.2 Methodologial aspets 109If aiming to perform quantile regression instead, for a given nominal proportion
τ , τ ∈ [0, 1], one hooses an asymmetri pieewise linear loss funtion ρτ as

ρτ (ǫ) =

{
(τ − 1)ǫ, ǫ < 0
τǫ , ǫ > 0

. (B.8)For an overview of the theory and appliation of quantile regression, we referto [15℄.Finally when the loal oe�ients are alulated at all �tting points, the om-plete oe�ient funtions θ̂(x) an be obtained by linear or spline interpolationof the loal oe�ients. This will be illustrated in the example appliationsbelow.B.2.2 Generalization to higher dimensions using PrinipalComponent Analysis (PCA)The ase of a single response variable was onsidered so far only. This setupmay be suitable if looking at the impat of one or more variables (say, windand load) on day-ahead market pries. If onentrating however on the e�et ofwind power on a set of variables over a network e.g. power �ows, the dimension
n of the response variable will be greater than 1, and potentially very large.The model of Eq. (B.1) therefore needs to be generalized as

yt = θ(xt) + ǫt, t = 1, . . . , T, (B.9)where yt = [y1t . . . ynt ] is now a multivariate response.In order to ease the estimation of the oe�ient funtions θ, a �rst neessary steponsists in reduing the dimension of the problem. This is done here in a PCAframework, by summarizing the information from the n-dimensional responsein a q-dimensional basis of Prinipal Components (PCs), q << n. These PCsare hosen so that they maximize their ability to explain the variane of theoriginal multivariate response. For an overview of PCA, of the properties ofthe PCs, and more generally of multivariate data analysis, we refer to [16℄. Amore applied introdution foused on atmospheri sienes an be found in [17℄.In the power systems literature, PCA for dimension redution was for instaneemployed in [18℄ for studying spatially distributed wind power generation inIreland.Before to apply the PCA itself, the multivariate response is �rst entred and nor-malized. The bene�ts of suh preproessing are disussed in [17℄. Subsequently,



110 Paper B�nding the PCs for the multivariate response y is performed by diagonalizingthe ovariane matrix of the data,
Ry =

1

T

T∑

t=1

yty
⊤
t . (B.10)After diagonalizing, the PCs are obtained as the eigenvetors of Ry with thelargest orresponding eigenvalues. The number of PCs to be seleted is deidedupon through graphial and/or numerial methods [16℄. The ratio of the sumof the seleted eigenvalues over that for all eigenvalues gives the share of thevariane in the response data explained by these PCs. In the following we willuse the average eigenvalue method for PC seletion, as in [19℄. We denote by ỹj ,

j = 1, . . . , q the obtained PCs (q << n). All observed values yt for the responsevariables an onsequently be written as a linear ombination of the PCs,
yt =

q∑

j=1

αjt ỹj + νt, ∀t, (B.11)with an additional random noise νt originating from the unexplained varianein the data. A projetion operator P an then be introdued, permitting toprojet the original response into the spae spanned by the PCs,
P = [ỹ1 . . . ỹq ]. (B.12)

P allows projeting standardized response values yt in the basis de�ned by theprinipal omponents, sine Eq. (B.11) an be rewritten as
yt = P⊤αt + νt, ∀t, (B.13)with αt = [α1

t . . . αqt ].Finally by ombining the models of Eqs. (B.9) and (B.11), one obtains
yt =

q∑

j=1

θ(xt)ỹj + εt, t = 1, . . . , T, (B.14)where the noise εt ombines the original noise from the regression model with theadditional one oming from the PCA deomposition. In other words in the basisformed by the PCs, the oe�ients αt are replaed by oe�ient funtions of theexplanatory variables x similar to that of Eq. (B.1). These oe�ient funtionsan be estimated in the same fashion as in Setion B.2.1.



B.3 Appliation to eletriity market quantities 111B.3 Appliation to eletriity market quantitiesA �rst and highly relevant appliation to the methodology presented for unov-ering the nonlinear e�et of wind power on some response variable onsists inlooking at the e�et of wind power on pries in eletriity markets. This e�etwas �rst looked at in [10℄, whih attempted to �nd a linear relationship betweenobserved wind power generation and pries in the Nord Pool day-ahead marketin Western Denmark. Sine then, [11℄ argued that (i) the relationship of interestis atually between day-ahead pries and the predited values for load and windpower, while (ii) suh a relationship is most surely nonlinear. These aspets aredisussed below, after introduing the set of available data.
B.3.1 Available dataFor this study of the impat of wind power on eletriity market quantities,fous is given to two markets highly penetrated by wind energy, namely theNord Pool and EEX ones. More preisely, the Western Denmark area of theNord Pool (often referred to as DK1) is looked at sine orresponding to theontrol zone with the highest wind power penetration (more than 20% of theenergy onsumption met by wind energy). Long reords of market quantities(day-ahead and imbalane pries, imbalane sign, et.) are available for thosemarkets.In parallel in both ases, relevant foreast and measured data are freely availableat the websites of the orresponding network operators. Energinet.dk is theTSO in Denmark. In Germany, only the wind information at the ontrol zonesof RWE, Eon and Vattenfall is onsidered, sine aounting for most of the windapaities. Overall, the data inlude day-ahead wind power foreasts, as wellas measured wind power generation and load. We simulate the availability ofload foreasts by adding noise to the measurements, with a variane onsistentto reported auray of load foreasts for a ountry today (between 2 and 4%Mean Average Perent Error - MAPE).Overall, the data for the Danish test ase over a period from the 1st of January2008 to the 13th February 2008, while those for Germany are for the two yearsof 2006-2007.



112 Paper BB.3.2 Sample results foused on day-ahead priesWe follow the argument of [11℄ suh that the predited values for the loadand the wind power generation are those that impat the day-ahead pries inthese eletriity markets. This argument is diretly motivated by their learingmehanism based on bids that are in turn based on preditions.We �rst work with a single explanatory variable only, the predited wind powerpenetration, de�ned as the ratio of wind power and load foreasts. It representsthe foreseen share of wind in the day-ahead eletriity mix at the time of marketlearing and for eah time unit over the following day. The response variableis the orresponding day-ahead prie for every time unit. The satter plotsrepresenting the empirial relationship between these explanatory and responsevariables in the Nord Pool and EEX markets are gathered in Fig. B.1.

(a) Nord Pool, Western Denmark area (DK1)- 1.1.2008 to 13.2.2010 (b) EEX - 1.1.2006 to 31.12.2007Figure B.1: The relationship between predited wind power penetration andthe day-ahead market pries in the Nord Pool and EEX day-aheadmarkets.Loal polynomial regression is employed for haraterizing the evolution of day-ahead pries as a funtion of predited wind power penetration. On the onehand, the least-square �tting gives the mean trend, while on the other handquantile regression with nominal proportions τ = 0.05 and τ = 0.95 yields pre-dition intervals with a 90% nominal overage rate. Note that for this responsevariable the data are log-transformed before �tting the regression models, eventhough the results are presented in the original spae of the variable. We use30 �tting points, with a nearest-neighbour bandwidths overing loal neighbor-hoods orresponding to 10% of the data.The mean trend is qualitatively similar for both markets, with day-ahead pries



B.3 Appliation to eletriity market quantities 113dereasing with inreasing predited wind power penetration, even though theremay be some quantitative di�erenes. Maybe the most important one is thatthe day-ahead prie appears to tend more rapidly towards 0 in the EEX market,already at around 35% predited wind power generation, while it is only the asein Denmark when this explanatory variable gets loser to 100% penetration. Thebands given by quantile regression also illustrate how the prie variability andonvergene towards 0 di�er for the two markets.To further detail the dependene between day-ahead pries and predited loadand wind power generation, the loal polynomial regression approah is up-graded so that both predited variables are simultaneously seen as explanatoryones (m = 2). We use 20 �tting points for eah variable (leading to a total of400 �tting points), with a nearest-neighbour bandwidths overing loal neigh-borhoods orresponding to 20% of the data. The resulting smooth surfae isdepited in Fig. B.2 for DK1 and for least-square regression only. It on�rmsthe joint role of predited load and wind power: the former indues an upwardpressure on pries, while the latter pushes them bak down, the impat of windbeing greater at lower load values.

Figure B.2: The relationship between predited wind power generation, pre-dited load, and the day-ahead market pries in the Nord Poolday-ahead market, Western Denmark area (DK1), 1.1.2008 to13.2.2010.Similar analysis may be performed for other market quantities and other mar-kets, with fous on the various moments of their distributions. The unovereddependenies may then be used as additional knowledge for the building of rele-vant foreast methodologies of market quantities. Example reent works in thatdiretion inlude [20℄ fousing on the predition of day-ahead pries aounting



114 Paper Bfor wind power preditions, and [21℄ looking at the spei� ase of imbalanesign haraterization and predition.B.4 Appliation to power �owsA seond relevant appliation of the statistial approahes desribed in thepresent paper relates to the analysis of power �ows within and over one or moreontrol zones. The results we gather and disuss in the following are based onsome of the data and work of [22℄ for the analysis of power �ows related tothe Austrian ontrol blok, and of [19℄ for the analysis of ross-border power�ows over the whole ENTSO-E system. For on�dentiality reasons, some of theresults may not be detailed.B.4.1 Example fous on the Austrian ontrol blokThe underlying motivation of the work performed in [22℄ was to perform anex-post analysis of available power �ow data within Austria, as well as of ross-border power �ows, in relation with some of the publily available data fromEEX and the German TSOs. These data basially are the same than thoseonsidered in Setion B.3.2, i.e. wind power foreasts, wind power and loadmeasurements, as well as all market quantities. They over the period of 2006-2007. A basi question to be answered is how muh the German wind powerand market in�uene the power �ows experiened by the Austrian TSO.The Austrian ontrol blok is operated by the TSO APG (Austrian Power Grid),for an installed generation apaity of more than 19 GW (12 GW in hydropower units), while the maximum load is less than 10 GW. This ontrol zone isphysially linked to six di�erent ontrol bloks and a total of nine ontrol zones.Two independent analyses were performed foused on (i) all the ross-border�ows, and (ii) the power �ows over 23 400kV-systems throughout Austria, inorder to unover the impat of German wind and market quantities on all thesepower �ows. Dimension redution was neessary in the latter ase: most of thevariane in the power �ows of the 23 400kV-systems ould be explained with 4PCs only.Let us give here a set of results fousing on the impat of predited wind powerpenetration in Germany and of day-ahead pries in the EEX market on theAPG net balane. This ontrasts with the more detailed analysis of individualross-border and 400kV-systems power �ows whih an be found in [22℄. The



B.4 Appliation to power �ows 115APG net balane is alulated as the sum of all power export minus the sumof all import at a given time. It is expressed here in MW. Fig. B.3 gathersthe satter plots for that analysis, while depiting the regression urves for themean e�et (least-square regression), as well as 90% predition intervals de�nedby the quantile regression urves with nominal proportions of 0.05 and 0.95.

(a) Predited wind power penetration in Ger-many (b) EEX day-ahead priesFigure B.3: The impat of predited wind power penetration in Germany andthe EEX day-ahead pries on the APG net balane over 2006-2007.

Figure B.4: The impat of predited wind power penetration in Germany onthe APG net balane over 2006-2007, as funtion of the time ofthe day.The plots in Fig. B.3 reveals that the Austrian ontrol blok tends to export



116 Paper Bmore as the EEX prie gets higher, but also to import more as the preditedwind power penetration in Germany is greater. Atually the mean trend isthat Austria only imports when there is almost no wind power penetrationin Germany. One also observes that obviously these are trends only, with largeintervals around this mean trend, showing that other e�ets are to be aountedfor. For instane, it may be ruial to aount for daily and seasonal variations inthe power �ow patterns. This is illustrated by Fig. B.4 whih depits the meanimpat of predited wind power penetration in Germany on the total balaneof the APG ontrol blok, also as a funtion of the time of the day. It showshow Austria has a typial yle of importing at night and exporting during theday, when there is no or almost no wind power penetration in Germany. As thiswind power penetration inreases, even though there still are variations over theday, the Austrian ontrol blok tends be in an import situation at any hour ofthe day. In general, we have observed that it is highly bene�ial to aount forpotential diurnal and seasonal variations in our analysis of power �ows.B.4.2 General results related to ENTSO-E system

Figure B.5: The impat of predited wind power penetration in Germany onross-border power �ows between DK1 and Norway over 2006-2008.The type of study performed for the Austrian ontrol blok was generalized tothe whole ENTSO-E system. The dataset there onsists of hourly ross-borderpower �ows between 34 European and bordering extra-European ountries, overa 3 year period overing 2006 to 2008. After quality hek, the study is restritedto 68 ross-border interonnetions. The overall question studied is similar to the



B.5 Conlusions 117above setion, i.e. related to the impat of German wind and market quantitieson the whole set of European ross-border �ows. The analysis performed is fullyovered by [19℄.For this dataset, 8 PCs were deemed enough to represent the overall dynamis ofthe ross-border power �ows over the ENTSO-E system, explaining 82% of theoriginal variane in the data. Loal polynomial models were then used on thePCs, onditioned by the predited wind power penetration in Germany, EEXday-ahead pries, as well as the time of the day.Out of the extensive analysis overed, let us show an illustrative example resultsin Fig. B.5, whih depits the impat of predited wind power penetration inGermany on ross-border power �ows between DK1 and Norway over 2006-2008.As wind power penetration is predited to be greater in Germany, the situationswithes from DK1 importing power from Norway to exporting. Consistent be-haviour was observed at the interonnetion between DK1 and Germany. This isin line with intuitive eonomi reasoning, suh that an hydro-dominated ontrolzone like the Norwegian one tend to withhold prodution when energy pries arelow due to signi�ant wind power penetration, and inversely inrease produtionwhen pries are high. This result is in fat similar to that of Fig. B.4 for thease of Norway. A notieable di�erene though is that Austria is diretly inter-onneted to the German network, while it is not the ase of Norway. Overall inview of the work of [19℄, the data available today permits to quantify how muhGerman wind and market quantities impat ross-border �ows over the wholeENTSO-E system. The identi�ed PCs may be seen as modes of propagation ofpower �ows, whih are more of less stimulated depending on various explana-tory variables. This analysis may be re�ned in the future by also aounting forwind and market-related variables in other ountries as well.B.5 ConlusionsThe e�et of wind power generation on eletriity markets and power �ows isreognized but not always understood and quanti�ed. Owing to the potentialomplexity of modelling all meteorologial, eonomial and network aspets in-volved, we suggest that an interesting alternative to full system studies onsistsin performing statistial ex-post analyses of the datasets available at market andnetwork operators. When aknowledging the potentially nonlinear and nonsta-tionary impat of wind power on these quantities, the regression tehniques(and related estimation onepts) ome fairly natural. Also the issue of thedimensionality of the dataset involved may be dealt with based on statistialdimension redution tehniques e.g. the PCA approah employed here.



118 Paper BIt is not possible to over in a single paper all the analyses that ould be per-formed based on the datasets available. We have therefore pointed at furtherreading for more extensive studies. Overall, it appears that load and wind powerforeast have a signi�ant impat on today's market quantities. This impat anbe haraterized as nonlinear and nonstationary, and quanti�ed through appro-priate statistial regression tehniques. Similarly, these variables, or the marketprie used as a proxy, highly in�uene power �ows within and between ontrolzones. This e�et was evidened and modeled for the ase of the APG ontrolblok, as well as for the all interonnetors of the ENTSO-E system. Note thatthe impat of foreast errors should also be thoroughly studied, as they areknown to indue unsheduled power exhanges.Here only the e�et of some explanatory variables e.g. predited wind powergeneration, on market quantities and power �ows was onsidered. Interestingly,the time dimension ould also be aounted for in a straightforward mannerby generalizing the methodologial onepts presented in a time-varying regres-sion framework. This would then permit to (i) assess the way unovered e�etsevolved over the past years, for instane as a funtion of installed wind apa-ities, and (ii) tentatively predit what the future e�ets of more substantialrenewable energy penetration levels on eletriity markets and power �ows maybe. Obviously, these preditions would be based on stationarity assumptions,whih would be very weak in view of the non-negligible hanges to be expetedin market and power systems operations in the foreseeable future.Suh a statistial approah should be onsidered as part of, or jointly with, othersystem studies. They an provide valuable insight to TSOs and poliy makers,while allowing market partiipants to re�ne their foreasting and partiipationstrategies. Note that importantly, it is the spatio-temporal dynamis of all typesof renewable energy soures that should be seen as explanatory variables in thefuture, in view of the future plans for deployment of renewable energy apaities.AknowledgmentThis work was partly supported by the European Cost Ation �WIRE: WeatherIntelligene for Renewable Energies� (ES1002), and by the Austrian PowerGrid through the projet �Impat of Stohasti Generation on EU Cross-borderFlows�. The European Network of Transmission System Operators for Eletri-ity (ENTSO-E), APG, Energinet.dk and Nord Pool A/S are also aknowledgedfor their role in providing the dataset.
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125Trading Wind Energy on the Basis ofProbabilisti Foreasts both of Wind Generationand of Market QuantitiesMaro Zugno1, Tryggvi Jónsson2, Pierre Pinson1Abstrat
Wind power is not easily preditable and non-dispathable. Never-theless, wind power produers are inreasingly urged to partiipatein eletriity market autions in the same manner as onventionalpower produers. The aim of this paper is to propose an operationalstrategy for trading wind energy in liberalised eletriity marketsand to assess its performane. At �rst the so-alled optimal quantilestrategy is revisited. It is proved that without market power, i.e.under the prie-taker assumption, this strategy maximises expetedmarket revenues. Foreasts of wind power prodution, of day-aheadand real-time market pries and of the system imbalane are inputsto this strategy. Subsequently, onstraining of the bid that max-imises the expeted revenues is proposed as a way to overome thestrategy's disregard of pratial limitations and, at the same time,of risk. Two onstraining tehniques are introdued: onstraining inthe deision spae and in the probability spae. Finally, the tradeof a wind power produer is simulated in a test-ase for the East-ern Danish (DK-2) prie area of the Nordi Power Exhange (NordPool) during a 10 month period in 2008. The results of the test-aseshow the �nanial bene�ts of the aforementioned strategy as well asthe onsequent interation with the eletriity market. This studywill support a demonstration in the framework of the EU projetANEMOS.plus.1DTU Informatis, Tehnial University of Denmark, Rihard Petersens Plads, bld. 305,DK-2800 Kgs. Lyngby, Denmark2ENFOR A/S, Lyngsø Allé 3, DK-2970 Hørsholm, Denmark



126 Paper CNomenlatureMain symbols
ρk Wind power produer revenues at trading period k
Wk Wind power prodution at trading period k
πk Market prie at trading period k
Ck Negative wind power produer revenues due to imbalane at tradingperiod k
ψk Unit regulation osts for positive and negative imbalanes at tradingperiod k
W (max) Installed wind power apaity
rk Quantile of wind power distribution at trading period k
Pk Probability of imbalane diretion at trading period k
av Parameter determining the width of the bound to the optimal bid inthe deision spae
ap Parameter determining the width of the bound to the optimal bid inthe probability spaeSupersripts
(S) Referring to the day-ahead market
(↑/↓) Referring to the real-time market
(↑) Referring to up-regulation in the real-time market
(↓) Referring to down-regulation in the real-time market
∗ Optimal
˜ Contrated at the day-ahead market
̂ ForeastC.1 IntrodutionIn liberalised eletriity markets, ompetition stands as the fundamental meha-nism ensuring the e�ient operation of the system. Competition is implementedthrough the establishment of a market (or multiple markets operating underdi�erent rules and gate-losures) where energy is traded. Bids for sale and pur-hase are olleted by the market operators, whih are responsible for optimallysheduling the dispath of energy and alloating su�ient power reserve. The



C.1 Introdution 127bakbone of most liberalised eletriity markets are the day-ahead markets, of-ten referred to as spot markets (in Europe) or forward markets (in the U.S.), onwhih most of the trading takes plae. Typially these markets o�er a platformfor trading energy to be delivered/withdrawn within a ertain period during theupoming day. The minimum period length is referred to as trading period inthis paper; every ontrat overs one or more trading periods.Although most renewables are not easily preditable and non-dispathable, re-newable power produers are inreasingly urged to partiipate in eletriity mar-kets in the same manner as produers of onventional energy. Here we speif-ially onentrate on wind energy, whih has been the most rapidly growingrenewable energy soure over the last deade. Our developments and onlu-sions ould however be similarly applied for other types of non-dispathablerenewables e.g.solar energy.Wind power generation is the typial example of a stohasti and non-dispatha-ble renewable energy soure. Although the possibility of urtailing power exists,it is not eonomially sound as long as the eletriity prie (inluding potentialsubsidies) remains positive. As a result, trading wind energy in a day-aheadeletriity market requires foreasts of wind power prodution, whih an beperformed only with limited auray, as disussed in [1℄. Reviews of the stateof the art of wind power foreasting methods and operational tools an be foundin [2, 3, 4℄, while [5℄ disusses their appliation in eletriity markets.Di�erenes between ontrated and atual energy prodution (e.g.due to fore-asting errors) have to be settled on the intra-day and/or the real-time markets.Due to shorter lead-time from gate losure to delivery, these markets might re-due the revenues of produers that ause imbalane, as more �exible marketplayers are alled to equilibrate the system � generally at higher osts. Jointoperation of wind and hydro power has reently emerged as a way to redueimbalane osts among other bene�ts, see for instane [6℄ or [7℄. However, thissolution is only oneivable for market partiipants having both energy souresin their portfolio. For other produers, the most pratial option for imbalanesettlement is to rely on the market. Although it is sometimes possible to adjustontrats through existing intra-day markets, the volumes exhanged there aregenerally low, as illustrated by [8℄ for the main European eletriity markets.Produers are therefore most often fored to rely on the real-time market, wherebids for regulation are ativated by the TSO lose to real-time, and produersare harged for their imbalanes, whih are determined post-delivery. Hene,the only way for them to redue imbalane osts is to bid optimally into theday-ahead market, so that the risk of faing losses on the real-time market isminimised. This bid is optimised onditioned upon the information availableat the time of ontrating, both in terms of future wind power prodution andmarket pries.



128 Paper CThe penalties faed by eletriity produers in the real-time market are gener-ally asymmetri, in some ases even single sided, i.e. they are only to be paidby the produers that inrease the overall imbalane with their own. This in-ites market partiipants whose portfolio inludes a stohasti omponent to bemore strategi in their approah to bidding, see [9℄. Indeed it an be analyti-ally shown that under these onditions the optimal day-ahead market bid fora wind energy produer is a ertain quantile of the distribution of wind powergeneration, see for instane [10, 11, 12℄. This optimal quantile is a dynamifuntion of the day-ahead and the imbalane pries, whih are not known a pri-ori. Market experiene shows that suh optimal bids might signi�antly di�erfrom the point foreasts of wind power prodution (onsisting of the onditionalexpetation for eah lead time). In pratie, however, point foreasts are stillommonly used when ontrating wind power in the day-ahead market. A moretheoretial disussion about quantile foreasts being optimal bids in eletriitymarkets an be found in [13℄.The existing literature has already desribed and analysed a number of strate-gies for trading wind power in the day-ahead market, with di�erent approaheswith regards to the unertainty in prodution and in market pries. As a basiapproah, some authors onsider that traditional point foreasts of wind powergeneration may be used for analysing the value of wind energy in eletriitymarkets, e.g.[14, 15, 16℄. Furthermore, [17℄ models wind generation unertaintythrough Markov probability tables and hooses, in a disrete deision spae, thebid that minimises the expeted osts. Alternatively, [18℄ suggests the onstru-tion of a utility ost funtion to model the �nanial risk of wind power produerspartiipating in the market, using persistene foreasting of wind power and av-erage values as prie foreasts. The stohasti optimisation algorithm desribedin [19℄ uses senarios of wind power prodution as input along with historial im-balane pries. Besides, [12℄ makes use of probabilisti foreasts of wind powerand yearly or quarterly average values of imbalane pries in order to determinethe optimal quantile bid, in a fashion resembling that of [10℄. The same strategyis implemented in [20℄, using probabilisti foreasts and measured data for windspeed and yearly averages as estimates of the day-ahead and real-time pries.Finally, [21℄ proposes a linear programming tehnique for optimising the tradeof wind energy in day-ahead, intra-day and real-time markets. The unertaintyin both wind power prodution and market pries is modelled through simpleARIMA/ARMA models. All these works and strategies either only aount forunertainty in wind power generation but disregard unertainty in the marketquantities, or inlude both but make use of simple foreasting methods.In this work, we revisit the quantile strategy desribed in [10℄ and [12℄ andgeneralise it by onsidering stohasti rather than deterministi market pries.State-of-the-art probabilisti foreasts both of wind power generation and ofmarket quantities are onsidered as input. These market quantities inlude the



C.1 Introdution 129regulation sign, whih an be down-regulation, up-regulation or no regulation,as well as the unit regulation osts. This strategy is formulated in Setion C.2as a stohasti optimisation problem, whih aims at the maximisation of theexpeted revenues (or utility) of the market partiipant. This approah is here-after referred to as Expeted Utility Maximisation (EUM). Having the maximi-sation of the expeted value of the revenues as the objetive, suh an approahdiretly relates to a long-term optimisation of the market performane of thewind power produer. It is also shown through an example that, due to theunertainties involved and potentially large foreast errors, suh a strategy mayoasionally lead to severe losses from a single ontrat. For instane this mightour when the regulation sign foreast wrongly assigns a high probability to animbalane diretion that is not realised. It is proposed in Setion C.3 to on-strain the EUM bid in terms of deviations from the point foreasts, either in thequantity spae or in the probability spae. The two onstraining methods areproposed with two di�erent ranges of the allowed interval in the deision spae.The motivation for this onstraining is twofold. From a pratial perspetive,onstraining the bid is bene�ial, beause system operators are relutant to al-low large deviations from the point foreasts. This is beause e�ient systemplanning requires market bids to losely re�et the atual delivery of energy.Moreover, sine point foreasts have been used as operational bids sine windenergy started to be traded on eletriity markets, suh point foreasts at asanhors in the mind of the operators. From a di�erent point of view, this workshows that by setting a onstraint on the allowed deviation from the point fore-ast, the trader an redue the impat of foreasting errors and inrease itsrisk-aversion. Next, in Setion C.4, the partiipation of a wind power portfo-lio in the Nord Pool market (Eastern Denmark prie area) over a period of 10months in 2008 is onsidered in order to evaluate the atual performane of theaforementioned trading strategies. To our knowledge a test-ase of suh length,ombining state-of-the-art foreasts of wind power prodution, day-ahead andimbalane pries, as well as observed wind prodution and market data, hasnever been performed. The results of the exerise show the possibility for windpower produers to signi�antly redue their imbalane osts and ontrol therisk of dramati losses.The ontribution of this paper to the state-of-the-art on the subjet is threefold.First of all, the derivation of the optimal quantile strategy is extended to thease where market pries are stohasti. Owing to this formulation, probabilistiforeasts both of wind power prodution and of market quantities are needed bythe deision maker. Seondly, we introdue onstraining of the bid as a way toaount for issues related to the pratial implementability of the strategy and,in parallel, risk-aversion. Finally, we present a realisti test-ase simulating windpower trading, and we assess the market value of state-of-the art probabilistiforeasts of wind power prodution and of market quantities.



130 Paper CThe derivation of the optimal quantile strategy presented in this paper is validunder the prie-taker assumption, i.e.the wind power produer annot in�u-ene market pries with its bid. Therefore, the aim of this work is to proposeoperational strategies and to assess the market value of foreasts under thishypothesis. In future markets with inreasing penetration of wind power thisassumption might not hold, sine wind power produers might impat the totalsystem imbalane and therefore in�uene the prie formation mehanisms withtheir trading strategy. By introduing the onstraining of the bid, this issueis partly addressed, sine onstrained strategies result in lower imbalane and,therefore, limit the impat on pries. The derivations and the results presentedin this paper thus onstitute a valuable starting point and a referene for furtherresearh on the subjet, where the dependene struture between wind powerprodution and market pries is taken into aount.The work presented here will support and serve as the basis for a real-worlddemonstration of stohasti approahes to wind power partiipation in eletriitymarkets in the framework of the EU projet ANEMOS.plus.C.2 The Expeted Utility Maximisation (EUM)bidding strategyThis setion is devoted to the introdution of the strategy maximising the ex-peted utility of a wind power produer partiipating at both the day-ahead andthe real-time energy markets. At �rst, the strategy is derived in Setion C.2.1.Then, the foreasts needed in order to deide on the optimal bid are desribedin Setion C.2.2. Finally, possible shortomings of the strategy are disussedbased on a test-ase in Setion C.2.3.C.2.1 Derivation of the EUM strategyIn eletriity day-ahead markets, power produers have to indiate the amount ofenergy they are willing to deliver at any trading period through a bid submittedto the market operator. Bids are olleted with a ertain lead-time to thephysial delivery of energy. For example, at the Nord Pool day-ahead marketthe deadline for submission is at noon on the day prior to delivery. Let W̃kdenote the amount of energy ontrated in the day-ahead market and let Wk bethe stohasti prodution of wind energy, both for the k-th trading period. Thepower produer will then have to orret the stohasti imbalane Wk − W̃k onthe real-time market. This is beause the possibility of trading on the intra-day



C.2 The Expeted Utility Maximisation (EUM) bidding strategy 131market is disregarded, due to its general illiquidity. Hene, the total revenues ofthe generator, ρk, an be expressed as the sum of the revenues, ρ(S)k and ρ(↑/↓)k ,obtained at the day-ahead and the real-time market respetively
ρk = ρ
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k (C.1)The revenues at the day-ahead market an be determined as the multipliationof the ontrated energy W̃k with the day-ahead market prie π(S)
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k W̃k (C.2)The real-time market revenues are positive if Wk > W̃k (energy surplus to besold) and negative if Wk < W̃k (energy de�it to be purhased)
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k ) represents the unit down(up)-regulation priewhih is paid to (by) an overproduing (underproduing) generator. At NordPool real-time pries are restrited suh that
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(C.4)at all times. Then depending on the total imbalane of the system, the inequalitysign is substituted by an equality sign in at least one of the two inequalities inEquation (C.4). More spei�ally, let the net system imbalane be denoted as
(G̃k −Gk)− (L̃k − Lk) (C.5)where G̃k and Gk denote the total (i.e.summed over all the produers dis-pathed at the day-ahead market) energy prodution, ontrated and realisedrespetively, for the k-th trading period. Similarly, L̃k and Lk represent theontrated and realised onsumption, respetively, for the onsumers and theretailers sheduled at the day-ahead market. Notie that when the quantityin Equation (C.5) is di�erent from zero, real-time bids have to be ativated inorder to restore energy balane. During hours of power surplus, i.e. when thenet system imbalane in Equation (C.5) is < 0, the following holds for the pries
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(C.6)This situation is ommonly referred to as down-regulation. Conversely duringhours of power de�it (when the system net imbalane in Equation (C.5) is > 0),



132 Paper Commonly termed up-regulation, it holds that
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(C.7)Finally during hours of perfet balane between load and prodution then
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k (C.8)In this way, only the produers ontributing to the overall system imbalane riskbeing penalised, while the ones ating to redue it reeive the day-ahead priefor their realised prodution, when transations on both the day-ahead and thereal-time markets are ombined. The rationale behind this hoie of marketdesign is that produers should not be allowed to pro�t from their imbalanes.However, it should be pointed out that there are exeptions to this. For instane,the Duth APX eletriity market is just one example of a market where energyimbalane an atually be rewarded.Now Equation (C.1) an be reformulated as:

ρk = π
(S)
k Wk + C

(↑/↓)
k . (C.9)Assuming that the wind power produer is a prie-taker individually, whih isreasonable if it does not hold a signi�ant share of the total prodution, the term

π
(S)
k Wk in Equation (C.9) is independent of its deision. That is, neither theday-ahead prie π(S)

k nor the wind power prodution Wk are in�uened by thebidding poliy adopted in the day-ahead market. This implies that urtailmentis not onsidered as an option, for the reasons disussed in Setion C.1. Theterm π
(S)
k Wk represents the revenues that the produer ould ahieve if it hadperfet information on its future wind power prodution (i.e. if ontrated powerand wind power prodution are equal: W̃k =Wk). The seond term in Equation(C.9) an be made expliit as

C
(↑/↓)
k =

{
ψ
(↓)
k (Wk − W̃k), Wk ≥ W̃k

ψ
(↑)
k (Wk − W̃k), Wk < W̃k

(C.10)where the variables ψ(↓)
k and ψ(↑)

k represent the unit regulation osts for positiveand negative imbalanes at the real-time market, and are given by
ψ
(↓)
k = π

(↓)
k − π

(S)
k (C.11)

ψ
(↑)
k = π

(↑)
k − π

(S)
k (C.12)The quantity in Equation (C.10) therefore aounts for negative revenues, whihrepresent the losses for the produer ontrating W̃k at the day-ahead market



C.2 The Expeted Utility Maximisation (EUM) bidding strategy 133in omparison to the ase of perfet information. At Nord Pool it holds that
C

(↑/↓)
k ≤ 0 at all times. Elsewhere (e.g.APX in the Netherlands), C(↑/↓)

k > 0might our. Regarding the latter ase, eonomists argue that although situa-tions where produers an gain from their imbalane are possible, this annotbe exploited in the sense of strategi bidding. The argument is that the expe-tation E

{
C

(↑/↓)
k |χ

} of the losses given the information available at the momentof bidding is negative. As a onsequene, the produers are expeted to su�erlosses from their imbalane in the long run, although in some trading periodsthey might be able to gain from it. Interested readers are referred to [22℄ for adetailed disussion.As one an see from Equations (C.4), (C.11) and (C.12), at Nord Pool ψ(↓)
k ≤ 0and ψ(↑)

k ≥ 0, and they are equal to zero in the ases of up- and down-regulationrespetively. It should also be noted that both the unit regulation osts inEquations (C.11) and (C.12) are stohasti variables as the day-ahead prie andthe imbalane pries are not known in advane by the power produer.It is assumed from now on that the wind power produer is rational (see e.g.[23℄ for a oneptual introdution) and that its objetive is the maximisationof the expeted value of its total revenues. The set of bids W̃∗ maximising thetotal revenues is
W̃∗ = argmax

W̃

E

{
fTP∑

k=iTP

ρk

} (C.13)where iTP and fTP are the shortest and the longest lead-times onsidered inthe optimisation, respetively. Here the ommonly aepted assumption of in-dependene of deisions for di�erent trading periods is followed. However itmay be argued that market dynamis should be aounted for, see for instane[24, 25, 26℄. Under the assumption of time-independent deisions over time, themaximisation of the sum of the revenues over time is equal to the maximisationof the revenues obtained at eah single k. The optimal bid at the day-aheadmarket is then
W̃ ∗
k = argmax

W̃k

E {ρk} (C.14)Sine the �rst term in Equation (C.9) is not dependent on the deision onthe day-ahead market, the maximisation of the expeted revenues in Equation(C.14) is equivalent to the maximisation of the expetation of the regulationosts, whih are non-positivẽ
W ∗
k = argmax

W̃k

E

{
C

(↑/↓)
k

} (C.15)



134 Paper CThe problem in Equation (C.15) is a variant of the well known linear termi-nal loss problem (also alled the newsvendor problem), see for instane [27℄,in whih the imbalane osts to be borne by the deision maker are stohas-ti, asymmetri and pieewise linear. Under the assumption that the unit up-and down-regulation osts are independent of the power produer's imbalane,these stohasti osts an be replaed by ertainty equivalents in the optimisa-tion problem. Assuming that the onsidered wind power produer is relativelysmall, suh a simpli�ation seems quite reasonable as the produer is a prie-taker. Nevertheless, it is lear that some variables ould in�uene wind powerprodution and real-time osts at the same time. This ould be the ase ofe.g. weather related variables in a relatively small power system. This issuegoes beyond the sope of this artile, but it ertainly alls for future researh inmodelling variables in�uening both pries and wind power prodution.Aording to the theory of ertainty equivalents, see [27℄, the rational deisionmaker an determine the optimal deision without taking into aount the wholedistribution funtion of the unit osts. Instead an equivalent problem is solved,in whih the stohasti unit osts are substituted by ertain deterministi fun-tions of the unit osts themselves. It is proved below that maximising C(↑/↓)
kin Equation (C.10) is equivalent to maximising the expetation of the followingfuntion with deterministi unit osts

C
(↑/↓)

k =

{
ψ̂
(↓)
k (Wk − W̃k) Wk ≥ W̃k

ψ̂
(↑)
k (Wk − W̃k) Wk < W̃k

(C.16)where ψ̂(↓)
k and ψ̂(↑)

k denote the expeted values of the unit regulation osts ψ(↓)
kand ψ

(↑)
k . The expetation of the imbalane osts in Equation (C.10) an beexpanded as
E

{
C

(↓/↑)
k

}
=

∫ +∞

0

∫ W̃k

0

ψ
(↑)
k (Wk − W̃k)dPWk

dP
ψ

(↑)
k

+

∫ 0

−∞

∫ W (max)

W̃k

ψ
(↓)
k (Wk − W̃k)dPWk

dP
ψ

(↓)
k

(C.17)whereW (max) is the installed apaity of the wind power produer. Still assum-ing independene between the unit regulation osts and wind power produtionthe integrations an be separated so that one gets to
E

{
C

(↓/↑)
k

}
=

∫ +∞

0

ψ
(↑)
k dP

ψ
(↑)
k

∫ W̃k

0

(Wk − W̃k)dPWk

+

∫ 0

−∞

ψ
(↓)
k dP

ψ
(↓)
k

∫ W (max)

W̃k

(Wk − W̃k)dPWk

(C.18)
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E

{
C

(↓/↑)
k

}
=ψ̂

(↑)
k

∫ W̃k

0

(Wk − W̃k)dPWk

+ ψ̂
(↓)
k

∫ W (max)

W̃k

(Wk − W̃k)dPWk

(C.19)whih is equal to the expeted value of the equivalent loss in Equation (C.16).The problem of maximising the expetation of the utility in Equation (C.16)is a standard linear terminal loss problem, whih an then be treated as thegeneral ase in [27℄. The proof is omitted here and only the expression for theExpeted Utility Maximisation (EUM) bid is given
W̃ ∗
k = F−1

Wk




∣∣∣ψ̂(↓)
k

∣∣∣

ψ̂
(↑)
k +

∣∣∣ψ̂(↓)
k

∣∣∣


 (C.20)where FWk

is the umulative distribution funtion of the wind power produ-tion Wk. Therefore, the EUM bid W̃k is a quantile of the distribution of thestohasti variable Wk orresponding to the probability given by the fration
r̃∗k =

∣∣∣ψ̂(↓)
k

∣∣∣

ψ̂
(↑)
k +

∣∣∣ψ̂(↓)
k

∣∣∣
(C.21)C.2.2 Input foreasts to the EUM strategyFrom the treatment in Setion C.2.1 it follows that the determination of theoptimal bid requires foreasts of both wind power prodution and imbalaneosts.As far as wind power prodution is onerned, a probabilisti foreast is needed,as the distribution FWk

of the generation Wk appears in Equation (C.20). Herethe non-parametri probabilisti tool desribed in [28℄ and [29℄ is onsidered.This tool provides the user with a set of foreast quantiles of the wind powerdistribution for eah trading period. Let us denote the α-quantile of wind powerprodution at time k with qWk
(α), suh that
FWk

(qWk
(α)) = α (C.22)The provided foreasts are then

q̂Wk
(α) = E {qWk

(α)|M, θ, χt} (C.23)



136 Paper Cfor di�erent values α ∈ [0, 1]. The expetation on the right side of Equation(C.23) is onditioned on the hoie of the modelM , on its estimated parameters
θ and on the information χt available at the time t when the foreast is issued.It holds trivially that t < k. In the example of Nord Pool t might be 11am(one hour before the deadline for bidding), while k ould be any of the hours inthe following day. From now on the ondition on the expetation is disardedin order to lighten the notation. However, the reader should keep this in mindwhenever a foreast is de�ned. An example of quantile foreast an be seen inFigure C.1. The omplete foreast of the funtion FWk

an then be obtained
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meas.Figure C.1: Example of probabilisti foreast of prodution for a wind powerportfolio in Eastern Denmark. The foreast was issued on theprevious day at 11am.from the set of foreast quantiles q̂Wk

(α) by linear interpolation.The expeted values of the regulation osts ψ̂(↓)
k and ψ̂(↑)

k need to be foreast aswell. Methods for foreasting the day-ahead market prie π(S)
k , as well as theunit imbalane osts ψ(↓)

k and ψ(↑)
k , onditioned upon the regulation sign3, aredesribed in [30℄. The following foreasts are therefore available

π̂
(S)
k = E

{
π
(S)
k

} (C.24)
ψ̂
(↓)

k|ψ
(↓)
k
<0

= E

{
ψ
(↓)
k |ψ

(↓)
k < 0

} (C.25)
ψ̂
(↑)

k|ψ
(↑)
k
>0

= E

{
ψ
(↑)
k |ψ

(↑)
k > 0

} (C.26)[30℄ also presents a method for estimating onditional posterior probabilities of3In [30℄ a given hour is de�ned as up-regulation hour if ψ(↑)
k

> 0 and a down-regulationhour if ψ(↓)
k

< 0.



C.2 The Expeted Utility Maximisation (EUM) bidding strategy 137imbalane in eah diretion being penalised at any given time k, de�ned as
P

(↓)
k = P

{
ψ
(↓)
k < 0

} (C.27)
P

(↑)
k = P

{
ψ
(↑)
k > 0

} (C.28)From a pure trading perspetive this is equivalent to prediting the sign ofthe atual imbalane as the trader is indi�erent to imbalanes he/she is notpenalised for. The models for ψ̂(↓)

k|ψ
(↓)
k
<0
, ψ̂(↑)

k|ψ
(↑)
k
>0

and P̂ (↑/↓)
k are all onditionalHolt-Winters models with a diurnal seasonality. For the penalty foreasts, themodels are onditioned upon the foreast system load and the foreast spotprie for the area, while the diretion probability model is onditioned upon theforeast wind power penetration (i.e. the ratio between the foreast wind powerprodution in the whole system and the foreast system load).An example of foreasts of the regulation signs is shown in Figure C.2. It shouldbe notied that the two probabilities in the �gure do not sum to 1. Indeed, theprobability of no regulation P (0)

k might also be positive, and at any time k itholds
P

(↑)
k + P

(↓)
k + P

(0)
k = 1 (C.29)The expeted values ψ̂(↓)

k and ψ̂
(↑)
k an then be determined aording to the
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ψ̂
(↑)
k = ψ̂

(↑)

k|ψ
(↑)
k
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P̂

(↑)
k + ψ̂

(↑)

k|ψ
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(1− P̂

(↑)
k ) = ψ̂

(↓)

k|ψ
(↑)
k
>0
P̂

(↑)
k (C.31)



138 Paper CIn the ases when both ψ̂(↓)
k and ψ̂(↑)

k are zero the ratio in Equation (C.21) isnot de�ned. In these ases the produer might bid the median, orresponding tothe 0.5 quantile, whih maximises the expeted market revenues in the generalase where the foreast penalties in the two regulation diretions are equal.Figure C.3 plots an example of foreast, r̃∗k, and measured, rk, ratios in Equation(C.21) for a power produer in Eastern Denmark partiipating in Nord Pool.The resulting bid maximising the expeted revenues is shown in Figure C.4.
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C.2 The Expeted Utility Maximisation (EUM) bidding strategy 139C.2.3 Testing the EUM bidThis setion presents the setup and the results obtained in a test-ase simulatingenergy trading in Nord Pool. Its aim is to assess the performane of the EUMbidding strategy ompared to the traditional point foreast bidding. Afterwards,the main drawbaks of the EUM strategy are disussed, along with the reasonsmotivating the introdution of more risk-averse strategies, whih are presentedin Setion C.3.In this test-ase, the DK-2 (Denmark East) market area has been onsidered asthe geographi loation of the wind power plants of a virtual power produer.Data and foreast availability motivate the hoie of a 10-month period of sim-ulation, spanning from the 1st Marh 2008 to the 31st Deember 2008. The sizeof the produer is not de�ned, and all the results are saled to its installed a-paity. It is assumed, though, that the produer is a prie-taker, i.e.that hangesin its bidding poliy do not in�uene the market. This implies that its size issmall relatively to the total installed apaity in the region.The data set used onsists of measured wind power prodution, point and prob-abilisti foreasts of wind power prodution, observed regulation osts and themarket foreasts previously desribed. All data refer to the DK-2 market areaand have a temporal resolution of 1 hour. Based on point foreasts issued byWPPT, see [31, 32℄, probabilisti wind power foreasts are obtained by themethod desribed in [29℄ and [28℄ while market foreasts have been obtained asoutlined in [30℄. All observations used are publily available on www.energinet.dk.For the sake of performing a realisti test-ase, the foreasts of wind powerprodution, of day-ahead and real-time market pries and of imbalane dire-tion probabilities used in this study were issued before 11am of the previousday. Beause the day-ahead gate losure at NordPool is noon, these foreastsare preisely the information available for produers bidding on the day-aheadmarket.Table C.1 shows the eonomi results of the wind power produer in both theases of point foreast bidding and of EUM bid. The third olumn representsthe redution in the imbalane osts in Equation (C.10) with respet to thease of point foreast bidding. Imbalane ost redution is a relevant indexfor assessing the quality of a bidding strategy for wind power produers. In-deed, there is a �fatal� part, i.e.whih ould be ahieved no matter how bad abidding strategy is employed, that is impliitly inluded in the total produerpro�ts. For example, a produer ould at least earn its realised wind powerprodution times the down-regulation prie just by never partiipating at the

www.energinet.dk
www.energinet.dk


140 Paper Cday-ahead market. On the ontrary, imbalane osts represent what the windpower produer an atually improve by employing a more advaned strategy.Furthermore, the imbalane ost redution with respet to a referene bid, thepoint foreast in this example, provides with an upper bound for performaneimprovement, i.e.the 100% redution that would be ahieved by bidding withperfet information. The value of imbalane ost redution in the �rst row istrivially 0, while one an notie that the improvement obtained with the EUMis 2.3%.Strategy Net revenue Imbalane ost Imbalane ost Prieper installed MW per installed MW redution per MWh(e/MW) (e/MW) (%) (e/MWh)Point foreast 94436.40 4076.51 0.00 54.48EUM 94529.96 3982.95 2.30 54.54Table C.1: Eonomi results for the wind power produer in the test-ase per-formed from the 1st Marh 2008 to the 31st Deember 2008 withreal market data and foreasts issued for the DK-2 market area.Figure C.5 shows the subtration of the umulative revenues obtained with theEUM strategy and the umulative revenues obtained with the point foreast bidfor eah trading period in the test-ase. The di�erene in revenues is positiveoverall, meaning that the EUM bid is outperforming the point foreast bid inthe long run. On the other hand, the performane of the EUM bid appearsto be rather volatile and haraterised by steep drops, for instane around the1200th and the 4500th hours in the �gure. This suggests that the produeradopting the EUM strategy is exposed to the risk of signi�ant losses stemmingfrom a single ontrat. It an be shown that the losses are due to inaurateforeasts of the regulation osts or sign. What the EUM aims at is, essentially,to set the day-ahead market bid on the �safe� side of the deision spae, i.e.on the imbalane diretion that will not be penalised at the real-time marketand paid at the day-ahead prie π(S)
k . As Figure C.3 shows, by doing this theoptimal ratio r̃∗k, and therefore the EUM strategy, results in being somewhat�extreme�. In fat, when the foreasts indiate that one regulation diretion isfar more likely than another, r̃∗k tends to the extreme values 0 or 1, as shown inthe early and late hours of the day in Figure C.3. Figure C.4 shows that thisyields a bid that is signi�antly di�erent from the point foreast during thesehours. Generally situations where the EUM bid is lose to the nominal apaityor zero are not rare. Hene the produer is in the situation of probably having agreat imbalane in the foreast �safe� regulation diretion. In the ase that theforeasts leading to r̃∗k are orret, the imbalane is paid at the day-ahead prie

π
(S)
k , with no loss for the produer. On the other hand, if the foreast turnsout to be inorret the produer will have to pay regulation osts for a high
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Figure C.5: Subtration of the umulative revenues per installed MW usingthe EUM bid and the umulative revenues using the point fore-ast. Its positive value signals an improvement in the perfor-mane.amount of energy, resulting in one of the signi�ant losses shown in Figure C.5.Furthermore, the wind power produer using the EUM strategy an be expetedto inur large imbalanes, whih are unwanted by the TSO. This asts doubton the possibility of using the EUM strategy in pratie.C.3 Constraining the EUM bidAs an extension to the EUM strategy, a parameter for onstraining the bid is in-trodued in this setion as a way to redue the expeted imbalane level. Thereare several motivations for doing this. As Setion C.2 disussed, the EUM bidis often quite far from the point foreast. On the other hand market authoritiesrequire that the energy bid be representative of the atual (or foreast) produ-tion of a generator. Hene an exessive deviation of the bid from the expetedprodution ould be seen as a way to take advantage of the market and thus itould be penalised. Seondly, a strategy ausing high imbalane levels might in-�uene the prie formation mehanism, espeially with respet to the regulationpries. If this happens, the prie-taker assumption is violated and, therefore,the model of the market beomes inonsistent.As a matter of fat, the point foreast bid is a robust deision when the produeris seeking to minimise the impat on the system imbalane. Indeed, the pointforeast ommonly minimises the expetation of the squared deviation from the



142 Paper Cenergy prodution Wk

Ŵk = argmin
x

E
{
(x−Wk)

2
} (C.32)It should be pointed out, though, that di�erent riteria ould be employed [33℄.The most ommonly used least-squares riterion only makes the point foreastoptimal in the sense of minimising imbalane volumes (in squared values), withno eonomi onsiderations. Therefore, a ompromise between the EUM bidand the point foreast ould reonile revenue maximisation with pratial im-plementability of the strategy, with respet both to monitoring of the bid bythe TSO and to potential violations of the prie-taker assumption. Moreover,seeking a ompromise between these two strategies is intuitively related to theredution of risk. Indeed, as disussed above, the EUM strategy is exposedto the risk of large losses under prie-foreasting errors. By trying to renderthe bid less extreme, i.e. loser to the point foreast, the produer would re-due the amount of regulating power, and therefore losses, in these ases. Thiswill be illustrated in the test-ase in Setion C.4. Finally, energy traders aresomehow bound to the point foreast, whih has traditionally been bid on theday-ahead market and has proved to be reliable over the years. For this reasonit is desirable for an operational strategy not to deviate too muh from it.The main idea in this setion is that the bid should somehow be bounded tosome values around the point foreast. In this way extreme bid values - andhene extreme losses - are avoided. Constraints an be imposed in the deisionspae, so that the bid W̃ ∗

k is limited within a ertain interval [W k,W k

]. Themathematial formulation is desribed in Setion C.3.1. As an alternative, thelimit an be imposed in the probability spae so that the optimal ratio r̃∗k islimited in a similar interval [rk, rk]. This is introdued in Setion C.3.2.C.3.1 Constraints in the deision spaeIn this setion we propose the determination of the allowed interval for the bidas a funtion of the expeted value of wind power prodution Ŵk.The allowed interval of the deision spae is entred around the point foreast
Ŵk = E {Wk} (C.33)and has radius equal to a ertain perentage of this value itself. Two valuesfor the radius are used in the appliation ase-study, i.e. 10% and 20% of Ŵk.Naturally the larger the allowed interval the more risk-neutral the strategy. Thesuggested bid in this ase an be determined as

W̃ v,av
k = min

{
max

{
W̃ ∗
k , Ŵk · (1− av)

}
, Ŵk · (1 + av)

} (C.34)



C.3 Constraining the EUM bid 143where av is to be set to either 0.1 or 0.2. Figures C.6(a) and C.6(b) showthe EUM bid and the point foreast Ŵk along with the allowed intervals with
av = 0.1 and av = 0.2.
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(b) Constraints in value (av = 0.2)Figure C.6: Point foreast (Ŵ ), EUM bid (W̃ ∗) and allowed interval withonstraints on the deision spae.
C.3.2 Constraints in the probability spaeIn the seond method proposed here, the ratio r̃∗k in Equation (C.21) is allowedto span a ertain interval in the probability spae. This interval is entredaround the value of the umulative distribution at the point foreast Ŵk

r̂k = FWk

(
Ŵk

) (C.35)The radius of the interval is then to be set to a ertain fration of the probabilityspae. In this work the radii 0.1 and 0.2 are used. The onstrained bid an thenbe determined as̃
W

p,ap
k = FWk

−1 (min {max {r̃∗k, r̂k − ap} , r̂k + ap}) (C.36)where ap is to be set to 0.1 or 0.2 aording to the desired risk aversion of thebid. Figures C.7(a) and C.7(b) show the EUM bid and the point foreast Ŵkalong with the allowed intervals with ap = 0.1 and ap = 0.2.
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(b) Constraints in probability (ap = 0.2)Figure C.7: Point foreast (Ŵ ), EUM bid (W̃ ∗) and allowed interval withonstraints on the probability spae.C.4 Test ase resultsIn this setion we disuss the results of a test-ase simulating the strategiespresented above in a realisti market situation. The setup of the test-ase is thesame as desribed in Setion C.2.3. Setion C.4.1 disusses the performane ofthe bidding strategies from the point of view of the produer and its eonomiresult, while Setion C.4.2 disusses the impliations of the proposed strategiesfrom a system point of view.C.4.1 Eonomi advantage of the strategiesThe main eonomi results for the power produer are shown in Table C.2. Thisshows the total revenues of the produer and its imbalane losses per MW ofinstalled apaity, the perentage redution in imbalane losses obtained by thestrategy ompared to the ase of point foreast bidding and the average prieper MWh paid to the produer.As one an see, the onstrained strategies introdued in the previous setionprodue better results than the plain EUM one. The redution in imbalaneosts amounts to around 6% when the onstraint limit is set to 10% (both invalue and in probability) and to around 8.5% when it is set to 20%. A slightlybetter performane is obtained by onstraining in value than in probability. Asfar as the last olumn of Table C.2 is onerned it should be mentioned thatwith perfet information on wind power prodution the energy would have been



C.4 Test ase results 145sold at an average prie of e56.83 in the onsidered period.The improved pro�ts obtained with these strategies, ompared to that of usingthe point foreast bidding, are illustrated in Figure C.8. Indeed, this �guredisplays the di�erene between the umulative revenues obtained by using theEUM strategy and its onstrained versions and the revenues obtained by biddingthe point foreast. All the umulative revenues in this plot are expressed in eper MW of installed wind power apaity. It an be seen how the EUM bid(W̃ ) is the least e�ient strategy, apart from the point foreast bidding. Theonstrained strategies, besides performing better than the EUM, are also lessexposed to signi�ant isolated losses.
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p,0.2Figure C.8: Improvement of the umulative revenues for the strategies de-sribed in Setions C.2 and C.3 with respet to the point foreastbidding strategy.In view of the results above, there is learly a relationship between range of theonstraint and net revenues. Intuitively, there is also a relationship with risk,sine as pointed out in Setion C.3 an inrease in the allowed bid range resultsin a higher risk of a large imbalane, and therefore a higher risk of large losses.In priniple, the full joint probability distribution of wind power prodution andmarket pries should be employed in order to assess risk quantitatively. An aposteriori approah is followed here, in that risk is assessed by analysing therealised standard deviation of the hourly imbalane losses.Figures C.9(a) and C.9(b) show the imbalane ost redution obtained in thetest-ase as a funtion of the parameters av and ap. The trend is inreasing in
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Strategy Net revenue Imbalane ost Imbalane ost Prieper installed MW per installed MW redution per MWh(e/MW) (e/MW) (%) (e/MWh)Point foreast 94436.40 4076.51 0.00 54.48EUM 94529.96 3982.95 2.30 54.54Constrained (±10% value) 94684.18 3828.74 6.08 54.63Constrained (±20% value) 94784.27 3728.64 8.53 54.68Constrained (±10% probability) 94670.78 3842.13 5.75 54.62Constrained (±20% probability) 94768.55 3744.37 8.15 54.67Table C.2: Eonomi results for the wind power produer in the test-ase.



C.4 Test ase results 147both ases up to a ertain value of the parameter (approximately 0.6 and 0.2 for
av and ap respetively). Inreasing the onstraining parameter further beyondthese ritial values results in less pro�ts. This is beause the distribution of theproduer's hourly revenues is bounded on the upper side by π(s)

k Wk. By allowinglarger deviations from the point foreasts, this maximum value of the revenues isreahed during more and more trading periods. In this way the rate of growth ofthe revenues slows down, as fewer trading periods o�er possible improvements.Meanwhile, when foreasts are not perfet the risk of losses inreases. Whenthe ritial level of the onstraining parameter is reahed, the inreased lossesexeed the revenue growth, resulting in the negative slopes on the right sides ofFigures C.9(a) and C.9(b). This deline is only stopped when the allowed bidinterval is large enough to ontain the optimal quantiles for all trading periods,as in the �at part of the urve on the right side of Figure C.9(b). At that pointthe onstrained strategy is in pratie equal to the original EUM strategy.The empirial standard deviation of the hourly imbalane losses is plotted inFigure C.9() and C.9(d). As one an see in Figure C.9(d), the EUM strategy (towhih the onstrained strategy onverges when the onstraining parameter ap isjust above 0.6) is the riskiest strategy, sine it inurs the highest standard devia-tion of hourly losses. Strategies with lower values of the onstraining parametersare subjet to lower risk, but the trend is not monotoni all the way down to thepoint foreast (ahieved with av = ap = 0). The latter strategy would in fatbe very risk-averse in ase of equal penalties for up- and down-regulation. In arealisti ase with di�erent penalties, the most risk-averse onstrained strategyis obtained for a value av slightly lower than the one delivering best revenues,while the value ap that delivers the highest revenues is to a good approximationthe one that is minimising the standard deviation of the losses.Furthermore, Table C.2 and Figures C.9(a) and C.9(b) indiate that the EUMstrategy does not ahieve the best performane among the onsidered strategiesin the simulated market period. One would expet that a 10-month period islong enough for onsidering the inidene of isolated losses on the umulativerevenues negligible, so that the EUM strategy ahieves the optimal performane.On the ontrary, this study seems to suggest that the EUM strategy is notoptimal in pratie. Indeed, even from a theoretial point of view the EUMbid is optimal only under the assumption that probabilisti foreasts of windpower prodution and of market pries are orret. In pratie, errors in theprobabilisti foreasts might ause the loss of optimality that is observable inthis test-ase. On the other hand the onstrained strategies seem to limit thenegative e�ets of foreast errors both by reduing the risk of losses stemmingfrom single hourly-ontrats and by ahieving a better performane in the longrun.
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(b) Imbalane loss redution with onstraintsin probability
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(d) Imbalane loss standard deviation withonstraints in probabilityFigure C.9: Produer's imbalane loss redution and standard deviation in thetest-ase as a funtion of onstraining parameter.C.4.2 Interation with the systemThis setion sheds some light on the e�ets of the strategies presented in Se-tions C.2 and C.3 in terms of energy imbalane introdued in the system.Table C.3 shows the simulation results in terms of imbalane diretion. The �rstthree olumns show the energy imbalane brought to the system by the windproduer in the onsidered 10 months, in total and divided between positive,i.e. produer being long (seond olumn), and negative imbalane, i.e. produerbeing short (third olumn). All the values are expressed in hours of operation atnominal apaity, i.e.they are obtained by dividing the total energy imbalane(MWh) over the simulation by the installed apaity (MW). It an be seen thatthe more risk-neutral the strategy, the higher the overall energy imbalane. Inthis sense, the EUM strategy appears to have an extreme behaviour, pushing thetotal imbalane from less than 500 hours of operation, obtained with the pointforeast bid, to over 700 hours. The four onstrained strategies appear to havea limited e�et on the overall imbalane. The strategies with tighter bounds (±10% in value and ± 0.1 in probability) ause only a negligible inrease, whilewhen the ones with the less restritive bounds (± 20 % in value and ± 0.2 inprobability) are used the total imbalane rises by 35 hours at most.



C.4 Test ase results 149Furthermore, an evaluation of the seond and the third olumns shows thatgenerally more advaned strategies tend to bid above the atual prodution.This means that the produer is more often short rather than long. In fat,one an see that the di�erene between the values in the seond and the thirdolumns, whih is almost zero with the point foreast bidding, tends to spreadmarkedly when other strategies are used. This result might at a �rst sight lookounterintuitive, sine penalties are on average higher for up-regulation thanfor down-regulation. Nevertheless other fators, i.e.skewness of wind power pro-dution distribution, have an in�uene on this. Aording to expetations, theprevalene of up-regulation power is more evident when less risk-averse strate-gies are used.The fourth and the �fth olumns of Table C.3 show the perentage of mar-ket hours during whih the produer is long and short respetively. It an beseen that the variation in number of regulation hours, despite the signi�antvariation in the imbalane volumes, is at most 1.5%. This indiates that theproposed strategies hange the volumes of the energy imbalane but not thegeneral trend in the number of up- or down-regulation periods. Finally, the lasttwo olumns show the maximum value of energy imbalane, again expressed inhours of operation at nominal apaity, during a single hour. Interestingly onlythe row orresponding to the EUM bid shows a onsiderable inrease, whihunderlines the fat that onstraining the EUM bid is an e�etive method tolimit the maximum value of imbalane.Table C.4 looks at the produer's imbalane from a di�erent perspetive. Thistable separates the results for the imbalane into two omponents: the ompo-nent opposite to the overall system imbalane, whih is paid at the day-aheadmarket prie and is shown in the seond and the fourth olumns, and the om-ponent in the same diretion, whih is paid at the day-ahead prie minus theimbalane ost and is shown in the third and �fth olumns. While in the aseof the EUM bid the third olumn shows a signi�ant inrease, its values areroughly unhanged with the tighter onstraints and slightly inreased with thelooser ones. In turn, the seond olumn inreases by a signi�ant amount inmost ases. These two fats indiate that the inrease in energy imbalaneaused by the use of more advaned strategies, whih has been disussed above,atually involves only the diretion in whih the produer is not penalised, i.e.the one paid at the day-ahead prie. There are two impliations of this. On onehand, part of the energy imbalane is shifted to the opposite diretion with re-spet to the system imbalane (seond olumn in Table C.4), thus ontributingto restoring the overall balane � yet on a marginal level due to the prie-takerassumption. In other words, the proposed onstrained strategies are able to bet-ter �read� the feedbak signal sent by the regulation pries and adapt to it, thusreduing the system imbalane. On the other hand, the variation in imbalaneould beome signi�ant if the proposed strategies beome ommon pratie



150
PaperC

Strategy Energy imbalane (h) Imbalane hours (%) Max value (h/h)Total > 0 < 0 > 0 < 0 > 0 < 0Point foreast 484.92 235.94 248.98 45.45 54.47 0.54 0.70EUM 755.29 269.93 485.35 46.28 53.72 0.66 0.89Constrained (±10% value) 495.91 236.48 259.43 44.26 55.73 0.56 0.68Constrained (±20% value) 519.70 244.82 274.88 44.06 55.91 0.58 0.68Constrained (±10% probability) 488.94 237.82 251.12 46.09 53.91 0.57 0.68Constrained (±20% probability) 514.62 245.98 268.64 46.60 53.40 0.59 0.68Table C.3: Energy imbalane of the wind power produer in the test-ase.



C.5 Conlusions 151for produers. As a result, this ould in�uene the formation of the regulationpries as well as possibly hange the diretion of the system imbalane. While ithas been shown that the trading behaviour of wind power produers is apableof a�eting day-ahead pries at NordPool even at the urrent level of marketpenetration, see [34, 35℄, the relationship with the real-time market penalties,whih are the quantities that ultimately determine the optimal bid in Equation(C.20), has not been investigated yet. In the event that the trading strategiespresented above beome ommon pratie, they might in�uene the real-timepenalties and no longer be optimal, and ould possibly destabilise the system.Then, the market power of wind power produers should be aounted for ife�ient bidding strategies are to be designed for produers with a large totalapaity or for ombined produers. This an be ahieved by modelling energymarkets as losed-loop systems, see for instane [25, 26℄.C.5 ConlusionsIn this work, the optimal quantile strategy for trading wind power in liberalisedenergy market is revisited. It is shown that this strategy maximises the expetedvalue of the market revenues (utility), under the assumption that the wind powerproduer is a prie-taker, i.e. its market strategy is not apable of in�ueningprie formation. The use of the Expeted Utility Maximisation (EUM) strat-egy in pratie requires probabilisti foreasts of wind power prodution, pointforeasts of day-ahead and real-time market pries and of the imbalane signprobabilities. All these foreasts an be provided by state-of-the-art foreastingtehniques.An evaluation of the EUM strategy in a realisti test-ase in Nord Pool high-lights both its improved performane and its risk-neutral nature. The former isunderlined by a 2.3% redution of the imbalane osts. As far as the latter isonerned, the test-ase shows that this strategy is exposed to a number of sig-ni�ant losses that take plae in short periods of time. These losses are ausedby the use of inaurate foreasts whih ause the bid to di�er signi�antly fromthe atual wind power prodution.Constraining of the bid is then introdued in two di�erent versions: with on-straints in the deision spae and in the probability spae. The main idea is thatbounding the bid to a ertain interval around the point foreast an help reduethe distane of the bid from the atual wind power prodution. This heuris-ti an solve some issues, assoiated with the ontrol of market authorities ofthe produer's bid as well as with its in�uene on the prie formation meha-nism. Indeed, onstrained strategies generally redue the imbalane introdued
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Strategy Energy imbalane (h) Imbalane hours (%)Total Day-Ahead prie Penalty Day-Ahead prie PenaltyPoint foreast 484.92 277.71 207.21 62.81 37.19EUM 755.29 498.66 256.62 65.14 34.86Constrained (±10% value) 495.91 286.72 209.19 63.16 36.84Constrained (±20% value) 519.70 304.85 214.85 63.59 36.41Constrained (±10% probability) 488.94 281.93 207.00 62.72 37.28Constrained (±20% probability) 514.62 301.74 212.87 63.39 36.61Table C.4: Energy imbalane of the wind power produer in the test-ase.



C.5 Conlusions 153by the wind power produer in the system, thus lowering the potential impaton real-time pries and the sub-optimality of the strategy in a prie-maker mar-ket environment. Moreover, the risk of inurring high regulation osts is alsoredued by using onstrained strategies.Furthermore, the test-ase is extended in order to assess the performane of theonstrained strategies. The results of the simulation show that the onstrainedstrategies outperform both the point foreast and the EUM strategies. Thelatter fat shows that onstraining the EUM bid is also an e�etive way forreduing the impat of foreast errors on long-term revenues. At a seond stagein the test-ase, the interations between a produer employing this strategyand the overall system are analysed. It is shown that only the EUM bid ausesa signi�ant inrease in the total energy imbalane ompared to the point fore-ast bid. The onstrained strategies inrease the amount of regulated energy atmost by about 10% in the ase of less restritive bounds, while the inrease isnegligible when the strategies with tighter bounds are adopted. Moreover, it ispointed out that this inrease in the regulated power involves only the ompo-nent in the opposite diretion ompared to the overall system imbalane. As aresult, the onstrained strategies might be able to redue the overall imbalane,thus marginally bene�ting the system, at least as long as they do not beomeommon pratie.We underline that the obtained results hold as long as the wind power produerdoes not own a signi�ant share of the overall prodution apaity. When thishypothesis is not true, the power produer annot be onsidered a prie-taker.It is expeted that in this ase the performane of the proposed strategies de-reases. In addition, the assertion that these strategies may be bene�ial tothe system by reduing the overall imbalane might prove inorret. This is be-ause suh a large produer -or many smaller produers using the same biddingpoliy- might hange the diretion of the system imbalane, thus ontributingpositively to it rather than reduing it. For these reasons, an interesting futuredevelopment of this work ould be to study the relationship between the bid ofa large wind power produer and the formation of the regulation pries in thereal-time market. This ould then lead to the formulation of optimal biddingstrategies of pratial use for large wind power produers, as well as more stablefrom a system point of view.Similarly, modelling explanatory variables in�uening wind power produtionand energy market pries at the same time is of lear interest for future researh.This would aount for the situation where a high penetration of wind power inthe system is able to in�uene the pries, although the onsidered wind powerproduer is too small to have any sort of market power on its own.Besides, trading on the intra-day market ould also be inluded in the problem



154 Paper Cunder the assumption of su�ient liquidity of this market. As shown in [21℄,this trading �oor gives market partiipants further possibilities for reduing therisk of losses. Indeed, produers an employ foreasts with a shorter lead-time(typially one hour) with lear advantages in terms of auray. Therefore, anassessment of the advantages both for the produers and the system obtained byinreasing the liquidity of balaning markets would be partiularly interesting.Finally, another diretion for further researh ould be to aount for the dy-nami aspets of the market. In this way the assumption of independene ofdeisions in di�erent trading periods would be overome. The dynami view ofthe market ould inlude, for instane, modelling ompetition among produ-ers as well as the market partiipation of mixed portfolios. In the latter asea typial situation ould be the oupling of wind power with hydro power orenergy storage, both of whih allow for shifts in the trade of power betweendi�erent trading periods. This researh ould lead to the determination of moreadvaned bidding strategies in ompetitive market environments, possibly forproduers with a diversi�ed portfolio of energy soures.AknowledgementThe work presented has been partly supported by the European Commission,whih is hereby greatly aknowledged, under the Anemos.plus projet (ENK6-CT2006-038692). The authors would also like to give redit to DONG Energy,ENFOR, Nord Pool and Energinet.dk for their role in providing the data usedin this work. In partiular, the authors would like to thank Torben S. Nielsenand Henrik Aa. Nielsen from ENFOR, as well as John Tøfting, Jes Smed andLars Kruse from DONG Energy for the onstrutive disussions that enhanedthe level of this researh. Finally, we express our gratitude to the Editor of thisjournal and to the three anonymous referees for providing insightful ommentsand suggestions for improving this manusript.
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D.1 Nomenlature 161Pool Strategy for a Prie-Maker Wind PowerProduerMaro Zugno1, Juan Miguel Morales2, Pierre Pinson1, Henrik Madsen1AbstratWe onsider the problem of a wind power produer trading energy inshort-term eletriity markets. The produer is a prie-taker in theday-ahead market, but a prie-maker in the balaning market, andaims at optimizing its expeted revenues from these market �oors.The problem is formulated as a Mathematial Program with Equi-librium Constraints (MPEC) and ast as a Mixed-Integer LinearProgram (MILP), whih an be solved employing o�-the-shelf opti-mization software. The optimal bid is shown to deliver signi�antlyimproved performane ompared to traditional bids suh as the fore-ast onditional mean or median of wind power distribution. Finally,sensitivity analyses are arried out to assess the impat on the of-fering strategy of the produer's penetration in the market, of theorrelation between wind power prodution and residual system de-viation, and of the shape of the foreast distribution of wind powerprodution.D.1 NomenlatureD.1.1 Sets
k Index for up-regulation blok o�ered at the balaning market, from 1 to NK
j Index for down-regulation blok o�ered at the balaning market, from 1 to

NJ

ω Index for senario, from 1 to NΩ1DTU Informatis, Tehnial University of Denmark, Rihard Petersens Plads, bld. 305,DK-2800 Kgs. Lyngby, Denmark2Centre for Eletri Power and Energy, Tehnial University of Denmark, Elektrovej, bld.325, DK-2800 Kgs. Lyngby, Denmark



162 Paper DD.1.2 Constants
ck O�ered ost for up-regulation blok k
bj O�ered bene�t for down-regulation blok j
Ck Prodution limit for up-regulation blok k
Cj Consumption limit for down-regulation blok j
wω Own wind power prodution in senario ω
δω Residual system deviation in senario ω
λDA
ω Day-ahead market prie in senario ω
CW Installed apaity for wind power produerD.1.3 Lower-Level Variables
pkω Up-regulation from blok k in senario ω
pjω Down-regulation from blok j in senario ω
λBω Balaning market prie in senario ω
µS
kω Dual variable for apaity onstraint at the balaning market for blok kin senario ω
µD
jω Dual variable for apaity onstraint at the balaning market for blok jin senario ωD.1.4 Upper-Level Variables
xω Wind power produer's o�er in senario ωD.2 IntrodutionIn the reent years, the deployment of wind power into power systems worldwidehas inreased with impressive pae. In part this expansion has been supportedby national governments in the form of market inentives, whih resulted in windpower having a ompetitive advantage with respet to onventional soures of



D.2 Introdution 163energy. In many ases, wind power produers are granted a �xed feed-in tari�or a minimum prie for their prodution, so as to hedge them from the prie�utuations of eletriity markets. Furthermore, they are often relieved of theirbalane responsibility, whih means that the Transmission System Operators(TSOs) bear the osts for the deviations of atual prodution from the generationshedule, whih wind power produers inevitably inur.As the ost per produed MWh of wind power onstantly dereases, wind powerproduers are fored to partiipate in eletriity markets in the same way asonventional power generators. However, wind generation is haraterized bypeuliar features that distinguish it from most of the other eletriity soures.First of all, it is stohasti, and thus an be foreast only with a ertain degreeof auray [1℄. Furthermore, it is non-dispathable. These features imply thatdeviations of the atual prodution from the shedule must be overed by bak-up plants.On the other hand, eletriity markets were oneived at a time when the large-sale penetration of wind power was not foreseen. Therefore, their design isbetter suited to traditional power plants, whih are dispathable and may needa ertain time-lag between the submission of prodution plans and the atualdelivery of power. In modern eletriity markets, most of the energy trade takesplae in so-alled day-ahead markets, with an advane in time typially in therange between 12�36 hours. Partiipants are then allowed to ontrat hangesto their day-ahead shedules either in intra-day or balaning markets. However,pries in suh markets may involve penalties and are generally less attrativeand more volatile than in the day-ahead market.In view of the several market �oors and of the unertainty involved, both inprodution and in market quantities, the problem of determining the optimalbid for a wind power produer is a multi-stage, stohasti optimization problem.So far the state-of-the-art of researh on the topi has foused on the problemof trading wind power as a prie-taker. Considering the day-ahead and the bal-aning market stages only, it an be shown that the optimal day-ahead bid for aprie-taker wind power produer is a ertain quantile of the foreast wind powerdistribution, whih is a funtion of the market pries, see [2℄, as well as [3℄ and [4℄for the ase with stohasti market pries. Suh quantile-based approah is usedto evaluate the performane of wind power foreasts in [5℄ and [6℄, both of whihemploy historial averages of market pries. Furthermore, the performane ofthis approah is analyzed in [4℄ in a realisti test-ase using state-of-the-art fore-asts of both wind prodution and market pries. Another analytial approahis proposed in [7℄, where the optimal bid is hosen in a disrete deision spae,and the unertainty in wind power prodution is modeled using probability ta-bles. Furthermore, an approah based on utility-funtions is presented in [8℄



164 Paper Dalong with the use of persistene foreasting of wind power prodution and his-torial values for market pries. The stohasti programming approah is alsopopular. In [9℄, wind power prodution is modeled using senarios, and histor-ial averages of pries are used. Furthermore, [10℄ deals with the partiipationof wind power produers in multiple market stages (day-ahead, intra-day andbalaning). Reently, [3℄ and [11℄ have shown further analytial results on theproblem of trading wind as a prie-taker.To our knowledge, there are no attempts in the literature to study the optimalbidding for a wind power produer in a prie-maker setting. However, theproblem is beoming inreasingly interesting as, due to its growing penetrationinto power systems, wind power is more and more apable of in�uening marketpries [12℄.This work models the market partiipation of a wind power produer that is aprie-maker3 in the balaning market in the framework of Mathematial Pro-grams with Equilibrium Constraints (MPECs) [13℄. Beause a muh larger vol-ume is traded in the day-ahead market, we assume that the wind power produeris a prie-taker at that stage. Therefore, we an employ senarios for the day-ahead market prie, as well as for wind power prodution and residual systemdeviation. We also assume that bids are independent between di�erent tradingperiods, and therefore onsider a single time period in our formulation. Theoutput of the optimization model onsists of the optimal day-ahead o�er andthe balaning market pries for any realization of wind power prodution andsystem deviation. Sine produers are allowed to bid supply urves in the day-ahead market, the optimal o�er is a non-dereasing urve relating quantities ofenergy to the orresponding minimum aepted pries.The struture of this paper is the following. Setion D.3 introdues the setupof the problem. Then, the mathematial formulation is desribed in detail inSetion D.4. Results from a series of ase studies are presented in Setion D.5.Finally, Setion D.6 onludes the paper.D.3 Problem DesriptionThis setion introdues the eletriity market framework onsidered and thesetup of the problem as a bilevel model.3We de�ne a produer to be a prie-maker when it is apable of impating the marketresult through its o�er in a broad sense, not neessarily only by marking up its prie o�erabove the marginal ost of prodution



D.3 Problem Desription 165D.3.1 Market FrameworkIn this work, we onsider the short-term trade of eletriity in the day-aheadand the balaning market. In the day-ahead market, wind power produers sellprodution for eah trading period of the following day with a ertain advanein time to the atual delivery, typially in the range between 12�36 hours. Sineat the time of o�ering the atual wind power prodution is unertain, produ-ers must settle the exess or de�it of prodution by trading at the balaningmarket. Notie that intra-day markets are not onsidered in this work. Thissimpli�ation is realisti sine these markets have generally low liquidity [14℄.Furthermore, we onsider a one-prie balaning market, i.e., all deviations aresettled at a unique prie, determined aording to the marginal priing rule. Theso-alled two-prie or dual-prie settlement of imbalanes, where the day-aheadmarket prie is applied to unwanted deviations in the opposite diretion to theoverall system imbalane, while the marginal prie at the balaning stage is ap-plied to all the other deviations, is not onsidered in this work. We remark thatonsidering a two-prie balaning market in this framework would be possiblewith some modi�ations, either by modeling the swith between day-ahead andmarginal prie with binary variables, or by employing supply urves dependenton the realization of the system deviation. The former option would ome atthe expense of a higher omputational omplexity, the latter of an inreasedmodeling burden. We underline that, while some markets (e.g., a part of theNordi ountries in Nord Pool [15℄ and the Iberian MIBEL [16℄ in Europe) em-ploy the two-prie system for imbalanes, there are a number of markets wherethe one-prie sheme is adopted (e.g., Norway [15℄, the Duth APX [17℄ and theGerman EEX [18℄ markets).D.3.2 Bilevel SetupThe setup of the problem is skethed in Fig. D.1. The Wind Power Produer(WPP) seeks to maximize its total revenues from the day-ahead and the balan-ing market. Sine we assume that the wind power produer is a prie-taker atthe day-ahead stage, but a prie-maker at the balaning market, only the lear-ing of the latter market is expliitly inluded in the produer's optimizationproblem. This is beause the day-ahead prie is not in�uened by the deisionof the wind power produer and therefore, it an be modeled exogenously witha disrete number of senarios. On the ontrary, there is a dependene betweenthe balaning market learing and the optimization problem of the wind powerproduer. Indeed, the balaning market is leared with knowledge on the bid ofthe wind power produer; in turn, the latter optimizes its o�er on the basis of



166 Paper Dthe antiipation of the balaning market prie, given its o�er and a foreast ofits prodution and of the residual system deviation.
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Figure D.1: Sketh of the problem setupSine we model the unertainty in future wind power prodution and residualsystem deviation with senarios, we need to solve a balaning market learingproblem for eah senario. Suh problem yields, for the partiular realization ofthe unertainties onsidered, the optimal dispath of regulating power and thebalaning market prie, whih enters the upper-level optimization problem (i.e.,the produer's one). In the upper-level objetive funtion, the market outomeorresponding to a ertain senario is weighted by the orresponding senarioprobability.Notie that we model exogenously the market partiipation of players other thanthe onsidered wind power produer through senarios for the residual systemdeviation. In other words, we make use of a statistial tool able to foreastthe aggregate imbalane from other wind power produers, possibly biddingstrategially, and the load. However, if prodution foreasts for all the otherwind power produers are available, ompetition should be modeled through anEquilibrium Program with Equilibrium Constraints (EPEC) [19℄. We leave thisomplex topi for future researh.D.4 Mathematial FormulationThe bilevel optimization sheme outlined in Setion D.3.2 orresponds to astohasti formulation of an MPEC. We �rst formulate the problem in the gen-



D.4 Mathematial Formulation 167eral framework of stohasti MPECs in Setion D.4.1. Then, we present theformulation of the lower-level problems in Setion D.4.2, and of the upper-levelone in Setion D.4.3.D.4.1 Stohasti MPEC FormulationThe problem at hand has a bilevel struture where several (lower-level) optimiza-tion problems are nested in another (upper-level) one. This an be formulatedas a stohasti MPEC as follows.
Max. f(x,λB) (D.1a)
s.t. h(x,λB) ≤ 0 , (D.1b)
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{gNΩ(x,y)} . (D.1e)The upper-level problem onsists in the maximization of the objetive funtion
f(x,λB) in (D.1a) subjet to the feasibility onstraint (D.1b), and further on-strained by the optimality onditions of the lower-level problems (D.1)�(D.1e).For a risk-neutral wind power produer, the objetive funtion f(x,λB) is theexpeted value of the total revenues in the day-ahead and balaning markets,given the information available at the time of bidding. The deision variables ofthe upper-level problem are the bid x in the day-ahead market, as well as thevariables of the lower-level problems.The lower-level problems are represented by (D.1)�(D.1e) for all senarios
ω = 1, 2, . . . , NΩ. Suh problems aim at the minimization of the objetivefuntions gω(x,y), provided that the deision vetor y is inluded in the feasi-ble sets Fω(x). As we will see in the following setion, the objetive funtionof this problem represents the system balaning osts in the realization ω ofthe unertainty, whih are minimized in the balaning market. The learingof this market results in the dispath of balaning power pω, primal variableof the lower-level problem, as well as in the dual variables λBω and µω. Notiethat, as the remainder of the setion will larify, we are partiularly interestedin the value of λBω . Indeed, this variable indiates the balaning market prie insenario ω, whih enters the upper-level optimization problem. Notie also that



168 Paper Dthe lower-level problems are parameterized in the wind power produer's o�erin the day-ahead market x, whih enters suh problems as a onstant.Formulation (D.1) is not suitable for being solved diretly by an optimizationsolver, owing to the nested optimization of the lower-level problems in (D.1)�(D.1e). However, suh optimization problems an be replaed by their Karush-Kuhn-Tuker (KKT) onditions, for whih a mixed-integer linear formulationexists, under reasonably mild assumptions. Indeed, KKT onditions are ne-essary and su�ient for optimality if the lower-level problems are onvex andtheir onstraints satisfy some regularity onditions [20℄. If this holds, bilevelproblem (D.1) an be reformulated as a single-level optimization problem. Wederive this formulation expliitly in the remainder of this setion.D.4.2 Lower-Level ProblemThe solution to the problem below for eah senario ω lears the balaningmarket.Min.
pkω ,pjω
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ckpkω −

NJ∑

j=1

bjpjω (D.2a)s.t. NK∑
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pkω −
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pjω = −(wω − xω)− δω : λBω , (D.2b)
− pkω ≥ −Ck : µS

kω ∀k , (D.2)
− pjω ≥ −Cj : µD

jω ∀j , (D.2d)
pkω , pjω ≥ 0 ∀k, j . (D.2e)The deision variables pkω and pjω represent the dispath of up- and down-regulation power, respetively, from blok o�ers k and j. The parameter ck isthe prie o�er (per unit ost) assoiated with the deployment of supply powerfrom blok k. Similarly, bj is the per unit bene�t assoiated with the powerprodution derease (down-regulation) from blok j. Therefore, objetive (D.2a)is the balaning ost in senario ω. The balane of supply and demand isenfored by (D.2b). Indeed, the terms on the right-hand side of the equationare, after a hange in sign, the sum of the deviation from the wind powerproduer (atual prodution wω minus day-ahead bid xω) and from all the othermarket partiipants (δω). Notie that the residual system deviation and theproduer's own imbalane are to be onsidered as a perfetly inelasti demand(or supply) of power, whih must be met at any market prie. Consequently,these two terms do not appear in the objetive funtion (D.2a), while theirsum is enfored to be equal to the power output of �exible generators at the



D.4 Mathematial Formulation 169balaning stage through (D.2b). Equations (D.2) and (D.2d) ensure that thedispath of regulating power is not greater than the apaities Ck and Cj , whihare the sizes of the blok o�ers in the balaning market. Finally, non-negativityof the power dispath is enfored by (D.2e). Notie that the dual variables ofthe problem are indiated after eah onstraint preeded by a olon. Variable
λBω is of partiular importane, as it indiates the marginal ost of prodution,whih is the balaning market prie in a one-prie imbalane settlement.As one an notie, problem (D.2) is linear and thus it an be equivalently rep-resented by the following set of KKT onditions [20℄
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0 ≤ pjω ⊥ −bj + λBω + µD
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pjω = −(wω − xω)− δω , (D.3)
0 ≤ µS

kω ⊥ Ck − pkω ≥ 0 ∀k , (D.3d)
0 ≤ µD

jω ⊥ Cj − pjω ≥ 0 ∀j , (D.3e)where the ⊥ operator separating two inequalities implies that at least one ofthem holds stritly. Conditions (D.3a) and (D.3b) are stationarity onditions;the inequalities on the right-hand side de�ne, along with the non-negativityde�nitions on the left-hand side of (D.3d) and (D.3e), the feasible spae of thedual problem. Conditions (D.3d) and (D.3e) are omplementarity slaknessonditions; the inequalities on the right-hand side de�ne, along with (D.3) andthe non-negativity de�nitions on the left-hand side of (D.3a) and (D.3b), theprimal feasible spae.Sine the ⊥ operator is equivalent to requiring that the multipliation betweentwo linear expressions be equal to 0, the KKT onditions (D.3) inlude nonlin-earities. However, it is possible to linearize suh onditions by employing binaryvariables [21℄, yielding the following set of optimality onditions
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jω ∈ {0, 1} ∀k, j , (D.4j)where the M onstants are large enough to guarantee that the inequalities arenever binding when the right-hand side is di�erent from 0. Notie that, aslong as suh assumption holds and in view of the binary variable de�nitionsin (D.4j), we have that onstraints (D.4a) and (D.4b) are equivalent to (D.3a);(D.4) and (D.4d) to (D.3b); (D.4f) and (D.4g) to (D.3d); (D.4h) and (D.4i)to (D.3e). Eah balaning market learing problem, i.e., for every senario, anbe replaed by its KKT onditions (D.4).Furthermore, for reasons that will beome apparent later in this setion, it isinteresting to notie that the dual of the lower-level problem (D.2) is, for everysenario ω,Max.
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jω ≥ 0 ∀k, j . (D.5d)The optimal objetive funtion values of (D.5) and (D.2) are equal.Finally, we stress that the network is not onsidered in this balaning marketlearing model. This simpli�ation, however, is justi�ed in a European ontext,sine the vast majority of European eletriity markets employ zonal priing.D.4.3 Upper-Level ProblemIn a one-prie system, all deviations from the day-ahead shedule are settledat the marginal ost, i.e., the dual λBω of the balane equation (D.2b) at thebalaning market. Hene, the optimization problem of a wind power produerwrites asMax.

xω, pkω , pjω ,
λB
ω , µ

S
kω , µ

D
jω

E
{
λDA
ω xω + λBω (wω − xω)

} (D.6a)s.t. 0 ≤ xω ≤ CW ∀ω , (D.6b)
xω = xω′ ω, ω′ ∈ Ωi, ∀i , (D.6)
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xω ≤ xω′ ω ∈ Ωi, ω

′ ∈ Ωj , i < j , (D.6d)KKT onditions of the lower-level problems .The objetive funtion (D.6a) is the expetation of the sum of two terms. The�rst term represents the revenues in the day-ahead market in senario ω, sine itis given by the multipliation of the day-ahead market prie λDA
ω with the o�er

xω in the same market. In an analogous fashion, the seond term representsthe revenues at the balaning stage in senario ω. Therefore, the objetivefuntion is the expeted total revenues at the two market �oors. Notie that,sine the wind power produer is a prie-taker in the day-ahead market, λDA
ω is aparameter and not an optimization variable. Furthermore, sine the leared day-ahead prie is dislosed prior to the realization of the stohasti prodution andthe residual system deviation in real-time, senarios for the day-ahead prie anbe onsidered as �rst-stage senarios, while the other senarios an be regardedas seond-stage. This implies that the senario set Ω an be partitioned in anumber of subsets Ωi, aross whih the day-ahead prie is onstant, i.e.,

λDA
ω = λDA

ω′ , ∀ω, ω′ ∈ Ωi, ∀i . (D.7)Furthermore, sine the order of the partitions Ωi is arbitrary, we assume thatthey are sorted so that the orresponding day-ahead prie is inreasing, i.e.,
λDA
ω ≤ λDA

ω′ , ∀ω ∈ Ωi, ∀ω
′ ∈ Ωj , i < j . (D.8)Constraint (D.6b) enfores that the bid of the wind power produer be inludedin the range between 0 and the installed apaity CW. Furthermore, marketpraties usually allow produers to submit bids in the form of non-dereasingsupply urves, i.e., prie-quantity pairs indiating howmuh energy the produeris willing to deliver at a ertain day-ahead prie. Constraints (D.6) and (D.6d)together ensure that the wind power produer's o�er is onsistent with suhpraties, based on the partitioning of the senario set Ω imposed by (D.7)and (D.8). Equation (D.6) is a non-antiipativity onstraint, whih imposesthat a single quantity is o�ered for every �rst-stage senario (realization ofthe day-ahead prie). Constraint (D.6d) enfores that the o�er urve is non-dereasing.The problem is ompliated by the bilinear terms λBωxω in the objetive fun-tion (D.6a), whih an be linearized by applying the strong duality theorem onthe lower-level (market-learing) problem. At optimality, the objetive value of



172 Paper Dthe primal (D.2) and the dual (D.5) problems are equal, i.e.,
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j=1

bjpjω =− λBω [(wω − xω) + δω]

−

NK∑

k=1

Ckµ
S
kω −

NJ∑

j=1

Cjµ
D
jω .

(D.9)We an therefore reformulate the term inside the expetation operator in (D.6a)as follows
λBω (wω − xω) =−

NK∑

k=1

(
Ckµ

S
kω + ckpkω

)

+

NJ∑

j=1

(
−Cjµ

D
jω + bjpjω

)
− λBωδω ,

(D.10)where the expression on the right-hand side is linear.The �nal optimization problem, inorporating the linearization of the bilinearterms in (D.10) and of the KKT onditions of the lower-level problem in (D.4), aswell as using a �nite number of senarios for desribing the unertainty, so thatthe expetation operator in (D.6a) redues to a sum weighted by probabilities,writes asMax.
Θ

NΩ∑

ω=1

πω

{
λDA
ω xω −

NK∑

k=1

(
Ckµ

S
kω + ckpkω

)

+

NJ∑

j=1

(
−Cjµ

D
jω + bjpjω

)
− λBωδω

} (D.11a)s.t. (D.6b)�(D.6d) ,(D.4a)�(D.4j) ∀ω .The set of deision variables inludes variable xω of the upper-level problem, thevariables of the primal and the dual lower-level problems, as well as the binaryvariables needed for the linearization of the omplementarity onditions, i.e.,
Θ =

{
xω, pkω, pjω , λ

B
ω , µ

S
kω , µ

D
jω,

zS1kω, z
D1
jω , z

S2
kω , z

D2
jω , ∀k, j, ω

}
.

(D.12)Notie that model (D.11) is a Mixed-Integer Linear Problem (MILP), whih anbe solved employing o�-the-shelf optimization software.



D.5 Appliation Studies 173D.5 Appliation StudiesThis setion desribes a series of studies on the appliation of the presentedmodel in a realisti setup. At �rst, the models employed in the examples forrandom variables are desribed in Setion D.5.1. Then, results obtained in asingle example are ommented on in Setion D.5.2. Finally, Setions D.5.3,D.5.4 and D.5.5 present the results of sensitivity analyses assessing the impatof the produer's market penetration, of the orrelation between its output andthe residual system deviation, and of the shape of the foreast wind powerprobability density funtion, respetively.D.5.1 Modeling the UnertaintyThe unertainties in the system, i.e., day-ahead prie, wind power produtionand system deviation, are modeled using a disrete set of senarios. It is assumedthat the �rst-stage variable (day-ahead prie) is independent of the seond-stageones (wind power prodution and residual system deviation). This basiallymeans that we an build the senario tree by generating �rst-stage and seond-stage senarios independently, and assoiating a opy of the seond-stage se-narios to eah �rst-stage senario. Note that this assumption implies no loss ofgenerality for the proposed method, sine it ould be overome by employinga senario generation method aounting for the possible dependeny struturebetween �rst-stage and seond-stage variables. We underline that this ould beahieved without inreasing the size of the optimization problem, and therefore,it is merely an issue linked to the senario generation method, whih is out ofthe sope of this paper. Finally, we point out that this independene assump-tion might be not valid in pratie in markets with high penetration of windpower prodution, espeially as far as the relationship between the day-aheadprie and the foreast wind power distribution is onerned [12℄. In this regard,however, we would like to underline that this simpli�ation does not result inan overestimation of the eonomi improvement obtained with the proposed of-fering model, but quite the opposite. In fat, negleting the possible orrelationbetween these variables would result in onservative performane results in om-parison to more �traditional� trading strategies (e.g., o�ering the foreast meanor a ertain quantile), whih do not allow di�erentiated o�ers on the basis ofthe realization of the day-ahead prie, as the proposed method does.Day-ahead prie senarios were generated by random sampling from the prob-abilisti foreast of the spot prie in Nord Pool for the 12th trading period ofthe 7th September 2011. The probabilisti foreast is obtained by employingthe semi-parametri approah extensively desribed in [22℄. That method om-



174 Paper Dbines a nonparametri desription of the entral part of preditive distributionsbased on quantile regression for quantiles with nominal proportion between 5%and 95%, and a parametri (exponential) desription of the distribution tails.The quantile regression models use the predited onditional expetations ofday-ahead prie and load as input. The parameters in the quantile regressionmodels are adaptively estimated using the method of [23℄, while the parametersfor the exponential tails are estimated one and for all under the maximumlikelihood riterion.As far as the seond-stage variables are onerned, we employ Beta distributionsto model wind power generation, as advoated in [24℄. In pratial appliationsit would be desirable to make use of a state-of-the-art foreasting tool employ-ing a non-parametri model for the distribution of wind power prodution [25℄.However, Beta distributions are su�iently realisti to the purpose of this paper.Furthermore, notie that this assumption implies no loss of generality, as draw-ing senarios from a non-parametri distribution would result in no additionalomplexity for the proposed optimization method.For the residual system deviation we onsider a Student's t-distribution, whihprovides a good �t for the hourly data for net system deviation in Western Den-mark (DK-1 area prie in Nord Pool) during the year 2011, whih are availableat [26℄. A histogram of the atual data and an illustration of the parametri�t are provided in Fig. D.2. One again, in a pratial appliation it wouldbe desirable to employ a state-of-the-art probabilisti model to desribe thisstohasti variable, possibly getting rid of the stationarity assumption impliitin our approah.
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Figure D.2: Histogram for system deviation in Western Denmark (DK-1 priearea of Nord Pool) during 2011, and �t using a Student's t dis-tribution



D.5 Appliation Studies 175The parameters employed for these distributions are shown in Table D.1. Fur-thermore, notie that when sampling senarios for the system deviation fromthe Beta distribution, we disarded senarios lower (greater) than the 0.001(0.999) quantile. This is done beause arbitrarily low (or high) values of sys-tem deviation ould be sampled, whih is not realisti and ould potentiallydestabilize the results of the analysis. Furthermore, it should be notied thatthe standard deviation of the Student's t-distribution used for the residual sys-tem imbalane is 217.57MWh, whih is omparable to the installed wind powerapaity CW = 300MW owned by the produer. On the ontrary, the totalinstalled apaity in Denmark is approximately 14GW. These two �gures arein line with the assumption that the produer is a prie-taker at the day-aheadmarket, where a signi�ant share of the total installed apaity is supposed topartiipate, and a prie-maker at the balaning market, whose trading volumeorresponds to the total system imbalane.Table D.1: Information on stohasti input parametersStohasti Distribution Parameters # senariosvariable type original redued
λDA non-parametri - 10 000 12
w Beta α = 3.78 10 000 100β = 1.62

CW = 300

δ Student's t µ = −0.96 10 000 100σ = 161.14
ν = 4.43As one an see in Table D.1, 10 000 senarios were generated independently foreah stohasti variable. In order to impose di�erent rank orrelation levels be-tween wind power prodution and system deviation, we employed the methodin [27℄: �rst, we generated two random permutations of 10 000 Normal sores;then, we imposed the desired orrelation (notie that Pearson and Spearmanorrelation almost oinide for Gaussian variables) by multiplying the permuta-tions by the Cholesky fator of the desired rank orrelation matrix; �nally, wereordered the random samples for wind power prodution and system deviationaording to the order of this produt.After this, we made use of the fast-forward senario redution tehnique [28℄ toderease the number of �rst-stage and seond-stage senarios to 12 and 100, re-spetively. This proedure is based on a heuristi that iteratively adds senariosto a redued set, so as to minimize the maximum mutual distane between ele-ments. Then, probabilities of the redued senarios are determined by assigning



176 Paper Dthe probability of eah senario in the original set to the losest element in theredued set.The last variables to be set are the ones haraterizing the bids of partiipantsat the balaning market, i.e., the per unit osts (bene�ts) of o�ered produtioninrease (derease), ck (bj), and the size of the respetive bloks Ck (Cj). Dataof individual bids at the balaning market are hardly available, owing to theon�dentiality poliies of market and transmission system operators. However,Nord Pool Spot publishes historial supply urves for the day-ahead Sandina-vian market [29℄.We employed the supply urve for the 12th trading period on the 7th September2011 and the senarios generated for the day-ahead prie in Nord Pool for thesame day and time to build bids for up- and down-regulation. First of all, wehalved the apaity of the day-ahead bids in order to aount for the fat thatnot all the generators trading in the day-ahead market are partiipating at thebalaning market. This results in the marginal ost urve illustrated in Fig. D.3.Assuming that all the produers whose marginal ost is below the day-ahead
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Figure D.3: Marginal ost urve at the balaning marketprie senario are dispathed at the day-ahead market, and the ones whoseost is above suh prie are not, we onsider that down-regulation (produtionderease from shedule) is supplied by the former partiipants and up-regulationby the latter ones. This way, we obtain a set of balaning market bids that isdependent on the �rst-stage senario, i.e., the realization of the day-ahead prie.In total we employedNK+NJ = 159 o�er bloks in the ase study, with variabletotal numbers of up- and down-regulation bloks depending on the level of theday-ahead prie, as a result of the splitting of the urve explained above.



D.5 Appliation Studies 177Notie that, despite we derive the bids from a supply urve, demand ouldprovide regulation as well at the balaning market by inreasing or dereasingthe sheduled onsumption.D.5.2 Results with Optimal BiddingIn the �rst ase study, we employ the dataset generated as desribed in theprevious setion and impose a orrelation ρ = 0.3 between the out-turn of thewind power produer and the residual system deviation using the method in [27℄,whih is brie�y skethed in Setion D.5.1.De�ning the produer's penetration in the balaning market, ψ, as the ratiobetween the standard deviation of the wind power distribution and its sum withthe standard deviation of the residual system imbalane, we obtain
ψ =

σw
σw + σδ

= 19.88% . (D.13)Notie that this de�nition of penetration is only one among several possibleones. However, as lari�ed later, it is intuitive as an inrease in ψ is obtainedby saling up the wind power produer's apaity, and saling down the totalsystem deviation.In this ase, a totally prie-insensitive day-ahead o�er is optimal, onsisting ofthe following optimal quantity
x = 76.69MWh . (D.14)First of all, it seems that the possibility of o�ering a urve does not lead toimproved market results in this ase, as the produer prefers a single quantitybid. We link this feature to the hoie of a mostly onvex supply urve, seeFig. D.3. Indeed, for inreasing pries, the penalty given by the prie spreadbetween the day-ahead and the balaning markets tends to be higher for a�short� produer (i.e., produing less than the day-ahead o�er). This impliesthat the higher the day-ahead prie, the lower the optimal bid for the produer.However, this is not possible sine onstraint (D.6d) enfores that the bid urvebe not dereasing.Seond, the optimal quantity bid in (D.14) appears to be a rather low quantileof the wind power distribution. Indeed, it lays just below the lowest senario forwind power prodution. However, notie that this bid is far from being trivial.Indeed, for a prie-taker wind power produer in a market with one-prie settle-ment of imbalanes, the optimal bid would be either 0 or the nominal apaity,



178 Paper Ddepending on whether the expetation of the balaning prie is higher or lowerthan the day-ahead prie [3℄. Besides, wind power produers often bid the fore-ast onditional mean of wind power distribution in pratie, whih is pereivedas a �safe� strategy. Among the reasons for this is the fat that there is a wellestablished literature on point foreasting for wind power prodution, and thefat that point foreasts have been used for years sine wind generation beamea ontributor to the eletriity generation mix in power systems. Furthermore,point foreasts suh as the onditional mean are reognized as risk-averse, as itminimizes the expeted squared deviation from atual prodution [4℄. Remark-ably, none of these possible o�ers are optimal.Table D.2 reports the main �nanial results obtained by bidding the optimalquantity (D.14). The �rst and seond olumns represent the improvement inaverage market revenues as ompared to the strategies of o�ering the onditionalmean and median of wind power distribution in the day-ahead market. Thethird olumn, instead, ompares with the ase where the atual prodution istraded exlusively at the balaning market. Notie that the nominal apaityo�er is not inluded in the table, as this o�er is far from being optimal with ahokey-stik supply urve suh as the one depited in Fig. D.3.The improvement is above 3% as ompared to bidding the mean or the median,and above 1.5% better than with a null day-ahead bid. The last olumn re-ports the average energy prie (e 54.26/MWh) obtained by averaging the ratiobetween revenues and wind power prodution over the senario set.Table D.2: Finanial results obtained using the optimal bidPro�t improvement w.r.t. Average priemean (%) median (%) zero (%) (e/MWh)3.08 3.25 1.58 54.26Finally, it should be notied that, while the o�er in (D.14) is aimed at max-imizing the expeted revenues, no aount is taken of the possible impat onthe produer's imbalane. Indeed, this o�er results in an expeted average im-balane (in absolute value) equal to 122.06MWh. On the other hand, a knownresult is that the expeted absolute value of the imbalane is minimized by o�er-ing the foreast median, whih in this ase would yield an expeted imbalaneof 44.82MWh. We refer the reader to [4℄ for further disussion on the topi aswell as for quantitative results obtained in a prie-taker setting.The optimization desribed above was performed using CPLEX 12 in GAMS.The model size is reported in Table D.3. The algorithm onverged in 1680 s



D.5 Appliation Studies 179on a laptop equipped with a 4-ore proessor loking at 2.66GHz. Despitethe model size, the problem was solved relatively fast. In this respet, it isworth mentioning that the algorithm was warm-started by setting the binaryvariables to the values resulting from the market-learing proedure when thewind power produer's o�er is set to the mean of the senario set for produtionat any prie level. Notie that the latter problem is an LP, and therefore solvesrather quikly. Table D.3: Redued model size in CPLEXSizeRows 57 353Columns 35 748Non-zeros 150 797Binaries 17 885D.5.3 Sensitivity Analysis: Market PenetrationAs mentioned in the previous setion, we expet the optimal bid for a smallwind power produer to be either 0 or the nominal apaity when the latterquantity is small ompared to the residual system deviation. On the ontrary,in the idealized situation where the produer is the only partiipant inurringdeviations from the day-ahead shedule, we would expet that the optimal bid belose to the median of the onditional wind power distribution. This is beausethe resulting balaning market prie would always be less favorable than theday-ahead market prie. In the ases in between these two extremes, we expetthe bid to have an intermediate behavior.Di�erent levels of penetration ψ, as de�ned in (D.13), of the wind power pro-duer in the balaning market an be obtained simply by saling the windpower prodution (D.15) and the residual system deviation (D.16), so as tosatisfy (D.17). Sine there is one degree of freedom left, we an hoose thesaling fators A and B that leave unhanged the sum between the installedwind power apaity and the maximum absolute value of system deviation, asenfored by (D.18).
wiω = Awω , (D.15)
δiω = Bδω , (D.16)
ψi =

σwi

σwi + σδi
=

Aσw
Aσw +Bσδ

, (D.17)
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ACW +max

ω

{∣∣δiω
∣∣} = CW +max

ω
{|δω|} . (D.18)This makes omparisons more onsistent, sine we an expet similar pries withsimilar total deviation levels in the balaning market. We onsider penetrationlevels spanning from 10% to 25% with an interval of 2.5%.Fig. D.4 shows the optimal bids obtained for the penetration levels mentionedabove. As one an notie, the optimal o�er in the day-ahead market is 0 withthe lowest value of penetration ψ = 10%. Then, the urve tends to inreasewith the value of ψ, as we expeted from our intuitive analysis.
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Figure D.4: Day-ahead o�er urves with di�erent levels of market penetrationof the produerThe main �nanial results are summarized in Table D.4. It is important to notiethat, as ψ inreases, the improvement obtained using the optimal bid versus theonditional mean and median drops from over 7% to about 2%. On the ontrary,the improvement ompared to the zero day-ahead o�er rises from 0% to around2.5%. Finally, the average prie obtained dereases by e 3.5/MWh. This resultis also in line with the expetations, sine an inreasing penetration implies thatthe total imbalane will tend to be in general of the same sign as the produer'sdeviation, thus leading to less favorable pries.D.5.4 Sensitivity Analysis: CorrelationFor the study in this setion, we reorder the seond-stage senarios so as toimpose a rank orrelation level of -0.7, -0.3, 0, 0.3 and 0.7, using the method



D.5 Appliation Studies 181Table D.4: Finanial results with di�erent levels of market penetration of theproduerProduer Pro�t improvement w.r.t. Average priepenetration (%) mean (%) median (%) zero (%) (e/MWh)10 7.34 7.58 0.00 56.9012.5 5.97 6.20 0.03 56.1015 4.56 4.79 0.16 55.3417.5 3.63 3.81 1.26 54.6820 3.05 3.23 1.58 54.2422.5 2.53 2.70 2.18 53.7625 1.96 2.13 2.53 53.40in [27℄, whih is skethed in Setion D.5.1.The optimal o�ering urves are depited in Fig. D.5. As it appears, there isa dereasing trend in the day-ahead o�er, whih drops from roughly 170MWh(ρ = −0.7) to about 40MWh (ρ = 0.7). Apparently, the produer takes bet-ter advantage of the negative orrelation with the residual system deviation bybidding loser to its median. Indeed, suh a bid implies that the produer'sdeviation is more frequently of opposite sign ompared to the system imbal-ane, and will therefore result in more favorable balaning market pries. Withinreasing orrelation, a low bid better hedges the produer from the highestbalaning pries, whih ours when the system is short of power.
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ρ = 0.7Figure D.5: Day-ahead o�er urves with di�erent levels of orrelation betweenthe wind power output of the produer and the residual systemdeviation



182 Paper DTable D.5 reports the main �nanial results in this sensitivity study. The higherthe orrelation, the larger the improvement with respet to bidding the median.Contrarily, the improvement with respet to the zero day-ahead bid drops. Fi-nally, the average prie diminishes with inreasing orrelation, whih is an intu-itive result, sine a high orrelation between own and system deviations impliesless favorable pries in the balaning market.Table D.5: Finanial results with di�erent levels of orrelation between thewind power output of the produer and the residual system devi-ationCorrelation Improvement w.r.t. Average priemean (%) median (%) zero bid (%) (e/MWh)-0.7 0.19 0.27 4.72 54.84-0.3 0.69 0.95 3.57 54.470 1.89 2.59 2.33 54.360.3 3.08 3.25 1.58 54.260.7 7.43 8.05 0.13 52.93
D.5.5 Sensitivity Analysis: Distribution ShapeIn this setion, we onsider di�erent Beta distributions modeling the foreastprobability density funtion (pdf) of wind power prodution. To this end, weonsider four di�erent values ([1.89, 3.78, 5.67, 7.56]) for the parameter α of theBeta distribution, and four di�erent values ([1.62, 3.24, 4.86, 6.48]) for β. Toassess the e�et of a hanging distribution on the performane of the proposedstrategy, we onsider the 16 possible ombinations of these parameter values.The onsidered parameter spae overs a wide range of ases of wind powerprodution. Qualitatively speaking, the hosen parameters give rise to pdfswith low mean and positive skewness when α < β, with mean around half theinstalled wind power apaity and skewness lose to 0 when α ≈ β, and todistributions with high mean and negative skewness when α > β. Fig. D.6illustrates three examples of Beta distributions, one for eah group desribedabove, obtained with parameter values employed in the simulation.To analyze the performane improvement brought by the proposed optimalstrategy, we test it against two usual benhmarks for day-ahead market o�er:the zero-o�er and the onditional mean of wind power distribution.
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Figure D.6: Examples of Beta distributions as parameters hange: α = 1.89and β = 6.48 result in the low-mean distribution, α = 7.56 and
β = 6.48 in the mid-mean distribution, α = 7.56 and β = 1.62 inthe high-mean distributionIn Fig. D.7, the improvement in expeted pro�t with respet to the zero o�eris shown as a surfae for the 16 ombinations of the α and β parameters of theBeta distribution onsidered. As one an notie, the improvement lies between0 and 3%, whih is onsistent with the magnitude of the improvement observedin the previous studies. Remarkably, the zero-o�er is basially optimal for lowvalues of α and high values of β, whih result in low-mean Beta distributions.Furthermore, there is a rather visible inreasing trend of the performane im-provement toward the right-hand side of the �gure, where we �nd graduallyhigher values of α and lower values of β. Indeed, the ombinations of param-eters loated on the right orner of the �gure result in distributions with thehighest mean and most negative skewness. Intuitively, it is reasonable that thezero o�er beomes less and less e�ient as the power distribution shifts loserto the installed apaity.Fig. D.8 illustrates the improvement with respet to o�ering the foreast on-ditional mean of wind power prodution. One again, the magnitude of theimprovement is onsistent with the results obtained so far. Besides, there is atrend speular to the one observed in Fig D.7. Indeed, the performane improve-ment dereases as we move from the left to the right-hand side of the �gure. Thistrend highlights that, with ombinations of α and β yielding distributions withhigh mean and negative skewness, the margin for improvement of the optimalstrategy ompared to o�ering the onditional mean dereases.Finally, let us point out that the surfaes in Figs. D.7 and D.8 are obtained
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Figure D.7: Pro�t improvement with respet to o�ering zero as a funtion ofthe parameters α and β of foreast wind power distributionfrom a single simulation per set of parameter values. These surfaes orrespondto one of the potential realizations from a stohasti proess, the stohastiityoming from how representative these partiular sets of senarios may be. If onewanted to have a full (though very ostly) piture of the potential variations inthese surfaes, one would have to repeat the simulations several times in a MonteCarlo fashion, therefore obtaining their empirial probabilisti desriptionD.6 ConlusionThis paper onsiders the optimization problem of a wind power produer be-ing a prie-taker at the day-ahead market, but a prie-maker at the balaningmarket. We model this problem as a Mathematial Program with EquilibriumConstraints (MPEC) and ast it as a Mixed-Integer Linear Program (MILP).Unertainty in day-ahead prie, wind power prodution, and system deviationis modeled by employing senarios.Through a ase study built from Nord Pool, the Sandinavian eletriity market,and onsidering a one-prie settlement of imbalanes, we show that the optimalday-ahead bid is di�erent from the zero and the nominal apaity o�er, as wellas from the foreast onditional mean and median of wind power distribution.This result is non trivial, sine for a prie-taker produer the optimal bid iseither zero or the nominal apaity. The improvement in expeted revenueswith respet to these strategies amounts to between 1.5% and 3%.
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Figure D.8: Pro�t improvement with respet to o�ering the foreast meanas a funtion of the parameters α and β of foreast wind powerdistributionFurthermore, we assess the impat of the produer's market penetration, or-relation with the system imbalane and shape of foreast distribution of powerprodution. We �nd that the optimal o�er in the day-ahead market is inreasingwith market penetration and dereasing with orrelation. Besides, the averagemarket value of the energy traded by the wind power produer is a dereas-ing funtion of both parameters. Finally, we show a onsistent performaneimprovement up to 5% with respet to o�ering zero or the mean at the day-ahead market, under a number of di�erent distributions of foreast wind powerprodution.This work opens up several diretions for future researh. First of all, it would beinteresting to assess the impat of market design on the optimal o�ering strategyand on the market results for the wind power produer, by modeling e.g., thetwo-prie imbalane settlement. This would shed light on the urrent debateon the optimal design of balaning markets. Furthermore, the model ould beextended so as to allow trading in the intraday market. Besides, onsidering theo�ering problem of a wind power produer that is a prie-maker at all marketstages would be a relevant extension. Modeling the eletriity network ould beanother important upgrade of the model presented. Another topi of researhonsists in devising a method to solve this problem by using deompositiontehniques, apable of exploiting its struture. Finally, modeling ompetitionbetween wind power produers in the framework of Equilibrium Problems withEquilibrium Constraints (EPECs) would be partiularly interesting.
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E.1 Introdution 193Modeling Demand Response in Eletriity RetailMarkets as a Stakelberg GameMaro Zugno1, Juan Miguel Morales2, Pierre Pinson1, Henrik Madsen1AbstratWe model the retail market with dynami priing as a Stakelberggame where both retailers (leaders) and �exible onsumers (follow-ers) solve an eonomi ost-minimization problem. The eletriityretailer optimizes an eonomi objetive over a daily horizon by set-ting an hourly prie-sequene, whih is then ommuniated to theend-onsumers. In turn, on the basis of suh prie sequene, on-sumers optimize a utility funtion that aounts both for energyprourement osts and for the bene�t loss resulting from deferringonsumption. The game is formulated as a Mathematial Problemwith Equilibrium Constraints (MPEC) and ast as a Mixed IntegerLinear Program (MILP), whih an be solved using o�-the-shelf op-timization software. In an illustrative example, we onsider a retailerassoiated with both �exible demand and wind power prodution.Suh an example shows the e�ieny of dynami priing as a way toontrol the load for minimizing the imbalanes due to wind power,assesses the overall eonomi results for the retailer and the on-sumers as well as the dynami properties of onsumer �exibility.E.1 IntrodutionThe inreasing politial pressure to redue the environmental impat of ele-triity generation is ausing a massive deployment of prodution apaity fromunpreditable and intermittent renewable energy soures, suh as wind and so-lar. Failitating the integration of suh soures in eletriity markets is thereforeseen as of primary importane.1DTU Informatis, Tehnial University of Denmark, Rihard Petersens Plads, bld. 305,DK-2800 Kgs. Lyngby, Denmark2Centre for Eletri Power and Energy, Tehnial University of Denmark, Elektrovej, bld.325, DK-2800 Kgs. Lyngby, Denmark



194 Paper EPower markets nowadays are still designed aording to the priniple of demand-following supply, whih ditates that the energy generation portfolio of thesystem should be �exible enough to always math the load. Given the non-dispathable nature of wind and solar power, whih annot guarantee a ertainprodution level in all meteorologial onditions, a reliable power system opera-tion needs the bakup from dispathable, onventional soures. Obviously, thisfat limits the share of renewable generation apaity that an be integrated ina power system.One of the key fators for easing the large-sale integration of renewables is de-mand response. Indeed, its e�ient deployment an bring about a shift in powermarkets, by endowing them with a supply-following demand whose �exibility anbe exploited to math the variable output of renewable soures. Several initia-tives have been proposed in order to involve both large and small onsumers inthe provision of demand �exibility, inluding most notably load shedding pro-grammes, time-of-use and real-time tari�s for onsumers [1℄. Although largeonsumers are already allowed in many European ountries to provide demandresponse, e.g. by partiipating at power exhanges or at load shedding pro-grammes, the development of initiatives to involve small onsumers are still atan experimental stage.In order to involve small onsumers in demand response, many advoate theuse of dynami prie signals. Several questions, though, are still unanswered,inluding quantifying the potential of dynami priing for peak-shaving, load-shifting and redution of imbalane osts, its impat on the soial welfare andthe redistribution of the welfare surplus to the players involved.In this work, we model the retail market with dynami priing as a Stakelberggame [2℄ where both retailers (leaders) and �exible onsumers (followers) solvean eonomi ost-minimization problem. The eletriity retailer optimizes aneonomi objetive over a daily horizon by setting an hourly prie-sequene,whih is then ommuniated to the end-onsumers. In turn, on the basis ofsuh a prie sequene, onsumers optimize a utility funtion that aounts bothfor energy prourement osts and for the bene�t loss resulting from deferringonsumption. We onsider that onsumers are �exible in their onsumption forheating, and model heating dynamis using state-spae models similar to [3℄.This paper is strutured as follows. Setion E.2 illustrates the oneptual frame-work from a high-level perspetive. The mathematial formulation of suhframework is then presented in Setion E.3. An illustrative example enlight-ening the main features of the model is introdued in Setion E.4. Finally,Setion E.5 onludes the paper.



E.2 Coneptual framework 195E.2 Coneptual frameworkThis setion illustrates the general onept behind the model presented in thispaper, whih is a Stakelberg (or leader-follower) game. The struture of suha game is represented as a blok diagram in Figure E.1. A leader, in this ase
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f (π, l1, l2, . . . , ln)
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· · ·
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Figure E.1: Coneptual framework for modeling demand response as a bilevelprogram. Solid arrows indiate exhange of information, whiledashed arrows represent inferenes on the onsumer behaviorthe retailer, minimizes its objetive funtion f(π, l1, l2, . . . , ln). For the sake ofgenerality of this setion we will leave the de�nition of the objetive funtion,whih is most likely of eonomial nature, to Setion E.3.2. As the notationtells expliitly, though, suh objetive funtion diretly depends on the prie π,whih is a deision variable of the leader. Furthermore, the objetive funtion
f depends on the demand li, i = 1, 2, . . . , n from the n onsumers (followers)assoiated to the leader.Obviously, the onsumptions li are ultimately deisions of the onsumers. In ademand response framework with variable prie, onsumers would have to solveoptimization problems where the minimization of the ost of eletriity proure-ment is weighted against the loss of omfort implied by possible antiipations ordelays in energy onsumption. For example onsidering the eletriity onsump-tion for heating, the objetive funtion giπ(li) for onsumer i would sum the ostof eletriity to a penalty for the deviation of the indoor temperature from aertain referene [4℄. Suh an optimization problem inludes the onsumption lias deision variable, and is parameterized in the prie π deided by the retailer.This problem would then be solved diretly by the onsumer's smart applianes,



196 Paper Eone the prie signal π is broadast by the leader.The solid lines in Figure E.1 indiate that there is a diret information ex-hange when the prie shedule is sent from the leader to the follower. Thedashed lines indiate that the followers do not diretly ommuniate their on-sumption shedule to the leader. Nevertheless, the leader an infer the followers'onsumption shedule given the prie signal π on the basis of a model of theonsumers.As a �nal remark in this setion, we point out that the leader of the Stakel-berg game need not neessarily be a retailer, but any market entity setting thedynami onsumer prie. In di�erent demand response frameworks, the leaderould be the Transmission System Operator (TSO), a Distribution System Op-erator (DSO) or an aggregator of onsumers [5℄. Obviously, suh leaders wouldhave di�erent objetive funtions, but the bilevel struture of the problem wouldremain pratially unhanged.E.3 Mathematial formulationThe Stakelberg game skethed in Setion E.2 an be formulated rigorously inthe framework ofMathematial Programs with Equilibrium Constraints (MPEC)[6℄. Suh games have a bilevel struture where one or more (lower-level) opti-mization problems are nested in another (upper-level) one. This an be formu-lated as
Min. f(π, l1, l2, . . . , ln) , (E.1a)
s.t. h(π, l1, l2, . . . , ln) ≤ 0 , (E.1b)

l1 ∈ argmin
{
g1π(l1) s.t. m1

π(l1) ≤ 0
}
, (E.1)

l2 ∈ argmin
{
g2π(l2) s.t. m2

π(l2) ≤ 0
}
, (E.1d)...

ln ∈ argmin {gnπ(ln) s.t. mn
π(ln) ≤ 0} . (E.1e)Notie that this formulation employs the same notation as Figure E.1. Thelower-level problems are represented by (E.1)�(E.1e), whih inlude the fea-sibility onstraints mi

π(li) ≤ 0, besides the objetive funtions giπ(li). Theupper-level problem onsists in the minimization of the objetive funtion
f(π, l1, . . . , ln) in (E.1a) subjet to the feasibility onstraint (E.1b), and fur-ther onstrained by the optimality of the lower-level problems.Despite its larity, formulation (E.1) annot be translated diretly into a om-



E.3 Mathematial formulation 197putationally manageable optimization problem, owing to the nested optimiza-tion of the lower-level problems in (E.1)�(E.1e). Fortunately though, suhoptimization problems an be replaed by their Karush-Kuhn-Tuker (KKT)onditions under reasonably mild assumptions. Indeed, KKT onditions areneessary and su�ient for optimality if the lower-level problems are onvexand their onstraints satisfy some regularity onditions [7℄. If this holds, thebilevel problem (E.1) an be reformulated as the following single-level program
Min. f(π, l1, l2, . . . , ln) , (E.2a)
s.t. h(π, l1, l2, . . . , ln) ≤ 0 , (E.2b)KKT onditions of problem for Consumer 1 , (E.2)KKT onditions of problem for Consumer 2 , (E.2d)...KKT onditions of problem for Consumer n . (E.2e)In the remainder of this setion, we will formulate problem (E.2) expliitly anddeal with the nonlinearities in the KKT onditions.E.3.1 Lower-level problemAs previously mentioned, we fous on the �exibility of the load due to heating.Therefore, the onsumer (lower-level) problem is the optimal sheduling of ele-triity onsumption for heating. Similarly to [3℄, we model the heat dynamisof buildings using state spae models [8℄. Furthermore, the objetive funtionis de�ned as the sum over all the T time periods onsidered in the optimizationhorizon of the ost of purhasing eletriity plus a quadrati penalty for devia-tions of the temperature from a ertain referene �xed a priori. This results inthe following problem

Min. gπ(l) =

T∑

t=1

c(x1,t − x̄1,t)
2 + πtlt , (E.3a)

s.t. x1,t = a11x1,t−1 + a12x2,t−1 : λ1,t t = 1, . . . , T , (E.3b)
x2,t = a22x2,t−1 + blt : λ2,t t = 1, . . . , T , (E.3)
lt ≥ 0 : µt t = 1, . . . , T . (E.3d)The objetive funtion in (E.3a) omprises two terms: a quadrati penalty fordeviations of the indoor temperature (i.e. the �rst state x1,t) from the referene

x̄1,t, multiplied by the parameter c, and the ost of purhasing eletriity πtlt.



198 Paper EThe objetive funtion is parameterized in the deision variable πt of the upper-level problem. Constraints (E.3b) and (E.3) are the state updates of the modelfor heat dynamis. The seond state x2,t is determined in (E.3) as a funtion ofits value at the previous step and the eletriity onsumption. In turn, the indoortemperature x1,t depends in (E.3b) on the previous values of x1 and x2, but notdiretly on the onsumption. Finally (E.3d) enfores the nonnegativity of theonsumption. In priniple, an upper bound ould be imposed as well, but thisis not neessary in this ase sine the tuning of the parameters disourages toohigh onsumption levels. We �nally point out that the symbols after the olonsin (E.3b)�(E.3d) are the dual variables assoiated with the relative onstraints.We remark that the optimization model (E.3) is akin to the one in [4℄. Animportant di�erene, though, is the quadrati penalty for deviations from apoint referene, rather than the penalty for deviations out of a referene bandin [4℄. The latter objetive funtion would indeed result in a degenerate lower-level problem with multiple solutions. As a onsequene, there would be amultipliity of Stakelberg solutions [9℄, while the optimization model (E.2)would only determine (one of) the strong Stakelberg solution(s) [6℄.Sine the optimization problem (E.3) is a onvex minimization problem withlinear onstraints, the KKT onditions are neessary and su�ient for optimal-ity [7℄. Therefore, problem (E.3) is equivalent to the following set of onditions
2c(x1,t − x̄1,t) + λ1,t − a11λ1,t+1 = 0 t = 1, 2, . . . , T − 1 , (E.4a)
2c(x1,T − x̄1,T ) + λ1,T = 0 , (E.4b)
λ2,t − a12λ1,t+1 − a22λ2,t+1 = 0 t = 1, 2, . . . , T − 1 , (E.4)
λ2,T = 0 , (E.4d)
πt − bλ2,t − µt = 0 t = 1, . . . , T , (E.4e)
x1,t = a11x1,t−1 + a12x2,t−1 t = 1, . . . , T , (E.4f)
x2,t = a22x2,t−1 + blt t = 1, . . . , T , (E.4g)
0 ≤ µt ⊥ lt ≥ 0 t = 1, . . . , T . (E.4h)Suh onditions inlude the stationarity onditions (E.4a)�(E.4e) for the La-grangian of problem (E.3) taken with respet to x1,t (t = 1, 2, . . . , T − 1), x1,T ,

x2,t (t = 1, 2, . . . , T − 1), x2,T and lt (t = 1, 2, . . . , T ), respetively. Further-more, the set (E.4) inludes the onstraints of the primal and of the dual ofproblem (E.3), as well as the omplementarity onditions (E.4h) relative to theinequality onstraints (E.3d). The latter ondition implies that both lt and µtare nonnegative and at least one of them is zero at any time.Although (E.4h) is a nonlinear onstraint, it an be equivalently reast as the



E.3 Mathematial formulation 199following set of mixed-integer linear onstraints [10℄
lt ≥ 0 t = 1, 2, . . . , T , (E.5a)
lt ≤ itMl t = 1, 2, . . . , T , (E.5b)
µt ≥ 0 t = 1, 2, . . . , T , (E.5)
µt ≤ (1− it)Mµ t = 1, 2, . . . , T , (E.5d)
it ∈ {0, 1} t = 1, 2, . . . , T , (E.5e)where Ml and Mµ are �large enough� onstants, whih ensure that onstraints(E.5b) and (E.5d) are never binding when the right-hand side is di�erent from 0.Notie that with this reformulation, the nonlinearity of (E.4h) has been tradedwith the integrality of the onditions (E.5).The values used for the parameters in problem (E.3) are listed in Table E.1.Although suh values are arbitrary in this work, they are hosen so that theyParameter Value Unit

c 0.003 e◦C−2

x̄1,t 22 + 2 cos
(
3
4π + 2πt

24

)
◦C

a11 0.9 -
a12 0.07 -
a22 0.95 -
b 2 ◦C kW−1h−1Table E.1: Values of the parameters in the onsumer problem (E.3)produe realisti results. Our fous here is on the properties on the model,therefore we refer the reader interested in a realisti estimation of models forheat dynamis to [3℄. The temperature referene is hosen so that it has a dailyperiod with its peak during the afternoon. The c onstant is hosen so thatthe results are sensible in a realisti range of eletriity pries. In priniple, oneould imagine that the produers of heating systems would provide a numberof suh realisti onstants to be hosen by the onsumer.An example of the interation between pries and onsumer behavior an be seenin Figure E.2. This �gure illustrates the evolution of the indoor temperature

x1,t during an entire day when the onsumer reeives a onstant prie shedule.The results for three di�erent prie levels are shown: πt =e 0.1/kWh, πt =e
0.2/kWh and πt =e 0.3/kWh. As one an notie, the heating system neverfollows preisely the shedule, but there is always a negative di�erene. Thisis due to the fat that the ost of eletriity is positive, while the penalty fordeviations is quadrati, the ombination of whih makes it optimal to follow thereferene at a ertain distane from below. Furthermore, if the prie is inreased
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Figure E.2: Referene following for the onsumer problem at di�erene prielevelsthe onsumer is less relutant to deviate from the referene and aepts a lowertemperature.E.3.2 Upper-level problemWhile the struture of the lower-level problem is well de�ned�the minimizationof a ost funtion for the onsumer based on the heat dynamis of buildings�di�erent on�gurations of the upper-level problem ould be thought of, depend-ing on whom the leader of the Stakelberg game is.In this work, we analyze the ase of a retailer equipped with a wind powerprodution faility and a �exible load. To keep the analysis of the problem assimple as possible, we onsider only one onsumer, although in priniple moreonsumers ould be inluded. It is assumed that the retailer partiipates at aspot market, and that it has to provide the market operator with a shedule forthe hourly load onsumption during the following day with a ertain advanein time. This is urrently the ase in NordPool, the Sandinavian eletriitymarket, where retailers have to purhase every day at noon their expeted on-sumption for eah hour of the following day.For the sake of simpliity, we fous on the use of demand response for reduingthe imbalane osts due to the deviations of wind power prodution from its day-



E.3 Mathematial formulation 201ahead foreast. We assume that the day-ahead shedule st for power delivery athour t of the following day is given by the di�erene of the day-ahead prognosesof wind out-turn ŵt and of onsumption l̂t
st = ŵt − l̂t . (E.6)We remark that st ould be both positive or negative, indiating a power deliveryto or withdrawal from the grid, respetively. As far as the prognosis for windpower prodution is onerned, we assume without loss of generality that theretailer uses point foreasts issued before the time of bidding on the spot market.This bidding strategy is still rather ommon among wind power produers [11℄.Besides, the onsumption foreast an be determined by solving the onsumerproblem (E.3) with a onstant prie signal. In this work, we onsider the rangeof pries between e 0.1/kWh and e 0.3/kWh. Therefore, a reasonable hoiewhen determining the day-ahead load prognosis is a onstant prie signal of

π̂t =e 0.2/kWh, ∀t. This gives the retailer room for adjusting the onsumerprie later in both diretions.At the real-time stage, the net power withdrawal or delivery will di�er from theshedule st, owing to the unpreditability of wind power prodution. Sine thelevel of unertainty dereases with shorter lead times, we an expet that theforeasts available one hour ahead are less unertain than the day-ahead ones.Therefore, the retailer has the possibility of smoothing out the foreast errorsby sending the onsumers a prie signal that enourages them to absorb suhdeviations.In stohasti programming, it is ustomary to represent unertainty with a dis-rete number of senarios. We will index the senarios using the subsript ω.Eah senario is assoiated with its probability pω and with a spei� realiza-tion of wind power prodution wtω, whih is the only stohasti variable weonsider here. Figure E.3 shows 10 senarios for wind power out-turn with a36-hour horizon, along with the orresponding day-ahead point foreast. Bothpoint foreasts and senarios are generated using time series models followingthe method proposed in [12℄. As one an see in the plot, the hour-ahead infor-mation is in the form of a senario fan, i.e. the �rst preditions oinide for allthe senarios and represents the urrent (known) wind power prodution. Thisimplies that there is perfet information on the urrent wind power out-turn. Inpratial situations where deisions are not made exatly in real-time, thoughvery lose, the senarios would di�er also at the �rst time period.For every senario ω and time-period t, the net deviation from the shedule isgiven by
dtω = wtω − lt − st , (E.7)where lt is the atual onsumption from the onsumers assoiated with the
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Figure E.3: Example of day-ahead foreast ompared to the relative hour-ahead senariosretailer. In many eletriity markets, deviations from the day-ahead shedule arepenalized and in general unwanted, as they require the system operators to takeostly orretive measures (e.g. the ativation of power reserves). Resemblingthe operation of a virtual power plant, we aim at minimizing the absolute valueof the deviation from the day-ahead shedule (or power imbalane). In order toinlude the absolute value in a linear optimization model, we split the imbalaneinto its positive and negative parts, d+t and d−t respetively, whih are de�nedas follows
d+t =

{
dt, dt ≥ 0 ,

0, dt < 0 ,
d−t =

{
0, dt ≥ 0 ,

dt, dt < 0 .
(E.8)Notie that if the objetive funtion is the minimization of the absolute valueof the deviations, it is not neessary to enfore the pieewise de�nition (E.8).Indeed, it is easy to verify that, for any optimization problem inluding thefollowing

Min. d+tω − d
−
tω , (E.9a)

s.t. d+tω ≥ wtω − lt − st , (E.9b)
d−tω ≤ wtω − lt − st , (E.9)
d+tω ≥ 0, d−tω ≤ 0 (E.9d)the optimum is unhanged if (E.9b), (E.9) and (E.9d) are replaed by thepieewise de�nitions (E.8).



E.4 Illustrative example 203The �nal formulation of the problem is then readily given by
Min.

Nω∑

ω=1

pω

(
T∑

t=1

d+tω − d
−
tω

) (E.10a)
s.t. d+tω ≥ wtω − lt − st ∀t, ω (E.10b)

d−tω ≤ wtω − lt − st ∀t, ω (E.10)
d+tω ≥ 0, d−tω ≤ 0 ∀t, ω (E.10d)
0.1 ≤ πt ≤ 0.3 ∀t (E.10e)
{(E.4a)�(E.4g), (E.5a)�(E.5e)} for every onsumerThe objetive funtion (E.10a) is the expetation of the sum over all the T timeperiods in the horizon of the absolute value of power imbalane. Compared tothe onstraints of model (E.9), the optimization problem (E.10) inludes (E.10e),whih enfores that the prie is never higher than e 0.3/kWh nor lower than

e 0.1/kWh. This ensures that the onsumer will not be asked to give up toomuh omfort for balaning the operation of the virtual power plant. Finally,the KKT onditions guaranteeing optimality of the lower-level problem are alsoinluded. We remark that problem (E.10) is a MILP, whih an be solved byemploying o�-the-shelf optimization software.After the optimization problem (E.10) is solved, the retailer sends the optimalprie signal πt to the onsumers for all the time periods inluded in the horizon.The proess is then repeated iteratively rolling the optimization horizon forward.As a result, only the �rst prie in the signal is atually harged to the onsumerat any iteration of this rolling proess.E.4 Illustrative exampleThis setion illustrates an example where the model presented in Setion E.3 issimulated over one day. In total 24 optimizations are run, one for every hourof the day, employing a rolling horizon. At eah hour the wind power senariosare updated for the entire horizon, and the initial onditions are set to theorresponding output values at the previous step of the proedure.Figure E.4 illustrates the dynamis of relevant variables during the simulation.The reader should keep in mind that only realized values are used to produethese plots, i.e. the evolutions are obtained by onatenating the �rst value ofeah variable at eah step of the rolling proedure. The indoor temperaturefor the onsumer is shown in Figure E.4(a). As one an see, the temperaturedynamis with variable prie is similar to the one with �xed prie. In general
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(d) Net deviationFigure E.4: Dynamis of relevant quantities during hourly simulations span-ning one day with rolling horizon



E.4 Illustrative example 205the di�erene between the two dynamis is rather small, and appears to onsistin a small time lag. Figures E.4(b) and E.4(d) deserve to be analyzed jointly.The former one illustrates the dynamis of the onsumption in the variable prieand the �xed prie ases, while the latter shows the power imbalane at eahtime step. It should be notied that the power imbalane in the �xed prie aseis entirely aused by the deviation of wind power prodution with respet to theday-ahead foreast. By omparing Figures E.4(b) and E.4(d), we notie that thedi�erenes in onsumption are driven by the wind power imbalanes. Indeed,suh imbalanes are absorbed when possible by deviations in the load induedby the variable prie. The only period when the wind power imbalanes annotbe absorbed is between 12:00 and 19:00, when the onsumption is already null(and therefore annot be redued any further) and the wind power deviation isnegative (underprodution). Finally, we remark that the wind power imbalane(equivalent to the deviation in the �xed prie ase in Figure E.4(d)) is mostlynegative during the onsidered day, i.e. the wind plants are underproduing. Toredue suh imbalanes, there is a need to ut the onsumption. This is ahievedby sending a dynami prie signal higher than the �xed prie, see Figure E.4().Overall results are inluded in Table E.2. As one an see, the use of dynamiUnit Fixed prie Variable prieExpeted total imbalane kWh 6.79 2.98Consumer ost e 3.57 4.77Consumer disomfort (e) 0.11 0.13Table E.2: Overall results of hourly simulations spanning one day with rollinghorizonpriing allows the retailer to ut over half of the power imbalanes it wouldinur using a �xed prie. These ost savings, though, are not passed on to theonsumers. Indeed, owing to the higher pries, they are harged a total ostlarger by roughly one third in the ase of dynami priing. In general, onewould expet that the wind power foreasts are unbiased, i.e. that the errorin the long run has zero mean. As a result, the hours where the onsumersare harged higher pries should be equally likely than hours where the prieis lower. Nevertheless, there is a need to further reward onsumer �exibility inorder to enourage their partiipation in demand response programs. Finally,the third row in Table E.2 shows the onsumer disomfort, i.e. the sum of thequadrati penalties in the objetive funtion (E.3a). As one ould expet, thereis a slight inrease when dynami priing is used, indiating that the onsumeris giving up a marginal fration of her/his omfort for ensuring the balane ofthe system.



206 Paper EThe dynamis of a similar simulation are shown in Figure E.5. In this exam-
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(d) Net deviationFigure E.5: Dynamis of relevant quantities during hourly simulations span-ning one day. The wind power foreasts are biased and overesti-mate the atual produtionple, a biased day-ahead foreast of wind power prodution is used. Suh biasis introdued by adding 0.4 kWh to the point foreast, whih onstantly over-estimates the wind out-turn as a result. This an be seen in the red line inFigure E.5(d), whih is negative exept for the 22nd hour of the day. Owing tothe onstant negative imbalane of wind power prodution, the dynami prierapidly shoots up to the upper limit (e0.3 /kWh). The system is working underonsiderable stress: for example, the indoor temperature with dynami pri-ing in Figure E.5(a) is roughly 2◦C lower ompared to the temperature with�xed prie. The quadrati penalty in the objetive funtion makes it di�ult todeviate further from the referene temperature. In other words, the �storage�apaity of the heating system is fully used. As a onsequene, as one an seein Figure E.5(d), the system an hardly absorb imbalanes after the 8th hourin the simulation.



E.5 Conlusion 207E.5 ConlusionIn this work, we introdued a bilevel framework for modeling demand response.We onsider onsumer �exibility for heating, and set up a lower-level problemwhere onsumers solve an eonomi ost minimization problem, one they aregiven a prie shedule as input. Then, suh a problem is inorporated as aset of Karush-Kuhn-Tuker equilibrium onditions in an upper-level problem.The framework is general, and di�erent upper-level problems an be thought ofonsidering di�erent market players.We desribe an illustrative example where the upper-level problem is the oneof a retailer equipped with a wind power prodution faility, whose objetiveis the minimization of the trading imbalanes owing to the wind unertainties.This an be thought of as a virtual power plant operational problem.The results of the example show that dynami priing provides an e�etivesignal for smoothing out the retailer's trading imbalanes. The bene�ts for theonsumers, though, are not always lear. Indeed, overestimation of wind powerprodution at the day-ahead stage results in higher onsumer pries, whih resultin both inreased osts and redued omfort. Furthermore, the heating �exibilityhas dynami properties that makes it akin to an energy storage. When windpower foreasts are onstantly biased, the apaity of the onsumers to absorbdeviations is rapidly exhausted.Further results, where the retailer's partiipation at the day-ahead and real-timemarkets are optimized simultaneously are available in [13℄.
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213A Bilevel Model for Eletriity Retailers'Partiipation in a Demand Response MarketEnvironmentMaro Zugno1, Juan Miguel Morales2, Pierre Pinson1, Henrik Madsen1AbstratDemand response programmes are seen as one of the ontributingsolutions to the hallenges posed to power systems by the large-sale integration of renewable power soures, mostly due to theirintermittent and stohasti nature. Among demand response pro-grammes, real-time priing shemes for small onsumers are believedto have signi�ant potential for peak-shaving and load-shifting, thusrelieving the power system while reduing osts and risk for energyretailers. This paper proposes a game theoretial model aountingfor the Stakelberg relationship between retailers (leaders) and on-sumers (followers) in a dynami prie environment. Both players inthe game solve an eonomi optimisation problem subjet to stohas-tiity in pries, weather-related variables and must-serve load. Themodel allows the determination of the dynami prie-signal deliver-ing maximum retailer pro�t, and the optimal load pattern for on-sumers under this priing. The bilevel program is reformulated asa single-level MILP, whih an be solved using ommerial o�-the-shelf optimisation software. In an illustrative example, we simulateand ompare the dynami priing sheme with �xed and time-of-usepriing. We �nd that the dynami priing sheme is the most e�e-tive in ahieving load-shifting, thus reduing retailer osts for energyprourement and regulation in the wholesale market. Additionally,the redistribution of the saved osts between retailers and onsumersis investigated, showing that real-time priing is less onvenient than�xed and time-of-use prie for onsumers. This implies that arefuldesign of the retail market is needed. Finally, we arry out a sen-sitivity analysis to analyse the e�et of di�erent levels of onsumer�exibility.1DTU Informatis, Tehnial University of Denmark, Rihard Petersens Plads, bld. 305,DK-2800 Kgs. Lyngby, Denmark2Centre for Eletri Power and Energy, Tehnial University of Denmark, Elektrovej, bld.325, DK-2800 Kgs. Lyngby, Denmark



214 Paper FNomenlatureSets
T Time periods in the optimisation horizon
Ω2 Spae of seond-stage stohasti variables
Ω3 Spae of third-stage stohasti variablesIndies
t Index of Program Time Unit (PTU) t ∈ {1, 2, . . .NT }
ω2 Senario index for seond-stage stohasti variable ω2 ∈ {1, 2, . . .NΩ2}
ω3 Senario index for third-stage stohasti variable ω3 ∈ {1, 2, . . .NΩ3}Random variables
T at,ω2

Ambient temperature
πst,ω2

Energy prie at the spot market
π↑
t,ω2

Up-regulation prie at the real-time market
π↓
t,ω2

Down-regulation prie at the real-time market
lit,ω3

Consumption from in�exible (must-serve) load
ψ↑
t,ω2

Up-regulation penalty at the real-time market
ψ↓
t,ω2

Down-regulation penalty at the real-time marketDeision variables
Est Energy ontrated at the spot market
π̃t,ω2 Dynami real-time prie harged to the end-onsumer
lt,ω2 Energy purhased by the onsumer
∆E↑

t,ω2,ω3
Up-regulation energy purhased at the real-time market

∆E↓
t,ω2,ω3

Down-regulation energy sold at the real-time market
T rt,ω2

Indoor temperature in the onsumer building model
T ft,ω2

Floor temperature in the onsumer building model
Twt,ω2

Water temperature in the onsumer building model
vt,ω2 Deviation from the omfort band for indoor temperature



F.1 Introdution 215Parameters
π Minimum dynami prie harged to the end-onsumer
π Maximum dynami prie harged to the end-onsumer
πAV G Average daily dynami prie harged to the end-onsumer
ρ Penalty for deviation from the omfort band for indoor temperature
l Minimum �exible onsumption for the end-onsumer
l Maximum �exible onsumption for the end-onsumer
T rt Lower bound of the omfort band for indoor temperature
T rt Upper bound of the omfort band for indoor temperatureF.1 IntrodutionFavoured by ambitious international agreements and national plans, integrationof renewable power soures is expeted to onstantly rise in the years to omein most industrialised ountries. Several among the urrently or potentiallydeployable renewable soures, namely wind, solar, tidal and wave, are hara-terised by an intermittent and stohasti nature. This will pose problems tothe operation and management of future power systems, as supply must mathdemand at all times. Furthermore seurity of supply will beome an issue asthe apaity margin is lower during peak-demand hours with low intermittentgeneration. Finally prie volatility is also destined to inrease, sine it is knownthat intermittent renewables have an impat on market pries under the urrentdemand onditions [1, 2℄.As a way to ope with these issues, many propose a revolution of power systemsfrom a struture where supply follows demand to one where demand follows sup-ply. This an be ahieved in pratie by adopting measures failitating demandresponse, suh as load shedding programmes, time-of-use or real-time based on-sumer tari�s. While large industrial onsumers an partiipate in spot marketsand are already involved in load shedding programmes in many ountries, littlehas been done yet to allow the partiipation of small end-onsumers in demandresponse programmes, at least within a European ontext [3℄. Nevertheless,demand response is reeiving inreasing attention from governments and poliymakers.In line with this inreasing governmental onsideration, demand response isbeing studied intensively by researhers. Several setups have been proposedinvolving di�erent stakeholders, namely transmission system operators (TSOs),distributing ompanies (DISCOs) and retailers. In parallel di�erent advantagesof demand response have been stressed, in partiular the ability to enhane



216 Paper Fpower system seurity, and the possibility of reduing eletriity prourementosts and, at the same time, market risk.The TSO's perspetive on the demand-response problem attrated a fair shareof interest sine entralising the management of demand response may havea number of advantages. On the one hand, spei� stohasti unit ommit-ments approahes were introdued, permitting to aount for demand-side re-serve bids submitted by an aggregator on the day-ahead market [4℄, or jointlyaounting for wind power generation and demand response based on a linearinverse demand funtion [5℄. On the other hand, di�erent eonomi dispathmodels aiming at integrating demand response and wind power were reviewedand ompared in [6℄ and [7℄, respetively. These are based on a model usingmulti-diretional information exhange where the TSO hooses a prie sequenebased on ommuniated prodution shedules and orresponding load responseto that prie sequene.In parallel in view of their potential leading role in the optimal managementof demand response, the DISCOs point of view was extensively studied witha blend of load shedding and ontrol-based proposals. Indeed, it may be thatDISCOs operating distributed generation and with the apability of interruptingload onsider the possibility of optimising their overall operating osts, as in [8℄.They may alternatively design optimal bidding strategies with the additional�exibility suh that a ertain number of load interruptions is allowed by ontratas agreed on with the onsumers [9℄. In a di�erent paradigm foused on theonsumption dynamis, the idea of using prie signals for ontrolling a part ofthe load has reently appeared, based e.g.on statistial models for the foreastingof the onditional load response to varying pries [10℄, or onversely on theoptimisation problem of a load exposed to dynami market pries [11℄. Finallyas a more global approah involving DISCOs, retailers (whih are purhasers ofdemand response) as well as aggregations of onsumers (sellers), spei� marketdesigns may be proposed as in [12℄, the on�guration of whih should arguablyallow maximising soial welfare.In ontrast to these proposals mainly foused on TSOs and DISCOs point ofviews, we take an original path foused on the joint onsideration of the eonomioptimisation problems of a set of onsumers and of their eletriity-supplyingretailer. In this setup, the retailer naturally ats as a bu�er between alreadyexisting eletriity markets and newly-enabled �exible end-onsumers. We as-sume that onsumers respond to a dynami prie signal sent by the retailer byshifting part of their onsumption to low-prie periods, thus minimising the ostof eletriity prourement. The fat that the onsumption shedule is deidedafter the ommuniation of the prie signal by the retailer implies that there isa leader-follower struture typial of Stakelberg games, whih were introduedin the original version of the work later translated in [13℄. For simpliity only



F.2 Formulation of retailer and onsumer optimisation problems 217the load used for heating purposes is onsidered as �exible, i.e.it an be shiftedin time, although this assumption is not binding. In pratie onsumer �exibil-ity in time is modelled by using a disrete-time state-spae model; the readernot familiar with state spae models is referred to [14℄. In turn the retaileris also subjet to an eonomi problem, in that it ats as an intermediary bypurhasing at wholesale (day-ahead and real-time) markets and selling bak tothe onsumers.The novelty of this approah is fourfold. First of all, it jointly onsiders the opti-misation problem of onsumers, onsisting of the maximisation of a utility fun-tion minus the eletriity prourement osts, integrating it into the retailer prob-lem, whih is purely eonomi. Using a game theoreti approah, ompletelynovel ompared to the state-of-the-art reviewed above, we are able to apturethe on�iting eonomi interests of the retailer and their end-onsumers. Underthe assumption that the introdution of real-time pries makes the onsumersrational, we quantify the ost/bene�t improvement for both the stakeholdersinvolved. Seondly, by inorporating the onsumer optimisation problem in themodel, our analysis is based on a realisti ost funtion rather than resorting tomodels that arbitrarily hoose demand elastiities or onsumer bene�t funtions,as in [4℄, [5℄ [8℄ and [12℄. Thirdly, by using a state-spae model for onsumerpreferenes within a game-theoreti approah, we rigorously aount for the dy-namis of demand response, whih are often either heuristially approahed, see[6℄ and [7℄, or simply disarded by making use of stati elasti demand as in [4℄,[5℄, [8℄ and [12℄. Last but not least, we onsider a two-market settlement ratherthan a single one [6, 7, 4, 5, 9, 10, 11, 12℄. This allows us to quantify the advan-tages of demand response both with respet to peak-shaving(-shifting) and tothe redution of osts due to imbalanes (deviations) of real-time onsumptionfrom the day-ahead prognosis.The paper is strutured as follows. Setion F.2 introdues the mathematialformulation of the retailer and the onsumer problems separately. Then, thebilevel problem is linearised and formulated as a single-level optimisation pro-gram in Setion F.3. Setion F.4 disusses the results of an illustrative example.Finally, onlusions are drawn in Setion F.5.F.2 Formulation of retailer and onsumer opti-misation problemsWe onsider the eonomi optimisation problem of an energy retailer, whih atsas an intermediary between energy wholesalers and end-onsumers. Energy ispurhased at the wholesale market and, in turn, it is sold to the onsumers, who



218 Paper Ffae an eonomi optimisation problem aimed at minimising the ost of theironsumption.Needless to say, the retailer business an only be pro�table if the eletriityprie harged to the onsumers π̃ is greater than the purhase (spot) prie πs.This prie surharge is justi�ed by the risk that retailers take when entering intoa ontrat with onsumers. Indeed retailers must purhase energy in advaneon the wholesale market, at a stohasti prie πs, and sell it to the onsumersat a prie π̃ that is often regulated and/or �xed. Furthermore they mightinur penalties when the aggregate onsumption from their ustomers, whihis stohasti, deviates from the shedule resulting from the wholesale marketlearing proess. The most striking example of the risk faed by retailers isundoubtedly the Californian energy risis in 2000-2001, where several utilitieswent bankrupt as a result of soaring wholesale pries and regulated retail rates,see [15℄.In this model we spei�ally fous on the interation between the retailer anda partially �exible onsumer, who an deide on the alloation of its heatingonsumption based on an hourly prie shedule ommuniated by the retaileras well as on weather foreasts (e.g.of the outdoor temperature). The problemexhibits a bilevel struture, where the retailer determines the prie shedule de-livering the optimal pro�ts (upper-level problem), while the onsumer, based onthis prie shedule, optimises its �exible onsumption (lower-level problem). Ingame theory, hierarhial optimisation problems of this type are usually referredto as Stakelberg games and an be formulated mathematially in the frame-work of bilevel programs, whih are speial instanes of Mathematial Programswith Equilibrium Constraints (MPECs). The interested reader is referred to [16℄for a omplete treatment of the subjet.In the following, we adopt the general formulation of a bilevel programMaximize φ(x,y)s.t. (x,y) ∈ Z (F.1)
y ∈ S(x) = argmin

y

{θ(x,y) : y ∈ C(x)}where x ∈ R
n is the vetor of deision variables of the upper-level problem,

y ∈ R
m the one of the lower-level problem, φ(x,y) : Rn+m → R and θ(x,y) :

R
n+m → R the objetive funtions of the upper- and the lower-level problemsrespetively, Z is the joint feasible region of the upper-level problem and C(x)the feasible region of the lower-level problem indued by x.From the disussion above, it is lear that the �nanial risk of the retailer stemsfrom multiple stohasti variables: spot and regulation market pries, weather-



F.2 Formulation of retailer and onsumer optimisation problems 219related variables that in�uene heating onsumption, �utuations of the in�ex-ible (must-serve) part of the load as well as inauraies in modelling onsumerbehaviour. The spei� market design allows the players (retailers and on-sumers) to make deisions both day-ahead and real-time. Furthermore energyimbalanes are settled ex-post, i.e.after their realisation and the alulation ofmarket pries. Deisions made at the later stages bene�t from updated infor-mation on the stohasti proesses that in�uene the system, either in the formof more aurate foreasts thanks to a shorter look-ahead time or of realisedvalues of random variables. Spei�ally, we onsider the following situation forthe three aforementioned stages:day-ahead The retailer deides on the amount Est of energy purhased at thespot market for every Program Time Unit (PTU) t in the optimisationhorizon, based on foreast senarios of the spot market prie πst,ω2
, of theup- and down-regulation pries, π↑

t,ω2
and π↓

t,ω2
respetively, of the ambienttemperature T at,ω2

, of the in�exible load lit,ω3
and on its model of onsumerbehaviour.real-time The retailer deides on the prie shedule π̃t,ω2 to be sent out tothe onsumers for every PTU in the optimisation horizon, given the er-tain realisation of the spot prie πst and the ontrated purhase at thespot market Est . At the same time the onsumer optimises its heating on-sumption shedule lt,ω2 based on the prie signal reeived from the retailerand on the realisation of the ambient temperature T at,ω2

, whih is assumedto be known at this point. This is a simpli�ation of the more realisti,yet intratable, situation where more aurate foreasts are available inreal-time than day-ahead, whih would result in an exponentially growingsenario-tree.ex-post The realisation of the in�exible part of the load lit,ω3
beomes known,allowing the alulation of the up- and down-regulation imbalanes

∆E↑
t,ω2,ω3

and ∆E↓
t,ω2,ω3

, respetively. These imbalanes are purhasedand sold at the up- and down- regulation prie, π↑
t,ω2

and π↓
t,ω2

respe-tively, determining the net pro�t for the retailer.The proposed model is therefore a stohasti bilevel optimisation model withseond- and third-stage reourse. The two levels of the model apture the hier-arhial relationship between the retailer and the onsumer. The three stagesallow us to disriminate between unertain fators being revealed before real-time operation and those dislosed on an ex-post basis. The remainder of thesetion is dediated to the introdution of the upper-level (retailer) and thelower-level (onsumer) problems.



220 Paper FF.2.1 Retailer problemThe objetive funtion of the retailer is the maximisation of the expeted marketpro�ts, with respet to both the seond- and third-stage stohasti variables,given by
φ(x,y) = EΩ2,Ω3

{
NT∑

t=1

π̃t,ω2(lt,ω2 + lit,ω3
)− πst,ω2

Est

− π↑
t,ω2

∆E↑
t,ω2,ω3

+ π↓
t,ω2

∆E↓
t,ω2,ω3

} (F.2)where x =
{
π̃t,ω2 , E

s
t ,∆E

↑
t,ω2,ω3

,∆E↓
t,ω2,ω3

} is the retailer's set of deision vari-ables and y ⊇ {lt,ω2} is the onsumer's one.The objetive funtion above is the sum of four terms. The �rst one representsthe revenues from harging the prie π̃t,ω2 to both the �exible and the in�exibleload of the onsumer, lt,ω2 and lit,ω3
respetively. The seond term is the ost ofpurhasing the energy Est at the spot market prie πst,ω2

. Finally the last twoterms represent the ost (pro�t) of purhasing (selling) up(down)-regulationpower ∆E↑
t,ω2,ω3

(∆E↓
t,ω2,ω3

) at the regulation prie π↑
t,ω2

(π↓
t,ω2

), where up- anddown-regulation are de�ned as
∆E↑

t,ω2,ω3
=

{
lt,ω2 + lit,ω3

− Est , lt,ω2 + lit,ω3
− Est ≥ 0

0, otherwise (F.3)
∆E↓

t,ω2,ω3
=

{
Est − lt,ω2 − l

i
t,ω3

, lt,ω2 + lit,ω3
− Es ≤ 0

0, otherwise (F.4)The pieewise de�nitions (F.3) and (F.4) of the up- and down-regulations areneessary only in a two-prie market, i.e.if π↑ 6= π↓. On the ontrary the problemformulation for a single-prie real-time market (i.e.a market where π↑ = π↓)requires only one variable de�nition for the imbalane, without pieewise splits.Although we onsider here a two-prie market for regulation, the model an beeasily adapted to the single-prie market ase, whih is simpler to treat owingto the linearity of the de�nition of the imbalanes.Due to the fat that the model provides no possibility for onsumers to swithto a di�erent retailer, i.e.market ompetition is not modelled, the retailer ouldinrease the end-onsumer prie possibly up to in�nity in order to maximiseits pro�ts. On the other hand the proess of retailer-swithing is rather slowas ompared to the optimisation horizon onsidered here, whih makes it hardto onsider ompetition diretly in the model. Still, in order to enfore market



F.2 Formulation of retailer and onsumer optimisation problems 221ompetitiveness of retailer pries, we hoose to introdue onstraints that modelpossible future ontrats between retailers and prie-responsive onsumers. Wemake the assumption that the two parties will agree on ertain harateristisof a variable eletriity prie, i.e.minimum, maximum and average value duringthe day, just as today they agree on a �xed rate. In mathematial terms, thisassumption implies the following onstraints on the onsumer-prie
π̃t,ω2 ≥ π, ∀t ∈ T, ∀ω2 ∈ Ω2 (F.5)
π̃t,ω2 ≤ π, ∀t ∈ T, ∀ω2 ∈ Ω2 (F.6)
1

24

(1+i)24∑

t=1+24i

π̃t,ω2 = πAV G, i = 0, 1, . . . ,
|T |

24
− 1, ∀ω2 ∈ Ω2 (F.7)Constraints (F.5) and (F.6) ensure that the prie harged to the demand isalways ontained within the range [π, π]. Constraint (F.7) enfores that byontrat the dynami prie signal must have a �xed daily average. Notie thatthe latter onstraint is neessary in order to ensure a su�ient number of low-prie periods. In absene of this onstraint, the retailer would in priniple beallowed to always harge the maximum prie to the onsumer when not faed byhigh regulation pries. Finally, we underline that onstraints (F.5)�(F.7) onsenta straightforward omparison between retailers in a ompetitive market, basedon few meaningful parameters suh as the average hourly prie and its maximumand minimum values, i.e. the prie level and its volatility.Following the general formulation of a bilevel program (F.1), we write the retailerproblem as Maximize

x,yω2

φ(x,yω2 )s.t. (F.3)�(F.7)
yω2 ∈ Sω2(x), ∀ω2 ∈ Ω2 (F.8a)Equation (F.8a) enfores that the shedule for �exible load onsumption is partof (one of) the solution(s) Sω2(x) of the lower-level optimisation problem for anyrealisation of the seond stage variables ω2 ∈ Ω2. In pratie eah onsumptionshedule lt,ω2 solves a di�erent optimisation problem parameterised in ω2.Furthermore, it should be notied that the objetive funtion in (F.2) has twononlinearities. The �rst one is introdued by the pieewise linear de�nition of theimbalanes (F.3) and (F.4); the seond one by the bilinear produts π̃t,ω2 lt,ω2 in(F.2). The former nonlinearity an be worked around through a reformulationof the problem, the latter by enforing the strong duality theorem, see [17℄,on the lower-level (onsumer) problem. The desription of the linearisation isleft to Setion F.3, while the next setion introdues the onsumer (lower-level)problem.



222 Paper FF.2.2 Consumer problemWe onsider a �exible demand response environment, where the onsumer anoptimise its future onsumption based on a dynami prie shedule ommuni-ated by the retailer. We assume here that only the load lt,ω2 neessary forheating is �exible, and treat the remaining, in�exible part of the load lit,ω3
as athird-stage stohasti variable. We remark that this limitation to heating loadis not ritial and other soures of onsumer �exibility ould be onsidered. Ina similar fashion one ould onsider more general models akin to the one in [11℄.Just like the retailer, the end-onsumer faes an eonomi problem, too. With a�exible prie, he/she will minimise the ost of the eletriity needed for heatingby shifting as muh onsumption as possible to low-prie periods, without givingup too muh on the omfort, i.e.on the indoor temperature of the building. Wetherefore model the objetive of the onsumer as a utility funtion trading-o�the ost of eletriity prourement and the disomfort for deviating from thereferene temperature band.Two di�erent formulations of the eonomi optimisation problem of the heatingsystem of a building are introdued in this setion. First, a linear program-ming (LP) formulation is introdued. Then, its equivalent Karush-Kuhn-Tuker(KKT) system is presented.F.2.2.1 LP formulation of the onsumer problemBased on the work in [18℄ we onsider a three-state, disrete-time state spaemodel for the heating dynamis of a building. The three states of the systemare the indoor temperature T rt,ω2

, the �oor T ft,ω2
temperature and the temper-ature Twt,ω2

inside a water tank diretly onneted to a heat pump. The onlyinput is the eletriity onsumption lt,ω2 , while the outdoor temperature T at,ω2is a stohasti disturbane. We stress that solar irradiation, an additional dis-turbane in [18℄ is disarded here for the sake of simpliity. Using a matrixformulation, the state spae model writes


T rt,ω2

T ft,ω2

Twt,ω2


 = A



T rt−1,ω2

T ft−1,ω2

Twt−1,ω2


+Blt−1,ω2 +ET at−1,ω2

(F.9)where all the matries are onstants. The output of interest is learly the indoortemperature T rt,ω2
, as this is the only variable in�uening the onsumer omfort.In the following optimisation model, adapted from [18℄, the deviation of theoutput from a referene band [T rt T

r

t ] is linearly penalised in the objetive



F.2 Formulation of retailer and onsumer optimisation problems 223funtion, where it is summed to the ost of eletriity onsumption.Minimize
y

θω2(x,y) =

NT∑

t=1

π̃t,ω2 lt,ω2 + ρvt,ω2 (F.10a)s.t. T rt,ω2
= a11T

r
t−1,ω2

+ a12T
f
t−1,ω2

+ a13T
w
t−1,ω2

+ b1lt−1,ω2 + e1T
a
t−1,ω2

(µrt,ω2
)

(F.10b)
T ft,ω2

= a21T
r
t−1,ω2

+ a22T
f
t−1,ω2

+ a23T
w
t−1,ω2

+ b2lt−1,ω2 + e2T
a
t−1,ω2

(µft,ω2
)

(F.10)
Twt,ω2

= a31T
r
t−1,ω2

+ a32T
f
t−1,ω2

+ a33T
w
t−1,ω2

+ b3lt−1,ω2 + e3T
a
t−1,ω2

(µwt,ω2
)

(F.10d)
lt,ω2 ≥ l (λt,ω2

) (F.10e)
lt,ω2 ≤ l (λt,ω2) (F.10f)
T rt,ω2

+ vt,ω2 ≥ T
r
t (ǫt,ω2

) (F.10g)
T rt,ω2

− vt,ω2 ≤ T
r

t (ǫt,ω2) (F.10h)
vt,ω2 ≥ 0 (F.10i)The onsumer's set of deision variables is y =

{
lt,ω2 , vt,ω2 , T

r
t,ω2

, T ft,ω2
, Twt,ω2

},while µrt,ω2
, µft,ω2

, µwt,ω2
, λt,ω2

, λt,ω2 , ǫt,ω2
, ǫt,ω2 are the dual variables assoiatedwith onstraints (F.10b)�(F.10h). The state spae model (F.9) translates intoonstraints (F.10b), (F.10) and (F.10d). Inequalities (F.10e) and (F.10f) setthe lower and upper limit for eletriity onsumption, respetively. Variable

vt,ω2 represents the absolute value of deviations of the indoor temperature outof the referene band [T rt T
r

t

] through (F.10g)�(F.10i). Positive values of thisvariable are penalised in the objetive funtion, where they are summed withweight ρ to the ost of eletriity over the time horizon NT .It is stressed that sine the dynami eletriity prie π̃t,ω2 enters the onsumerproblem as a onstant vetor (it is only a variable in the retailer problem),model (F.10) is a linear program. Inidentally, we remark that in this modelthe retailer must provide the onsumer with a prie foreast for a ertain time-horizon, whih resembles the assumption in [6℄.Finally, we point out that the objetive funtion (F.10a) with a linear penalisa-tion of the temperature deviations from a referene band is only one of the pos-sible utility funtions for the onsumer. However, it has ertain haraterististhat make it appealing, e.g. its simpliity, and the fat that, as we show in whatfollows, it leads to a reformulation of the bilevel model as a Mixed-Integer LinearProgram (MILP). More sophistiated onsumer problems ould involve varying



224 Paper Fupper and lower bounds for the indoor temperature in (F.10g) and (F.10h), de-�ned as linear funtions of the onsumer prie π̃t,ω2 , or quadrati penalties fordeviations from a referene, whih losely relates to Linear Quadrati Regulator(LQR) problems in ontrol theory, see [19℄. Suh extensions of the model areleft for future researh.F.2.2.2 KKT formulation of the onsumer problemIn this setion we present the formulation of the onsumer problem given by itsKarush-Kuhn-Tuker onditions. The equivalene of the KKT formulation andthe one in Setion F.2.2.1 is guaranteed by the linearity of the latter one, whihimplies that solutions of the optimisation problem are also solution of the KKTsystem of equations and vie versa, see [20℄.We begin by stating the stationarity onditions with respet to the deisionvariables y =
{
lt,ω2 , vt,ω2 , T

r
t,ω2

, T ft,ω2
, Twt,ω2

}

{
π̃t,ω2 − b1µ

r
t+1,ω2

− b2µ
f
t+1,ω2

− b3µ
w
t+1,ω2

+ λt,ω2
+ λt,ω2 = 0, t < NT

π̃t,ω2 + λt,ω2
+ λt,ω2 = 0, t = NT(F.11)

0 ≤ vt,ω2 ⊥ ρ+ ǫt,ω2
− ǫt,ω2 ≥ 0 (F.12)

{
µrt,ω2

− a11µ
r
t+1,ω2

− a21µ
f
t+1,ω2

− a31µ
w
t+1,ω2

+ ǫt,ω2
+ ǫt,ω2 = 0, t < NT

µrt,ω2
+ ǫt,ω2

+ ǫt,ω2 = 0, t = NT(F.13)
{
−a12µ

r
t+1,ω2

+ µft,ω2
− a22µ

f
t+1,ω2

− a32µ
w
t+1,ω2

= 0, t < NT

µft,ω2
= 0, t = NT

(F.14)
{
−a13µ

r
t+1,ω2

− a23µ
f
t+1,ω2

+ µwt,ω2
− a33µ

w
t+1,ω2

= 0, t < NT

µwt,ω2
= 0, t = NT

(F.15)It should be notied that the stationarity onditions with respet to the vari-ables appearing in the state-update equations (F.10b)�(F.10d) have a di�erentformulation at the �nal step NT of the optimisation horizon. This is beauseonly one state-update equation inludes them, rather than two in the generalase, as there is no equation imposing the evolution of the state from NT to
NT+1.The KKT system is ompleted by the (equality and inequality) onstraints al-ready inluded in Model (F.10), along with the omplementary slakness ondi-



F.3 Linearisation and bilevel formulation of the problem 225tions assoiated with the inequality onstraints, i.e.
T rt,ω2

= a11T
r
t−1,ω2

+ a12T
f
t−1,ω2

+ a13T
w
t−1,ω2

+ b1lt−1,ω2 + e1T
a
t−1,ω2

(F.16)
T ft,ω2

= a21T
r
t−1,ω2

+ a22T
f
t−1,ω2

+ a23T
w
t−1,ω2

+ b2lt−1,ω2 + e2T
a
t−1,ω2

(F.17)
Twt,ω2

= a31T
r
t−1,ω2

+ a32T
f
t−1,ω2

+ a33T
w
t−1,ω2

+ b3lt−1,ω2 + e3T
a
t−1,ω2

(F.18)
0 ≥ λt,ω2

⊥ lt,ω2 − l ≥ 0 (F.19)
0 ≤ λt,ω2 ⊥ lt,ω2 − l ≤ 0 (F.20)
0 ≥ ǫt,ω2

⊥ T rt,ω2
+ vt,ω2 − T

r
t ≥ 0 (F.21)

0 ≤ ǫt,ω2 ⊥ T
r
t,ω2
− vt,ω2 − T

r

t ≤ 0 (F.22)We underline that the system of KKT onditions is linear, with the exeption ofthe omplementarity onditions (F.12) and (F.19)�(F.22). In order to linearisethese onditions we make use of the Fortuny-Amat linearisation [21℄; for example(F.12) an be substituted by the following onstraints
ρ+ ǫt,ω2

− ǫt,ω2 ≥ 0 (F.23)
vt,ω2 ≥ 0 (F.24)
ρ+ ǫt,ω2

− ǫt,ω2 ≤ zt,ω2M
1 (F.25)

vt,ω2 ≤ (1 − zt,ω2)M
1 (F.26)

zt,ω2 ∈ {0, 1} (F.27)where M1 is a su�iently large onstant. The omplementary slakness ondi-tions (F.19)�(F.22) an be linearised using the same strategy. Therefore we endup with a (integer linear) system of KKT onditions equivalent to model (F.10).As a trade-o� for introduing additional omplexity (i.e.integer variables), wean simply onatenate the KKT system as additional onstraints of the upper-level problem. This puts the bilevel problem in a tratable formulation. One is�nally left with the neessary linearisation of the objetive funtion (F.2) of theretailer.F.3 Linearisation and bilevel formulation of theproblemAs pointed out in Setion F.2.1 there are two nonlinearities in the objetivefuntion (F.2) of the upper-level problem. The �rst one stems from the pieewisede�nition of negative and positive energy imbalanes in (F.3) and (F.4), and anbe linearised through a reformulation of the problem. The seond nonlinearity



226 Paper Fan be overome by exploiting the strong duality theorem on the lower-levelproblem. The remainder of this setion deals with the linearisation of theseterms, and with the presentation of the �nal formulation of the bilevel problemas a single-level optimisation program.
F.3.1 Reformulation of the energy imbalane
In order to reformulate the problem, let us �rst de�ne the market penalties forup- and down-regulation

ψ↑
t,ω2

= π↑
t,ω2
− πst,ω2

≥ 0 (F.28)
ψ↓
t,ω2

= πst,ω2
− π↓

t,ω2
≥ 0 (F.29)These values represent the additional ost (or missed revenue) per MWh in-urred by the retailer in omparison to the ase where it has perfet informa-tion on its stohasti onsumption. In the latter ase, the retailer is hargedthe spot prie for all its onsumption. In the former, more realisti, asethe retailer will need to adjust its bid on the real-time market, where it isharged π↑

t,ω2
= πst,ω2

+ ψ↑
t,ω2

for any additional onsumed MWh, and paid
π↓
t,ω2

= πst,ω2
− ψ↓

t,ω2
for any MWh onsumed less than the shedule learedat the spot market. Clearly ψ↑

t,ω2
and ψ↓

t,ω2
an be interpreted as the per-unitpenalty for imperfet information on future onsumption.Using the market penalties de�ned above, the objetive funtion (F.2) an be



F.3 Linearisation and bilevel formulation of the problem 227reformulated as follows
φ(x,y) = EΩ2,Ω3

{
NT∑

t=1

π̃t,ω2(lt,ω2 + lit,ω3
)− πst,ω2

Est

− (πst,ω2
+ ψ↑

t,ω2
)∆E↑

t,ω2,ω3
+ (πst,ω2

− ψ↓
t,ω2

)∆E↓
t,ω2,ω3

}
=

= EΩ2,Ω3

{
NT∑

t=1

π̃t,ω2(lt,ω2 + lit,ω3
)− πst,ω2

(
Est +∆E↑

t,ω2,ω3
−∆E↓

t,ω2,ω3

)

− ψ↑
t,ω2

∆E↑
t,ω2,ω3

− ψ↓
t,ω2

∆E↓
t,ω2,ω3

}

= EΩ2,Ω3

{
NT∑

t=1

π̃t,ω2(lt,ω2 + lit,ω3
)− πst,ω2

(lt,ω2 + lit,ω3
)

− ψ↑
t,ω2

∆E↑
t,ω2,ω3

− ψ↓
t,ω2

∆E↓
t,ω2,ω3

} (F.30)where the last line is obtained by notiing that lt,ω2 + lit,ω3
= Est +∆E↑

t,ω2,ω3
−

∆E↓
t,ω2,ω3

holds at any time, whih is a result of the de�nitions in (F.3) and(F.4).We an now formulate the retailer optimisation problem exploiting the objetivefuntion reformulation (F.30)Maximize
x

φ(x,y) in (F.30)s.t. ∆E↑
t,ω2,ω3

≥ lt,ω2 + lit,ω3
− Est (F.31a)

∆E↓
t,ω2,ω3

≥ Est − lt,ω2 − l
i
t,ω3

(F.31b)
∆E↑

t,ω2,ω3
,∆E↓

t,ω2,ω3
≥ 0 (F.31)(F.5)�(F.7), (F.8a)First, it should be emphasised that the maximisation of (F.2) with the im-balane de�nitions in (F.3)�(F.4) is equivalent to the maximisation of (F.30)subjet to onstraints (F.31a)�(F.31). The latter is a relaxed, yet linear, for-mulation of the former optimisation problem with a larger feasible spae, wherethe variables ∆E↑

t,ω2,ω3
and ∆E↓

t,ω2,ω3
are allowed to assume greater values thanthe atual up- and down-regulations. The equivalene of the two optimisationproblems is readily proved by notiing that, as long as ψ↑

t,ω2
, ψ↓

t,ω2
> 0, allthe additional feasible points of (F.31a)�(F.31) have a stritly worse objetivethan at least one feasible point of (F.3)�(F.4), i.e.the one with the minimal



228 Paper Fabsolute imbalane allowed. In other words, there is no interest for the retailerin arti�ially pushing up the values of ∆E↑
t,ω2,ω3

and ∆E↓
t,ω2,ω3

, as this wouldontribute negatively to the objetive funtion without any advantages. Withsimilar arguments, it an be shown that ∆E↑
t,ω2,ω3

and ∆E↓
t,ω2,ω3

ould assumegreater values than the atual up- and down-regulation, but without in�ueningthe other variables, in the ase where at least one between ψ↑
t,ω2

and ψ↓
t,ω2

iszero. The atual imbalanes an still be alulated by applying (F.3) and (F.4)to the optimal solution of (F.31).It is also remarked that the reformulation presented in this setion is only neededin a two-prie real-time market. Under the single-prie market struture, thereis no need for a pieewise de�nition of the imbalanes (F.3) and (F.4).F.3.2 Linearisation of bilinear termsThe only nonlinearity still present in objetive funtion (F.30) onsists in thebilinear terms π̃t,ω2 lt,ω2 . Optimisation problems inluding bilinear terms areoften solved by approximation tehniques. For example, [22℄ makes use of binaryexpansion on one of the variables involved in the bilinear term, while a pieewiselinear approximation is employed in [23℄. Using the same approah as in [24℄,we show that this problem allows for an exat linearisation of these terms. Byemploying the strong duality theorem, see [17℄, on the lower-level model (F.10)we enfore that primal and dual objetives are equal at optimality. This impliesthat
NT∑

t=1

π̃t,ω2 lt,ω2 + ρvt,ω2 = −µr1,ω2

(
a11T

r
0,ω2

+ a12T
f
0,ω2

+ a13T
w
0,ω2

+ b1l0,ω2

)

− µf1,ω2

(
a21T

r
0,ω2

+ a22T
f
0,ω2

+ a23T
w
0,ω2

+ b2l0,ω2

)

− µw1,ω2

(
a31T

r
0,ω2

+ a32T
f
0,ω2

+ a33T
w
0,ω2

+ b3l0,ω2

)

−

NT∑

t=1

{
µrt,ω2

e1T
a
t−1,ω2

+ µwt,ω2
e3T

a
t−1,ω2

+ µft,ω2
e2T

a
t−1,ω2

+ λt,ω2
l + λt,ω2 l + ǫt,ω2

T rt + ǫt,ω2T
r

t

} (F.32)From the equality between primal and dual objetive of the lower-level problem,it follows that the sum of terms π̃t,ω2 lt,ω2 is equal to the sum of produts be-tween dual variables and parameters of the primal onstraints of the lower-levelproblem, minus ρvt,ω2 , whih are all linear in the bilevel formulation.



F.3 Linearisation and bilevel formulation of the problem 229By solving (F.32) on∑NT

t=1 π̃t,ω2 lt,ω2 and taking the expetation with respet to
Ω2 and Ω3 on both sides of the equation, we are able to replae all the bilinearterms in (F.30), thus obtaining the linear reformulation of the objetive funtionthat follows
φ(x,y) = EΩ2,Ω3
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}}(F.33)F.3.3 Final problem formulationAs a result of the reformulations above, the bilevel program an be expressedas the following equivalent single-level MILPMaximize
x,y

φ(x,y) in (F.33)s.t. (F.31a)�(F.31), (F.5)�(F.7)(F.11), (F.23)�(F.26), (F.13)�(F.15)(F.16)�(F.18)
lt,ω2 − l ≥ 0

λt,ω2
≤ 0

lt,ω2 − l ≤ z
2
t,ω2
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≥ −(1− z2t,ω2
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linearisation of (F.19)(F.34a)
lt,ω2 − l ≤ 0

λt,ω2 ≥ 0

lt,ω2 − l ≥ −z
3
t,ω2
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λt,ω2 ≤ (1− z3t,ω2
)M3





linearisation of (F.20)(F.34b)
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linearisation of (F.21)(F.34)
T rt,ω2

− vt,ω2 − T
r

t ≤ 0

ǫt,ω2 ≥ 0

T rt,ω2
− vt,ω2 − T

r

t ≥ z
5
t,ω2

M5

ǫt,ω2 ≤ (1 − z5t,ω2
)M5





linearisation of (F.22)(F.34d)
z1t,ω2

, z2t,ω2
, z3t,ω2

, z4t,ω2
, z5t,ω2

∈ {0, 1} (F.34e)The bilevel problem an be solved as a single-level one having the same obje-tive funtion as the upper-level problem (F.33), and onstraints given by theonatenation of
• the onstraints of the upper-level problem (F.31a)�(F.31), (F.5)�(F.7)
• the stationarity onditions in the KKT system of the lower-level problem(F.11), (F.13)�(F.15) and the linearisation of the stationarity ondition(F.12) i.e.the system (F.23)�(F.26)
• the equality onstraints of the lower-level problem (F.16)�(F.18)
• the linearisation of the omplementarity onditions (F.19)�(F.22), i.e.thesystems (F.34a)�(F.34d)
• the integrality onditions (F.34e) for the binary variables introdued bythe Fortuny-Amat linearisations of the omplementarity onstraints.The resulting problem an be solved as a single-level MILP due to the linearityof both the objetive funtion and the onstraints, while integer variables are in-trodued by the Fortuny-Amat linearisation of the omplementarity onditions.Problems of this type an be solved using ommerial o�-the-shelf optimisationsoftware. In this work the problem is formulated in the GAMS environment andsolved by employing the CPLEX solver.



F.4 Numerial results and disussion 231F.4 Numerial results and disussionWe desribe here the numerial results obtained by running model (F.34) on asmall test-ase based on real-world data.The example simulates a single bidding round at the spot market for the re-tailer, whih optimises its bid and real-time market operation using a 48-hourhorizon. Unertainties on the future realisation of spot and real-time marketpries, outdoor temperature and in�exible load are modelled through senarios.For the sake of simpliity, we limit the number of onsumers to three. Indeed,this number is su�ient to draw quantitative onlusions on the behaviour ofthe model, at the same time allowing the visualisation of relevant variables foreah onsumer. Inidentally, we stress that although there is no theoretial limiton the number of onsumers that an be onsidered in the model � adding oneonsumer translates into adding one set of lower-level KKT onditions to theonstraints of the upper-level program � there is a ertain omputational burdenimplied by the inreasing number of integer variables.Aggregation of onsumers into lasses haraterised by similar building dynam-is, behaviour and therefore onsumption is paramount for obtaining a tratable,yet realisti, model for the retailer problem. In general, lustering of onsumersis widely applied in deision making problems. For instane, lustering teh-niques for modelling eletriity onsumption have been proposed in [25℄, wheretheir importane for eletriity providers is also underlined. Clustering thedriving behaviour of eletri ar owners is proposed in [26℄ for optimising theirharging and disharging. Similarly, the three onsumers inluded in this ex-ample an be regarded as three lasses eah grouping a number of onsumerswith similar behaviour, i.e.building dynamis, heating preferenes, et. Indeedwe will treat the three onsumers as groups by assigning them di�erent proba-bilities, i.e.by varying the distribution (or proportion) of onsumers belongingto a ertain lass.In the following setion, we present the parameters hosen to model onsumerheating dynamis. Then, we desribe how senarios have been generated inorder to model unertainties. Finally, the results of the example are disussed.F.4.1 Parameters in the model of building dynamisThe onsumer optimisation problem desribed in Setion F.2.2 inludes amongits onstraints a state spae model of onsumer building dynamis.



232 Paper FParameter Value Unit
a11 0.4103 -
a12 0.5586 -
a13 0.0028 -
a21 0.1092 -
a22 0.8801 -
a23 0.0078 -
a31 0.0022 -
a32 0.0310 -
a33 0.9668 -
b1 0.0044 ◦C/kWh
b2 0.0173 ◦C/kWh
b3 4.2332 ◦C/kWh
e1 0.0284 -
e2 0.0029 -
e3 0 -
l 0 kWh
l 0.33 kWh
ρ 30 e/◦CTable F.1: Parameter values onsidered for the LP model representing theonsumer's heating dynamisTable F.1 summarises the values used for the parameters as well as their units.The hosen parameter values are the ones used in [18℄, exeption made for alower hourly onsumption limit l for eletriity and lowered b1, b2 and b3 values,due to the hoie of a smaller gain for the heat pump, whih is dereased by afator of 3. These hanges aim at better spreading the eletriity onsumptionover the day, rather than having few daily onsumption spikes as in [18℄. Wedo not disuss here the physial meaning of the parameters, and just refer theinterested reader to [18℄ and [27℄ for disussion on the physial interpretation ofthe parameters and on how they an be estimated.Besides, we onsider time-varying omfort bands [T rt T

r

t ], so that there is ahigher referene for indoor temperature during the day and a lower one duringthe night. In order to model di�erent onsumer preferenes, we assume thatthe three onsumer groups have di�erent omfort bands. As one an see inFigure F.1, the �rst onsumer is the most �exible, as it aepts temperatures ina range of 5◦C, while the range is narrowed down to 2◦C for the third onsumer.It is worth mentioning that these temperature ranges need not be onstant as inthis example, but ould e.g. be wider during working hours and narrower whenonsumers are expeted to be at home.
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Figure F.1: Comfort bands [T rt T
r

t ] for the three onsumer groups. The on-sumer �exibility dereases from top to bottom



234 Paper FF.4.2 Senario generationThis setion desribes the methodology employed for generating senarios forthe market quantities (spot and regulation pries), in�exible load and tem-perature required as inputs to the model. All the employed methodologies arerather simplisti answers to ompliated problems, i.e.modelling of weather- andmarket-related stohasti proesses, whih are out of the sope of this paper.The interested reader is referred to [28℄ and [29℄ and to [30℄ and [31℄, respetivelyfor an introdution to modelling of stohasti proesses related to weather andeletriity markets.As far as the spot market prie πst,ω2
is onerned, we use the observed spotmarket pries in the DK-2 (Eastern Denmark) market area of NordPool, theSandinavian power exhange, as mean value for the senarios. We hoosearbitrarily to onsider pries pertaining to the 15-16th Marh 2011, whih areavailable at [32℄ along with other market data for NordPool. In order to generatesenarios, we simulate a multivariate Gaussian proess with an exponentiallydereasing ovariane struture, i.e.the (i, j)-th element of the ovariane matrixis given by

C(i, j) = σ2e−|i−j|/τ (F.35)The parameter σ is the standard deviation of the proess. We onsider a on-stant standard deviation σ = e 6.67, whih is the approximate RMSE valuefor the spot market prie foreasting model in the work in [33℄3. Furthermorewe point out that the time-lags onsidered for these senarios are at least 13hours, whih is the look-ahead time of the senarios for the �rst hour of the �rstday onsidered. The parameter τ sets the exponential deay of orrelation withrespet to the time lag. We hoose the value τ = 7 hours in the example. Thehoie of model (F.35) is justi�ed by the fat that, despite being relatively sim-ple, it allows us to onsider the dynamis of market pries and to easily enforea realisti value for the standard deviation of the foreast error.Finally, senarios are generated by adding the oloured Gaussian noise to theobserved spot market prie. Figure F.2 shows both the observed spot marketprie and the obtained senarios.Senarios for the real-time market pries π↑
t,ω2

and π↓
t,ω2

are generated from thespot prie senarios using a model based on the average values of the ratios
α↑
t =

π↑
t

πst
α↓
t =

π↓
t

πst
(F.36)3This work onsiders the DK-1 (i.e.Western Denmark) prie area of NordPool. Generallythe prie di�erene between DK-1 and DK-2 is negligible
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ScenariosFigure F.2: Observed spot market prie in the DK-2 prie area of NordPooland generated senarios for the period 15-16th Marh 2011These averages are alulated for the three winter months in the DK-2 priearea of NordPool using data from [32℄, resulting in the values α̃↑ = 1.19 and

α̃↓ = 0.95. Senarios an then be generated from the model as funtions of thespot prie senarios
π↑
t,ω2

= α̃↑πst,ω2
π↓
t,ω2

= α̃↓πst,ω2
(F.37)As a onsequene of the use of this model, there is a single regulation priesenario assoiated to eah spot prie realisation. This is learly a simpli�edmodel for the regulation pries. We point out, though, that there is no obstalein using third-stage senarios in the proposed model, besides that of modellingthe stohasti regulation pries. Furthermore, this simpli�ation does not in-trodue signi�ant distortions in the results of the model, sine both regulationpenalties ψ↑

t,ω2
and ψ↓

t,ω2
are di�erent from 0 at any time and for all senarios.In other words, the senarios π↑

t,ω2
and π↓

t,ω2
represent the expeted real-timemarket pries onditioned on the realisation of the spot market prie πst,ω2

. Fur-thermore, it should be notied that model (F.36) is not a very good preditorof the balaning market pries, espeially as far as the up-regulation prie isonerned (the standard deviations of the ratios in (F.36) are 0.76 and 0.12,respetively). While developing a state-of-the-art foreasting tool for the regu-lation pries is out of the sope of this paper, one should keep in mind that moresophistiated foreasting models should be used in realisti appliations. Thereader should notie that the hoie of model (F.36) implies no loss of general-ity, as the senarios for the regulation pries are exogenous to the optimisationmodel.



236 Paper FSenarios for T a are formed by gathering temperature observations available atthe [34℄4. Measurements are piked from a single loation during di�erent daysof Marh 2011 with similar temperature patterns. The obtained senarios areshown in Figure F.3. In total NΩ2 = 14 seond stage senarios are onsidered inthis example, for reasons of data availability. In a more realisti setup one wouldwant to make use of more advaned modelling of weather-related variables. Werefer the reader interested in the subjet to [28℄ for a presentation of senario-generation tehniques applied to weather-related variables.
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Figure F.3: Senarios for temperature T at,ω2
obtained from measurements dur-ing Marh 2011 available at ??Finally the third-stage senarios for the in�exible load lit,ω3

are generated witha model similar to the one used for the spot prie πst,ω2
. The observed load inDK-2, available at [32℄, is saled and used as mean value of the proess. Thesaling is done so that the in�exible load is approximately about 85% of thetotal load, whih is the share of the residual household load after subtratingthe onsumption due to heating in Denmark [35℄. We emphasise, though, thatthe share of total onsumption represented by heating varies from ountry toountry. Coloured Gaussian noise with a ovariane struture of the same formof (F.35) is then added to the load pattern. The standard deviation is hereset to σ = 0.0075kWh. As Figure F.4 highlights, the variane of the in�exibleload is relatively smaller than the variane of the spot prie, re�eting the easierpreditability of the load ompared to market quantities. Ideally the standard4The geographial displaement between the loations of the temperature and marketdatasets is justi�ed by reasons of data aessibility. This displaement is equivalent to on-sidering that temperature and market prie senarios are independent from eah other. Weassume that the results obtained in this paper would hold, at least qualitatively, using onsis-tent datasets.



F.4 Numerial results and disussion 237deviation of the in�exible load would be a funtion of the size of the onsideredustomer group, dereasing in relative terms with respet to the size owing tosmoothing of the errors. In total a number of third-stage senarios NΩ3 = 10 isseleted. Note that the number of senarios should be large enough to guaranteea faithful representation of the unertainties involved in the problem. One morewe stress that developing re�ned models for the unertainty is outside the sopeof this paper.
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ScenariosFigure F.4: Senarios for the in�exible part of the load lit,ω3
for the period15-16th Marh 2011F.4.3 Numerial resultsThe results of the illustrative example are disussed in this setion. First, weassess the di�erenes in onsumer behaviour and market performane of theretailer between the ases of �xed-prie, Time-Of-Use (TOU) prie and dynami-prie ontrats between retailer and onsumers. Then, di�erent distributions ofonsumer groups are onsidered in order to disuss how dynami pries imposedby the retailer impat the market players, and how this impat is in�uened byonsumer behaviour.F.4.3.1 Advantages of dynami priingIn order to ompare the �xed-, TOU- and the dynami-prie ase, the model isrun three times on the same dataset. In the �rst run the prie harged by the



238 Paper FDay time 1�7 8�10 11�14 15�16 17�20 21�23 24Type valley �at peak �at peak �at valleyPrie 0.1 0.2 0.3 0.2 0.3 0.2 0.1Table F.2: Details of the Time-Of-Use (TOU) priing sheme employed. Priesare in e/kWhretailer is set to be onstant over time to the value e 0.2/kWh, whih amountsto replaing (F.5)�(F.7) with the equation π̃t,ω2 = e 0.2/kWh.In the seond run, the Time-Of-Use (TOU) priing sheme illustrated in Ta-ble F.2 is employed. In this sheme, onsumption is harged e 0.3/kWh duringpeak hours, e 0.2/kWh during �at hours, and e 0.1/kWh during valley hours.Notie that, sine there are 8 hours for eah group, the average TOU prie isequal to the prie in the �xed-prie sheme, i.e.e 0.2/kWh.In the third run, the original model (F.34) is simulated. We remind thereader that the prie in model (F.34) is dynami, but must have a daily mean
πAV G = e 0.2/kWh, whih is equal to the �xed prie and to the averageof the TOU prie. Furthermore the prie must always fall within the range
[0.1, 0.3]e/kWh. In all the ases onsidered the distribution of the onsumergroups is set to [0.3, 0.4, 0.3], whih means that 30% of the onsumers havehighly �exible behaviour, 40% are balaned and 30% have low �exibility.The dynamis of π̃t,ω2 and of the �exible load lt,ω2 are shown in Figures F.5,F.6 and F.7 for eah onsumer type, in the �xed-, TOU- and dynami-priease, respetively. Mean, median and range (i.e.maximum and minimum value)aross senarios are shown for these variables, whih, exept for π̃t,ω2 in the�xed- and TOU-prie ase, are senario-dependent.In the �xed-prie ase, there is no eonomi inentive for the onsumer to modifyhis/her onsumption shedule aording to the prie signal sent by the retailer.In pratie the optimisation onsists of a trade-o� between onsumption (andtherefore ost) minimisation and aversion to deviations from the omfort band.In this example, the onsumer hooses to alloate all of its onsumption duringthe �rst hours of the simulation horizon, as shown in Figure F.5.The situation hanges in the TOU-prie ase, where the onsumers prefer toalloate their �exible onsumption during valley hours, whih are haraterisedby low pries. Clearly, onsumption takes plae during peak hours only whenneessary, i.e.during few hours for onsumer type 2 and for the least �exibleonsumer type 3.
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Figure F.5: Flexible onsumption (l) patterns for the onsumer types with�xed prie π̃
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Figure F.6: Flexible onsumption (l) patterns for the onsumer types withTime-Of-Use (TOU) based prie π̃



F.4 Numerial results and disussion 241In the dynami prie ase, the onsumer adapts to the prie signal submittedby the retailer. Remarkably, the prie plotted in Figure F.7 is on average lowerduring night time, i.e.hours 0�8 and 21�32. The onsumer response follows theprie signal: indeed, �exible onsumption takes plae more likely in time periodswhere the prie tends to be low. This appears to hold rather generally arossall the onsumer groups onsidered.
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Figure F.7: Flexible onsumption (l) patterns for the onsumer types withdynami prie π̃Analysing the results further, one noties senarios where the prie hosen by theretailer implies multiple solutions for the onsumer. In this ase, the onsumeris indi�erent with respet to hoosing any of these solutions, and might thereforepik randomly or deide aording to a seondary riterion (e.g.hoosing, amongthe solutions delivering the minimum ost, the one minimising the onsumption).



242 Paper FThe results presented here refer to the ase where the onsumer selets, amongthe optimal solutions, the one that yields the best pro�t for the retailer. Inmathematial terms, this is the optimisti or strong Stakelberg solution [36℄.Notie that by de�nition every solution to the MPEC in the general form (F.1)is a strong Stakelberg solution. In pratie this means that the results of thebilevel model ould be too optimisti, unless there is a reason why the onsumerwould hoose the strong Stakelberg solution instead of any other element inhis/her optimal set y ∈ S(x). For example, the retailer ould ommuniate,along with the prie signal, a suggested onsumption level to hoose in asemultiple solutions are found. As an alternative, one ould modify the setupof the lower level problem so that it always has a unique solution. In otherwords, one must de�ne a lower level problem as a variational inequality wherethe funtional is strongly monotone on the feasible set, see [16℄. Future researhin this diretion is needed.Let us now onsider the relationship between the total onsumption lt,ω2 + lit,ω3and the prie πst,ω2
paid by the retailer at the spot market under the dynami-priing sheme. As one an see in Figure F.8, total onsumption peaks whenthe spot prie is at the lowest point, i.e.during the night in both the �rst andthe seond day inluded in the horizon. Furthermore, another peak of smallerintensity and shorter duration is observed around the 13th hour of the sim-ulation, where the spot prie appears on average to have a loal valley. Anintuitive explanation for this is that part of the load annot be postponed tothe following night (or shifted to the previous one) without violating the om-fort band; therefore aepting a loally minimum prie is a good ompromise.Observing this type of behaviour was one of the reasons behind the hoie of amodel apturing the dynamis in the onsumer �exibility. Finally, the energy

Es purhased by the retailer at the spot market resembles the pattern of theaverage onsumption, though shifted somewhat up due to the lower expetedosts for down-regulation ompared to up-regulation.Finally, it is of interest to analyse the impat of the introdution of dynamipries on the retailer's energy imbalane. Indeed demand response, if managedwith orret poliies, has the potential to redue both the magnitude and thetotal ost of regulation. Deviations from the day-ahead shedule and imbalanepenalties are shown in Figure F.9, F.10 and F.11, in the ases of �xed, TOU anddynami prie, respetively. It is worth pointing out that generally the retailerprefers being long, i.e.ontrating more energy at the spot market than neededon average. This is on�rmed by the prevalene of down-regulation in the three�gures. Furthermore, we remark that in the TOU-prie ase in Figure F.10,the largest imbalanes are moved to the valley hours. In a similar fashion,the retailer manages to move the largest imbalanes away from periods whereregulation pries peak under dynami priing. This is illustrated in Figure F.11.
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Figure F.9: Retailer energy imbalane ∆E↑
t,ω2,ω3

(up-regulation), ∆E↓
t,ω2,ω3(down-regulation) and imbalane penalties ψ↑

t,ω2
(up-regulation),

ψ↓
t,ω2

(down-regulation) with �xed onsumer prie π̃
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Figure F.10: Retailer energy imbalane ∆E↑
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Figure F.11: Retailer energy imbalane ∆E↑
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F.4 Numerial results and disussion 247The main results for the retailer in the simulations with �xed, TOU and dynamiprie are summarised in Table F.3. It emerges from these results that the retailerimproves its performane when it is allowed to send a dynami prie signal toits �exible onsumers. The expeted pro�t φ(x,y) rises by approximately 5%ompared to the �xed-prie ase, both due to an inrease in revenues and a ostredution. On the ontrary, the TOU-priing sheme yields the lowest pro�tsamong the three ases onsidered.The retailer revenues onsist of returns of the sale of energy for �exible andin�exible onsumption at the prie imposed by the retailer, that is
NT∑

t=1

π̃t,ω2 lt,ω2 + π̃t,ω2 l
i
t,ω3

(F.38)The two omponents, averaged over the senarios used in this example, arepresented separately in the table. In the ase with TOU-prie, revenues from the�exible part of the load are dramatially lower if ompared to the orrespondingquantities with �xed- and dynami-prie. This learly indiates that this priingsheme is the most favourable to the onsumers. With dynami priing, the totalrevenues are maximised, indiating that the retailer is fully exploiting its marketpower over the onsumers.The osts for the retailer are presented in two di�erent formulations. In the�rst formulation they are alulated by summing the payment for purhasingpower at the spot market and the ost (revenue) of buying (selling) energy atthe real-time market
NT∑

t=1

πst,ω2
Est + π↑

t,ω2
∆E↑

t,ω2,ω3
− π↓

t,ω2
∆E↓

t,ω2,ω3
(F.39)The payment at the spot market is lowest with dynami-priing, i.e.when theretailer an indiretly shift the load by ommuniating a prie signal to theonsumer, while the TOU priing sheme ranks seond. The results in the real-time market seem, at a super�ial analysis, ounterintuitive, sine the revenuesare lower in the dynami-prie ase than in the �xed-prie one. However, itis not straightforward from this formulation to understand whether dynamipries an help to ahieve better results in terms of imbalane osts. For thisreason we onsider reformulation (F.30) and break down the retailer osts inthe following way

NT∑

t=1

πst,ω2
(lt,ω2 + lit,ω3

) + ψ↑
t,ω2

∆E↑
t,ω2,ω3

+ ψ↓
t,ω2

∆E↓
t,ω2,ω3

(F.40)where the �rst term an be onsidered as the spot market osts if the retailerhad perfet information on future onsumption, and the last two terms are



248 Paper FRetailer performane index PriingFixed TOU DynamiPro�ts 2.3139 2.2296 2.4286Revenues �exible load 0.7050 0.4300 0.7180in�exible load 2.7155 2.8865 2.7868total 3.4205 3.3164 3.5049Costs spot market 1.2146 1.1676 1.1578regulation market -0.1080 -0.0808 -0.0814total 1.1067 1.0868 1.0763Costs (reform.) perfet information 1.0970 1.0781 1.0680real-time penalties 0.0096 0.0088 0.0083total 1.1067 1.0868 1.0763Table F.3: Market performane of the retailer in the simulations with �xedand dynami prie. All the values are averages for the onsideredsenarios expressed in ethe imbalane penalties, i.e.the ost of imperfet information. As shown inTable F.3, not only the spot market �virtual� payment under perfet information,but also the imbalane osts behave aording to intuition. Indeed, the dynamipriing sheme (whih is optimal) performs best, followed by the ase with TOUprie (whih is suboptimal, but designed to redue osts on average), whilethe �xed prie ase ranks last. This on�rms that demand response an beemployed both for reduing the ost of energy prourement (i.e.peak-shifting)and for utting the regulation ost.The results of the simulations for the onsumers are summarised in Table F.4.Note that the onsumer osts in this table are equal to the retailer revenues inTable F.3. As already mentioned in the disussion above, the eletriity pro-urement payments for the onsumers are maximised under the dynami priingsheme, and lowest with TOU prie. Espeially the fat that the onsumer pay-ments for the �exible part of the load are highest with dynami priing tellsus that dynami pries alone do not neessarily result in higher bene�t for the�exible onsumers. In this example, the onsumer is better o� with TOU- or�xed-prie ontrats than with a dynami-prie one with equal average priesover the day. Redutions in the average real-time onsumer prie ould beonsidered as an inentive for onsumers to swith to dynami-prie ontrats.Therefore, determining an average value making dynami real-time pries bene-�ial also for onsumers is an interesting problem for whih models of this typeould be employed. Finally we point out that, despite the eletriity proure-ment osts for the onsumers are higher in the dynami-prie ase ompare tothe �xed priing sheme, the average prie paid by the �exible part of the load



F.4 Numerial results and disussion 249Consumer result index Unit PriingFixed TOU DynamiCosts �exible load e 0.7050 0.4300 0.7180in�exible load e 2.7155 2.8865 2.7868total e 3.4205 3.3164 3.5049Prie �exible load e/kWh 0.2000 0.1136 0.1885in�exible load e/kWh 0.2000 0.2126 0.2053Table F.4: Consumer results in the simulations with �xed and dynami prie.All the values are averages for the onsidered senariosdereases quite sensibly. This implies that the total eletriity onsumption ishigher in the dynami-prie ase.To onlude, we an interpret the redution of the market osts for the retailerin the dynami-prie ase as an inrease of soial welfare. This is beause thetransfer of money from onsumers to retailer anels out in a soial welfarealulation. Sine there were no deviations from the omfort band in any ofthe ases and senarios onsidered in the example, we an onlude that theonsumer bene�t is onstant. As a result, the soial welfare is given by thegeneration osts hanged in sign. These annot be diretly alulated, sinethis model does not inlude the supply side. Nevertheless, we an onsider theredution in retailer market osts as a proxy for the redution of generation ost.On the other hand, the inrease in onsumer payments to the retailer impliesthat the redistribution of this additional welfare between the players might notbe fair under this retailer-onsumer on�guration. One again, though, we pointout that these onsiderations hold for the onsidered example and with theonsidered setup. Di�erent dynami prie ontrats, i.e.di�erent parameters inthe onstraints (F.5)�(F.7), ould yield a fairer redistribution of the welfare.F.4.3.2 Impat of onsumer �exibilityWe now onsider how di�erent levels of demand �exibility impat the resultsfor both the retailer and the onsumer. This is done by arrying out two ad-ditional simulations with di�erent distributions into the onsumer groups de-sribed in Setion F.4.1. In the �rst run of the model, aimed at simulating asituation of high demand �exibility, we onsider the onsumer group distribu-tion [0.6, 0.3, 0.1]. The situation is reversed to the distribution [0.1, 0.3, 0.6] inthe last run of the model, simulating low demand �exibility. Both ases areompared to the referene ase in the previous setion, where demand �exibility



250 Paper FRetailer performane index Unit FlexibilityHigh Medium LowPro�ts e 2.3199 2.4286 2.5311Revenues �exible load e 0.5517 0.7180 0.8757in�exible load e 2.7969 2.7868 2.7767total e 3.3486 3.5049 3.6524Costs spot market e 1.1058 1.1578 1.2057regulation market e -0.0771 -0.0814 -0.0845total e 1.0287 1.0763 1.1212Costs (reform.) perfet information e 1.0211 1.0680 1.1114real-time penalties e 0.0076 0.0083 0.0099total e 1.0287 1.0763 1.1212Table F.5: Market performane of the retailer in simulations with di�erentdemand �exibility. All the values are averages for the onsideredsenariosis medium due to the hoie of the distribution [0.3, 0.4, 0.3].Table F.5 illustrates the retailer market performane in the three ases of de-mand �exibility, this time only with dynami prie. Observe that higher demand�exibility results in lower average pro�ts for the retailer. This is the result oftwo ontrasting trends. On the one side, total revenues for eletriity sale di-minish as demand �exibility inreases. This is in line with the expetations thatretailers have lower market power, i.e.ability to impose pries to the demand, asonsumers get more �exible. On the other side, total market osts drop as wellwith higher onsumer �exibility. This drop is due to uts both in spot marketosts for eletriity prourement (perfet information row in Table F.5) and inregulation penalty osts. Nevertheless the overall e�et is still of dereasingretailer pro�ts with inreasing �exibility, beause the uts in market osts arenot large enough to o�set the redution in revenues.The results for the onsumer are shown in Table F.6. As already pointed out,demand experienes a ut in the eletriity osts as it gets more and more�exible. This is due to a quite dramati drop in the ost of �exible load andonly a slight inrease in the ost of must-serve load. Therefore, there is a leareonomi signal suggesting the demand to adopt more �exible onsumptionpreferenes, and to inrease the share of �exible demand. The derease in theaverage prie per kWh paid for �exible load on�rms that a more ost-e�etiveload pattern is adopted by the onsumer.



F.5 Conlusions 251Consumer result index Unit FlexibilityHigh Medium LowCosts total e 3.3486 3.5049 3.6524�exible load e 0.5517 0.7180 0.8757in�exible load e 2.7969 2.7868 2.7767Prie �exible load e/kWh 0.1870 0.1885 0.1921in�exible load e/kWh 0.2060 0.2053 0.2045Table F.6: Consumer results in simulations with di�erent demand �exibility.All the values are averages for the onsidered senariosF.5 ConlusionsThis paper presents a game theoretial model for the partiipation of energy re-tailers in eletriity markets with �exible demand and real-time onsumer pries.The hierarhial struture in the relation between retailers and onsumers, per-taining to the so-alled Stakelberg (or leader-follower) games, is imposed by theformulation as a bilevel optimisation problem. The model has three-stages tore�et the fat that deisions are made day-ahead, real-time and ex-post withdi�erent information struture on the stohasti variables involved. Further-more a dynami model for the demand �exibility based on realisti onsumerpreferenes is employed.In an illustrative example, the model is simulated in a realisti setup, whihallows the omparison of the results obtained using the optimal dynami priewith the ones under �xed and time-of-use priing shemes. We show that, in thedynami-prie ase, the retailer, while maximising its pro�ts, sends the onsumera prie-inentive to shift his/her demand to periods of the day haraterised bylow spot market pries. Similarly, a drop in the imbalane osts borne by theretailer, due to deviations of the atual onsumption from the energy ontratedday-ahead, is experiened when swithing from a �xed or a time-of-use to areal-time onsumer prie regime. It turns out that the dynami priing shememinimises the retailer net payments in the day-ahead and real-time markets. Onthe ontrary, the �xed prie yields the highest osts among the priing shemesonsidered, while the time-of-use prie has a middle performane.We link the redution of prourement and regulation osts, obtained by shiftingthe load, to an inrease in soial welfare. As simulations show, though, theredistribution of the additional welfare is not fair in the dynami-prie shemeonsidered, as the retailer absorbs entirely the added welfare. Indeed, the on-sumer payments to the retailer are highest under the dynami-priing sheme



252 Paper Fin the onsidered example. On the ontrary, the time-of-use setup yields thelowest osts for the onsumers among the priing shemes onsidered. Theseresults, however, do not aount for the e�et of ompetition among retailers.In any ase, partiular are should be taken in designing priing shemes thatan e�etively motivate onsumers partiipation in real-time prie programmes.Finally, through a sensitivity analysis it is shown that, one real-time ontratsare in plae, there is an eonomi inentive for the onsumers to inrease their�exibility.Future extensions of this researh ould move in several diretions. Di�erentutility funtions to model the trade-o� for the onsumer between eletriityprie and omfort ould be de�ned and simulated. For example, the lower andupper bounds of the omfort band ould be linear funtions of the prie, ora quadrati penalty for deviations of the temperature from a referene ouldbe used. Furthermore, di�erent forms of onsumer �exibility ould be onsid-ered, for example by modelling the onsumption of �intelligent applianes� suhas prie-responsive washing mahines and eletri vehiles. Besides, a di�er-ent setup ensuring a unique solution to the lower-level optimisation problemould be proposed so as to improve the ontrollability of the load from theretailer perspetive, i.e.to ensure that the strong Stakelberg solution is alsounique. Furthermore, the e�et of renewable power on market pries ould beintrodued in the model, thus paving the way for an assessment of the value ofdemand response programmes in the integration of renewable generation in thesystem. Additionally, the optimisation model for the retailer ould be re�nedby onsidering a diversi�ed portfolio inluding e.g.futures and options, and byinluding risk management. Finally, ompetition among retailers ould be mod-elled in the framework of Equilibrium Programs with Equilibrium Constraints(EPECs)AknowledgementsPierre Pinson and Henrik Madsen are partly funded by the iPower platformprojet, supported by DSF (Det Strategiske Forskningsråd) and RTI (Rådet forTeknologi og Innovation), whih are hereby aknowledged. Furthermore, DSF(Det Strategiske Forskningsråd) is to be aredited for partly funding the workof Pierre Pinson, Henrik Madsen and Juan M. Morales through the Ensymoraprojet (no. 10-093904/DSF). Juan M. Morales is also supported by the H.C.Ørsted researh fellowship granted by the Tehnial University of Denmark.Besides, we thank Rasmus Halvgaard from DTU Informatis and Trine KroghBoomsma from the Department of Mathematial Sienes at the University of
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261Eletriity Market Clearing With ImprovedSheduling of Stohasti ProdutionJuan Miguel Morales1, Maro Zugno2, Salvador Pineda1, Pierre Pinson2AbstratIn this paper, we onsider an eletriity market that onsists of aday-ahead and a balaning settlement, and inludes a number ofstohasti produers. We �rst introdue two referene proedures forsheduling and priing energy in the day-ahead market: on the onehand, a onventional network-onstrained aution purely based onthe least-ost merit order, where stohasti generation enters withits expeted prodution and a low marginal ost; on the other, aounterfatual aution that also aounts for the projeted balan-ing osts using stohasti programming. Although the stohastilearing proedure attains higher market e�ieny in expetationthan the onventional day-ahead aution, it su�ers from fundamen-tal drawbaks with a view to its pratial implementation. In parti-ular, it requires �exible produers (those that make up for the lakor surplus of stohasti generation) to aept losses in some senar-ios. Using a bilevel programming framework, we then show that theonventional aution, if ombined with a suitable day-ahead dispathof stohasti produers (generally di�erent from their expeted pro-dution), an substantially inrease market e�ieny and emulatethe advantageous features of the stohasti optimization ideal, whileavoiding its major pitfalls.A two-node power system serves as both an illustrative example anda proof of onept. Finally, a more realisti ase study highlightsthe main advantages of a smart day-ahead dispath of stohastiproduers.1Centre for Eletri Power and Energy, Tehnial University of Denmark, Elektrovej, bld.325, DK-2800 Kgs. Lyngby, Denmark2DTU Informatis, Tehnial University of Denmark, Rihard Petersens Plads, bld. 305,DK-2800 Kgs. Lyngby, Denmark



262 Paper GG.1 IntrodutionThe penetration of stohasti prodution in eletri energy systems is notablyinreasing worldwide, primarily owing to a booming wind power industry. Thereis a broad onsensus in the researh ommunity that today's eletriity marketdesigns are to be revisited so that stohasti produers an enter the ompetitionin a fair and e�ient manner.In its most basi form, an eletriity market onsists of a forward (typiallyday-ahead) market and a balaning market. On the one hand, the day-aheadmarket is required to aommodate the generation from the in�exible powerplants, i.e. from those generating units that need advane planning in order toe�iently and reliably set their prodution levels. On the other, the balaningmarket lears the energy deployed to maintain the onstant balane of supplyand demand over periods of time with �ner resolution, ommonly spanning fromminutes to one hour. Being leared shortly before real time, balaning marketsallow the trade of energy between �exible �rms, whih an adjust their outputquikly, and stohasti produers, whose generation is preditable only withlimited auray at the day-ahead stage.Conventionally the day-ahead and the balaning markets are settled indepen-dently. Furthermore, with respet to the partiipation of stohasti produers,the day-ahead market is typially leared onsidering their expeted produ-tion at a very low marginal ost (e.g., zero). The eventual energy adjustmentsneeded to ope with the assoiated foreast errors are left then to the �exibleunits partiipating in the balaning market. Consequently, if this market is notprovided with enough �exible apaity, balaning osts may esalate dramati-ally. It is expeted that this problem beomes exaerbated as the penetrationof stohasti prodution inreases [1, 2, 3℄.To fae this hallenge, two main solution strategies have been onsidered,namely:1. To establish reserve markets, where �exible apaity is proured su�-iently in advane of energy delivery and then made available to the bal-aning market, where it is dispathed if needed. The reserve demand inthese markets is exogenously spei�ed by the Transmission System Oper-ator, whih opens up a number of di�erent ad-ho riteria, see e.g. [4℄.2. To lear the forward market using stohasti programming [5℄, whih al-lows modeling future balaning needs and osts in a probabilisti frame-work, thus yielding the day-ahead energy dispath that minimizes theexpeted system operating osts. One of the major advantages of this



G.2 Dispath Models 263approah is that it endogenously solves for the optimal amount of reserveapaity to be left to the balaning market, weighing the expeted ostsand bene�ts of suh apaity [6, 7, 8, 9℄.Ideally, the stohasti solution method attains maximum market e�ieny (asit minimizes the expeted system operating ost) and therefore, it is used hereas a referene in this respet. For its pratial appliation within a marketenvironment, though, it must be �rst omplemented with a set of pries andpayments that make market partiipants satis�ed with the resulting day-aheaddispath. In this vein, [6℄ and [10℄ de�ne pries for both energy and reserveapaity. However, determining who should pay for suh reserve and to whihextent is still a major soure of on�it and debate [11℄.In this paper, we follow the approah of [12℄ and [13℄, where the stohastidispath is supported by energy pries only. However, this approah is notwithout its problems either. Indeed, [13℄ illustrate that the energy-only marketsettlement assoiated with the stohasti dispath requires �exible produers toaept losses for some realizations of the stohasti prodution, whih also raisesonerns on its pratial appliability.Starting from this point, the objetive of this paper is to show that, if learedwith an appropriate value of stohasti prodution, generally di�erent from theexpeted value, the onventional settlement of the day-ahead market an notablyapproah the behavior of the ideal stohasti dispath, while sidestepping itstheoretial drawbaks. For this purpose, we onstrut a bilevel programmingformulation that determines the optimal value of stohasti prodution thatshould be used to lear the day-ahead market under the onventional settlement.The rest of this paper is organized as follows. Setion G.2 presents the onven-tional and stohasti dispath models that we use as referenes in our work, andprovides the mathematial insight to alulate the optimal day-ahead sheduleof stohasti prodution under the onventional market settlement. Setion G.3disusses results from a small example and a ase study. More spei�ally,the example serves to illustrate the di�erent dispath models, whih are sub-sequently ompared and tested using a more realisti setup in the ase study.Lastly, Setion G.4 onludes the paper.G.2 Dispath ModelsConsider the sequene of a day-ahead and a balaning market. The day-aheadmarket is leared on day d−1 (e.g., by 10 am) and overs energy transations for



264 Paper Gdelivery on day d, typially on an hourly basis. The balaning market settles theenergy imbalanes with respet to the day-ahead prodution and onsumptionshedule. These imbalanes are omputed throughout day d, usually over timeintervals ranging from minutes to 1 hour.Let us begin by outlining a standard model for the dispath of energy. This willserve to present the notation and provide a starting point for the developmentsof the rest of the paper. The setting will be an eletri power system omprisinga olletion N of nodes.G.2.1 Conventional Dispath (ConvD)Let pG and pW denote the vetors of deisions on the day-ahead dispath ofonventional and stohasti produers, respetively. For simpliity and withoutloss of generality, the demand at eah node n of the system, ln, is onsidered tobe known with ertainty. We also assume that power �ows in the transmissionnetwork are determined by the vetor δ0 of nodal voltage angles.The onventional eonomi dispath model (ConvDM) identi�es the optimalshedule (p∗G, p
∗
W ) that minimizes day-ahead generating osts, CD(pG, pW ), asfollows:

Minimize
pG,pW ,δ0

CD (pG, pW ) (G.1a)
s.t. hD

(
pG, pW , δ

0
)
− l = 0 : λD , (G.1b)

gD
(
pG, δ

0
)
≤ 0 , (G.1)

pW ≤ Ŵ , (G.1d)where Ŵ is the foreast vetor of stohasti prodution. The equality on-straints (G.1b) enfore the day-ahead balaning onditions, stating that thedispath plus net power �ow equals the demand at eah node. The inequal-ities (G.1) inlude upper and lower bounds to the dispath of onventionalproduers and sheduled power �ows, as well as delarations of non-negativevariables. Constraints (G.1d) limit the day-ahead shedule of stohasti pro-duers to their expeted generation.The dispath model (G.1) an be understood as a network-onstrained autionthat follows a least-ost merit-order priniple, i.e., the heapest generators aredispathed �rst. Consequently, beause stohasti produers enter the marketwith very low or zero marginal ost, their dispath up to the foreast mean Ŵis prioritized.



G.2 Dispath Models 265Notie that the vetor of dual variables assoiated with onstraint (G.1b), whihis indiated in (G.1) by λD, onstitutes the vetor of day-ahead loationalmarginal pries.One the optimal day-ahead shedule (p∗G, p
∗
W ) has been obtained from (G.1),the balaning market must deal with the energy imbalane aused by thestohasti prodution. Consider a spei� realization vetor of this produ-tion, denoted by Wω′ . The energy imbalane is then given by Wω′ − p∗W , whihrepresents a surplus of generation, if positive, or a shortage, if negative. Toaommodate an exess of prodution, several ations may be taken, namely:

• To derease the power prodution of �exible generating units. In marketterms, this is equivalent to say that �exible produers repurhase a ertainamount r−ω′ of energy in the balaning market.
• To spill a part W spill

ω′ of the stohasti prodution.Similarly, to balane a de�it of generation, the following ations may be taken:
• To inrease the power output of �exible units, whih is equivalent to saythat �exible produers sell an additional amount r+ω′ of energy in the bal-aning market.
• To shed a portion lshedω′ of the demand. This ation is, in general, veryostly, as the so-alled value of lost load is normally very high.It should be notied that the previous deision vetors r−ω′ , r+ω′ , W spill

ω′ , and
lshedω′ have been intentionally augmented with the subsript ω′ to underline theirimpliit dependene on the spei� realization Wω′ of stohasti prodution.For ease of presentation, we group all these deision variables into one singlevetor yω′ (the notation introdued here will beome relevant later on in theillustrative example of Setion G.3). Thus, the vetor y∗ω′ that minimizes theost of balaning the energy deviation Wω′ − p∗W is solution to the followingoptimization problem:

Minimize
yω′ ,δω′

CB (yω′) (G.2a)
s.t. hB

(
yω′ , δω′ , δ0∗

)
+Wω′ − p∗W = 0 : λBω′ , (G.2b)

gB (yω′ , δω′ , p∗G;Wω′) ≤ 0 , (G.2)where δω′ is the vetor of nodal voltage angles at the balaning stage. Theequality onstraints (G.2b) ensure that generating units and loads are redis-pathed so that the system remains in balane. The vetor λBω′ of dual variables



266 Paper Gassoiated with these onstraints de�ne the loational marginal pries at thebalaning market. Similarly to (G.1), the inequalities (G.2) omprise upperand lower bounds on the re-dispath of generating units, load shedding, windspillage, atual power �ows, and delarations of nonnegative variables.If we now denote the optimal vetor of balaning ations by y∗ω′ , the overall ostof operating the power system under the realizationWω′ of stohasti produtionis given by CD (p∗G, p
∗
W ) + CB (y∗ω′).It is important to stress that both onstraints (G.2b) and (G.2), and hene alsothe balaning osts CB (yω′), are dependent on the optimal day-ahead shedule(

p∗G, p
∗
W , δ

0∗
). Sine the onventional dispath model (G.1) is blind to suhdependeny, the market beomes more and more ine�ient as the penetrationof stohasti prodution inreases. In this vein, the stohasti dispath modelpresented next intends to apture preisely the interation between day-aheadand balaning deisions.G.2.2 Stohasti Dispath (StohD)Consider that the eletriity prodution from stohasti produers an be e�-iently modeled by a �nite set Ω of senarios, eah haraterized by a vetor ofpower values Wω and a probability of ourrene πω . It must hold that πω ≥ 0,for all ω ∈ Ω, and ∑ω∈Ω πω = 1. The senario set Ω is assumed to be availableto the Transmission System Operator.The stohasti dispath model writes as follows:

Minimize
pG,pW ,δ0;yω,δω,∀ω

CD (pG, pW ) + Eω

[
CB (yω)

] (G.3a)
s.t. hD

(
pG, pW , δ

0
)
− l = 0 : λD , (G.3b)

gD
(
pG, δ

0
)
≤ 0 , (G.3)

pW ≤W , (G.3d)
hB
(
yω, δω, δ

0
)
+Wω − pW = 0 , ∀ω ∈ Ω , (G.3e)

gB (yω, δω, pG;Wω) ≤ 0 , ∀ω ∈ Ω , (G.3f)where W is the vetor of apaities of stohasti produers and Eω[·] is theexpetation operator over the senario set Ω. Notie that, based on this set,the dispath problem (G.3) expliitly models and thus antiipates the balaningoperation of the power system by means of onstraints (G.3e) and (G.3f) and theexpetation of the balaning osts in the objetive funtion (G.3a). This way, thestohasti programming problem (G.3) yields the day-ahead dispath (p∗G, p
∗
W )



G.2 Dispath Models 267that maximizes market e�ieny, provided that the senario set Ω is properlyonstruted. As we shall see later, aording to (G.3), �exible produers maybe dispathed out of merit order in the day-ahead market to provide the powersystem with su�ient �exible apability to ope with the energy imbalanesaused by stohasti produers in real time.G.2.3 Improved Dispath of Stohasti Produers (ImpD)In an attempt to inrease the performane of the onventional dispathmodel (G.1), we address now the following question: Whih value pmax
W shouldthe foreast vetor Ŵ in (G.1d) be replaed with to maximize market e�ieny?The answer to this question is naturally given by the following bilevel program-ming problem:

Minimize
pG,pW ,δ0,pmax

W
;yω,δω ,∀ω

CD (pG, pW ) + Eω

[
CB (yω)

] (G.4a)
s.t. hB

(
yω, δω, δ

0
)
+Wω − pW = 0 , ∀ω ∈ Ω , (G.4b)

gB (yω, δω, pG;Wω) ≤ 0 , ∀ω ∈ Ω , (G.4)
0 ≤ pmax

W ≤W , (G.4d)
(
pG, pW , δ

0
)
∈ arg{Minimize

xG,xW ,θ
CD (xG, xW ) (G.4e)

s.t. hD (xG, xW , θ)− l = 0 : λD , (G.4f)
gD (xG, θ) ≤ 0 , (G.4g)
xW ≤ p

max
W

}
. (G.4h)The lower-level problem (G.4e)�(G.4h) is equivalent to the onventional dis-path (G.1), exept for the upper bound of the day-ahead shedule of stohastiproduers in (G.4h), whih is, in this ase, endogenously omputed by the upper-level problem (G.4a)�(G.4d) to minimize the sum of day-ahead dispath ostsand the expeted balaning osts. Consequently, the bilevel model (G.4) man-ages to dispath stohasti produers not only based on their marginal osts(whih are often very low or zero), but also on the ost of their unertainty(whih is estimated by (G.4a)�(G.4d)).If the onventional dispath model (G.1) is linear�note that this inludes thefamily of dispath models that onsider pieewise linear supply osts funtions,a DC power-�ow network model, a pieewise linear approximation of the trans-mission losses, ramping onstraints, et. (see e.g. [14℄)�the lower-level prob-



268 Paper Glem (G.4e)�(G.4h) an be replaed by its KKT onditions. In turn, the asso-iated omplementarity onditions an be reast using the equivalent mixed-integer formulation proposed by [15℄. The steps required to transform a bilevelprogramming problem of the type of (G.4), with a linear lower level, into amanageable single-level optimization problem are well known in the tehnialliterature (see e.g. [16℄) and are omitted here for oniseness. However, thistransformation is illustrated later, in Setion G.3, using a small example.For ease of omparison, the short form �ImpD� is used to refer to the onven-tional dispath model (G.1) where Ŵ in (G.1d) is replaed with the optimalvalue of pmax
W that results from (G.4).G.2.4 Energy-only Market SettlementWe now introdue a standard settlement sheme whereby market partiipantsare paid for energy only.Consider a ertain market partiipant k and de�ne ED

k as the amount of energysold (if positive) or purhased (if negative) in the day-ahead market, and EB
kω′as the amount of energy sold (if positive) or purhased (if negative) in thebalaning market in senario ω′. These quantities are diretly derived fromthe power shedule that is solution to the dispath model under onsideration.The payment to (if positive) or from (if negative) market partiipant k undersenario ω′ is then given by

λDs(k)E
D
k + λBs(k)ω′EB

kω′ , (G.5)where s(k) indiates the node where market partiipant k is loated. The loa-tional day-ahead market prie λDs(k) is obtained from either ConvD, StohD,or ImpD, while the loational balaning market prie λBs(k)ω′ is omputedfrom (G.2) after the day-ahead market is leared and the atual realization
ω′ of the stohasti prodution beomes known.[13℄ shows that, if generating units are fully dispathable from zero to their max-imum apaities (the problem of priing in markets with non-onvexities is nottreated here; see e.g. [17℄ for further information on this topi), the energy-onlysettlement sheme (G.5) under the stohasti dispath model (G.3) guaranteesost reovery for �exible produers only in expetation. This expetation is,besides, ontingent on the probabilisti haraterization of the stohasti pro-dution at a market-wide level, whih is in possession of the TSO and out of theontrol of the individual produers. Furthermore, we show in the illustrativeexample of Setion G.3 that StohD may atually dispath �exible units in theday-ahead market in a loss-making position.
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Bus 1

Bus 2

L1 (80 MW)

L2 (90 MW)

G1 G2
WP

100 MW

G3

High: (50 MW, 0.6)

Low: (10 MW, 0.4)Figure G.1: Two-bus power system.On the ontrary, the onventional dispath model, either in the traditional formof ConvD or in the variant ImpD proposed in this paper, ensures ost reoveryfor �exible produers for any possible realization of the stohasti prodution.G.3 Results and DisussionIn this setion, we �rst make use of a small two-node system to intuitivelyillustrate the main features of the previously disussed dispath models. Then,we provide meaningful results from a more realisti ase study.G.3.1 Illustrative ExampleThe di�erent dispath models are illustrated next using the two-node systemdepited in Fig. G.1. This small system onsists of one line, two loads (L1and L2), three onventional generators (G1, G2, and G3), and one wind powerplant (WP). The apaity and reatane of the line are 100 MW and 0.13 pu,respetively. Loads L1 and L2 are assumed to be inelasti and equal to 80and 90 MW, respetively. The demand that is involuntarily shed is valued at$200/MWh. The stohasti power output of the wind farm is modeled by twoplausible senarios, whih are referred to as high (50 MW) and low (10 MW),with probabilities of ourrene equal to 0.6 and 0.4.Data for the onventional units are ollated in Table G.1, where P is the unitapaity; C is the prie o�er for energy sale in the day-ahead market; C+ and C−



270 Paper GTable G.1: Unit data� Two-bus systemUnit G1 G2 G3

P (MW) 100 110 50
C ($/MWh) 35 30 10
C+ ($/MWh) 40 � �
C− ($/MWh) 34 � �
R+ (MW) 20 0 0
R− (MW) 40 0 0are, respetively, the prie o�ers for energy sale and purhase in the balaningmarket; and R+ and R− are, in that order, the upper bounds of the energy saleand purhase o�ers in the balaning market. Note that, in omparative terms,unit G1 is expensive, but �exible; unit G2 is a little bit heaper, but in�exible;and unit G3 is very heap, but in�exible. Therefore, G1 is the only unit in thesystem that an be re-dispathed to provide balaning energy. Besides, observethat, for this unit, C+ > C and C− < C, meaning that produer G1 is willingto be �exible in return for a prie premium on the energy traded during thebalaning operation [12℄.The marginal ost of the energy produed by the wind farm is onsidered to bezero. The expeted wind power prodution is 50× 0.6 + 10× 0.4 = 34 MW.G.3.1.1 Dispath ModelsFirstly, we onsider the onventional dispath model (G.1), whih writes for thispartiular example as follows:

Min. 35pG1 + 30pG2 + 10pG3 (G.6a)
s.t. pG1 + pG2 + pW − 80 = −

δ02
0.13

, (G.6b)
pG3 − 90 =

δ02
0.13

, (G.6)
pG1 ≤ 100 , pG2 ≤ 110 , pG3 ≤ 50 , (G.6d)
− 100 ≤

δ02
0.13

≤ 100 , (G.6e)
pW ≤ 34 , (G.6f)
pG1 , pG2 , pG3 , pW ≥ 0 , (G.6g)



G.3 Results and Disussion 271where bus 1 is onsidered as the referene node, i.e. δ01 = 0. Optimizationproblem (G.6) aims at minimizing the day-ahead prodution osts (G.6a). Thedispath problem is built upon a DC modeling of the transmission network,whih leads to the set of nodal power balane equations (G.6b) and (G.6),and inludes generation and transmission apaity limits, (G.6d) and (G.6e),respetively. As it is ustomary, onstraint (G.6f) limits the dispath of thewind power plant to its expeted prodution. Constraints (G.6g) enfore thenonnegative harater of prodution quantities.Observe that, aording to the dispath model (G.6), the day-ahead market issettled irrespetive of the potential impat that the resulting day-ahead program
{p∗G1

, p∗G2
, p∗G3

, p∗W } may have on the subsequent balaning operation. The day-ahead market is thus leared purely based on a least-ost merit-order priniple.This way, the wind farm is �rst dispathed to 34 MW (its expeted prodution),followed by generating unitsG3 andG2, in that order, whih are dispathed to 50and 86 MW, respetively, to over the total system load of 170MW. UnitG1 (the�exible produer) is onsequently left out of the day-ahead shedule. Afterwards,during the balaning operation of the power system, energy adjustments tothe day-ahead shedule are required to ope with the unertain wind powerprodution. Spei�ally, if the power output of the wind farm turns out to behigh (50 MW), the wind power produer seeks to sell the leftover 50 − 34 =
16 MW in this market. However, the only �exible unit in the system, unit
G1, annot purhase the extra wind, as it annot derease its prodution belowzero. As a result, these 16 MW of free wind power have to be spilled. Onthe other hand, if the eventual wind generation is low (10 MW), there is awind generation de�it of 34 − 10 = 24 MW. This de�it has to be overed inthe balaning market, but generating unit G1 an only inrease its prodution20 MW at most. Consequently, the remaining 24 − 20 = 4 MW are obtainedfrom ostly load urtailment.We an alternatively ompute the day-ahead generation shedule using thestohasti dispath model (G.3), whih writes as follows:
Min. 35pG1 + 30pG2 + 10pG3 + 0.6

(
40r+G1h

− 34r−G1h
+ 200

(
lshed1h + lshed2h

) )

+ 0.4
(
40r+G1l

− 34r−G1l
+ 200

(
lshed1l + lshed2l

) ) (G.7a)
s.t. (G.6b)− (G.6e) , (G.6g) , (G.7b)

pW ≤ 50 , (G.7)
r+G1h

− r−G1h
+ lshed1h + 50− pW −W

spill
h =

(δ02 − δ2h)

0.13
, (G.7d)

r+G1l
− r−G1l

+ lshed1l + 10− pW −W
spill
l =

(δ02 − δ2l)

0.13
, (G.7e)
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lshed2h = −

(δ02 − δ2h)

0.13
, (G.7f)

lshed2l = −
(δ02 − δ2l)

0.13
, (G.7g)

pG1 + r+G1h
≤ 100 , pG1 + r+G1l

≤ 100 , (G.7h)
pG1 − r

−
G1h
≥ 0 , pG1 − r

−
G1l
≥ 0 , (G.7i)

− 100 ≤
δ2h
0.13

≤ 100 , −100 ≤
δ2l
0.13

≤ 100 , (G.7j)
r+G1h

≤ 20 , r+G1l
≤ 20 , (G.7k)

r−G1h
≤ 40 , r−G1l

≤ 40 , (G.7l)
W spill
h ≤ 50 , W spill

l ≤ 10 , (G.7m)
lshed1h ≤ 80 , lshed1l ≤ 80 , lshed2h ≤ 90 , lshed2l ≤ 90 , (G.7n)
r+G1h

, r+G1l
, r−G1h

, r−G1l
,W spill

h ,W spill
l , lshed1h , lshed1l , lshed2h , lshed2l ≥ 0 , (G.7o)where subsripts �h� and �l� index the orresponding augmented variable withsenario �high� and �low�, respetively. Note that the leared amount of windprodution in the day-ahead market, pW , is limited to its apaity (50 MW)through onstraint (G.7).Optimization problem (G.7) inludes the senario-based modeling of the balan-ing operation through the set of onstraints (G.7d)�(G.7o). Balaning ationsomprise the prodution inrease/derease of �exible unit G1 (r+G1

/r−G1
), windspillage (W spill), and load shedding (lshed1 , lshed2 ). The stohasti dispath modelseeks to minimize the overall expeted system osts (G.7a), whih onsists ofthe day-ahead dispath osts plus the expetation of the balaning operationosts. Constraints (G.7d)�(G.7g) enfore the power balanes per node and se-nario. Inequalities (G.7h)�(G.7j) impose generation and transmission apaitylimits at the balaning stage. Constraints (G.7k) and (G.7l) limit the balaningenergy provided by unit G1 to its ��exible apaity�, whih is spei�ed through

R+ and R− in Table G.1 for prodution inreases and dereases, respetively.Inequalities (G.7m) and (G.7n) ap, in that order, the amount of wind powerthat is spilled and the amount of load that is shed to the atual wind power pro-dution and the atual load onsumption. Finally, the set of onstraints (G.7o)onstitute positive variable delarations.The essential feature of the stohasti dispath model (G.7) is that the day-aheadgeneration shedule {pG1 , pG2 , pG3 , pW } is determined onsidering its projetedimpliations for the subsequent balaning operation of the power system. Fol-lowing this rationale, only 10 MW of wind power prodution are leared in theday-ahead market. Furthermore, the �exible, but expensive, generating unit G1



G.3 Results and Disussion 273is dispathed to 40 MW in order to exploit its apability of reduing its poweroutput during the balaning operation. Thus, if senario high materializes, the40-MW wind prodution surplus an be sold to unit G1 instead of being ur-tailed. Besides, sine the share of unit G1 in the day-ahead shedule is inreasedup to 40 MW, unit G2 is only dispathed to 70 MW, even though this unit is$5/MWh heaper than unit G1. Therefore, the least-ost merit-order priniplethat drives the onventional dispath model is here violated.We ompute next the amount of wind power prodution that should lear theday-ahead market to maximize power system e�ieny under the onventionaldispath model. For this purpose, we solve the following bilevel programmingproblem:
Min. 35pG1 + 30pG2 + 10pG3 + 0.6

(
40r+G1h

− 34r−G1h
+ 200

(
lshed1h + lshed2h

) )

+ 0.4
(
40r+G1l

− 34r−G1l
+ 200

(
lshed1l + lshed2l

) ) (G.8a)
s.t. r+G1h

− r−G1h
+ lshed1h + 50− pW −W

spill
h =

(δ02 − δ2h)

0.13
, (G.8b)

r+G1l
− r−G1l

+ lshed1l + 10− pW −W
spill
l =

(δ02 − δ2l)

0.13
, (G.8)

lshed2h = −
(δ02 − δ2h)

0.13
, (G.8d)

lshed2l = −
(δ02 − δ2l)

0.13
, (G.8e)

pG1 + r+G1h
≤ 100 , pG1 + r+G1l

≤ 100 , (G.8f)
pG1 − r

−
G1h
≥ 0 , pG1 − r

−
G1l
≥ 0 , (G.8g)

− 100 ≤
δ2h
0.13

≤ 100 , −100 ≤
δ2l
0.13

≤ 100 , (G.8h)
r+G1h

≤ 20 , r+G1l
≤ 20 , (G.8i)

r−G1h
≤ 40 , r−G1l

≤ 40 , (G.8j)
W spill
h ≤ 50 , W spill

l ≤ 10 , (G.8k)
lshed1h ≤ 80 , lshed1l ≤ 80 , lshed2h ≤ 90 , lshed2l ≤ 90 , (G.8l)
r+G1h

, r+G1l
, r−G1h

, r−G1l
,W spill

h ,W spill
l , lshed1h , lshed1l , lshed2h , lshed2l ≥ 0 ,(G.8m)

0 ≤ pmax
W ≤ 50 , (G.8n)

(
pG1 , pG2 , pG3 , pW , δ

0
2

)
∈ arg{ Minimize

xG1 ,xG2 ,xG3 ,xW ,θ
35xG1 + 30xG2 + 10xG3(G.8o)

s.t. xG1 + xG2 + xW − 80 = −
θ

0.13
: λD1 , (G.8p)
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xG3 − 90 =

θ

0.13
: λD2 , (G.8q)

xG1 ≤ 100 : µG1
, xG2 ≤ 110 : µG2

, xG3 ≤ 50 : µG3
, (G.8r)

− 100 ≤
θ

0.13
≤ 100 : (µ

δ
, µδ) , (G.8s)

xW ≤ p
max
W : ρ , (G.8t)

xG1 , xG2 , xG3 , xW ≥ 0 : (µ
G1
, µ
G2
, µ
G3
, ρ)

}
, (G.8u)where the dual variables of the lower-level problem (G.8o)�(G.8u) have beenmade expliit after the orresponding onstraint, separated by a olon.Notie that pmax

W is a deision variable of the upper-level problem that enters thelower-level problem as a onstant. This variable is limited to the apaity of thewind farm through onstraint (G.8n). The remaining equations are the same asthose in the onventional and stohasti dispath models (G.6) and (G.7).For the bilevel programming problem (G.8) to be proessed by optimizationsolvers, it has to be �rst transformed into an equivalent single-level optimiza-tion problem. To this end, we an replae the lower-level minimization prob-lem (G.8o)�(G.8u) with its KKT onditions, whih are as follows:
35 + λD1 + µG1

− µ
G1

= 0 , (G.9a)
30 + λD1 + µG2

− µ
G2

= 0 , (G.9b)
10 + λD2 + µG3

− µ
G3

= 0 , (G.9)
λD1 + ρ− ρ = 0 , (G.9d)
λD1 − λ

D
2 + µδ − µδ
0.13

= 0 , (G.9e)(G.6b)− (G.6e) , (G.6g) , (G.9f)
pW ≤ p

max
W , (G.9g)

µG1
(pG1 − 100) = 0 , µG2

(pG2 − 110) = 0 , µG3
(pG3 − 50) = 0 , (G.9h)

µ
δ

(
δ02
0.13

+ 100

)
= 0 , µδ

(
δ02
0.13

− 100

)
= 0 , (G.9i)

ρ(pW − p
max
W ) = 0 , (G.9j)

µ
G1
pG1 = 0 , µ

G2
pG2 = 0 , µ

G3
pG3 = 0 , ρ pW = 0 (G.9k)

µ
G1

, µG1
, µ
G2

, µG2
, µ
G3

, µG3
, ρ , ρ , µ

δ
, µδ ≥ 0 . (G.9l)Besides, the omplementarity onditions (G.9h)�(G.9k) an be reast using themixed-integer linear formulation introdued by [15℄. For example, onsider a



G.3 Results and Disussion 275Table G.2: Comparison of expeted system operation osts ($)� Two-bus sys-tem Total Day ahead Balaning LoadurtailmentConvD 3720 3080 320 320StohD 3184 4000 −816 0ImpD 3520 3200 320 0large enough onstant M . The omplementarity ondition (G.9j) an be equiv-alently formulated as
ρ ≤ Mu ,

pmax
W − pW ≤ W (1− u) ,where u is a binary variable, i.e. u ∈ {0, 1}, and W is the apaity of the windfarm, equal to 50 MW. Notie that both quantities in the left-hand side of theinequalities above must be nonnegative as a result of (G.9g) and (G.9l).After all these transformations, the bilevel program (G.8) leads to a single-levelmixed-integer linear programming problem that an be readily proessed by o�-the-shelf optimization software and results in pmax∗

W = 30 MW. Consequently,under ImpD (the onventional settlement with a smart day-ahead dispath ofthe wind farm), only 30 MW of wind power prodution are leared in the day-ahead market, whih avoids expensive load urtailment if senario low eventuallyrealizes. The onventional units are leared following a least-ost merit order.In partiular, generating units G1, G2, and G3 are dispathed to 0, 90, and50 MW, respetively. As a onsequene, 20 MW of wind power have to bespilled if senario high realizes.Table G.2 provides the breakdown of the expeted system operation ost undereah dispath model. Logially, both StohD and ImpD outperform ConvD.Observe, moreover, that both StohD and ImpD result in a more ostly day-ahead dispath, whih leads, however, to savings in the balaning operation stagewithout load shedding. In fat, the stohasti dispath model is able to redueosts at the balaning operation phase through a more e�ient integration ofthe wind prodution. However, the energy-only market settlement assoiatedwith this dispath model requires the �exible produer G1 to aept eonomilosses if senario low omes true, as we show in the following setion.



276 Paper GTable G.3: Day-ahead and balaning energy pries ($/MWh)�Two-bus system
λD
n ,∀n ∈ N

λB
nω,∀n ∈ NHigh LowConvD 30 0 200StohD 30 25.67 36.50ImpD 30 0 75

G.3.1.2 Pries and RevenuesEnergy pries resulting from eah of the dispath models are shown in Table G.3.Note that these pries do not di�er between buses, beause no network onges-tion ours in any of the two wind power senarios onsidered. Observe that, forthe three dispath models, the resulting day-ahead eletriity prie is $30/MWh,whih is the marginal ost of unit G2. In the ase of ConvD, the value of lostload ($200/MWh) determines the balaning energy prie in senario low, whereload shedding ations need to be undertaken if the day-ahead generation shed-ule given by this dispath model is implemented. In both ConvD and ImpD,the balaning eletriity prie is set to $0/MWh in senario high due to theourrene of wind urtailment.Given the energy pries in Table G.3 and the dispath results previously dis-ussed, we an determine the pro�t made by eah market partiipant in expe-tation and per senario aording to eah dispath model (see Table G.4). Forexample, the payment to the �exible generator G1 in senario low under StohDis given by 40× 30 = $1200. Sine its marginal ost is equal to $35/MWh, thepro�t that generatorG1 makes in this senario is equal to 1200−40×35 = −$200.Here we bump into one of the most ontroversial features of StohD, namely,the likelihood that �exible units inur eonomi losses in some senarios, eventhough the reovery of osts is guaranteed in expetation. Atually, notie thatunit G1 enters the day-ahead dispath in a loss-making position, beause itsmarginal ost, $35/MWh, is higher than the resulting day-ahead market prie,
$30/MWh. Therefore, under StohD, being �exible may involve higher riskthan being in�exible, whih may potentially disourage power produers fromproviding balaning servie. In ontrast, ConvD and the proposed ImpD ensurerevenue adequay in the day-ahead market and per senario, and therefore theydo not su�er from this problem.
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Table G.4: Pro�t ($) of market partiipants�Two-bus systemAgent Expeted Per senarioHigh LowConvD G1 1320 0 3300

G2 0 0 0

G3 1000 1000 1000WP −900 1020 −3780

L1 −2400 −2400 −2400

L2 −2380 −2700 −1900StohD G1 24 173.33 −200

G2 0 0 0

G3 1000 1000 1000WP 916 1326.66 300

L1 −2400 −2400 −2400

L2 −2700 −2700 −2700ImpD G1 320 0 800

G2 0 0 0

G3 1000 1000 1000WP 300 900 −600

L1 −2400 −2400 −2400

L2 −2700 −2700 −2700



278 Paper GTable G.5: Generator data (* = {+, −}). Powers in MWUnit Type Bus # P R∗1 U76 1 152 402 U76 2 152 403 U100 7 300 704 U197 13 591 1805 U12 15 60 606 U155 15 155 307 U155 16 155 308 U400 18 400 09 U400 21 400 010 U50 22 300 011 U155 23 310 6012 U350 23 350 40G.3.2 Case StudyWe now onsider a 24-bus power system that is based on the single-area versionof the IEEE Reliability Test System [18℄. It inludes 34 lines, 17 loads, and 12generating units. The nodal loation, type, apaity, and �exibility parametersof these units are ollated in Table G.5. Energy o�ers submitted by powerproduers in the day-ahead market onsist of the four inremental ost/powerbloks listed in Table 9 of [18℄, assuming the fuel osts used by [19℄. We onsiderthat nulear and hydro power produers o�er their prodution at zero prie.Prie premiums of 5% and 4% are assumed for the energy sold and purhased,respetively, in the balaning market. This means that �exible produers arewilling to sell (purhase) energy in the balaning market at a prie 5% higher(4% lower) than their energy o�er prie in the day-ahead market. Nulear andhydro units are assumed to be in�exible and therefore, they do not providebalaning energy.Two wind farms are loated at nodes 5 and 7. The per-unit power prodution ofthese wind farms is modeled using Beta distributions, as in [20℄. The shape pa-rameters of these Beta distributions, denoted by (α, β), are equal to (0.71, 0.08)and (3.78, 1.62), respetively. Thus, the per-unit foreast power outputs of thewind farms at nodes 5 and 7 are 0.9 and 0.7, in that order. Furthermore, thepower outputs of both wind farms are assumed to be orrelated with a orrela-tion oe�ient ρ. Correlated samples from the previous Beta distributions areobtained using the sampling proedure desribed by [21℄. An original senarioset omprising 10 000 wind power samples is �rst generated and then redued to



G.3 Results and Disussion 279100 using the fast forward seletion algorithm presented by [22℄. The marginalosts of the wind farms are assumed to be zero.Loads are onsidered to be inelasti with a value of lost load equal to$1000/MWh. These loads are geographially distributed among buses as indi-ated in Table 5 of [18℄. The total system demand is 2000 MW. The apaitiesof lines 1�5, 5�10, and 7�8 are doubled (up to 350 MW) so that higher amountsof wind power prodution an be injeted at buses 5 and 7.The single-level mixed-integer linear programming problem that results fromthe bilevel program (G.4) has been solved using CPLEX 12.3.0 under GAMS ona Windows-based personal omputer Intel(R) Core(TM) i5 with four proessorsloking at 2.4 GHz and 6 GB of RAM. Solution time is kept below 30 seondsin all instanes.The stohasti dispath model (G.3) has, among others, two properties thatmake it partiularly useful to failitate the large-sale integration of stohastiprodution in eletriity markets, namely, its ability to avoid the uneonomisheduling of stohasti prodution apaity and its ability to e�iently aom-modate generation from stohasti produers that are spatially orrelated. Weshow below that these two properties are onferred, to a large extent, on theonventional dispath model (G.1), if solved for an appropriate value of stohas-ti prodution, generally di�erent from the mean. This is atually what we referto as ImpD.Figure G.2 shows the expeted ost of the power system operation as a fun-tion of the wind power penetration level, for the three dispath models. Thewind power penetration level is de�ned as the ratio of the foreast wind powerprodution to the total system demand and is inreased by augmenting the a-paity installed at both wind farms by the same amount. The �gure is arrangedin two illustrations, eah orresponding to a di�erent orrelation oe�ient be-tween wind farms. Observe that from a ertain penetration level, the expetedost resulting from the implementation of the onventional dispath begins tosigni�antly diverge from the expeted ost yielded by the other two dispathmodels. Furthermore, note that this �breaking point�, roughly identi�ed on thegraphs using a vertial dashed line, ours for lower penetration levels if theorrelation oe�ient between wind sites inreases. Indeed, the breaking pointmoves approximately from 38% to 33% if the orrelation oe�ient goes from0.35 to 0.75. In ontrast, StohD and ImpD are signi�antly less a�eted byorrelated winds, as they both aount for the wind prodution variability todeide the wind generation shedule. Furthermore, notie that, in the ase ofConvD, the expeted ost exhibits an inreasing trend after a high enough windpower penetration level, whereas both StohD and ImpD guarantee that aninrease in wind power apaity never leads to an inrease in the expeted ost.
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G.3 Results and Disussion 281Table G.6: Highlights of pro�ts. Wind penetration 38% (ρ = 0.35)Unit1 6 11 12ConvD Expetedpro�t ($) 379.8 359.7 724.9 389.1StohD Expetedpro�t ($) 45.6 48.4 99.7 64.9Averagelosses ($) −17.4 −10.9 −17.6 −11.5Probabilitypro�t < 0 0.81 0.71 0.71 0.75ImpD Expetedpro�t ($) 170.2 263.7 531.6 178.7

We now show that, unlike ConvD or ImpD, the stohasti dispath leads toa on�iting energy-only settlement of the market, beause it requires �exibleproduers to inur losses in some senarios. Let us onsider a wind powerpenetration level of 38%. In this instane, generators 1, 2, 6, 7, 11 and 12 aremostly the units providing balaning energy. Table G.6 inludes the expetedpro�t made by some of these units in these onditions under the three dispathmodels. For the ase of StohD, the average losses inurred by the seleted unitsand the probability of their pro�t being eventually negative are also shown. Notethat this probability is remarkably high.Lastly, observe that the expeted pro�t made by the seleted units is signi�-antly higher under ConvD than under ImpD. This is so beause, under theonventional dispath where the expeted wind power prodution is leared,there is a onsiderable transfer of money from the wind power produers to the�exible produers, as the wind power produers have to bear the ost of a veryine�ient balaning operation. ImpD manages to substantially mitigate thise�et by learing an amount of wind power prodution�not neessarily equalto the mean�that avoids high balaning osts.



282 Paper GG.4 ConlusionsThis paper deals with the learing of a day-ahead eletriity market that in-ludes a signi�ant number of stohasti produers. Our study uses two ref-erene models for generation sheduling: on the one hand, a onventionalnetwork-onstrained aution based on a least-ost merit order for dispath,where stohasti generation enters with its expeted prodution and a very lowmarginal ost; on the other, a full stohasti dispath method that maximizesmarket e�ieny by antiipating balaning osts. The onventional dispathmay turn out to be very uneonomial, while the stohasti one leads to anenergy-only market settlement that does not guarantee ost reovery for �exibleproduers is some senarios.We show that the onventional aution, if leared with an appropriate valueof stohasti prodution, generally di�erent from the mean, an signi�antlyapproah the stohasti dispath ideal. We onstrut a bilevel program thatoptimally omputes this value. Our analysis prompts two fundamental onlu-sions, namely:1. Current day-ahead markets should not lear the expeted stohasti pro-dution by default. There is indeed room for substantial improvementin market e�ieny by abandoning this pratie, in partiular in thosemarkets with a high share of stohasti generation.2. The amount of stohasti prodution to be leared in the day-aheadmarketshould be driven not only by the marginal ost of stohasti generation,whih is usually very low or zero, but also by the ost of its unertainty,understood as its eonomi impat due to system balaning.As future researh, it is neessary to develop omputationally e�ient methodsthat allow us to determine a day-ahead shedule for stohasti produers betterin terms of market e�ieny than their expeted power outputs without havingto diretly solve a omputationally ostly bilevel program. Likewise, the idea in-trodued in this paper is ompatible with the implementation of reserve apaitymarkets or the �exible ramping produts that are urrently under developmentin CAISO [23℄ and Midwest ISO [24℄. The ombination of these strategies maybring urrent market e�ieny loser to the full stohasti optimization ideal.
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289A Robust Optimization Approah to Energy andReserve Dispath in Eletriity MarketsMaro Zugno1, Antonio J. Conejo2Abstrat
To a large extent, eletriity markets worldwide still rely on deter-ministi proedures for learing energy and reserve autions. How-ever, larger and larger shares of the prodution mix onsist of re-newable soures whose nature is stohasti and non-dispathable, astheir output is not known with ertainty and annot be ontrolledby the operators of the prodution units. Stohasti programmingmodels for the joint determination of the day-ahead energy and re-serve dispath, neessary for oping with the real-time output de-viations from these soures, have been proposed in the literature.In this work, we take an alternative approah and ast the problemas an adaptive robust optimization problem. The day-ahead andreserve shedules determined in this fashion yield the minimum sys-tem ost, aounting for the ost of the redispathing deisions atthe balaning stage, in the worst-ase realization of the stohastiprodution within a spei�ed unertainty set. In a ase-study basedon a 24-node system, we assess the degree of suboptimality of therobust solution with respet to the optimal dispath obtained witha stohasti programming approah, and ompare their worst-aseost. Furthermore, we disuss the robustness of these two alterna-tive approahes with respet to hanges in the distribution of theunertainty, as well as their omputational properties.

1DTU Compute, Tehnial University of Denmark, Matematiktorvet, bld. 322, DK-2800Kgs. Lyngby, Denmark2Department of Eletrial Engineering, University of Castilla�La Manha, Campus Uni-versitario, Ciudad Real, 13071 Spain



290 Paper HNomenlatureDeision Variables
x Vetor of deision variables at the dispathing stage, inluding energy dis-path, upward and downward reserve, and network state variables at thenodes of the system;
∆w Foreast error for stohasti power prodution;
y Vetor of deision variables at the balaning stage, inluding energy redis-path, load shedding, stohasti power spillage and atual state variablesat the nodes of the system.Parameters
cx Coe�ients in the ost funtion assoiated with the day-ahead dispathing(energy and reserve);
cy Coe�ients in the ost funtion assoiated with the redispathing at thebalaning stage;
d Demand at eah node of the system (onsidered known with ertainty);
ŵ Conditional expetation of stohasti power prodution.H.1 IntrodutionIn reent years, renewable eletriity prodution soures have experiened anunpreedented growth in installed apaity worldwide. Suh a developmentis explained both by tehnologial advane, whih has made prodution fromsoures like wind and solar heaper, and by governmental support aimed atpromoting sustainability. Soures of this type are fundamentally di�erent fromonventional means of eletriity generation. Indeed, they are stohasti, i.e.,their prodution is not known with ertainty in advane, and non-dispathable,i.e., the power plant operators have partial or no ontrol on the output level.Owing to the features desribed above, an inreasing penetration of renewableshallenges the traditional way eletriity markets are operated. In partiular,deterministi shemes have been employed for years to assess the amount of



H.1 Introdution 291reserve apaity, the availability of whih is needed in order to ope with un-foreseen events in the system. Typially, mehanisms for reserve determinationare based on deterministi N−1 or N−k riteria, whih guarantee the funtion-ing of the system in the event of loss of the largest unit, or of the k largest unitsin the system, respetively. As the penetration of stohasti generation souresin power system grows, reserves are inreasingly used to over the �utuationsof the power output from renewables, thus alling for stohasti deision-makingtools.In parallel, market-learing proedures for energy markets are also hallengedby the growth of stohasti prodution apaity. For example, the day-aheadmarket is leared aording to a deterministi least-ost dispath priniple basedon the o�ers and bids submitted by suppliers and onsumers. Stohasti pro-dution is normally dispathed at a point foreast of its output distribution.However, this proedure does not aount for the projeted ost of the dispathat the balaning stage, and is therefore suboptimal, see [1℄.The existing literature on the subjet shows that system ost an be signi�-antly redued in expetation by jointly optimizing the day-ahead dispath andthe reserve in a stohasti programming framework, see [2℄. However, models ofthis type require that the market operator has an aurate probabilisti desrip-tion of the joint distribution of unertain prodution at di�erent loations in thegrid, whih is far from trivial. Furthermore, suh models may require unreason-able solution time as the disrete number of senarios used to approximate thedistribution of the unertainty inreases.An alternative framework to stohasti programming for dealing with problemsunder unertainty is robust optimization. In this framework, stohasti variablesare assumed to take values within an unertainty set. Then, a robust deisionis determined as the solution to an optimization problem that must be feasiblefor any realization of the unertainty, and optimal in the worst-ase hoie ofthe stohasti parameters in the aforementioned set. The modeling e�ort isredued in robust optimization to a desription of a meaningful set over whihthe unertain parameters may take values in, i.e., the support of the densityfuntion rather than the full probability distribution required by the stohastiprogramming approah.The equivalent of stohasti programming with reourse in robust optimizationis adaptive robust optimization. This framework aims at minimizing the totalost in the worst-ase realization of the unertainty, assuming that reourseations an be taken as a response to the realization of the unertainty. For anintrodution to robust optimization, and to its adaptive version, we refer theinterested reader to [3℄.



292 Paper HReent appliations of adaptive robust optimization fousing on eletriity mar-kets are presented in [4℄, [5℄ and [6℄, whih study the unit ommitment problemunder unertain load or prodution from stohasti soures. In all these works, autting-plane approah is employed to exploit the onvex dependene of the ob-jetive funtion on the �rst-stage deision, see [7℄. Then, the resulting max-minproblem resulting from the sequential enforement of the worst-ase (maximum-ost) parameter realization and deision on the optimal reourse ation is ast asa single-level bilinear program. This problem is then solved either with an outer-approximation tehnique [4℄, or as a Mixed Integer Linear Program (MILP) afterlinearization through binary expansion [5, 6℄.The main features of the model presented in this paper are threefold:1. We apply adaptive robust optimization to the problem of determining theoptimal day-ahead energy and reserve dispath in a single time-period,rather than to unit ommitment. The problem we onsider is partiu-larly interesting as it resembles the urrent design of eletriity marketsin Europe, where deisions on unit ommitment are left to the power pro-duers, and the market operator determines sequentially the amount ofreserves needed and the optimal day-ahead energy dispath. Note thatthe extension of the proposed model to a multi-period setting does not en-tail any oneptual ompliation. We propose the joint determination ofday-ahead dispath and reserve akin to the one in [2℄, though in a robustoptimization framework.2. We propose a reformulation of the inner max-min problem for the deter-mination of the unertainty and reourse deision that an aommodategeneral polyhedral sets for the unertainty and onverges to an exat so-lution. Our approah is more �exible than the binary reformulation in [5℄and [6℄ in that it allows to model any polyhedral unertainty set, still usinga omparable number of binary variables. In omparison to the approahin [4℄, whih is more �exible with respet to the hoie of the unertaintyset, our reformulation guarantees onvergene to an exat solution.3. We ompare the results obtained from the robust optimization approahwith the ones from the orresponding stohasti programming version ofthe model.The struture of the paper is the following. In Setion H.2, we introdue the for-mulation of the problem. Algorithms for solving this problem are then desribedin Setion H.3. Then, Setion H.4 presents results from a simple illustrative ex-ample and from a larger ase study based on the 24-node IEEE ReliabilityTest-System in [8℄. Finally, onlusions are presented in Setion H.5.



H.2 Problem Formulation 293H.2 Problem FormulationWhen an eletri energy system inludes stohasti prodution soures, the jointdetermination of the optimal day-ahead energy and reserve dispath an beformulated as the following problem of optimization under unertainty:min
x

cx
Tx+QW(x) (H.1a)s.t. Fx = d− ŵ , (H.1b)

Gx ≥ g . (H.1)The vetor x of deision variables inludes energy dispath, upward and down-ward reserve as well as state variables at eah node of the transmission network.For the sake of larity, we split the set of onstraints into two groups. Group(H.1b) only inludes equalities, whih represent the balaning onditions. Suhonstraints guarantee that for eah node of the transmission network, the day-ahead energy dispath for prodution and the net power in�ow, whih are eithera subset or linearly dependent on a subset of the variables x, are equal to the netdemand, i.e., onsumption, d, minus the foreast stohasti power prodution,
ŵ. The seond set of onstraints (H.1) inludes upper and lower bounds to theenergy and reserve dispath, to the sheduled power �ows, as well as delarationsof nonnegative variables.The objetive funtion (H.1a) is equal to the sum of the ost assoiated withthe day-ahead deision cx

Tx and a measure of the stohasti optimal reourseost, QW(x). Suh a measure is a funtion of the �rst-stage deision only, and isparameterized on the distribution W of the unertainty, in this ase stohastipower generation. In stohasti programming, typial hoies of QW(x) are theexpetation or the onditional value at risk (or a ombination of these) over adisrete set of senarios approximating the atual distribution of the unertainty.In a robust optimization framework, instead, we seek to minimize the reourseost in the worst-ase realization of the stohasti parameters within an un-ertainty set. The determination of the worst-ase reourse ost, or redispathost, writes as the following max-min programming problem, parameterized onthe �rst-stage deision x:
QW(x) = max

∆w
min
y

cy
Ty (H.2a)s.t. Py = −∆w−Qx , : λ , (H.2b)

Ly ≥ l−Mx−N∆w , : µ , (H.2)s.t. H∆w ≤ h . (H.2d)



294 Paper HModel (H.2) has a max-min struture that allows the determination of the min-imum reourse ost in the worst-ase realization of the unertainty. Indeed,the maximization problem hooses the worst-ase realization of the stohastideviation ∆w of stohasti power prodution from the onditional mean fore-ast within the polyhedral unertainty set de�ned by the set (H.2d) of linearinequalities. After the worst-ase realization of the unertainty is hosen, thereourse ost is minimized in the min problem in (H.2a). The vetor y of op-timization variables of this problem onsists of the energy redispath for eahproduer, load shedding, spillage of stohasti prodution and the network statevariable at eah node in the balaning stage. The set of equations (H.2b) ensurethat redispath plus additional net �ow equals the error of stohasti powerpredition at eah node. Notie that (H.2b) depends on the �rst-stage networkstate variables inluded in the day-ahead deision vetor x. Furthermore, theproblem is onstrained by the set (H.2) of linear inequalities, whih inludeupper and lower bounds on energy redispath, load shedding, stohasti powerspillage, atual power �ows and delarations of nonnegative variables. Notiethat reserve, whih is inluded in the day-ahead deision vetor x, limits theprovision of bakup power at the reourse stage. Furthermore, stohasti powerspillage is limited above by the atual stohasti power prodution ŵ +∆w.H.2.1 Reformulation as a Min-Max Bilinear ProblemThe formulation in the above setion annot be immediately employed in pra-tie. Indeed, the diret substitution of QW(x) as de�ned in (H.2) results in amin-max-min problem, for whih a general-purpose solution algorithm is notavailable. However, following the derivations in [4℄, [5℄ and [6℄, it is possible toreformulate it as a min-max problem by substituting the right-hand side maxproblem with its dual. This results in the following formulation:min
x

cx
Tx+max

∆w
max
λ,µ

(−∆w−Qx)
T
λ+ (l−Mx−N∆w)

T
µ (H.3a)s.t. PTλ+ LTµ = cy , (H.3b)

µ ≥ 0 , (H.3)s.t. H∆w ≤ h , (H.3d)s.t. Fx = d− ŵ , (H.3e)
Gx ≥ g . (H.3f)It should be notied that model (H.3) is in fat a min-max programmingproblem. Indeed, the mid- and right-hand-side maximization problems an bemerged into a single maximization problem in the optimization variables ∆w,

λ and µ. Furthermore, we remark that the optimization problem resulting from



H.2 Problem Formulation 295this merging is a bilinear one, as it involves ross-produts between ∆w andthe lower-level deision variables λ and µ in the objetive funtion (H.3a).We onlude the setion with the following two observations, whih will turnout useful in Setion H.3.1. The problem resulting from the merging of the mid and the right-hand-side maximization problems (H.3a)�(H.3) is bilinear and de�ned over apolyhedral set. As a onsequene, its optimal solution is one of the vertiesof this set.2. Sine the vetor x of day-ahead deision variables only appears in theobjetive funtion and not in the onstraints, the feasible polyhedron isindependent of the day-ahead deision, and hene it has a �nite numberof verties.H.2.2 Reformulation as a Linear Min-Max Problem withEquilibrium ConstraintsLet us onsider again formulation (H.3). We notie that it is possible to swapthe order of the mid and right-hand-side maximization problems, thus �rst op-timizing over the variables λ,µ, and then over ∆w. Furthermore, not all theterms of the objetive funtion depend on ∆w, and the onstraints are separa-ble for the two sets of variables. As a result, we an reformulate (H.3) as follows:min
x

cx
Tx+max

λ,µ
− (Qx)Tλ+ (l−Mx)

T
µ+max

∆w
−
(
λT + µTN

)
∆w (H.4a)s.t. H∆w ≤ h , ξ ,(H.4b)s.t. PTλ+ LTµ = cy , (H.4)

µ ≥ 0 , (H.4d)s.t. Fx = d− ŵ , (H.4e)
Gx ≥ g , (H.4f)where we indiate with ξ the set of dual variables relative to onstraints (H.4b)for the right-hand-side maximization problem.The max-max programming problem omprising the mid and the right-hand-side optimization problems in (H.4) an be ast as a Mathematial Programwith Equilibrium Constraints (MPEC), see [GCF+12℄. However, before doing



296 Paper Hso, we point out that sine the right-hand-side maximization problem is linear,the strong duality theorem holds. Therefore, the following relationship holds atoptimality:
−
(
λT + µTN

)
∆w = hT ξ . (H.5)Di�erently from the term on the left-hand side of (H.5), the one on the right-hand side is linear, as it does not involve ross-produts between optimizationvariables. Therefore, onsidering (H.4) and (H.5) renders the problem belowwhose objetive funtion is linear in the optimization variables:min

x
cx
Tx+ max

λ,µ,∆w,ξ
− (Qx)

T
λ+ (l−Mx)

T
µ+ hT ξ (H.6a)s.t. 0 ≤ ξ ⊥ h−H∆w ≥ 0 , (H.6b)

HT ξ = −λ−NTµ , (H.6)
PTλ+ LTµ = cy , (H.6d)
µ ≥ 0 , (H.6e)s.t. Fx = d− ŵ , (H.6f)

Gx ≥ g . (H.6g)Notie that formulations (H.1)�(H.2), (H.3) and (H.6) are equivalent.H.3 Solution AlgorithmIn this setion, we present two iterative shemes to solve the min-max-minproblem (H.1)�(H.2), both of whih are based on the utting-plane algorithmin [9℄ within a Benders' deomposition sheme [10℄.H.3.1 Benders-Dual Cutting-Plane AlgorithmLet us onsider reformulation (H.3). Beause of the observations in the lastparagraph of Setion H.2.1, the solution to the inner level bilinear maximizationproblem belongs to a set of �nite ardinality K, whih does not depend on the�rst-stage deisions. Indiating the elements of this set as (∆wk,λk,µk), with
k = 1, . . . ,K, we an alternatively reformulate problem (H.1)�(H.2) as follows:min

x,β
cx
Tx+ β (H.7a)s.t. β ≥ −∆wT

k λk + (l−N∆wk)
T
µk − (λkQ+ µkM)x , ∀k , (H.7b)

Fx = d− ŵ , (H.7)
Gx ≥ g . (H.7d)



H.3 Solution Algorithm 297As one an see, the term β in the objetive funtion is bounded from belowby the pointwise maximum of a �nite set of linear funtions in the �rst-stagedeision variables x. This implies that the optimal objetive funtion value of(H.7) is a onvex, pieewise linear funtion in x. The following utting-planealgorithm, proposed for robust optimization problems with reourse by [7℄, isguaranteed to onverge to the optimal solution in a �nite number of steps.1. Set upper and lower bounds UB = +∞ and LB = −∞, and initialize theiteration index i← 1.2. De�ne the relaxed master problem (MP) as the minimization of (H.7a),subjet to (H.7) and (H.7d), and �x a reasonable lower bound for β,i.e., lower than the expeted objetive value of the inner problem. Fix afeasible solution (x∗
1, β

∗
1) to the relaxed MP.3. Solve either the following subproblemSP1 : max

∆w,λ,µ
(−∆w−Qx∗

i )
T
λ + (l−Mx∗

i −N∆w)
T
µ (H.8a)s.t. PTλ+ LTµ = cy , (H.8b)

µ ≥ 0 , (H.8)
H∆w ≤ h , (H.8d)or SP2 : max

λ,µ,∆w,ξ
− (Qx∗

i )
T
λ+ (l−Mx∗

i )
T
µ+ hT ξ (H.9a)s.t. 0 ≤ ξ ⊥ h−H∆w ≥ 0 , (H.9b)

HT ξ = −λ−NTµ , (H.9)
PTλ+ LTµ = cy , (H.9d)
µ ≥ 0 . (H.9e)Notie that (H.8) and (H.9) orrespond to the merging of the mid andright-hand-side optimization problems in (H.3), and to the right-hand-sideproblem in (H.6), respetively, where the �rst-stage variables are �xed.Let us indiate the optimal SP objetive funtion value as zSPi ∗. Updatethe upper bound UB = min{UB, cxx

∗
i + zSPi

∗
}. Add to the relaxed MPthe Benders ut (H.7b) orresponding to the SP solution (∆w∗

i ,λ
∗
i ,µ

∗
i )determined at this stage.4. Solve the relaxed MP, �x x∗

i+1 at the solution and zMP
i+1

∗ at the objetivefuntion value. Update LB = zMP
i+1

∗.5. If UB−LB < τ , where τ is a small tolerane value, then stop. Otherwise,update i← i+ 1 and go bak to 3.



298 Paper HThe above approah is named Benders-dual utting plane algorithm in [11℄, sinethe uts generated in step 3 of the algorithm above are based on the optimaldual solution of the lower-level problem in (H.2).H.3.2 Primal Cut AlgorithmSimilarly to the previous approah, the primal ut algorithm [11℄ is based onthe fat that the solution to the lower-level optimization problem in (H.3) is atone of the verties of the feasibility set. Beause the feasibility set for ∆w isompletely deoupled from the feasibility set of the variables (λ,µ), the worst-ase realization of the unertainty ∆w is at a vertex of its feasibility set de�nedby H∆w ≤ h.We indiate with∆wk the verties of the feasibility set for the unertain stohas-ti power prodution∆w, and assign a opy yk of the vetor of reourse deisionvariables to eah of these verties. Hene, one an reformulate problem (H.1)�(H.2) in the following way:min
x,yk,β

cx
Tx+ β (H.10a)s.t. β ≥ cy

Tyk , ∀k , (H.10b)
Pyk = −∆wk −Qx , ∀k , (H.10)
Lyk ≥ l−Mx−N∆wk , ∀k , (H.10d)
Fx = d− ŵ , (H.10e)
Gx ≥ g . (H.10f)Notie that uts (H.10b) are a�ne in the primal reourse variables yk, asopposed to uts (H.7b), whih depend on the dual variables. Besides, we remarkthat there is a opy yk of the reourse variables and of onstraints (H.10b),(H.10) and (H.10d) for eah vertex ∆wk.The following omments are in order:

• Di�erently from (H.7), model (H.10) inludes energy redispath, load shed-ding, stohasti power spillage, and network state variables at the balan-ing stage as deision variables. Furthermore, there is one suh set ofdeisions for eah vertex of the unertainty set.
• The number of verties, and therefore of Benders uts, in (H.10) is smallerthan that in (H.7). This is beause in (H.10) there is one Benders ut pervertex of the unertainty set, and not per vertex of the joint feasibility setof (∆w,λ,µ), whih has higher dimensionality.
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• On the other hand, the inrease in size of the relaxed MP in a Benderssheme is muh larger every time a vertex is added to the MP. Indeed, thisentails adding a set of balaning market variables (reourse for a spei�realization of the unertainty), as well as a Benders ut (H.10b) and a setof feasibility onstraints (H.10)�(H.10d) for the balaning stage.The primal ut algorithm is akin to the one desribed in Setion H.3.1, with thefollowing di�erenes: the master problem used in step 2 is (H.10); at the end ofstep 3, we add a set yk of reourse variables and a set of onstraints (H.10b)�(H.10d), where we �x ∆w at the urrent solution ∆w∗

i of the subproblem.As doumented in [11℄ and [6℄, the primal ut algorithm, whih is the one usedin this work, generally guarantees a faster onvergene to the optimal solutionthan the Benders-dual utting plane one.H.3.3 Choie of the Subproblem and of its SolutionMethodIn the desription of the utting-plane algorithm in Setion H.3.1, we left openthe hoie of the subproblem and of relative solution method in step 3.To our knowledge, the existing literature on the topi exlusively onsiders sub-problem (H.8). The solution of this optimization problem is far from being triv-ial, sine the presene of bilinear terms in the objetive funtion (H.3a) rendersthe problem non-onvex. In [4℄, an outer-approximation algorithm is proposedto solve this problem with general unertainty sets. However, sine the subprob-lem is non-onvex, only loal onvergene is guaranteed for this method. As analternative, exat linearization methods based on the use of integer variablesare proposed in [5℄ and [6℄. However, the unertainty set is restrited to thepartiular ase of polyhedral budgeted sets.In this work, we propose the use of subproblem (H.9). The only nonlinearityin this problem is the presene of omplementarity onditions (H.9b), wherethe ⊥ operator implies that ξ(h − H∆w) = 0. Notie that omplementarityonditions an be linearized by making use of binary variables as proposed by[12℄. Alternatively, one ould employ the approah of [13℄, whih is based onSOS-1 variables. In this work, the former implementation is hosen.In omparison to the models in [5℄, [6℄ and [4℄, the proposed model has thefollowing harateristis:



300 Paper H1. As ompared to the method in [4℄, our approah onverges to the globaloptimal solution. However, the model in [4℄ onsiders general onvex un-ertainty set, while our model is valid for any type of polyhedral set.2. In omparison to the approah in [5℄ and [6℄, our approah retains theonvergene to the global optimum while allowing us to onsider any typeof polyhedral sets. The number of binary variables employed in the lin-earization of the omplementarity onditions (H.6b) grows linearly withthe number of inequality onstraints used to de�ne the unertainty set.Hene, in the ase where the unertainty set is a multidimensional inter-val with a total budget for deviations, the number of binary variables isomparable to the one in the binary expansions in [5℄ and in [6℄H.4 Results and DisussionIn this setion, we present results obtained by employing the proposed modelon di�erent appliation studies. Setion H.4.1 desribes an example based ona simple two-node system, to illustrate the funtioning of the model. A largerstudy based on the 24-node IEEE Reliability Test-System, the spei�ations ofwhih an be found in [8℄, is onsidered in Setion H.4.2.H.4.1 Illustrative ExampleLet us onsider the two-node system depited in Figure H.1. The line betweenthe two nodes of the system has a apaity of 60MW and a reatane of 0.13 pu.The load at eah node is known with ertainty and equal to 110MWh and30MWh at node 1 and 2, respetively, during the market period onsidered.Furthermore, two wind farms are loated at eah node. The day-ahead pro-dution foreast is equal to 20MWh and 25MWh for wind farms 1 and 2,respetively. Notie that we make the assumption that the length of a marketperiod is one hour. Hene, a foreast prodution equal to 20MWh orrespondsto an average output of 20MW during the onsidered period. However, for thesake of larity we will hereinafter employ the unit MWh for energy produtionand dispath, and MW for reserve and apaity.The harateristis of the units in the system are listed in Table H.1. Theapaity of eah unit is indiated with Pmax, the per unit ost of produtionwith C, while C+ and C− represent the osts for eah MW of available upwardand downward reserve, respetively. Prodution from unit 1 is ostly, but theunit is highly �exible, whih is re�eted in its low osts for reserve. On the
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Node 1

Load 1
(110 MWh)Unit 1 Unit 2

Wind
farm 1

Node 2

Wind
farm 2

Unit 3
Load 2

(30 MWh)

60 MW

Figure H.1: Two-node systemontrary, unit 3 has a low marginal ost of prodution but is in�exible. Unit 2has balaned harateristis.Table H.1: Charateristis of the units in the two-node systemUnit 1 Unit 2 Unit 3
Pmax (MW) 120 80 70
C ($/MWh) 32 20 12
C+ ($/MW) 7 11 15
C− ($/MW) 5 6 14Model (H.1) for this example writes as follows:min

p,r+,r−,δ0

32p1 + 20p2 + 12p3 + 7r+1 + 11r+2 + 15r+3

+ 5r−1 + 6r−2 + 14r−3 +QW(p, r+, r−, δ0)
(H.11a)s.t. p1 + p2 + 20 = 110−

δ02
0.13

, (H.11b)
p3 + 25 = 30 +

δ02
0.13

, (H.11)
p1 + r+1 ≤ 120 , p2 + r+2 ≤ 80 , p3 + r+3 ≤ 70 , (H.11d)
p1 − r

−
1 ≥ 0 , p2 − r

−
2 ≥ 0 , p3 − r

−
3 ≥ 0 , (H.11e)

− 60 ≤
δ02
0.13

≤ 60 , (H.11f)
p1, p2, p3, r

+
1 , r

+
2 , r

+
3 , r

−
1 , r

−
2 , r

−
3 ≥ 0 . (H.11g)Constraints (H.11b) and (H.11) enfore power balane at node 1 and 2, re-



302 Paper Hspetively. We hoose node 1 as the referene node, i.e., we set δ01 = 0. Hene
−δ02/0.13 represents the energy �ow from node 1 to node 2. Constraints (H.11d)ensure that the sum of the day-ahead dispath p and the upward reserve r+ is notgreater than the maximum power output. Similarly, (H.11e) enfores that thesheduled downward reserve r− is not greater than the dispath p. As a resultof (H.11f), the sheduled �ow between the two nodes is within the transmissionapaity. Finally, non-negativity of the variables is enfored by (H.11g).At the balaning stage, the atual wind power prodution an deviate from theday-ahead foreast. Table H.2 reports foreast, maximum deviation (in absolutevalue) and the resulting minimum and maximum values of prodution for the twowind farms onsidered. We make the further assumption that prodution fromTable H.2: Day-ahead foreast, maximum deviation at the balaning stageand resulting lower and upper bounds for prodution from eahwind farm. Values in MWh

ŵ ∆wmax w wWind farm 1 20 15 5 35Wind farm 2 25 20 5 45the two wind farms annot deviate by∆wmax at the same time. On the ontrary,the sum between the ratios of their deviation divided by the relative ∆wmaxannot be greater than Γ = 1.4. Constant Γ is referred to in the literature asthe budget of unertainty. Imposing this onstraint implies that, if the deviationof one wind farm's prodution is equal to ∆wmax, then the other wind farm andeviate at most by 0.4×∆wmax.Under the non restritive assumption that the marginal ost for redispath isequal to the day-ahead dispath ost, and assuming a load-shedding ost equalto $ 200/MWh, the worst-ase reourse ost QW(p, r+, r−, δ0) is equal to theobjetive funtion value of the following max-min problem, whih orrespondsto model (H.2):max
∆w

min
p+,p−,

lsh,wsp, δ

32(p+1 − p
−
1 ) + 20(p+2 − p

−
2 ) + 12(p+3 − p

−
3 ) + 200(lsh1 + lsh2 )(H.12a)s.t. p+1 − p−1 + p+2 − p

−
2 +∆w1 − w

sp
1 + lsh1 = −

δ2 − δ
0
2

0.13
, (H.12b)

p+3 − p
−
3 +∆w2 − w

sp
2 + lsh2 =

δ2 − δ
0
2

0.13
, (H.12)

p+1 ≤ r
+
1 , p2 ≤ r

+
2 , p3 ≤ r

+
3 , (H.12d)

p−1 ≤ r
−
1 , p−2 ≤ r

−
2 , p−3 ≤ r

−
3 , (H.12e)
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lsh1 ≤ 110 , lsh2 ≤ 30 , (H.12f)
wsp

1 ≤ 20 + ∆w1 , wsp
2 ≤ 25 + ∆w2 , (H.12g)

− 60 ≤
δ2
0.13

≤ 60 , (H.12h)
p+1 , p

+
2 , p

+
3 , p

−
1 , p

−
2 , p

−
3 , l

sh
1 , l

sh
2 , w

sp
1 , w

sp
2 ≥ 0 , (H.12i)s.t. −15 ≤ ∆w1 ≤ 15 , −20 ≤ ∆w2 ≤ 20 , (H.12j)

∆w1 = ∆w+
1 −∆w−

1 , ∆w2 = ∆w+
2 −∆w−

2 , (H.12k)
∆w+

1 +∆w−
1

15
+

∆w+
2 +∆w−

2

20
≤ 1.4 . (H.12l)The minimization problem enfores a minimum-ost redispath in the ele-tri energy system. Equations (H.12b) and (H.12) guarantee the nodal powerbalane at the balaning stage. Symbols p+ and p− represent upward anddownward redispath, ∆w the deviation of wind power prodution from theday-ahead foreast, wsp and lsh represent wind power spillage and load shed-ding, respetively, while δ represent the atual nodal network state. Constraints(H.12d) and (H.12e) enfore that the redispath is not greater than the amountof upward and downward reserve established at the day-ahead stage, respe-tively. Constraints (H.12f) and (H.12g) guarantee that load shedding and windpower spillage are not greater than the atual onsumption and wind power pro-dution. The atual transmission onstraints are enfored by (H.12h). Finally,non-negative variables are de�ned in (H.12i).The maximization problem in model (H.12) piks the worst ase realization ofdeviation ∆w of the wind power prodution from the day-ahead foreast ŵ.The feasible spae is polyhedral. Inequalities (H.12j) de�ne the intervals overwhih the deviation of wind power prodution an our. Equations (H.12k)split the deviation into its positive and negative parts ∆w+ and ∆w−. Finally,onstraint (H.12l) enfores the unertainty budget.Table H.3(a) displays the results of model (H.11)�(H.12) in terms of day-aheadenergy and reserve dispath. These results an be ompared to the ones obtainedusing a similar model based on stohasti programming and reported in TableH.3(b). The latter model is obtained by replaing QW(·) in (H.11) with theexpeted value of the reourse ost over a disrete set of senarios, rather thanwith its worst-ase value determined by model (H.12). The senarios used in thestohasti programming model are 100 random samples drawn from a uniformdistribution de�ned over the unertainty set (H.12j)�(H.12l). While the day-ahead energy dispath oinides, the following omments on reserve are in order:1. As far as upward reserve is onerned, the robust optimization modelyields more onservative results than the stohasti programming model.



304 Paper HIndeed, no realization of the wind power deviation within the unertaintyset results in load-shedding events with the former approah. On theontrary, with the latter approah load shedding an take plae if its ostis o�set in expetation by the savings in terms of reserve.2. No downward reserve is sheduled with the robust optimization approah.This is explained by the fat that there is no ost assoiated to wind powerspillage. Hene, the worst-ase realization of the wind power deviation isalways negative, i.e., an underprodution, whih requires no downwardredispath at the balaning stage.3. With the robust optimization approah, units with the lowest aggregateost of reserve and prodution, e.g., unit 3, are preferred to units with lowerreserve ost but higher marginal osts, e.g., unit 1. This is a straightfor-ward result of the fous on the worst-ase realization of the unertaintyin (H.12). On the ontrary, the stohasti programming model shedulesreserve from units with lower apaity ost and higher operating osts,sine the latter are weighted by the probability of atual deployment ofthe reserves.Table H.3: Results for day-ahead dispath and reserve using the robust opti-mization and the stohasti programming approah(a) Robust OptimizationUnit 1 Unit 2 Unit 3
p (MWh) 0 30 65
r+ (MW) 0 21 5
r− (MW) 0 0 0(b) Stohasti ProgrammingUnit 1 Unit 2 Unit 3
p (MWh) 0 30 65
r+ (MW) 9.60 8.47 0
r− (MW) 0 1.26 0In the following setion, we assess the impat of the inreased robustness of theproposed approah on the osts of dispath, reserve and redispath in a morerealisti setup.



H.4 Results and Disussion 305H.4.2 Simulation StudyThe results presented in this setion are obtained from a modi�ed version of the24-node IEEE Reliability Test-System in [8℄.We inlude six wind farms at di�erent loations throughout the grid. Table H.4reports the nodal loation, as well as day-ahead foreast, maximum deviation atthe balaning stage and the resulting minimum and maximum power prodution.The total foreast wind power prodution is 554MWh. We onsider the peakhour, where onsumption totals 2850MWh, thus wind power is expeted toover slightly less than 20% of the load.Table H.4: Nodal loation, day-ahead foreast, maximum deviation at the bal-aning stage and resulting lower and upper bounds for produtionfrom eah wind farm. Values in MWhWind farm Node ŵ ∆wmax w w1 3 120 55.20 64.80 175.202 5 96 40 56 1363 7 140 60 80 2004 16 52 52 0 1045 21 36 33.60 2.40 69.606 23 110 66 44 176Besides the intervals reported in Table H.4 and the budget onstraint of the typeof (H.12l), we introdue another type of linear onstraints for the deviationof wind power prodution. The objetive of these onstraints is to limit thedi�erene between deviations for adjaent wind farms, e.g., for units q1 and q2:
−ρq1q2 ≤

∆wq1
∆wmax

q1

−
∆wq2
∆wmax

q2

≤ ρq1q2 . (H.13)We remark that solving the bilinear model (H.3) inluding onstraints of thistype is not straightforward, while in the proposed model (H.6) they an beinluded with little e�ort. Table H.5 reports the values of ρ employed in thisstudy. Note that ρq1q2 is a measure of the spatial orrelation between windfarms q1 and q2.Capaity on the transmission lines onneting the node pairs (15, 21), (14, 16)and (13, 23) is redued to 400MW, 250MW and 250MW, respetively. Thisis done in order to introdue bottleneks in the transmission system. The pro-dution ost of the units is linearized by making use of a pieewise-linear ap-proximation. Four bloks with onstant marginal ost are employed for eah



306 Paper HTable H.5: Values of ρ employed for onstraints (H.13) in the 24-node systemWind farms ρ1 2 0.41 4 0.32 3 0.54 5 0.45 6 0.5power plant. As far as reserve provision is onerned, we assume that nulearplants are totally in�exible and thus unable to provide reserve. For oal units,the reserve ost per MW is equal to one fourth of the marginal ost of its mostexpensive blok. Oil units are assumed to be more �exible and their reserve ostis one tenth of the marginal ost of the most expensive blok. Notie, however,that these units have the highest prodution ost among the plants onsidered.Finally, the load-shedding ost is set to $ 1000/MWh.H.4.2.1 Comparison with the Stohasti Programming ApproahIn this setion we disuss the results in terms of system ost for the day-aheaddispath and reserve shedules for the 24-node system, determined with the pro-posed robust optimization model and with a stohasti programming approah.The unertainty set in the robust optimization model is de�ned by the inter-vals in Table H.4, onstraints of the type (H.13) with the parameters de�nedaording to Table H.5 and a budget of unertainty Γ = 3.5.For the model based on stohasti programming, 500 senarios drawn fromindependent trunated Gaussian distributions model the wind power unertaintyat eah site. The Gaussian distributions are saled so that the upper and lowerbounds in Table H.4 represent the 95% on�dene interval. Senarios falling outof this interval, as well as the ones violating onstraints (H.13) or exeeding theunertainty budget are disarded.Table H.6 breaks down the system ost for the two approahes into day-aheadosts (for dispath and reserve) and balaning osts (for redispath and load-shedding). The latter are reported both in expetation, alulated over a vali-dation set of 1000 senarios drawn from the same distribution as the one usedin the optimization of the stohasti programming model, and in the worst-aserealization of the unertainty within the set desribed above.



H.4 Results and Disussion 307As one an notie, the reserve osts are omparable for the two approahes.Indeed, the higher level of onservatism of robust optimization is almost om-pletely o�set by the ost for downward reserve in the stohasti programmingapproah. However, the dispath ost and, notably, the expeted osts in thebalaning stage are lower for the stohasti programming approah, whih ben-e�ts from the possibility of redispathing downward rather than spilling windpower. In total, the stohasti programming approah outperforms the robustoptimization one in terms of expeted ost by about 2.8%. However, the stohas-ti programming approah inurs a worst-ase ost as high as three times theworst-ase ost with the robust optimization model.Table H.6: Comparison of system ost with the robust optimization and thestohasti programming approahes. Values in $Cost Robust Optimization Stohasti ProgrammingDispath 17 897.52 17 512.07Upward reserve 489.72 355.59Downward reserve 0 130.28Total day-ahead 18 387.25 17 997.95Expeted Worst-ase Expeted Worst-aseRedispath 339.32 2989.46 147.82 2634.55Load-shedding 0 0 72.83 43 586.85Total balaning 339.32 2989.46 220.64 46 221.40Total aggregate 18 726.56 21 376.72 18 218.59 64 219.34H.4.2.2 Robustness of Deision to Varying Distribution TypeThe degree of suboptimality of the robust deision highlighted in the previ-ous setion might be an overestimation. In pratie, the atual distribution ofstohasti parameters an only be estimated by the deision-maker. Thus, thesenarios employed as input to stohasti programming models represent theunertainty with a limited auray.Table H.7 illustrates the expetation of the system ost inurred by the robustoptimization and by the stohasti programming models if the unertainty hasa di�erent distribution than the one onsidered in Setion H.4.2.1. We nowonsider that deviations of wind power prodution at di�erent loations followindependent uniform distributions de�ned on the same support as the Gaussiandistribution employed in Setion H.4.2.1 to determine the stohasti program-



308 Paper Hming solution. As one an notie, the expeted value of system ost is ratherstable if the solution obtained with the robust optimization model is employed.On the ontrary, the ost inurred by the stohasti programming solution in-reases by roughly $ 1000 ompared to the one in Table H.6, mostly owing toinreasing load-shedding ost.Table H.7: Comparison of system ost with the robust optimization and thestohasti programming approahes under a di�erent distribution.Values in $Cost Robust Optimization Stohasti ProgrammingDispath 17 897.52 17 512.07Upward reserve 489.72 355.59Downward reserve 0 130.28Total day-ahead 18 387.25 17 997.95Redispath (exp.) 576.75 335.06Load-shedding (exp.) 0 923.26Total balaning (exp.) 576.75 1258.32Total aggregate (exp.) 18 964.00 19 256.27
This omparison on�rms the results in [4℄, whih shows the stability of resultsof the robust approah to hanges in the shape of the distribution. In pratie,if the atual distribution of the unertainty is more fat-tailed than the modelfrom whih senarios are drawn, as in the ase above, the performane of thestohasti programming solution degrades faster than the one of the robustoptimization solution.For ompleteness of the analysis, we onsider the inverse ase, where senariosdrawn from a uniform distribution are used as input to the stohasti pro-gramming model. Then, the expeted system ost is determined over a set ofsenarios drawn from a normal distribution and trunated onsistently with theunertainty set. The expeted system ost for the two approahes is reportedin Table H.8. Notably, the amount of reserve in the stohasti programmingsolution is signi�antly higher in this ase than in the ase in Table H.6 whereunertainty is normally distributed. As a result, this solution is rather robustwhen the atual distribution of the unertainty has lower weight on the tails,suh as in this ase. Indeed, no load-shedding events are observed, and the totalexpeted system ost is lower than that for the robust optimization solution.



H.5 Conlusions 309Table H.8: Comparison of system ost with the robust optimization and thestohasti programming approahes under a di�erent distribution.Values in $Cost Robust Optimization Stohasti ProgrammingDispath 17 897.52 17 512.87Upward reserve 489.72 433.42Downward reserve 0 209.45Total day-ahead 18 387.25 18 155.74Redispath (exp.) 361.10 139.36Load-shedding (exp.) 0 0Total balaning (exp.) 361.10 139.36Total aggregate (exp.) 18 748.34 18 295.10H.4.2.3 Computational ResultsIn this setion, we brie�y disuss the omputational properties of the robustoptimization and of the stohasti programming approahes. The models havebeen implemented in GAMS and solved using CPLEX 12, running on a laptopequipped with a 4-ore proessor loking at 2.66GHz.Solution times for the 24-node system are illustrated in Figure H.2. The robustoptimization model onverged in 29.11 s after four iterations of the utting-planealgorithm. The solution time in this ase is plotted as a horizontal dashed linein the �gure sine robust optimization is senario-free. The solid line in the�gure represents the time for solving the stohasti programming approah as afuntion of the number of senarios. As one an see, the omputation time forthe stohasti programming model inreases with the number of senarios. Therobust optimization model solves more quikly than the stohasti optimizationone as soon as the number of senarios is higher than 300.H.5 ConlusionsIn this work, we onsider the problem of jointly determining day-ahead energydispath and reserve apaity in an eletriity market with large penetrationof stohasti generation soures. The problem is ast as an adaptive robustoptimization model, the solution of whih minimizes the system ost in termsof dispath, reserve and redispath in the worst-ase realization of the unertain
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Figure H.2: Computation time for the robust optimization approah, and forthe stohasti programming approah as a funtion of the numberof senariosprodution.We propose a novel reformulation of the problem that allows us to onsiderpolyhedral sets of any type to model the support of the unertainty distribu-tion. Suh a reformulation is employed as the subproblem within a well-knownutting-plane algorithm for adaptive robust optimization problems with right-hand side unertainty. The proposed sheme, besides providing more �exibilityin modeling unertainty with general polyhedral sets, retains properties of on-vergene to the global optimum as well as of tratability of the methods proposedin the literature on the subjet.Through a ase-study based on the 24-node IEEE Reliability Test-System, weassess the degree of suboptimality of the robust solution with respet to thestohasti programming approah. System ost inrease in expetation by about2.8%. However, the robust solution uts worst-ase ost by over two thirds. Fur-thermore, we show that the proposed model is rather robust to hanges in theprobability distribution. Indeed, the robust solution an atually outperformthe stohasti programming one if the model for the distribution of the un-ertainty used in the latter one underestimates the probability density on thetails. Finally, we show that for the proposed model, the robust optimization ap-proah has better omputational properties than a reasonably sized equivalentstohasti programming model.Future researh on the topi should be arried out in di�erent diretions.Firstly, the omplementary problem of modeling unertainty sets for spatially



H.6 Complete Min-Max-Min Optimization Model 311distributed stohasti prodution, whih is not onsidered here, should be stud-ied. In parallel, dynami properties ould also be onsidered both in terms ofmodeling unertainty sets, and by extending the model to a multi-period set-ting. Furthermore, reformulations of the robust optimization problem should bethought of in order to aount for unertainty sets with di�erent struture, e.g.,ellipsoidal sets. Finally, the ombination of the proposed model with methodsfor determining ex-post the amount of downward reserve should be investigatedas well, in order to redue the gap of the robust approah with the stohastiprogramming one in terms of expeted system ost.H.6 Complete Min-Max-Min OptimizationModelA desription of the symbols employed in these appendies is inluded in TableH.9.The omplete min-max-min model used in this work to determine the robustenergy and reserve dispath is the following optimization problem:
min

p,r+,r−,δ0

∑

k

Ckpk + C+
k r

+
k + C−

k r
−
k +QW(p, r+, r−, δ0) (H.14a)s.t. ∑

k∈Gi

pk =
∑

j∈Ni

Bij
(
δ0i − δ

0
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)
+ ds(i) − ŵq(i) , ∀i , (H.14b)

δ01 = 0 , (H.14)
pk + r+k ≤ P

max
k , ∀k , (H.14d)
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−
k ≥ 0 , ∀k , (H.14e)

Bij
(
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)
≤ Tmax

ij , ∀i, j ∈ Ni ,(H.14f)
pk, r

+
k , r

−
k ≥ 0 , ∀k , (H.14g)where the worst-ase reourse ost for energy redispathing at the balaningstage is yielded by the following max-min optimization model:

QW(p, r+,r−, δ0) = (H.15a)
max
∆w,

∆w+,∆w−
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(
p+k − p

−
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)
+
∑

s

V shlshs (H.15b)



312 Paper HTable H.9: List of symbolsSymbol Type Desription
k index index for prodution blok
i, j index index for network node
q, u index index for wind farm
s index index for load
Gi set set of prodution bloks k at node i

Ni set set of nodes j onneted by a transmission line to node i

Wq set set of wind farms u neighboring wind farm q

s(i) set load at node i of the network (if any)
q(i) set wind farm at node i of the network (if any)
i(k) set node where prodution blok k is loated
i(s) set node where load s is loated
i(q) set node where wind farm q is loated
Ck parameter per unit ost of energy dispath and redispath for unit k
C+

k parameter per unit ost of upward reserve for unit k
C−

k parameter per unit ost of downward reserve for unit k
ds parameter load from onsumer s
ŵq parameter foreast wind power prodution for wind farm q

Bij parameter suseptane of line onneting nodes i and j

Tmax
ij parameter apaity of line onneting nodes i and j

V sh parameter per unit ost of load-shedding
∆wmax

q parameter maximum foreast error for output of wind farm q

Γ parameter budget of unertainty for foreast error of wind power pro-dution
ρqu parameter maximum deviation of foreast error between wind farms

q and u

pk variable energy dispath for prodution blok k

r+k variable upward reserve dispath for prodution blok k

r−k variable downward reserve dispath for prodution blok k

δ0i variable network state variable at node i at the day-ahead stage
∆wq variable foreast error for prodution from wind farm q

∆w+
q variable positive part of foreast error for prodution from windfarm q

∆w−
q variable negative part of foreast error for prodution from windfarm q

p+k variable upward energy redispath for prodution blok k

p−k variable downward energy redispath for prodution blok k

lshs variable load shedding for demand s

wsp
q variable wind power spillage for wind farm q

δi variable network state variable (voltage angle) at node i at thebalaning stage
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k∈Gi

(
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)
+ lshs(i) +∆wq(i) − w

sp
q(i) =

∑
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0
i − δj + δ0j

)
,

: λi , ∀i ,(H.15)
δ1 = 0 , : ν , (H.15d)
p+k ≤ r

+
k , : µ+

k , ∀k , (H.15e)
p−k ≤ r

−
k , : µ−

k , ∀k , (H.15f)
lshs ≤ ds , : ǫshs , ∀s , (H.15g)
wsp
q ≤ ŵq +∆wq , : ǫspq , ∀q , (H.15h)

Bij (δi − δj) ≤ T
max
ij : σij , ∀i, j ∈ Ni , (H.15i)

p+k , p
−
k ≥ 0 , ∀k , lshs ≥ 0 , ∀s , wsp

q ≥ 0 , ∀q , (H.15j)s.t. ∆wq = ∆w+
q −∆w−

q , ∀q , (H.15k)
∆w+

q ≤ ∆wmax
q , ∀q , (H.15l)
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∆wmax
q

≤ Γ , (H.15n)
∆wq
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∆wu

∆wmax
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≤ ρqu , ∀q, u ∈Wq , (H.15o)
∆w+

q ,∆w
−
q ≥ 0 , ∀q . (H.15p)(H.15q)Notie that (H.14) is the omplete formulation of (H.1) for the problem at hand.Similarly, (H.15) orresponds to (H.2).H.7 Optimization Model Used Within theCutting-Plane AlgorithmIn this setion, we arry out in detail the mathematial development that leadsto the single-level maximization problem (H.6).Let us �rst replae the right-hand side minimization problem in (H.15) with itsdual. Notie that the dual variables are indiated in (H.15) after a olon sepa-rating them from the orresponding onstraints. We then swap the order of the



314 Paper Hresulting max-max problem, so that the right-hand-side maximization problemis the one involving variables ∆w,∆w+,∆w−. These operations render thefollowing problem:max
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∀s , ǫspq ≤ 0 , ∀q , σij ≤ 0 , ∀i, j ∈ Ni , (H.16q)whih is the omplete formulation of the mid and right-hand-side maximization



H.7 Optimization Model Used Within the Cutting-Plane Algorithm 315problems in (H.4).Then, we replae the objetive funtion of the right-hand-side maximizationproblem in (H.16) with the one of its dual problem:
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