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Optimal assignment of incoming flights to baggage
carousels at airports

Abstract

The problem considered in this report is an assignment problem oc-
curring at airports. This problem concerns the assignment of baggage
carousels in baggage claim halls to arriving aircraft (baggage carousel as-
signment problem). This is a highly dynamic problem since disruptions
frequently occur during operations. We introduce a basic static model
that can be adapted to the layout of different airports. Afterwards we
show how a decision support system based on a MIP-model can be de-
signed in a dynamic real world environment. The system supports the
decisions of the dispatcher during daily operations. Computational re-
sults for a real world problem at Frankfurt Airport are presented. At
Frankfurt Airport the suggested solution method was successfully imple-
mented and is running now for over half an year. The experiences show
that the system increases the quality of the dispatching process and in
general is a substantial support in decision making.

Keywords: Airport Optimization, Real World Optimization, Multi-Criteria Opti-

mization, Baggage Handling, Robust Optimization

1 Introduction

1.1 General Problem Description

The problem investigated is to assign every incoming passenger flight to the
baggage carousels in the baggage claim areas of an airport where passengers
pick-up their checked-in bags.

In this paper we look at the dispatching processes in the daily airport op-
erations. The process for steering the inbound baggage may be different from
airport to airport since it depends on the airport infrastructure and organi-
zational structure. Moreover the needs of the passengers and the negotiated
agreements with baggage handling companies and airlines also influence the
decisions.

We consider the following set-up: The baggage infrastructure department of
the airport is responsible for the selection of one or more baggage carousels for
each flight. There are several hard constraints limiting the freedom of choice
given by the terminal building and the laws from the authorities e.g. the need
of custom controls or passport checks. If these constraints are applied, there



usually exist different options for assigning each flight to a carousel. Today a
human dispatcher decides which flight is assigned to which baggage carousel.
The dispatcher is supported by several different IT-systems. He can access
different kinds of information and the relevant data are visualized to support
his decisions. This set-up represents the situation at Frankfurt Airport.

Each flight can be assigned to no more than three baggage carousels simul-
taneously. In general, one flight is assigned to one baggage carousel, but for
very large flights it can be necessary to use two neighboring baggage carousels
at the same time. It is possible to assign an additional baggage carousel to a
flight for first class passengers or crew luggage.

The dispatching process starts in general about 30 minutes before the arrival
of the aircraft. The dispatcher starts to look at the data and characteristics of
the flight and prepares the decision. The decision cannot be seen isolated but
as a trade-off between all flights which should be handled in the same area. At
the latest when the aircraft arrives at the parking position it is necessary to
decide about the baggage carousel assignment. The handling processes start
with the arrival of the aircraft. The handling companies need to know the
destinations for the bags and the passengers. The destinations are defined by the
assignment to baggage carousels. If the parking position is not at the terminal
building, the passengers will be transported by buses to the terminal building.
The destination for the bus transport depends on the assigned baggage carousel
since there can be several entry points in the terminal building depending on
the assigned baggage claim area.

The handling process can be described as follows: The bags will be unloaded
from the aircraft and then transported to the handling facilities at the termi-
nal building. The bags are stowed in containers, pallets or as loose bags in
the aircraft. Loose bags will be transported in dollies. One or more handling
facilities belong to each baggage claim hall. We assume that for each baggage
carousel there is one belt in a handling facility and that these baggage belts are
directly connected to baggage carousels e.g. by conveyor belts. The bags will
be unloaded to these baggage belts and then be delivered by conveyor belts to
the baggage carousels in the baggage claim hall.

In this article we assume that the scheduling of staff for the unloading from
the aircraft and as well the scheduling of the transports are independent prob-
lems which are solved independently from the baggage carousel assignment prob-
lem. The duration of these processes can be calculated based on past experi-
ences.

When solving the presented problem in a real world environment, there are
different challenges to handle. First, often the number of available handling
resources is limited. This is especially true in peak hours. Furthermore, the
problem is of highly dynamic nature since the input data can alter on very
short notice e.g. arrival times, aircraft parking positions. Therefore, the results
should be robust to delays and other unforeseen events. It is necessary to
satisfy different needs of passengers, airlines, ground handling companies and
the airport infrastructure. Furthermore, the solution approach has to be flexible
to changes of the business processes and management objectives. The handling

3



of inbound baggage is one of the critical processes at an airport. Long waiting
times, crowded baggage claim halls, reschedulings, missing or wrong displays
can be very unsatisfying for passengers and can lead to a bad reputation of the
airport. Furthermore, airlines and ground handling companies will complain if
agreements are disregarded.

The problem is to assign the flights to baggage carousels in a feasible way.
The objective is to get a robust plan, that satisfies the preferences of airlines,
passengers and handling companies as much as possible. Furthermore, the
flights should be distributed in a balanced way to the baggage carousels.

We present an MIP-model of the static problem and show how the model can
be used in a dynamic environment. The model can be solved with a commercial
MIP-solver. Computational results are presented for real-life passenger data for
one of the world’s largest airports. Studying the results from Frankfurt Airport,
a theoretical improvement in the achievement of the business objectives was
shown. Furthermore, a high acceptance of the suggested solutions was reported.

1.2 Related Work

Since the presented problem is an assignment problem in a dynamic environ-
ment, the problem could be modeled as a dynamic assignment problem. The
dynamic assignment problem and solution strategies are described in Spivey and
Powell (2004). The static problem could also be seen as a resource constrained
project scheduling problem. Brucker et al. (1999) give an overview of resource
constrained project scheduling problems (RCPSP). In general the RCPSP be-
longs to the class of the scheduling problems (for an overview see Roberts and
Vivien (2010)). The baggage carousel assignment problem is an online schedul-
ing problem (for description of online scheduling problems see Albers (2010)),
since the task and the specific times are not known for all flights in advance.
Since we try to optimize different objective criteria, the problem can also be
seen as a multi-objective scheduling problem.

Most articles in the area of optimization at airports deal either with the gate
assignment problem or workforce planning. For the daily airport operations the
contribution is quite rare. Examples for research in this field are: Clausen and
Pisinger (2010) have examined the dynamic routing of transfer baggage. Barth
(2012) presented a successful implementation of a decision support system for
the handling of transfer luggage.

Similar to the baggage carousel assignment problem is the handling of out-
bound flights. This problem was already studied by a few researchers. In Abdel-
ghany et al. (2006) the assignment of handling facilities to outbound flights was
studied. The study was made for airports in northern America. These results
cannot be compared to the situation at European airports since in northern
America the airlines are connected closely to the terminal buildings and the
operations are significantly less connected between airlines as in major Euro-
pean airports (Graham (2008)). Different models for the scheduling of outbound
baggage to handling facilities were presented by Ascó et al. (2011), Frey et al.
(2010) and Barth and Pisinger (2012).
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The baggage carousel assignment problem for inbound flights has similarities
with the problem but there are some major differences. One difference is that
the arrival time of the luggage in the inbound problem is fixed in contrast to the
outbound problem where it is possible to store the bags in storage spaces until
the handling starts. Furthermore, the objectives of the problems are different
with a focus on feasibility for the outbound baggage handling problem and on
delivery time for inbound baggage handling problem. Recently, first approaches
for the problem were presented by Delonge (2012), Frey et al. (2012) and Barth
and Böckmann (2012).

1.3 Outline

The remaining paper is structured as follows: Section 2 presents a basic MIP-
model of the static problem and possible extensions of the basic model. The
solution method is described in Section 3. The real world application at Frank-
furt Airport and the experiences are presented in Section 4. Detailed compu-
tational results including a comparison between the decisions of the dispatcher
and the developed algorithm are shown in Section 5. This section also includes
important issues concerning the calibration of the model. Finally, conclusions
and further work are discussed in Section 6.

2 Formal Problem Description

2.1 Basic Model

The baggage carousel assignment problem can be modeled as an extended as-
signment problem. The solution of the problem consists of an assignment for
each flight to one or more baggage carousels. Both, the assignment of the flights
to baggage carousels and the overall combination of the chosen assignments have
to be feasible.

Given is a set of flights F and a set of baggage carousels B. Each baggage
carousel b ∈ B belongs to one baggage claim hall h in the set of all baggage
claim halls H. The set of all baggage carousels in one baggage claim hall h is
given by Bh. For each flight f ∈ F a feasible assignment which optimizes the
given goals has to be selected.

It is possible to precalculate all feasible assignments, since the solution space
is limited by the available baggage carousels. If a flight is already fixed by
the dispatcher, only one assignment — with the chosen baggage carousels — is
generated. The set of all assignments is denoted as A and the set of assignments
for a specific flight f as Af .

The model regards only flights in a specific time horizon. The set of all
timeslots during the considered time horizon is denoted by T . The length of
one timeslot t ∈ T is l and the planning horizon is thus given by L = |T | · l.

The major decision variable for the model is xa for each a ∈ A. This variable
indicates if an assignment is chosen or not. Furthermore, there are several other
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Objective Min /
Max

Explanation

Airline preferences Max Fulfillment of airline preferences e.g. local proximity to
handling agent for missed bags

Transportation time Min Time from aircraft parking position to handling area
Continuity of sug-
gestions

Max No or only small difference between suggestions of two
optimization runs

Suitability of bag-
gage carousels

Max Rating of the suitability of the baggage carousels in gen-
eral (e.g. operational handling, passenger ways)

Restrictions Min Restriction on the handling capacities at one baggage
carousel e.g. number of passengers, bags, containers)

Table 1: Examples of soft constraints expressed as direct costs in the objective
function

decision variables to calculate the violation of soft constraints. These variables
are denoted with ”y” as prefix and are explained below.

The objective function of the model consists of two parts of soft constraints.
In the first part each criteria can be directly computed as costs on the single
assignments. These soft constraints are precalculated and are converted in costs
for each assignment (named direct costs in the following). The second part of the
objective criteria expresses soft constraints which are part of the mathematical
model (called bounding soft constraints in the following). The decision variables
introduced for these constraints depend on the combination of the different
assignments and resources. The objective function and the constraints related
with these soft constraints are formulated as linear equations. An quadratic
formulation is avoided by calculating the sum of the resource usage for the
selected assignments at a specific timeslot. Tables 1 and 2 show several examples
for soft constraints of direct costs and bounding soft constraints. The concept
of soft constraints in the objective function was used by Hansen (2010) for
the manpower planning and task scheduling problem. In the model presented
in Hansen (2010), the under and over coverage was measured in the objective
function. Our model generalizes this approach.

The set of all cost types c is called C. For each each assignment a and cost
term c the cost are given by oa,c. Furthermore, the sign is defined by nc (here
nc = −1 means minimization and nc = 1 means profit / maximization) and the
weight as wc.

The set of all soft constraints s is called S. For the sign ns and the weight
ws apply the same rules as seen above for set C. A soft constraint always
applies to a set of resources Rs. For each soft constraint s the contribution of
each assignment a at a specific timeslot t for the resource r ∈ Rs is given by
ua,s,r,t. We assume that there are capacities CAPs,r,t connected with each soft
constraint s, resource r ∈ Rs and timeslot t. These capacities are the relaxed
limits of the different resources related with the soft constraints. The bounding
soft constraints can be classified in three different categories:

• ordinary soft constraint so: aims to minimize the resource usage above a
limit, this means the given capacities CAPso,r,t are relaxed limits of the
resource usage
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Objective Min /
Max

Explanation Type
of con-
straint

Limitations of display Min At some airports the number of displayed flights
at a baggage carousel is limited

so

Avoidance of parallel han-
dling

Min Two flights at one baggage carousel should not
be handled at the same time

so

Avoidance of parallel
handling at neighboring
carousels

Min The handling of two large flights at neighboring
baggage carousel should not be at the same time
since the space for the passengers is limited

so

Balanced usage of carousels
in baggage claim halls

Max For efficient resource usage a balanced distribu-
tion over all baggage carousels is desired for each
baggage claim hall.

sb or sd

Balanced usage of all bag-
gage claim halls

Max For efficient resource usage a balanced distribu-
tion over all baggage claim halls is desired.

sb or sd

Avoid bottlenecks in passen-
ger flow

Min The passenger ways can depend on the selected
baggage carousel or baggage claim area.

so

Avoid bottlenecks at bus ar-
rivals

Min The bus arrivals can depend on the selected bag-
gage carousel or baggage claim area.

so

Avoid bottlenecks at pass-
port checks

Min The distribution of passenger on the passport
checks can depend on the selected baggage
carousel or baggage claim area.

so

Breaks between flights Max Delays or early deliveries do not cause immedi-
ately handling problems if there are breaks be-
tween the different flights

so

Table 2: Examples of bounding soft constraints

• box constraint sb: aims to minimize the positive and negative deviation
of the resource usage for each r ∈ Rsb from the average resource usage of
all resources r ∈ Rsb

• distance constraint sd: aims to minimize the distance between minimum
and maximum resource usage of a all resource r ∈ Rsd

The objective function of the model is calculated as follows:

min
∑

a∈A,c∈C
nc · wc · oa,c · xa +

∑
so∈So

nso · wso

∑
t∈T,r∈Rso

yso,r,t (1)

+
∑
sb∈Sb

nsb · wsb

∑
t∈T,r∈Rsd

ysb,r,t +
∑

sd∈Sd

nsd · wsd

∑
t∈T

ysd,t

The first part in (1) calculates the direct costs and the following parts are each
related to one category of bounding soft constraints. The problem is formulated
as a set partitioning problem with additional constraints. There is one major
constraint in the model. Constraint (2) forces that exactly one assignment is
selected for each flight. ∑

a∈Af

xa = 1 ∀f ∈ F (2)

All other constraints are part of the representation of the bounding soft
constraints.

• Ordinary soft constraint:
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In equation (3) the usage of a resource above a certain level is calculated.∑
a∈A

ua,so,r,t · xa ≤ CAPso,r,t + yso,r,t ∀so ∈ So,∀r ∈ Rso ,∀t ∈ T (3)

• Box constraint:

For the box constraint the average usage is calculated in (5). The posi-
tive and negative deviation from the average is calculated in (6) and the
absolute value of the deviation is determined in (4) for each resource.

y+
sb,r,t

+ y−sb,r,t = ysb,r,t ∀sb ∈ Sb,∀r ∈ Rsb ,∀t ∈ T (4)

ymean
sb,t

=

∑
a∈A,r∈Rsb

ua,sb,r,t · xa∑
r∈Rsb

CAPsb,r,t
∀sb ∈ Sb,∀t ∈ T (5)

ymean
sb,t

+ y+
sb,r,t

− y−sb,r,t = (6)∑
a∈A ua,sb,r,t · xa

CAPsb,r,t
∀sb ∈ Sb,∀r ∈ Rsb ,∀t ∈ T

• Distance constraint:

The distance between the minimum and maximum usage is calculated in
(7). Equation (8) forces that the maximal usage is greater than or equal to
every single usage percentage of all resources connected to the constraint.
Equation (9) forces that the minimum usage is less than or equal to every
single usage percentage of all resources connected to the constraint.

y+
sd,t
− y−sd,t = ysd,t ∀sd ∈ Sd,∀t ∈ T (7)

y+
sd,t
≥

∑
a∈A ua,sd,r,t · xa

CAPsd,r,t
∀sd ∈ Sd,∀r ∈ Rsd ,∀t ∈ T (8)

y−sd,t ≤
∑

a∈A ua,sd,r,t · xa

CAPsd,r,t
∀sd ∈ Sd,∀r ∈ Rsd ,∀t ∈ T (9)

The following domains apply for the decision variables:

xa ∈ {0; 1} ∀a ∈ A (10)

yso,r,t ≥ 0 ∀so ∈ So,∀r ∈ Rso ,∀t ∈ T (11)

y+
sb,r,t

, y−sb,r,t,≥ 0 ∀sb ∈ Sb,∀r ∈ Rsb ,∀t ∈ T (12)

y+
sd,t

, y−sd,t,≥ 0 ∀sd ∈ Sd,∀t ∈ T (13)
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2.2 Implementation Issues

To solve and apply the in Subsection 2.1 proposed model successfully, it is
necessary to take several aspects into account. In the following, we describe the
most important points.

• Symmetry elimination

To avoid symmetry in the mathematical model which can lead to bad per-
formance, we introduced an objective criterion to measure the suitability
of the different baggage carousels, so that there will be no two assignments
to carousels with the same objective values. Each baggage carousel should
have a different value for suitability. The suitability of a baggage carousel
expresses how well the baggage carousel is suited in general for the han-
dling of a flight. The suitability combines the suitability for the passengers
(easy to reach; short paths; closeness to exit) and the operational needs
(accessibility from the apron for the unloading of bags). If each baggage
carousel has an unique suitability value, most symmetry disappears from
the model (see Subsection 5.2.1) since all assignments from one flight will
be different and it is furthermore very unlikely that two assignments of
different flights have the same values (the number of bags or the arrival
time will differ in almost all cases).

• Timeslots

It can be useful to apply different sets of timeslots for calculating the soft
constraints. For some capacity constraints it does not make sense to cal-
culate a balanced distribution for very small timeslots. In this case, larger
timeslots can be introduced to calculate these capacity constraints. Fur-
thermore, rolling intervals can help to avoid unpredictable results. Rolling
interval means that the resource usage is calculated for different sets of
timeslots. The sets of timeslots differ in their shifted start points. If the
model is calculated without rolling intervals, it can happen that a flight
is favored to another very similar flight if the flights use a scarce resource
and flights are close together in time but lie in two different intervals. If
the resource usage is calculated with a slightly shifted start point of the
intervals, the flights might have been in the same interval and there would
be no difference between the flights. Rolling intervals can help to avoid
this situation.

It is also possible to calculate the objective criterion without timeslots, e.g.
if the capacity usage of the whole planning horizon and not the resource
usage at certain timeslot should be regarded.

• Robustness

A goal should be to avoid the handling of more than one flight at the
same time at the same baggage carousel. This can be modeled with an
ordinary soft constraint. Each baggage carousel represents one resource
with the capacity of one flight per timeslot. Each assignment uses one
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unit of capacity in each timeslot at the assigned baggage carousels during
the handling time.

Including breaks between two flights at the same baggage carousel can
introduce robustness to the model. Small changes in the handling time are
then unlikely to cause problems during operations. This can be modeled
in such a way that each flight needs one unit of capacity at the assigned
baggage carousels during an extended handling time. The weight for this
objective criterion should be less than the weight for the avoidance of
parallel handling.

• Stability

Since the acceptance is one of the major success factors for a decision
support system, it is important that the dispatcher gets similar suggestions
every time. In particular, it would be very irritating if the suggestion for
one flight is changing in every optimization run. An objective criterion
(see cost objective ”continuity” in Table 1) was introduced to avoid too
many changes between optimization runs. In this objective criterion the
model is awarded a bonus if it chooses the same belt for a flight as in the
last optimization run.

• Including data of current situation

We included the available manpower in the capacity calculation. The
model is not only dependent on static technical capacities but also on
the assignment of staff to the different baggage claim area. The general
assumption is that the staff is only assigned to one baggage claim area
and can work at each baggage carousel of the area.

To feed back the deviation from the expected processes during operations,
e.g. delays in handling or longer allocation of baggage carousels than cal-
culated, it is necessary to measure the observed values and compare them
to the calculated values in the model. We used the calculated deviations
to react to the reality and to take these into account for the next decisions.
For example, if a baggage carousel is used longer than calculated by one
flight.

It is also important to include messages of technical failures in the model.
If a technical failure for one of the baggage carousels occurs, this baggage
carousel should not be assigned to a flight for a certain period of time.

2.3 Extensions

In the proposed model the assignments are fixed if the dispatcher has made
his decision. As an extension all feasible assignments for these flights could be
generated. A new objective criterion can be defined and choosing the original
assignment will give a large bonus (negative cost). If there is a high gain by
choosing one of the other assignments, the model will choose this option. The
dispatcher needs then to be informed about the new suggestion, so that he can
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Terminal 1 Terminal 2
Hall A B C D E
Number of baggage carousels 6 12 8 6 6
Delivery duration 2 2.5 2 1 1

Table 3: Overview of baggage claim areas at Frankfurt Airport and average
duration of delivery in minutes from handling facilities to baggage carousels

rethink the situation. This option should be limited until a certain point of time,
since if the bags are already transported to a baggage carousel or the passengers
are waiting at a baggage carousel, a rescheduling can confuse the whole process.

Another possible extension of the model is to include not only static data
but to calculate transportation and unloading times dynamically. It is possible
to calculate an index from the situation in the last hours and assume the same
behavior for the recent optimization run. Systematic delays of unloading or
transports caused for example by bad weather conditions or low availability of
staff could be integrated in that way.

If the capacity usage of one of the resources is strict, the constraint is modeled
as a hard constraint instead of a soft constraint and the related decision variables
disappear from the model.

3 Solution Method

The solution method of the developed decision support system consists of two
major steps. First, all feasible assignments are determined and afterwards the
presented mathematical model is solved for these assignments. The model is
formulated as a MIP-model and can be solved with a MIP-solver (see Section 5
for computational results). In the following, we give an overview of the algorithm
assuming that only a single baggage carousel can be assigned to a flight.

First, all model parameters (e.g. number of time slots) and all resources
and capacities related to the bounding soft constraints are initialized. After-
wards, the algorithm iterates over all baggage carousels for every free flight. If
the baggage carousel is a feasible combination with the flight, an assignment is
generated. The direct costs and the contribution for each bounding soft con-
straint is calculated for the generated assignment. Additionally, for every fixed
flight one assignment to the assigned baggage carousel is generated and its con-
tribution for each bounding soft constraint is calculated. After generating all
assignments, the model (1) - (13) is generated and solved with a solver. Finally,
the results are provided to the dispatching system.
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Figure 1: Overview of terminal layout at Frankfurt Airport: connection of
aircraft parking positions and handling facilities

4 Real World Application

The presented model was tested in the real world environment at Frankfurt
Airport. The developed algorithm has been running since the middle of the
year 2010 during daily operations at Frankfurt Airport as a part of an IT-system
which supports the dispatcher.

Frankfurt Airport has five baggage claim halls which are named after the
concourses in the terminal: A, B, C, D and E. In total, Frankfurt Airport has
38 baggage carousels. Detailed information about the baggage halls and the
different baggage carousels can be found in Table 3. Figure 1 shows the layout
of the inbound baggage handling facilities at Frankfurt Airport. Baggage claim
hall B is assigned to two handling facilities from the ground handling side.

The dispatcher of the baggage handling department assigns the flights to
baggage carousels in a predefined baggage claim hall. The aim is to find a
feasible solution that maximizes the fulfillment of the airline preferences. The
solution should also be operationally well applicable and robust. The agreed
standards for baggage return times are depicted in Table 4. In the majority of
cases, Frankfurt achieves shorter times than these. The dispatcher is supported
by a special IT-system. The presented algorithm delivers a suggestion for each
flight to the system. The system then visualizes the suggestions for the dis-
patcher. The dispatcher has the final decision and does not need to follow the
suggestions. Some of the flights are marked as automated, this means that the
dispatcher should follow the system, since the suggestion is very important e.g.
special agreements with airlines. Furthermore, the suggestions are a backup for
the dispatcher. If the dispatcher fails to make a final decision until the aircraft
arrives at the airport, the suggestion of the system will be chosen.

The model was adapted at several positions at Frankfurt Airport. Not all
optimization possibilities as described in Section 2 are used at Frankfurt Airport
at the moment. This has mainly organizational reasons, since the decisions
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involve different departments with different responsibilities. At the moment the
model only supports the tasks of the baggage infrastructure department.

In the following, the detailed changes and the relevant goals will be presented.
One important point is that the assignment to a baggage claim area in general
is given by fixed rules and only in a few cases, it is possible to choose between
baggage carousels in different baggage claim halls for one flight.

The model at Frankfurt Airport includes all cost terms as shown in Table 1 in
Section 2.1 in the objective function. Furthermore, the following soft constraints
are calculated in dependency of the combination of the chosen assignments (set
of S) in the model:

• A balanced distribution of the usage of the different baggage carousels
in each baggage claim hall is calculated as a distance constraint. Rolling
intervals are used to calculate this objective criterion.

• Balanced distribution of the usage of the baggage claim halls is calcu-
lated as a boxing constraint. Rolling intervals are used to calculate this
constraint.

• The limitation of the number of passengers at neighboring baggage carousels
is calculated as an ordinary soft constraint. For each pair of neighboring
baggage carousels the maximum violation of the capacity in the whole
planning horizon is calculated.

• The limitation of the display at the baggage carousels is calculated as
an ordinary soft constraint. All flights which are assigned to a baggage
carousel will be displayed at the baggage carousel for the orientation of
the passengers until the handling is officially finished. The displays are
limited to five flights. A flight is officially finished after a fixed duration
of time or a manual log-off from the dispatcher.

• The limitation of flights handled at one baggage carousel at the same time
is calculated as an ordinary soft constraint. We assume a higher resource
consumption for large flights. A flight is defined as large if it contains
more than 70 bags or 3 containers. There are different steps defined for
the parallel handling of two, three, four normal or two large flights. For
each of these scenarios an own objective function part is defined.

• The breaks between flights are calculated as an ordinary soft constraint.
There is an extra objective for large flights.

• The limitation of flights to staff availability in baggage handling facilities
is calculated as an ordinary soft constraint. In Frankfurt the objective is
used to get a balance between the two handling facilities in baggage claim
hall B.

• The reservation of baggage carousels with large facilities for large flights is
calculated as an ordinary soft constraint. The idea is that these carousels
are still available if a flight with many bags comes in the problem.
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We assume that a baggage carousel is assigned to a flight from the start until
the end of the handling. In reality it could be possible to recognize in the load
sheet of the aircraft that there will be breaks in the handling since the bags will
be delivered with a temporal delay e.g. if some bags are loaded in the front and
the end of the aircraft. For Frankfurt it was decided not to include these breaks
since the delivery time of the bags is always connected with some uncertainty.
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Figure 2: Number of flights in optimization as function of time in day (blue:
flights fixed by dispatcher, red: free flights)

0
50
100
150
200
250
300
350

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
time

no. of assignments

Figure 3: Number of generated assignments as function of time in day

Today, the optimization runs at least every two minutes. The decision for
one flight is not made once, but is calculated repeatedly until it is fixed by the
dispatcher. In the optimization runs all flights are included where the handling
is still in progress or which arrive in the next thirty minutes. In average 40
flights are considered in each optimization run. In the daily peaks up to 90
flights are considered simultaneously. Figure 2 shows the number of flights in
the optimization runs during a typical day. The number is split in flights which
are already decided by the dispatcher and in flights which are not fixed. Each
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Baggage return times for Building parking position Remote parking position

Conventional aircraft 15 min. after on-block 20 min. after on Blocks
Wide body aircraft 20 min. after on-block 25 min. after on Blocks

Table 4: Service level for delivery of 1st piece of baggage at Frankfurt Airport

Steps Avg. duration (s)

Reading data 9.9
Prepare model / generate assignments 2.5
Define and solve optimization problem 0.2
Postprocess 5.0
Writing data 3.8

Table 5: Duration of the solution steps

optimization run includes the most recent data and the suggestions of the last
run. The dynamic environment is included by generating robust plans and
constantly adjusting the decisions over the time. Figure 3 shows the number of
generated assignments at each optimization run during the day.

One side effect of the project was that all process times for unloading, deliv-
ery, handling start etc. are calculated in every optimization run. This informa-
tion — planned and real numbers — were integrated in the IT-system for the
dispatchers and give them important additional information about the process
status.

5 Computational Results

In this Section we present the results of the operational application at Frankfurt
Airport and simulation runs. The calculations are based on a real day at Frank-
furt Airport and the most recent adjustment of the weights. The algorithm was
implemented using C# .NET and IBM ILOG OPL 12.2. The implementation
makes intensive use of IBM ILOG OPL Script. Large parts of the business logic
and the generation of the assignments are implemented in IBM ILOG OPL
Script.

5.1 Computation Times

The mathematical model was solved for all instances at Frankfurt Airport in a
few seconds, which makes the algorithm applicable in the dynamic dispatching
scenario. The times for the different solution steps were measured for an average
day (see Figure 4). The average values are depicted in Table 5.

Comparing Figures 2 and 4 with Figure 3 shows that run time of the algo-
rithm is depending on the number of flights and assignments. The optimization
related steps (generate assignments and solve optimization problems) have the
shortest duration of all steps in average (see Table 5).
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Figure 4: Computational times during a day. red: reading data, yellow: pre-
pare model / generate assignments, blue: solve optimization problem, green:
postprocess, gray: writing data

Type of run weighted ob-
jective without
suitability

run time
(sec)

absolute values
of suitability
terms

Run without symmetry elimination 42.70944 2.20 44.31667
Run with symmetry elimination 42.57515 0.84 45.61667

Table 6: Changes of objective function, duration of run times and suitability
terms for runs with and without symmetry elimination

5.2 Calibration of the model

When implementing the model at Frankfurt Airport, large parts of the project
time was spent with the calibration of the model. The most important cal-
ibration steps are presented in the following Sections. Furthermore, we did
theoretical studies to determine the impact of different elements on the model.

5.2.1 Symmetry

As mentioned in Section 2.2 we recommend the introduction of a cost term
to eliminate symmetry from the model. We compared runs with and without
symmetry elimination. Computation times could be decreased by a factor of at
least two by eliminating symmetry from the model in this way. The results in the
case with and without symmetry elimination are summarized in Table 6. The
results show that the differences between the optimization runs are small. The
weighted objective function for all objective terms except suitability decreases
about 1 %, but on the other hand the introduction of the new objective term
suitability increases the values for suitability up to 3 %.
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5.2.2 Bounding soft constraints versus direct costs

We did several studies to measure the impact of bounding soft constraints and
direct cost terms on the model. In the following, we show the impact for the
bounding soft constraint ”balanced belt usage” and the direct cost ”reservation
of capacity for large flights” in more detail. Both terms are connected and
can be contradicting, since a balanced distribution between the belts does not
reserve specific baggage carousels for large flights.

Figure 5 shows the impact of the variation of the weights of the two terms
on the objective terms and solution times. Examining the solution time, we can
see that a higher weight of the cost term speeds up the optimization slightly and
a higher weight of the soft constraint has negative impact. Especially very high
weights of the soft constraints lead to long running times. The optimization
in the presented runs were aborted after 180 seconds calculation time. The
algorithm could find good solutions in this time, but no proof of optimality was
given. The bad solution times appear if the weight for the soft constraints is
too high. It is interesting to see that the objective term for the soft constraint
did not improve very much after this point. After a certain point high weights
for the cost term have a strong impact on the objective of the soft constraint.

In general, we observed that the impact on the solution time is much higher
for the bounding soft constraints than for the direct cost terms. While cali-
brating the model the right trade-off between the different weights has to be
determined in such a way that the different objective terms are respected in an
appropriate way and solution time is acceptable.

5.2.3 Stability

We did simulation runs for the morning (peak hours of airport operations) of
a representative day and compared the results for the optimization with and
without stability cost in the objective function (see objective term continuitity
in Table 1). Stability means that the suggestions for one flight does not change
very often between different optimization runs. We measured no impact on
the computation time and on the cost values of all other cost in the objective
functions. Figure 6 shows the influence of the stability on the different soft
constraints implemented at Frankfurt Airport. For most soft constraints no or
only small increasings can be seen. For the soft constraint ”breaks between
large flights” even a decrease can be reported. It is important to note that this
decrease is small.

By introducing a cost term for stability it was possible to reduce the number
of changes by 15 % (from 8.3 to 7.0 changes per flight). The dispatcher were
more satisfied with the suggestions from the stabilized version of the algorithm
and the average acceptance rate during a day increased.

5.3 Problem structure

We did several experiments to prove that the model is also applicable at other
airports. Two major experiments were conducted to measure the impact of the
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(a) Normed objective value: balanced belt
usage (minimization)

(b) Normed objective value: reservation of
capacity for large flights (minimization)

(c) Normed solution time: duration for solving the optimization problem
(runs are aborted after 180 seconds)

Figure 5: Impact of changes in the weights on the objective terms and solution
time. Note: The scaling of the weights is not linear.
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Figure 6: In blue depicted are the average objective values from the runs with
stability and in red from runs without stability. The values are normalized by
the value from the object criteria from the runs with stabilization. 1: balanced
distribution at belts, 2: balanced distribution between handling facilities, 3:
limitation of passengers at neighboring carousels, 4: limitation of the display,
5: penalty for parallel handling of two flights, 6: penalty for parallel handling
of three flights, 7: penalty for parallel handling of four flights, 8: breaks be-
tween handling of flights, 9: breaks between large flights, 10: violation of belt
capacities

No. of flights Total time Optimization time Pre- and Postprocess

100 41 2.06 39
150 91 27.00 64
200 697 603.49 94

Table 7: Solution run times in seconds as function of the number of flights

problem size (number of flights in one optimization run) and the layout of the
airport on the computation times.

5.3.1 Number of flights

Today (see Figure 2) up to 90 flights are included in one optimization run. In
this section we examine how the solution and quality is affected by an increase
of the number of flights. We did optimization runs with 100, 150 and 200 flights.
Frankfurt Airport has little less than half the movements compared to the world
largest airports (Air Transport World (2010)), so doubling the number of flights
demonstrates the ability of the algorithm to be used at other large airports.

Table 7 compares the solutions times for the different number of flights. We
assume a similar layout of the airport as in Frankfurt. For adding additional
flights, we took flights from other hours at the days and adjusted their arrival
time in such a way that the arrival time lies within the time horizon of the
optimization run. In that way we could include flights with real world data.

The run with 150 flights had a MIP gap below 1 % after one second. The
improvement of the objective value was below 0.5 % after 30 seconds for the
run with 200 flights. All runs were solved to optimality.

The results show that pre- and postprocess time (generating the assignments
and preparing the results) depend almost linearly on the number of flights in
the run. The optimization time seems to grow exponentially with the number
of flights.
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5.3.2 Layout of handling facilities

As described in Section 4, the handling of the luggage is split into several de-
central handling facilities at Frankfurt Airport. Other airports have only one
central handling facility and all flights can be assigned to all belts. To test our
algorithm for such a situation, we assumed that it is possible to assign every
incoming flight to every available belt. We included 80 flights and 38 belts in
our optimization run.

The total run time of the optimization run with one central baggage handling
facility was 229 seconds. The time splits up in 109 seconds for optimization and
110 seconds for pre- and postprocessing. In this case, the generation of the
assignments is slower since more assignments are generated per flight. The
run with 150 flights had a MIP gap below 1 % after three seconds. Assuming
that all characteristics of the belts except the transportation time are still the
same, a theoretical improvement of the objective function of 20 % can be shown.
This indicates that a more flexible handling of flights could improve quality at
Frankfurt Airport.

5.4 Comparison optimization versus dispatcher

In this section we examine the differences between the decisions of the dispatcher
and the optimization system. In general, the dispatcher fixes the suggestion
earlier than the optimization system would do it. We assume that the decision
from the optimization system will be fixed when the aircraft arrives at its parking
position.

1 2 3 4 5 6 7 8 9 10

Figure 7: In blue depicted are the objective values from the dispatcher and
in red from the optimized solution. The values are normalized by the value
from the object criteria from the dispatcher. Note: smaller values are better.
1: balanced distribution at belts, 2: balanced distribution between handling
facilities, 3: limitation of passengers at neighboring carousels, 4: limitation of
the display, 5: penalty for parallel handling two flights, 6: penalty for parallel
handling three flights, 7: penalty for parallel handling four flights, 8: breaks
between handling of flights, 9: breaks between large flights, 10: violation of belt
capacities

We did compare the results from optimization and the real decisions from
the dispatcher over several days. We could examine similar results for every
day. For each day we compared the total sums for every objective criteria of
type 1 from the chosen assignments. Surprisingly, there was no large difference
between the decisions of the dispatcher and the optimization algorithm. For
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most criteria the improvements in the optimized case were below 1 %. For the
fulfillment of the airline preferences an improvement of 2 % was measured. The
general suitability was 20 % improved over a whole day.

For the soft constraints part in the objective function larger benefits can be
seen. Figure 7 show the improvement for selected objective criteria. For all
objective criteria an improvement was reported.

These results show that the dispatchers concentrate on a good assignment
of the single flights and that they lack the consideration of the combination of
the different flights. Furthermore, the results show that some situation can be
avoided, if they are part of the optimization problem e.g. ensuring that no more
than two flights are handled at the same belt.

6 Conclusion and Future Work

6.1 Conclusion

We introduced a general model for solving the inbound luggage handling prob-
lem at airports. The model can be adapted to different situations and layouts.
Furthermore, we presented important implementation issues. It was shown ex-
perimentally that the model represents the reality in an appropriate way and
the usage of the solution algorithm can be of a great help for the dispatchers
at an airport. The experiments presented in Section 5 show that the model is
flexible and can be used for different layouts. The flexibility should allow that
the model is used at all types of airports independent of the layout, number
of flights, capacities and management objectives. The results showed that it is
possible to solve problem sizes of up to 300 flights. To the best knowledge of
the authors, there are today no airports with more than 300 flights arriving per
hour, so the problem size should not limit the applicability of the model.

The calibration of the model is very important for a successful implementa-
tion. A large amount of the project time at Frankfurt Airport was spent with
the search of the right adjustment of the different goals and to maintain all
parameters e.g. the preferences for the different airlines.

After running the decision support over half a year the following results can
be reported:

• A satisfying acceptance rate in total could be reached. The acceptance
rate is between 50 % and 90 % depending on the operational situation
and the different objectives of the dispatchers.

• The real world time constraints can be fulfilled and no problems with the
actuality of the data arise.

• The dispatchers were reported to have more time to concentrate on quality
management.

• The algorithm runs stable in different situations e.g. in situations with

21



many disruptions like gate changes and delays, days with normal opera-
tions, delays in unloading due to bad weather.

• For the defined goals like the fulfillment of airline preferences or the bal-
anced distribution, better values for the objective function were achieved
(see results in Section 5). Additional to these theoretical proven improve-
ments no negative influence on the processes was reported by the opera-
tional staff.

• The introduction of stability has led to an higher satisfaction with the
suggestions.

The experiments showed that the model can be adapted to new situations like
new guidelines by the authorities very quickly. All changes appearing during the
test period could be included with minor efforts and the quality of the solution
was not affected.

Furthermore, we can show theoretically that the outcome of the dispatching
process can be improved using the optimized solutions. The results demonstrate
that the multi criteria problem can be expressed by a linear weighted objective
function and almost all criteria can be improved compared to the decisions of
the dispatcher.

The results presented in Section 5 show that it is very important to define
the objectives in the right way and to have a good understanding of the real
world optimization problem. As seen, some situations like the handling of three
or more flights at the same time on the same baggage carousel can be avoided in
the daily operations with the help of the optimization. It is really important to
define these situations in a proper way and identify all situations which should
be avoided.

6.2 Future Work

For the usage at Frankfurt Airport, the model will be advanced and adjusted in
the future. It showed that changing and developing is a continuous process. In
the future we will look at the stability and try to reduce the number of different
suggestions for a single flight by tuning of the objective function.

Some extensions of the basic model were described in Section 2.3 but we
can think of other extensions. For example the break duration between flights
handled at the baggage carousel could be improved. Today only fixed time
spans before / after a flight are part of the model. In general, the solution
will be more robust with every additional minute of break, so maximizing the
duration of breaks could improve the solution. The objective function of the
maximization of the breaks should not be linear, since for short breaks it is more
important to extend the breaks.

It is possible to use the model not only for operational decisions — the model
could be adapted for strategic decision like finding the right management objec-
tives for the process or designing new baggage claim areas. Different operational
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business strategies can be tested in an easy way. For the case in Frankfurt it
looks promising to have more flexible assignments of flights to baggage halls.

Future fields of work will be the neighboring processes like outbound baggage
handling. In a next step, the solution for the inbound, outbound and transfer
baggage handling should be integrated in a large scale approach. Furthermore,
the inbound handling could be viewed in a broader sense. The unloading of the
bags of aircraft and the transport of the bags at the apron could be included
in one model. Especially, the dependency to the staff scheduling for the task of
baggage handling should be examined in more detail.
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The problem considered in this report is an assignment problem occurring at airports. This problem 
concerns the assignment of baggage carousels in baggage claim halls to arriving aircraft baggage 
carousel assignment problem. This is a highly dynamic problem since disruptions frequently occur 
during operations. We introduce a basic static model that can be adapted to the layout of different 
airports. Afterwards we show how a decision support system based on a MIP-model can be designed 
in a dynamic real world environment. The system supports the decisions of the dispatcher during 
daily operations. Computational results for a real world problem at Frankfurt Airport are presented. At 
Frankfurt Airport the suggested solution method was successfully implemented and is running now 
for over half a year. The experiences show that the system increases the quality of the dispatching 
process and is a substantial support in decision making in general. 
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