
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

A Techno-economic and Spatial Analysis for the Optimal Planning of Wind Energy in
Kythira Island, Greece

Xydis, George

Published in:
International Journal of Production Economics

Link to article, DOI:
10.1016/j.ijpe.2013.02.013

Publication date:
2013

Link back to DTU Orbit

Citation (APA):
Xydis, G. (2013). A Techno-economic and Spatial Analysis for the Optimal Planning of Wind Energy in Kythira
Island, Greece. International Journal of Production Economics, 146(2), 440-452. DOI:
10.1016/j.ijpe.2013.02.013

http://dx.doi.org/10.1016/j.ijpe.2013.02.013
http://orbit.dtu.dk/en/publications/a-technoeconomic-and-spatial-analysis-for-the-optimal-planning-of-wind-energy-in-kythira-island-greece(9fb539a5-4495-4a44-b5cb-8275f8955de1).html


Author's Accepted Manuscript

A Techno-economic and Spatial Analysis for the
Optimal Planning of Wind Energy in Kythira Island,
Greece

George Xydis

PII: S0925-5273(13)00080-7
DOI: http://dx.doi.org/10.1016/j.ijpe.2013.02.013
Reference: PROECO5351

To appear in: Int. J. Production Economics

Received date: 20 March 2012
Revised date: 5 November 2012
Accepted date: 4 February 2013

Cite this article as: George Xydis, A Techno-economic and Spatial Analysis for the
Optimal Planning of Wind Energy in Kythira Island, Greece, Int. J. Production
Economics, http://dx.doi.org/10.1016/j.ijpe.2013.02.013

This is a PDF file of an unedited manuscript that has been accepted for publication. As a
service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply
to the journal pertain.

www.elsevier.com/locate/ijpe

http://dx.doi.org/10.1016/j.ijpe.2013.02.013
http://dx.doi.org/10.1016/j.ijpe.2013.02.013
http://dx.doi.org/10.1016/j.ijpe.2013.02.013
http://dx.doi.org/10.1016/j.ijpe.2013.02.013
http://dx.doi.org/10.1016/j.ijpe.2013.02.013
http://dx.doi.org/10.1016/j.ijpe.2013.02.013


A Techno-economic and Spatial Analysis for the Optimal Planning of Wind 

Energy in Kythira Island, Greece 

 

 

George Xydis 

 

Technical University of Denmark, Dept. of Electrical Engineering 

Frederiksborgvej 399, P.O.B. 49, Building 776, 4000 Roskilde 

Tel. +4546774974, Email: gexy@elektro.dtu.dk; gxydis@gmail.com, Fax: 

+4546775688 

  

 
 

Abstract 

 

Renewable Energy Sources (RES) and especially wind energy are seen as an essential 

part of the future clean energy system. In the present paper, the wind potential of 

Kythira Island was studied and a techno-economic analysis was done aiming at 

identifying the optimum solution for the proposed Wind Farms (WF) to be installed 

so that this isolated island to be interconnected to the mainland. The basic aim was to 

a) optimize the overall power output of the system, b) decrease the state participation 

investment costs, and c) secure energy safety for the area protecting at the same time 

the environment. For that reason, special focus was given to the environmental 

constraints for the implementation of a green development plan for the island. The 

detailed method followed was to examine different scenarios on wind farm optimal 

planning and taking into account environmental restrictions, the results of an 



analytical investment tool and newly introduced indices help decision makers 

optimize the results. This study is a case study supporting an analyzing method that 

should be followed for all private investments which are subsidized partly from the 

state. 
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Nomenclature 

 

A Depreciation 

AEPnet Annual Energy Production net (MWh) 

c   the windy (dimensionless) scale parameter 

Ci  installed capacity of the under examination WF (MW) 

CDR   Capital Discount Rate 

CL  HV line estimated cost per km 

CVcoef  the conversion coefficient in current values ratio 

CVFCF  Current Value Final Cash Flow 

Dm   deduction 

d   rotor diameter 

Eq   other electrical electronic/mechanical Equipment costs 

ExCF   Exergetic Capacity Factor 

FNCF   Final Net Cash Flow 

FNI   Cumulative Cash Flow 

fWei(v)  probability density function  

i   Interest 



I  interest of the loan 

IC  Investment Cost 

Inst   Instalments 

IRR  Internal Rate of Return 

k  the (dimensionless) shape parameter 

l   the cable length [km] 

L   Loan 

M   Maintenance Costs 

NPV   Net Present Value 

NI   Net Income (or Net Cash Flow)  

NRA   Net Repayment Amounts 

OC  the total Operating Costs 

OCF  Operating Cash Flow 

P   the power load [kW]  

PO   Personnel Operational Costs 

Pa-tax  Profits after-taxes 

Pp-tax   Before Tax Earnings 

R   the resistance in [Ohm/km],  

T0  turnover (revenues) 

TL   the transmission loss [W] along the cable segment 

U   the voltage level [kV] 

UV  Unamortized Value 

V  land lease, administration costs, unexpected expenses or other 

additional costs 

WTIns,  Insurance of Wind Turbines 



X10   the HV line cost per km of greater or equal length than 10 km 

X1.5    the HV line cost per km of greater or equal length than 1.5 km 

 

Greek letters  

φ   the phase angle [rad] between active and reactive power 

 

 

1. Introduction 

 

An analytical methodology was presented in this paper to examine different WF 

planning options in a Greek Island based on environmental, economic and 

profitability criteria. Some new indices were introduced to assist decision makers 

optimize the results according not only to the growth of private funds but also based 

on the Greek welfare state. In order to reach the final results a detailed wind resource 

analysis, for analysing planning options is primarily needed. 

 

Accurate wind resource measurements are necessary for the exploitation of wind 

energy, for identifying the wind power production potentiality of each area.  For the 

evaluation and understanding of the prevailing winds in Kythira Island, Geographic 

Information Systems (GIS) tools, the WAsP (Wind Atlas Analysis and Application 

Program) [1] and WindRose [2] softwares were used as wind data analysis tools, and 

a wind map was created portraying the wind speed at a height of 80 meters above 

ground level (m.a.g.l.). 

 



Greek terrain is mostly mountainous with areas extending into the sea as peninsulas. 

For determining the wind profile in the islands different measuring and modelling 

techniques are used. However, more often – as in the examined case, meteorological 

masts are installed where this is possible. From the results’ analysis an initial 

assessment of the under examination area is the outcome each time. In this paper, 

initially, a complete statistical analysis of the wind data and a wind turbine 

planning/sitting (taking into consideration all the planning and environmental 

constraints) on the island was done and based on the up-to-date interconnection costs 

a techno-economic analysis helps to finalize the WF planning and the size of the 

investment. A literature review, site experimental results, discussion and conclusions 

follow in the next sections. This first section is the introduction; section 2 includes 

important background studies on the field, section 3 presents the methodology, 

section 4 examines different scenarios and section 5 concludes. 

 

2. Literature Review 

 

A large body of literature concerning the interconnection of insular areas with the 

main system worldwide has been carried out over the past few decades. Not many 

however deal with the interconnection of the Greek Islands with the mainland. 

Hatziargyriou et al. [3] showed how the Islands’ interconnection will contribute to 

increase the wind power penetration in the Greek system. The authors examined 

planning constraints in the Cyclades prefecture and how, through the use of 

interconnection grids, the favourable wind conditions could be exploited. Georgiou et 

al. [4] examined the effect of the Islands' interconnection to the Greek power sector. 

Their extensive analysis showed that RES are highly essential as their break in the 



power production mix is possible to reach 56% of the total electricity demand. Since 

2005, the studies from Papadopoulos et al. [5 – 6], and Karamanou et al. [7], the 

updated strategic study on the interconnection of Greek Islands from the Institute of 

Communication and Computer Systems [8], and lately the study for the 

interconnection of Crete with the mainland [9] predicates the academic and intensifies 

the commercial interest for the exploitation of the dominant wind power of the Greek 

Islands. The above mentioned studies [5 – 9] examine different scenarios regarding 

their connection with the mainland. Grouping islands and defining interconnection 

schemes, setting the limits (constraints) for the different seasonal load on a long-term 

basis lead to important conclusions about the interconnection of the Aegean Islands.  

 

A larger body of recent papers and studies regarding the application of wind resource 

assessment in insular or remote areas worldwide has been carried out. Palaiologou et 

al. [10] performed a statistical analysis followed by a power production analysis and a 

power map production in the Island of Lesvos. Prasad et al. [11] studied the power 

density for Vadravadra site in Fiji Islands, while Segurado et al. [12] where based on 

the H2RES computer model, the integration of renewable sources and hydrogen in the 

Island’s energy system was simulated. Several scenarios were examined and the 

maximization of renewable energy in this grid resulted in a percentage of 33%, 

focusing mainly on wind. Liu and Wu [13] proposed that renewable energy shall 

reach a 34% of the electricity consumption in Kinmen Island by 2020. Kaldellis et al. 

[14] studied and dimension a wind-based pumped hydro storage system for the island 

of Lesbos. Nandi and Ghosh [15] did a techno-economical analysis of off-grid hybrid 

systems at Kutubdia Island. They used the NREL simulation software HOMER and 

after they did wind and solar resource analysis they suggested the use of hybrid 



energy systems in order to reduce the fuel consumption. They concluded that wind–

diesel hybrid systems based on the island’s needs are more cost effective compared to 

wind-alone, PV-alone systems and wind–PV hybrid system. Giatrakos et al. [16] also 

used HOMER simulation tool based on different scenarios (a. 20% RES penetration, 

b. 20% RES adding hydrogen for transport, c. 100% RES via hydrogen storage) to 

result to the best solution for maximizing RES penetration in Karpathos Island. Darus 

et al. [17] designed a hybrid (wind and solar system) for sustainable living at 

Perhentian Island in Malaysia while Dua et al. [18] implements a feasibility study for 

the Fox Islands examining closely the viability potential for the future wind energy 

growth.  

 

However, there is not a detailed study in the literature that links the need for wind 

energy in an isolated area in order to take advantage the dominant wind speed on that 

area and the interconnection costs with the mainland and the. This paper is a unique 

case study since it deals with an island close to the shore (17km) with extremely good 

wind conditions and can actually be seen as a part of the mainland system or just as an 

isolated system (covering only the island’s energy needs). A detailed flowchart of the 

analytical evaluation process and the analytical investment tool can be seen in figure 

1. 

 



 

Figure 1. A detailed flowchart of the proposed evaluation methodology and the investment tool 

 

3. Proposed methodology 

 

3.1 Site Experimental Results – Statistical Analysis 

 



Kythira Island lies opposite the eastern edge of the Peloponnese peninsula (Capo 

Maleas). The island’s area is about 280 km². The form of the terrain with shaped 

shores into steep cliffs is a result of the prevailing winds in the wider area. Wind 

profile measurements were carried out for specific periods using a meteorological 

mast close to the existing Radar close to the highest mountain on the west called 

Mermigkaris (Figure 2).  

 

 

Figure 2. The installed mast on the Kythira Island and the WF applications 

 

Mast coordinates, average speed, period of measurement, height in meters above 

ground level, and temperature are shown on Table 1. The tools used for elaborating 

the annual measurements and produce estimates of wind speed/energy output (at 

various distances from the measuring meteorological mast) were WindRose [2] and 

WAsP softwares [1]. Vector Hellenic Windfarms S.A. operates a certified laboratory 

(Laboratory of Wind Measurements) from Hellenic Accreditation System S.A. 



(E.SY.D.) in Greece and the meteorological stations were under the laboratory’s 

supervision. 

 

Table 1. Main measured characteristics of the wind mast 

Latitude  

(°) 

Longitude  

(°) 

Mean speed 

(m·s-1) 

Period of  

data analysis 

Height 

(magl) 

Av. Turbulence 

Intensity (at 10m.) 

36°13'45.67"N 22°56'27.33"E 8.22 at 

20 m. 

22 Oct ’07-22 

Oct ’08 

470 11.137 % 

 

It is easily noticeable just by reviewing the wind rose (figure 3) that the two main 

directions (primary and secondary direction) were ESE and SE respectively however 

a significant portion is NNW and W.  

 

 



Figure 3. Wind Rose of the Mast of Kythira Island and Data and Weibull Distribution 

 

The wind was studied for one (1) year from 22 Oct. 2007 to 22 Oct. 2008. A 20 m. 

mast was installed made out of steel in tubular form kept in vertical position using 

tense wires. Anemometers and vanes were placed every ten meters (10; 20). A data 

logger connected to the available sensors of the mast stored and sent the data to the 

responsible laboratory using the GSM method. The required power for the above 

mentioned instruments was provided by 12 V batteries, charged by a PV panel. The 

uncertainty of the measured wind speed for the mast was calculated using the 

WindRose software [2] at 0.115 m/s. The maximum 10min average speed observed 

was 31.14 m/s and the maximum gust 39.92 m/s.  

 

A preliminary statistical analysis of the measurements was useful for identifying the 

relationships among the examined variables. Weibull and Rayleigh probability density 

functions analyses which have an acceptable accuracy level by many wind resource 

studies in different locations [19 – 24] were used to identify the representation of the 

wind speed frequency curve.  

 

In Weibull distribution, the probability density function and the cumulative 

distribution indicates the variation in wind velocity. The probability density function 

fWei(v) is given from the following equation: 
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⎛⋅= ,        (1) 

where k is the (dimensionless) shape parameter showing how peaked the wind 

distribution is, and c is the windy (dimensionless) scale parameter. k and c must be 



calculated using the Weibull probability plotting paper method. The cumulative 

distribution function is transformed into a linear form, adopting logarithmic scales and 

as the wind velocity is equal or lower than v we get:  

 

ckvkvfWei ln)ln()]}(1ln[ln{ ⋅−⋅=−− ,      (2) 

 

If we plot that in axes ln(v) in X and ln{-ln[1- fWei(v)]} in Y, then the Weibull 

distribution is a straight line, with a slope of which is k and intersection -k·lnc. The 

real values of k and c can be found by producing the regression equation for the 

plotted line. It is known that for most wind conditions k ranges from 1.5 to 3, while c 

ranges from 3 to 8 [25]. The results from the data and the Weibull distribution shown 

in figure 3 and in table 2, the Weibull shape and scale, the data distribution, the mean 

wind speed and the Turbulence Intensity (T.I.) at 10m/s are shown for each direction. 

 

Table 2. Weibull distribution analysis of Kythira Island mast 

Direction Angles (deg) Weibull 

shape 

Weibull 

scale 

Data 

Distrib 

Mean Wind 

Speed (m/s) 

T.I. at 

10m/s 

NNE 11.25 - 33.75 1.78 7.18 0.55% 6.5 9.3 

 NE 33.75 - 56.25 1.61 6.76 1.14% 6.2 9.3 

ENE 56.25 - 78.75 2.21 7.37 2.92% 6.6 9.4 

 E  78.75 - 101.25 1.86 10.83 11.86% 9.4 10.2 

ESE 101.25 - 123.75 1.94 12.99 12.94% 11.4 10.0 

 SE 123.75 - 146.25 2.34 12.49 12.18% 11.1 10.4 

SSE 146.25 - 168.75 1.54 6.11 3.66% 5.7 9.1 

 S  168.75 - 191.25 1.47 4.29 3.38% 4.3 11.3 

SSW 191.25 - 213.75 1.51 5.44 4.03% 5.1 14.3 



 SW 213.75 - 236.25 1.99 6.66 7.18% 5.9 19.4 

WSW 236.25 - 258.75 1.91 8.26 12.23% 7.4 13.8 

 W  258.75 - 281.25 1.73 8.07 10.14% 7.3 10.8 

WNW 281.25 - 303.75 1.37 7.78 7.45% 7.2 8.8 

 NW 303.75 - 326.25 1.51 7.63 5.44% 7.0 9.2 

NNW 326.25 - 348.75 1.97 10.36 4.46% 9.1 9.2 

 N  348.75 - 11.25 1.43 5.46 0.44% 4.4 10.0 

 

3.2 Wind Resource Analysis 

 

The total number of valid data used was 52,654 (missing data 0.4%) and the included 

number of calms (<2m/s) was 2,367. Based on the data, the WAsP software was used 

to produce a wind map of the area (Figure 4). The estimated wind speed could be 

visualized and different sites for WFs could be selected and proposed to be developed. 

After the wind analysis implemented in the area (Figure 4) the results show that the 

lowest average wind speed is 4.13 m/s and the highest is 11.75 m/s. This shows that in 

the island, even sites at low altitude or at sea level seem to present an exploitable 

profile. Because of that, many wind project developer companies and utilities have 

shown a clear interest on the wind energy exploitation of the area.  

 



 

Figure 4. Wind resource analysis in the Kythira Island 

 

Based on the Regulatory Authority for Energy (RAE) files, on the application files for 

power production licensing for new projects [26], 322.15 MW have been proposed 

(submitted) to be installed in the island (figure 2). Are all these necessary for the 

system? Are all environmentally approved? What the least cost to High Voltage 

Direct Current (HVDC) interconnect Kythira Island with the shore and then to the 



closest substation? What is the most effective and at the same time least costly 

scenario? 

 

4. Economic Analysis – Scenarios  

 

The Greek State, following the general guidelines of the EU, encourages – as in other 

EU countries – the implementation of Renewable Energy projects by private funds.  

In specific every RES project owner can apply for subsidization and be supported on 

the basis of the well known Feed-in-Tariff (FiT) financing scheme under the frames 

of the development law [27]. The FiT mechanism used in other countries as well [28-

29] in order to support the RES-based units electricity provided to the grid. A fixed 

price per kWh payment – on the basis of Power Purchase Agreements (PPAs) signed 

among the Independent Power Producer (IPP) the Hellenic Transmission System 

Operator (HTSO) and the Public Power Corporation (PPC) – for electricity generated 

by a renewable resource is assured and annually readjusted following the official 

suggestion of the RAE [30].  

 

For that reason an analytical investment tool was developed and used for this study, 

and different scenarios were examined for the evaluation and proper exploitation of 

wind energy on the island.  

 

The energy yield of a WF is usually expressed via the following: 

 

ExCFCiAEPnet ⋅⋅= 8760 ,        (3) 

 



where 8760 are the total hours within a year, Ci the installed capacity of the under 

examination WF in MW and ExCF ( 10 ≤≤ ExCF ) is the Exergetic Capacity Factor 

as in [31] and [32] it explains better the meaning of the real capacity factor of the WF 

in the means of the actual use of energy. The Exergetic Capacity Factor includes all 

topographic and wake losses, electrical losses, wind turbine technical availability 

losses, and air density losses.  

 

4.1 WF Cost Model – Cash Flow 

 

The turnover (revenues) T0 for the total of the 20 years of the contract of the WF are: 

 

FiTAEPnetT
yr

yr
⋅=∑

=

=

20

1
0 ,         (4) 

 

where FiT is being redefined every year according to a decision of RAE. 

 

Based on the current legislation (Law 3851/2010 “Accelerating the development of 

Renewable Energy Sources to deal with climate change and other regulations 

addressing issues under the authority of the Ministry of Environment, Energy and 

Climate Change”), an amount up to 1%, before V.A.T., on the selling price of the 

electrical energy from R.E.S. is transferred to household consumers through the bills 

for electrical energy consumption and an amount of 0.3% on the before V.A.T., 

selling price of the electrical energy from R.E.S. is passed to the Special Fund for the 

implementation of Regulatory and Environmental Plans. The rest (up to 3%) goes to 

the local municipalities. This total 3% deduction Dm is defined as:  
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20
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yr
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yr
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Other major costs are Personnel Operational Costs, PO, Maintenance Costs, M, 

Insurance of Wind Turbines, WTIns, other electrical electronic/mechanical Equipment 

costs, Eq, land lease, administration costs, unexpected expenses or other additional 

costs, V. Therefore, the total Operating Costs, OC, are: 
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VEqWTMPODOC   (6) 

 

where PO are the salaries for the permanent employees of the WF during operation 

period (after construction till the end of life of the farm which is 20 years), M the 

required extension cost to be paid to the wind turbines manufacturers (fixed price 

most of the times per MW or turbine) in order the service to be undertaken from them, 

WTIns a standard percentage based on the WFs total investment initial cost. 

 

The proposed financial plan usually for a project is Equity: 25%, Dept: 35 – 45% (full 

repayment period is set to be 10 years, with standard sinking fund and depending on 

the market rules a loan interest could be between 6 – 7%), and subsidy: 30 – 40%, 

depending of course on the size of the company and the prefecture that the project is 

proposed to be installed (there are amplifying mechanisms for the isolated areas that 

increase the state subsidization). It is necessary however, the proposed financial 

scheme to cover the minimum requirements in equity capitals set by the development 

law of 25% [27]. 



 

Regarding the Operating Cash Flow, OCF: 
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Taking into consideration that usually a private equity and dept ought to be fully be 

re-paid (depending on the subsidization) a 60 – 70% of the total Investment Cost, IC 

is the participation rate out of all. Therefore for the Unamortized Value, UV: 

 

ICaUV
yr

yr
⋅=∑

=

=

20

1
, where 7.06.0 ≤≤ a .       (8) 

 

The Depreciation, A, can be estimated using the formula: 

∑∑
=

=

=

=

⋅=
20

1

20

1
%15

yr

yr

yr

yr
UVA  where 15%, the depreciation declining balance method, (9) 

  

After calculating the payment amount (Instalments Inst) on the Loan, L, assuming the 

rate of Interest, i, following the formula: 
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where N (=10) the years of repayment and after calculating the interest of the loan I 
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and update the calculations, on a yearly basis, based on the loan balance update. 

Therefore, Before Tax Earnings, Pp-tax, are given from: 
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Also, knowing that the taxes for WF investments are 25% the final results (Profits 

after-taxes, Pa-tax) can be estimated by removing the taxes from Pp-tax. This way 

Net Income (or Net Cash Flow) NI is equal to:  
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and Final Net Cash Flow, FNCF: 
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Where NRA the Net Repayment Amounts. Calculating the Cumulative Cash Flow 

(adding up for all 20 years the FNI) and the conversion coefficient in current values 

ratio, CVcoef, using the formula:  

 



yrcoef CDR
CV

)1(
1

+
= ,        (15) 

 

Where CDR is the Capital Discount Rate and yr each year, the Current Value Final 

Cash Flow, CVFCF, can be calculated from: 
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FNCFCVCVFCF ,              (16) 

 

which gives us the Net Present Value (NPV), the project repayment period (when the 

cash flow turns to positive), the Cumulative Revenues and finally the Project IRR. 

The project IRR is the discount rate that makes the NPV of all cash flows of the 

project equal to zero. 

 

4.2 Constraints 

 

In Kythira Island the scenarios based on the above mentioned WF Cost Model can be 

specified and by following a “wind symbiosis” study, the maximum of the wind 

available for exploitation shall be revealed.  The basic aim was to select different sites 

within the under examination area and estimate weather these sites were promising for 

WF development or not based on the existing constraints. Small villages located in the 

island and at the same time the interesting wind speed results make necessary the need 

for such a plan. A GIS-based methodology was used for the preliminary evaluation of 

the area. Taking into consideration planning constraints based on the Special 

Framework for Spatial Planning of Renewable Energy [33], and the Law 3851/2010 

for accelerating the development of RES [34], as villages near the area, monasteries, 



archaeological sites, isolated buildings, Natura 2000 areas, Special Protected Areas 

(SPA), archaeological sites, important coasts and beaches, even roads, the necessary 

distances were kept and the available sites of possible wind development interest 

remained. 

 

The area is of some archaeological interest. Furthermore, over the last decades the 

touristic development is observed mainly because of a beachfront villages and 

beaches. Therefore, there are a lot of constraints to be placed on a map and therefore 

the sites available for exploitation to be revealed. Based on the Special Framework for 

Spatial Planning of Renewable Energy [33], there are different safety distances that 

should be kept prior the final sitting of a WF. For instance, it’s 1,500 m. from 

traditional villages (500 m. from every other village), at least 3,000 m. from important 

archaeological sites, 1,000 m. from organized touristic areas, 500 m. from excavating 

zones, 1.5xd from roads (class 3) and railways, where d equals the diameter of the 

proposed wind turbine. 

 

All geographical constraints for the development of any industrial project (including 

WFs) are shown on figure 5. In a scaled 1:50,000 map are shown graphically all 

restrictions as residential zones, Sites of Community Interest (SCI), SPAs, traditional 

villages, archaeological sites, Radars, main roads, Airport and the 12º angle limit on 

the extension for the airport lane, waste disposal areas etc.  

 



 

Figure 5. Kythira Island topographical map 1:50,000 including constraints 

 

Apart from those limitations shown on the map, all the above mentioned distance-

based, based on the Special Framework for Spatial Planning of Renewable Energy, 

were taken into consideration. 

 

4.3 Examined Scenarios 



 

For the planning, the proposed wind turbines to be used by the project developers 

were ENERCON E82-2.0 MW and VESTAS V90-3.0 MW, based primarily on the 

wind classification restrictions [35]. Apart from the wind turbine costs other major 

costs are the civil engineer works (road construction works, excavations etc), 

interconnection costs (WFs internal connection with Medium Voltage (MV) cables, 

substation, High Voltage Alternating Current (HVAC) cables and interconnection 

with the Public Power Coorporation (PPC) grid, submarine HVAC cable), and other 

transportations to the installation areas.  The distance to the shore connecting the 

island with the mainland is 20km and a TKRA 170kV 3x400mm2 will be needed. The 

distance from the shore to the planned PPC substation in Neapolis is 12 km. The 

maximum sea depth on the offshore route is 270 m.  

 

The main costs taken into consideration for this study are the WFs internal MV 

interconnection, the submarine cable and the 12 km HV cable to the grid substation. 

Based on the wind farm results and costs several scenarios were examined. 

 

It’s rather clear that from the remaining areas only few of them, following the 

applications of the wind developers in the Kythira Island can be exploited based on 

the wind results. It was found that at maximum 122 MW do not “concur” on some 

constraint and could be possibly developed and since a detailed wind resource 

analysis (50x50 m.) was implemented in the previous section, a draft estimation of the 

power output of the wind farms could be done (Table A1 – Appendix). The spatial 

distribution of the proposed WFs and the substations are shown on the power density 

map of the Kythira Island (Figure 6). In this scenario, a preliminary design of the 



proposed WFs was done and the internal and external cable routes (for the MV these 

routes will follow the roads for the transportation) were drawn in order to identify the 

length of the needed cabling. For the internal MV grid there will be needed 4 km for 

the 1st group of WFs, 10 km MV for the 2nd group of WFs and 2 km for the 3rd WF 

(figure 6). For the external interconnection till the substations 18 km MV for the 3rd 

WF, 10 km of HV cable to get from the lower substation to the upper substation and 6 

km of HV cables for the 1st group of the WFs to be transferred to the upper substation. 

Furthermore, for the whole project 19 km of submarine cable and another 10 km to 

get to the PPC substation and connect with the grid in the mainland. The positions of 

the substations were selected under i) the metacentre principle/concept of the power 

generated, ii) the need also for the produced electricity to be transferred to the 

mainland avoiding building the upper substation in the SPA area on the northern side 

of the island and at the same time iii) trying as much as possible to shorten the 

submarine cable needed to the shore due to its significant cost (Figures 4, 5). 

 



 

Figure 6. Kythira Island power density map and the 122 MW most likely scenario to go on.  

 

The costs for the interconnection of the Kythira Island were taken from RAE’s study 

for the Consent of the Interconnection to the Transmission System study [36].  

 

The interconnection losses were calculated based on the above mentioned study but 

also based on [37] from the formula:  

 

2PkTL ⋅= ,                     (17) 

 



where )tan1( 2
2 φ+⋅
⋅

=
U

lRk .                  (18) 

 

TL represents the transmission loss [W] along the cable segment; P is the power load 

[kW]. R is the resistance in [Ohm/km], l the cable length [km], φ the phase angle [rad] 

between active and reactive power and U the voltage level [kV]. 

 

According to RAE’s study [36], the estimated cost per km, CL, of a HV line between 

1.5 and 10 km is given based on the formula: 
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⋅
−

⋅−+⋅= ,                 (19) 

 

where X10 the HV line cost per km of greater or equal length than 10 km and X1.5  the 

HV line cost per km of greater or equal length than 1.5 km according to Table A2 

(Appendix). Regarding the costs for the MV cables, they were estimated from the 

connection offers from the Hellenic Transmission System Operator (HTSO) [38], 

while for the wind turbine costs, submarine cable, the estimated cost was taken after 

personal contact of the author with wind project developers [39], [40]. Also, based on 

the Law 3851 [34], new submarine interconnection necessary to drive produced 

energy to the grid could be subsidized according to the formula: 

 

%
10

%10
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l
⋅

+=ψ ,                 (20) 

 



where l is the length of the submarine cable and Ci the proposed installed capacity of 

the Wind Farms.  Based on a typical wind farm cost breakdown analysis [41] as well, 

the economic results for all the scenarios are shown on Table 3. 

 

Table 3. Economic Analysis for the WF installation scenarios in Kythira Island 

SCENARIO No. SCE_1 SCE_2 SCE_3 SCE_4 SCE_5 SCE_6 SCE_7 

Cost per KW [Μ€] 1950 1949.3 1948.9 1948.03 1947.03 1917.05 1850 

Capacity [MW] 122 112 102 92 82 51 21 

GWh produced 392.82 360.53 325.71 289.96 259.08 156.50 58.41 

Net Operating Hours 3219.30 3219.03 3193.26 3151.71 3159.56 3068.58 2781.62 

Project Cost [Μ€] 237.90 218.32 198.79 179.22 159.66 97.77 38.85 

Subsidy 32.81% 33.01% 33.39% 33.88% 34.46% 37.29% 33.10% 

Debt 42.19% 41.99% 41.61% 41.12% 40.54% 37.71% 41.90% 

Equity 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 

Interest Rate 7.00% 7.00% 7.00% 7.00% 7.00% 7.00% 7.00% 

NPV [Μ€] 236.98 217.01 194.86 171.89 153.31 89.58 35.03 

Project IRR 21.60% 21.61% 21.29% 20.76% 20.96% 20.46% 18.25% 

Payback Period (yrs) 6 6 6 6 6 6 7 

 

The proposed WF planning options for all the different examined scenarios (122 MW, 

112 MW, 102 MW, 92 MW, 82 MW, 51 MW, and 21 MW) are shown in figure 7.  

 



 

Figure 7. Proposed WF planning scenarios in Kythira Island 

 

Several indices can compare economically different scenarios examined for the Wind 

Farm development strategy on the island and assist decision makers to optimize Wind 

Farm planning on the island. Figure 8, shows the relation between proposed WF 

capacity and project IRR, the ratio project IRR /(Subsidy %), and the ratio 

NPV/Subsidy.  

 



 

Figure 8. Indices assisting decision makers for the proposed WF project in Kythira Island 

 

It is clear from the last two diagrams that the bigger the fraction the more profitable is 

the investment, however from the first diagram it is obvious that even with a very 

small difference the scenario of 112 MW it has a higher project IRR.  Project IRR or 



NPV were taken as a fraction numerator and subsidy or subsidy % was taken as a 

denominator in the fraction as the idea was to get the fraction with the highest 

possible value. Introducing these indices it is easily understandable that the goal, in 

terms of improving social welfare, is to – at the same time – increase the profits for 

the investor, lowering as much as possible the state subsidization for the proposed 

projects.   

 

Conclusions 

 

In this paper a detailed wind resource analysis of Kythira Island was done and an 

spatial and an economic analysis was done in order to discover the optimum solution 

for the exploitation of the dominating wind energy in the island in order the isolated 

island to be HV interconnected with the mainland. The aim was to develop a case 

study in order to support an analyzing method focused, of course, in the optimal 

planning that is necessary however to be followed for all private investments which 

the state partly subsidizes. Aiming at decreasing the state subsidization and at the 

same time maximizing the investor profit, respecting all environmental constraints, 

the study showed that it is not possible the 322.15 MW of proposed Wind Farms to be 

constructed in the island. Following the results of the spatial analysis it was found that 

only up to 122 MW could be developed and proceed seriously to construction. Also, 

taking into consideration the results of the economic analysis it was found that either 

122 or 112 MW could at the same time satisfy the need for increasing the profits of 

the investor and the need for low subsidization from the state (prerequisite due to the 

constant deepening of the Greek dept crisis). In practice, it is shown that for the last 

scenario, SCE_7 (table 3), the Project IRR is significantly lower than in the other 



cases (18.25%) and partly out of the scope of this paper as it does not contribute to the 

HV interconnection plan of Kythira Island with the mainland (21 MW only need a 

medium voltage submarine cable). However, it was studied in order to offer to the 

reader a more holistic approach and the ability to compare. The indices (Project IRR / 

Subsidy %) introduced shows quite clearly that either the scenario of 122 MW or 112 

MW should be developed, as an alternative the plan of 102 MW and only if this is not 

possible then to proceed to the 92 or 82 MW. It seems that the scenarios of 51 or 21 

MW should be avoided. The other index introduced, NPV / Subsidy, deadens these 

gaps, however, it stresses once again the importance of the first two scenarios.  

 

In any case, the need to optimize the planning and the use of the renewable energy, is 

becoming more intense, especially nowadays, day after day in an economically fickle 

world and more studies should follow towards that direction. 
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Appendix 

 

Table A1. Detailed Results of the 122 MW scenario 

WF1 

(18MW) 
 Site  

 

Elev. 

[m]  

 HH 

[m]  

 U 

[m/s]  

 Gross 

[GWh]  

 Net 

(incl. 

topo) 

[GWh]  

 Topo 

Losses 

[%]  

Air 

Dens. 

Losses 

[%] 

Interconnection 

Losses [%] 

WT technical 

availability 

losses [%] 

Net 

[GWh] 

V9
0-

3.
0M

W
 

WT1 260 78 8.93 11.44 11.17 2.36 

3.40 2.15 3.00 57.45 

WT2 221 78 8.54 10.759 10.487 2.53 

WT3 205 78 9.15 12.02 11.778 2.01 

WT4 144 78 8.46 10.669 10.503 1.56 

WT5 224 78 7.79 9.28 9.048 2.49 

WT6 221 78 8.21 10.056 9.952 1.03 

  TOT   291 8.51 64.224   2.00 

WF2 

(18MW) 
 Site  

 

Elev. 

[m]  

 Ht 

[m]  

 U 

[m/s]  

 Gross 

[GWh]  

 Net 

(incl. 

topo) 

[GWh]  

 Topo 

Losses 

[%]  

Air 

Dens. 

Losses 

[%] 

Interconnection 

Losses [%] 

WT technical 

availability 

losses [%] 

Net 

[GWh] 

V9
0-

3.
0M

W
 

WT1 361 78 9.18 11.843 11.603 2.03 

4.24 6.05 3.00 54.44 

WT2 261 78 7.9 9.519 9.443 0.8 

WT3 323 78 9.03 11.508 11.41 0.85 

WT4 259 78 8.04 9.756 9.619 1.41 

WT5 278 78 8.35 10.35 10.253 0.94 

WT6 282 78 8.55 10.722 10.575 1.37 

  TOT   372 8.51 63.698   1.23 

WF3 

(18MW) 
 Site 

 

Elev. 

[m]  

 Ht 

[m]  

 U 

[m/s]  

 Gross 

[GWh]  

 Net 

(incl. 

topo) 

[GWh]  

 Topo 

Losses 

[%]  

Air 

Dens. 

Losses 

[%] 

Interconnection 

Losses [%] 

WT technical 

availability 

losses [%] 

Net 

[GWh] 

V9
0-

3.
0M

W
 

WT1 201 78 8.38 10.492 10.318 1.65 

3.92 3.88 3.00 51.90 

WT2 300 78 7.97 9.645 9.544 1.04 

WT3 294 78 8.16 10.028 9.779 2.48 

WT4 269 78 8.03 9.761 9.464 3.04 

WT5 248 78 8.03 9.752 9.434 3.26 

WT6 230 78 8.19 10.09 9.815 2.73 

  TOT   335 8.13 59.768   2.37 



WF4 

(24MW) 
 Site 

 

Elev. 

[m]  

 Ht 

[m]  

 U 

[m/s]  

 Gross 

[GWh]  

 Net 

(incl. 

topo) 

[GWh]  

 Topo 

Losses 

[%]  

Air 

Dens. 

Losses 

[%] 

Interconnection 

Losses [%] 

WT technical 

availability 

losses [%] 

Net 

[GWh] 
V9

0-
3.

0M
W

 

WT1 264 78 8.23 10.181 9.992 1.86 

3.50 3.45 3.00 72.42 

WT2 240 78 8.68 10.981 10.739 2.21 

WT3 261 78 8.46 10.651 10.092 5.25 

WT4 239 78 7.79 9.262 8.694 6.13 

WT5 229 78 9.28 11.984 11.826 1.32 

WT6 156 78 8.52 10.626 10.51 1.1 

WT7 233 78 8.03 9.764 9.384 3.89 

WT8 266 78 8.33 10.382 9.939 4.26 

  TOT   309 8.40 83.831   3.66 

WF5 

(44MW) 
 Site 

 

Elev. 

[m]  

 Ht 

[m]  

 U 

[m/s]  

 Gross 

[GWh]  

 Net 

(incl. 

topo) 

[GWh]  

 Topo 

Losses 

[%]  

Air 

Dens. 

Losses 

[%] 

Interconnection 

Losses [%] 

WT technical 

availability 

losses [%] 

Net 

[GWh] 

E8
2-

2.
0M

W
 

WT1 196 78 8.3 8.318 7.976 4.11 

4.50 6.59 3.00 156.60 

WT2 166 78 7.53 7.238 6.979 3.59 

WT3 240 78 9.1 9.153 8.834 3.49 

WT4 261 78 9.22 9.346 9.116 2.46 

WT5 262 78 9.22 9.534 9.192 3.59 

WT6 240 78 8.47 8.547 8.09 5.35 

WT7 266 78 8.94 9.156 8.753 4.4 

WT8 260 78 8.75 8.824 8.391 4.91 

WT9 300 78 9.19 9.328 8.955 4 

WT10 281 78 8.75 8.808 8.333 5.39 

WT11 300 78 8.91 9.171 8.795 4.09 

WT12 283 78 8.55 8.666 8.193 5.46 

WT13 294 78 8.7 8.773 8.495 3.16 

WT14 280 78 8.92 9.042 8.691 3.89 

WT15 301 78 8.58 8.635 8.27 4.23 

WT16 271 78 7.78 7.641 7.278 4.75 

WT17 303 78 8.58 8.696 8.232 5.35 

WT18 320 78 8.74 8.826 8.481 3.91 

WT19 292 78 8.03 8.005 7.592 5.16 

WT20 328 78 8.6 8.747 8.443 3.48 



WT21 316 78 8.17 8.197 7.87 3.99 

WT22 341 78 8.4 8.457 8.296 1.91 

  TOT   395 8.42 191.108   3.97 

                 4*   

  

 OVERALL 

TOTAL             
   392.82 

* Interconnection losses for the whole project 

 

Table A2. RAE’s estimation on the costs of High Voltage transmission Lines 

Type of High Voltage Line 

 

Estimated Cost (k€/km) 

 

Ε/150 kV (length at least 10 km) 75 

Ε/150 kV (length at least 1.5 km) 110 

B/150 kV (length at least 10 km) 100 

B/150 kV (length at least 1.5 km) 145 

2B/150 kV (length at least 10 km) 135 

2B/150 kV (length at least 1.5 km) 195 

B’B’/400 kV (length at least 10 km) 195 

B’B’/400 kV (length at least 1.5 km) 270 

2B’B’/400 kV (length at least 10 km) 315 

2B’B’/400 kV (length at least 1.5 km) 460 

B’B’B’/400 kV (length at least 10 km) 240 

B’B’B’/400 kV (length at least 1.5 km) 340 

150 kV (underground - single cable) 500 

150 kV (underground - double cable) 850 

150 kV (submarine cable: 3+1 backup cable) per case 

 

 

 

Table 1. Main measured characteristics of the wind mast 



Latitude  

(°) 

Longitude  

(°) 

Mean speed 

(m·s-1) 

Period of  

data 

analysis 

Height 

(magl) 

Av. Turbulence 

Intensity  

(at 10m.) 

36°13'45.67"N 22°56'27.33"E 8.22 at 

20 m. 

22 Oct ’07-

22 Oct ’08 

470 11.137 % 

 

 
Table 2. Weibull distribution analysis of Kythira Island mast 

Direction Angles (deg) Weibull 

shape 

Weibull 

scale 

Data 

Distrib 

Mean Wind 

Speed (m/s) 

T.I. at 

10m/s 

NNE 11.25 - 33.75 1.78 7.18 0.55% 6.5 9.3 

 NE 33.75 - 56.25 1.61 6.76 1.14% 6.2 9.3 

ENE 56.25 - 78.75 2.21 7.37 2.92% 6.6 9.4 

 E  78.75 - 101.25 1.86 10.83 11.86% 9.4 10.2 

ESE 101.25 - 123.75 1.94 12.99 12.94% 11.4 10.0 

 SE 123.75 - 146.25 2.34 12.49 12.18% 11.1 10.4 

SSE 146.25 - 168.75 1.54 6.11 3.66% 5.7 9.1 

 S  168.75 - 191.25 1.47 4.29 3.38% 4.3 11.3 

SSW 191.25 - 213.75 1.51 5.44 4.03% 5.1 14.3 

 SW 213.75 - 236.25 1.99 6.66 7.18% 5.9 19.4 

WSW 236.25 - 258.75 1.91 8.26 12.23% 7.4 13.8 

 W  258.75 - 281.25 1.73 8.07 10.14% 7.3 10.8 

WNW 281.25 - 303.75 1.37 7.78 7.45% 7.2 8.8 

 NW 303.75 - 326.25 1.51 7.63 5.44% 7.0 9.2 

NNW 326.25 - 348.75 1.97 10.36 4.46% 9.1 9.2 

 N  348.75 - 11.25 1.43 5.46 0.44% 4.4 10.0 

 

 
Table 3. Economic Analysis for the WF installation scenarios in Kythira Island 



SCENARIO No. SCE_1 SCE_2 SCE_3 SCE_4 SCE_5 SCE_6 SCE_7 

Cost per KW [Μ€] 1950 1949.3 1948.9 1948.03 1947.03 1917.05 1850 

Capacity [MW] 122 112 102 92 82 51 21 

GWh produced 392.82 360.53 325.71 289.96 259.08 156.50 58.41 

Net Operating Hours 3219.30 3219.03 3193.26 3151.71 3159.56 3068.58 2781.62 

Project Cost [Μ€] 237.90 218.32 198.79 179.22 159.66 97.77 38.85 

Subsidy 32.81% 33.01% 33.39% 33.88% 34.46% 37.29% 33.10% 

Debt 42.19% 41.99% 41.61% 41.12% 40.54% 37.71% 41.90% 

Equity 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 25.00% 

Interest Rate 7.00% 7.00% 7.00% 7.00% 7.00% 7.00% 7.00% 

NPV [Μ€] 236.98 217.01 194.86 171.89 153.31 89.58 35.03 

Project IRR 21.60% 21.61% 21.29% 20.76% 20.96% 20.46% 18.25% 

Payback Period (yrs) 6 6 6 6 6 6 7 

 

 
Table A1. Detailed Results of the 122 MW scenario 

WF1 

(18MW) 
 Site  

 

Elev. 

[m]  

 HH 

[m]  

 U 

[m/s]  

 Gross 

[GWh]  

 Net 

(incl. 

topo) 

[GWh]  

 Topo 

Losses 

[%]  

Air 

Dens. 

Losses 

[%] 

Interconnection 

Losses [%] 

WT technical 

availability 

losses [%] 

Net 

[GWh] 

V9
0-

3.
0M

W
 

WT1 260 78 8.93 11.44 11.17 2.36 

3.40 2.15 3.00 57.45 

WT2 221 78 8.54 10.759 10.487 2.53 

WT3 205 78 9.15 12.02 11.778 2.01 

WT4 144 78 8.46 10.669 10.503 1.56 

WT5 224 78 7.79 9.28 9.048 2.49 

WT6 221 78 8.21 10.056 9.952 1.03 

  TOT   291 8.51 64.224   2.00 

WF2 

(18MW) 
 Site  

 

Elev. 

[m]  

 Ht 

[m]  

 U 

[m/s]  

 Gross 

[GWh]  

 Net 

(incl. 

topo) 

[GWh]  

 Topo 

Losses 

[%]  

Air 

Dens. 

Losses 

[%] 

Interconnection 

Losses [%] 

WT technical 

availability 

losses [%] 

Net 

[GWh] 

V9
0-

3.
0M

W
 

WT1 361 78 9.18 11.843 11.603 2.03 4.24 6.05 3.00 54.44 



WT2 261 78 7.9 9.519 9.443 0.8 

WT3 323 78 9.03 11.508 11.41 0.85 

WT4 259 78 8.04 9.756 9.619 1.41 

WT5 278 78 8.35 10.35 10.253 0.94 

WT6 282 78 8.55 10.722 10.575 1.37 

  TOT   372 8.51 63.698   1.23 

WF3 

(18MW) 
 Site 

 

Elev. 

[m]  

 Ht 

[m]  

 U 

[m/s]  

 Gross 

[GWh]  

 Net 

(incl. 

topo) 

[GWh]  

 Topo 

Losses 

[%]  

Air 

Dens. 

Losses 

[%] 

Interconnection 

Losses [%] 

WT technical 

availability 

losses [%] 

Net 

[GWh] 

V9
0-

3.
0M

W
 

WT1 201 78 8.38 10.492 10.318 1.65 

3.92 3.88 3.00 51.90 

WT2 300 78 7.97 9.645 9.544 1.04 

WT3 294 78 8.16 10.028 9.779 2.48 

WT4 269 78 8.03 9.761 9.464 3.04 

WT5 248 78 8.03 9.752 9.434 3.26 

WT6 230 78 8.19 10.09 9.815 2.73 

  TOT   335 8.13 59.768   2.37 

WF4 

(24MW) 
 Site 

 

Elev. 

[m]  

 Ht 

[m]  

 U 

[m/s]  

 Gross 

[GWh]  

 Net 

(incl. 

topo) 

[GWh]  

 Topo 

Losses 

[%]  

Air 

Dens. 

Losses 

[%] 

Interconnection 

Losses [%] 

WT technical 

availability 

losses [%] 

Net 

[GWh] 

V9
0-

3.
0M

W
 

WT1 264 78 8.23 10.181 9.992 1.86 

3.50 3.45 3.00 72.42 

WT2 240 78 8.68 10.981 10.739 2.21 

WT3 261 78 8.46 10.651 10.092 5.25 

WT4 239 78 7.79 9.262 8.694 6.13 

WT5 229 78 9.28 11.984 11.826 1.32 

WT6 156 78 8.52 10.626 10.51 1.1 

WT7 233 78 8.03 9.764 9.384 3.89 

WT8 266 78 8.33 10.382 9.939 4.26 

  TOT   309 8.40 83.831   3.66 

WF5 

(44MW) 
 Site 

 

Elev. 

[m]  

 Ht 

[m]  

 U 

[m/s]  

 Gross 

[GWh]  

 Net 

(incl. 

topo) 

[GWh]  

 Topo 

Losses 

[%]  

Air 

Dens. 

Losses 

[%] 

Interconnection 

Losses [%] 

WT technical 

availability 

losses [%] 

Net 

[GWh] 

E8
2-

2.
0M

W
 

WT1 196 78 8.3 8.318 7.976 4.11 

4.50 6.59 3.00 156.60 WT2 166 78 7.53 7.238 6.979 3.59 

WT3 240 78 9.1 9.153 8.834 3.49 



WT4 261 78 9.22 9.346 9.116 2.46 

WT5 262 78 9.22 9.534 9.192 3.59 

WT6 240 78 8.47 8.547 8.09 5.35 

WT7 266 78 8.94 9.156 8.753 4.4 

WT8 260 78 8.75 8.824 8.391 4.91 

WT9 300 78 9.19 9.328 8.955 4 

WT10 281 78 8.75 8.808 8.333 5.39 

WT11 300 78 8.91 9.171 8.795 4.09 

WT12 283 78 8.55 8.666 8.193 5.46 

WT13 294 78 8.7 8.773 8.495 3.16 

WT14 280 78 8.92 9.042 8.691 3.89 

WT15 301 78 8.58 8.635 8.27 4.23 

WT16 271 78 7.78 7.641 7.278 4.75 

WT17 303 78 8.58 8.696 8.232 5.35 

WT18 320 78 8.74 8.826 8.481 3.91 

WT19 292 78 8.03 8.005 7.592 5.16 

WT20 328 78 8.6 8.747 8.443 3.48 

WT21 316 78 8.17 8.197 7.87 3.99 

WT22 341 78 8.4 8.457 8.296 1.91 

  TOT   395 8.42 191.108   3.97 

                 4*   

  

 OVERALL 

TOTAL             
   392.82 

* Interconnection losses for the whole project 

 
Table A2. RAE’s estimation on the costs of High Voltage transmission Lines 

Type of High Voltage Line 

 

Estimated Cost (k€/km) 

 

Ε/150 kV (length at least 10 km) 75 

Ε/150 kV (length at least 1.5 km) 110 

B/150 kV (length at least 10 km) 100 

B/150 kV (length at least 1.5 km) 145 

2B/150 kV (length at least 10 km) 135 

2B/150 kV (length at least 1.5 km) 195 



B’B’/400 kV (length at least 10 km) 195 

B’B’/400 kV (length at least 1.5 km) 270 

2B’B’/400 kV (length at least 10 km) 315 

2B’B’/400 kV (length at least 1.5 km) 460 

B’B’B’/400 kV (length at least 10 km) 240 

B’B’B’/400 kV (length at least 1.5 km) 340 

150 kV (underground - single cable) 500 

150 kV (underground - double cable) 850 

150 kV (submarine cable: 3+1 backup cable) per case 

 

 
Highlights 

 
• A detailed wind resource analysis of Kythira Island was implemented  
• A Wind Farm Cash Flow Model was presented  
• The analysis showed that only up to 122 MW could be developed in the island 
• The scenario of 112 MW was found to be equally efficient as the 122 MW one 
• Indices were introduced to explicitly interpret the economic results 

 
 


