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Comparing Solution Approaches for a Complete

Model of High School Timetabling

Matias Sørensen · Thomas R. Stidsen

Abstract A complex model of high school timetabling is presented, which originates
from the problem-setting in the timetabling software of the online high school ERP-
system Lectio. An Integer Programming formulation is described in detail, and a two-
stage decomposition is suggested. It is proven that both of these formulations are
NP-hard. A heuristic based on Adaptive Large Neighborhood Search is also applied.
Using 100 real-life datasets, comprehensive computational results are provided which
show that the ALNS heuristic outperforms the IP approaches. The ALNS heuristic
has been incorporated in Lectio, and is currently available to almost 200 di�erent high
schools in Denmark. Furthermore, a conversion of the datasets into the XHSTT format
is described, and some datasets are made publicly available.

Keywords High School Timetabling · Modeling · Integer Programming · Decompo-
sition · Adaptive Large Neighborhood Search

1 Introduction

The timetabling problem is perhaps the most important problem among the scheduling
problems which high schools face. In this paper a complex model of the problem is
presented, which originates from the problem-setting in the timetabling software of the
online high school ERP-system Lectio. All speci�cations have been identi�ed in close
cooperation with high schools in Denmark. Thereby the developed model is tailored
to the Danish case, but we expect it can easily be adapted to other variants as well.
The model is 'complete' in the sense that it contains all relevant practical constraints,
and there exists no di�erence among the model described in this paper and the one
implemented in practice and made available to customers of Lectio.

Lectio is used by the majority of high schools in Denmark; Currently, 230 high
schools are customers of Lectio, and 191 have bought access to the timetabling soft-
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ware. This large customer base requires a model of the problem which is general enough
to suit many di�erent requirements, and which is also tractable by computer aided so-
lution methods. This supports the recent trend of developing general models for time-
tabling problems (see Burke et al. (1998); Asratian and de Werra (2002); Özcan (2005);
Causmaecker and Berghe (2010); Bonutti et al. (2010); Post et al. (2011, 2012a)). Fur-
thermore, the timetabling problem of Danish high schools (denoted from now on as
HSTTP) has not been formally described in the literature before.

The HSTTP concerns the construction of a feasible schedule which assigns lectures
to timeslots and rooms, and maximizes individual preferences for students and teachers.
The problem is usually handled by a single person (the planner) at each school. An
e�cient automated solution approach is important for the Danish high schools for the
following reasons:

� Assisting the high school planners with decision support software will hopefully
lead them towards better solutions and/or spend less time solving the problem.

� Maintaining employee satisfaction. Since a teacher usually teaches few timeslots
each week, compared to the overall number of timeslots, it is sometimes possible
to ful�ll requests such as days-o�, maximum number of teaching hours pr. day,
etc. A timetable which ful�lls such personal requests of each teacher will increase
overall employee satisfaction. An opportunity to automate the solution approach
allows the administration of the high school to see many diverse solutions, which
will allow them to �nd solutions which ful�ll such demands.

� A desirable timetable wrt. preferences of the students will lead to an overall better
learning environment and also less drop-outs. Since each high school is paid by the
government on the basis of number of students enrolled, a low number of student
drop-outs is important.

The timetabling problem is considered at least annually by each high school, but some
schools prefer to consider it several times each school year.

Three di�erent solution approaches are proposed in this paper, of which two are
based on a Mixed-Integer Programming (MIP) model and one is based on Adaptive
Large Neighborhood Search (ALNS). The best performing solution approach is incor-
porated in Lectio and made available to all customers.

The paper is structured as follows: In Section 2 the HSTTP is described in detail,
while simultaneously formulating a MIP model. Furthermore a simple decomposition
approach is suggested, and both of these formulations are proven to be NP-hard. A
literature review of related problems and solution approaches is given in Section 2.1. An
ALNS-heuristic is described in Section 3. Extensive computational results are presented
in Section 4. A conversion scheme from HSTTP to the commonly used XHSTT format
is described in Section A, which allows us to publish our problem instances.

2 The Timetabling Problem at Danish high schools

In the following the basic timetabling problem at Danish High Schools is described,
which in Section 2.2 is formulated as a MIP model. In Section 2.2.2 the MIP is ex-
tended by several necessary side-constraints. A detailed formulation of a MIP model
has the advantage that each constraint is described in a precise manner. Therefore we
postpone the in-depth description of constraints to Section 2.2, and �rst give an overall
description of the problem.
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A high school has a number of teachers employed, and has access to rooms where
teaching can be performed. Students are taught in classes of di�erent subjects, and
each class consists of a number of weekly lectures. Each day of the week is divided
into modules where teaching is performed. A combination of a day and a module is
denoted a timeslot. Students and teachers are preassigned to classes, as we assume the
Teacher-Task Assignment problem (Lundberg-Jensen et al. (2008)) and the Student
Sectioning problem (Kristiansen and Stidsen (2012)) have already been solved.

Lectures are represented by events, and each event must be assigned both a timeslot
and a room. However it is also possible to combine several lectures for several classes
into the same 'lecture'. This is used when classes should share the same room, e.g. in
case of physical education, the sports venue. In such cases, a single event represents
several lectures. Both the timeslot and the room of an event can be preassigned by the
user of the system. An event has a set of eligible rooms which it can be assigned to.
Often the set of eligible rooms equals the set of all rooms, but some events have special
requirements, such as laboratories, sports venue, etc. See Figure 1 for an illustration
of the notation used.

Monday Tuesday

M1

M2

M3

Days

Module

Timeslot

Event

Classes
Students

Teachers
{Room}

Fig. 1: Notation used

The timetabling problem essentially consists of creating a schedule for the entire school
year, such that events are assigned a timeslot and an eligible room, and such that no
clashes among students, teachers or rooms occur. Commonly the problem is solved by
assuming that no di�erence exists among all weeks throughout the year, hence it is
su�cient to plan only a single week. In this paper we also consider the case where the
school decides to plan two consecutive weeks, which is elaborated in Section 2.2.4.

The Lectio interface allows the user to create chains of events, which forces some
events to be in either the same timeslot or in contiguous timeslots. These will from
now on be denoted as EventChains. EventChains are very �exible in the sense that
they pose no restrictions on which events are chained together. Therefore they can be
used to model a lot of special cases which the users of Lectio have requested. These
include, but are not limited to, the following:

� A double-lecture can be set up by creating an EventChain consisting of two events
for the same class which must be placed in contiguous timeslots. Similarly, triple-
lectures can be created.

� Parallel double lectures for di�erent classes.
� Grouping of elective classes in the same timeslot.
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� Large projects where teaching of several classes are combined.

Another important aspect of this problem setting is its very practical nature. Due
to feature requests and political decisions, the problem structure and speci�cations are
occasionally changed. This gives rise to new constraints and changes in the objective
weights. What is documented in this paper is how the problem currently looks, which
has proven to be a quite stable formulation of the problem.

2.1 Related work

The de�nition of Class-Teacher Timetabling (CTT) is more than 50 years old, see
Appleby et al. (1961) and Gotlieb (1962). In the original formulation, one is given a set
of classes, a set of teachers and a set of periods. A class is de�ned as a set of students
who follow the exact same curriculum. The goal is to �nd a schedule where classes
meet teachers, ful�lling the teaching demand, subject to no teachers and classes being
scheduled more than once in the same period. Furthermore, unavailabilities of teachers
and classes in certain periods are given. In these periods, teaching is forbidden. This
problem is pretty similar to the basic version of the HSTTP, except rooms are assigned
to classes instead of teachers.

The survey Schmidt and Ströhlein (1980) covers early papers in the area of school
timetabling. More recent surveys are Bardadym (1996); Carter and Laporte (1998);
Schaerf (1999) and Pillay (2010). The conference series Practice and Theory in Auto-
mated Timetabling (PATAT) has contributed largely to the area (see Gendreau and
Burke (2008); McCollum et al. (2010); Kjenstad et al. (2012)).

Lawrie (1969) was the �rst to formulate the basic problem as a column-based MIP.
Since, integer programming has been used to model problems with more sophisticated
requirements. Some recent contributions include Papoutsis et al. (2003); Avella and
Vasil'Ev (2005); Avella et al. (2007); Birbas et al. (2009); Santos et al. (2010). However,
integer programming is mainly used for timetabling due to its modeling strength, and
not as an actual solution method. With the acknowledgment of modern IP solvers (see
Bixby (2012)), this might be undergoing a change. The MIP formulated in this paper
is among the most comprehensive models of school timetabling found in the literature.

The International Timetabling Competition 2011 (Post et al. (2012b)) considered
a generalized version of High School Timetabling (based on the XHSTT format (Post
et al. (2012a))). A contribution so far from this competition are several well-performing
heuristics, see Fonseca et al. (2012), Kheiri et al. (2012) and Sørensen et al. (2012).
Furthermore the competition proved the XHSTT format as a good foundation to build
on for future research within the area. However, HSTTP contains constraints which
cannot currently be modeled with XHSTT. In Section A the conversion from HSTTP
to XHSTT is described in detail.

Lately, much research has gone into the university course timetabling problem, es-
pecially due to The Second International Timetabling Competition 2007 (Gaspero
et al. (2007); Lewis et al. (2007)). The most popular variant of the problem is the
Curriculum-based Course Timetabling Problem (CCTP), where weekly lectures should
be assigned to time periods and rooms. Recommended surveys regarding university
course timetabling are Burke and Petrovic (2002) and Schaerf (1999). School time-
tabling and university timetabling are closely related (see (Carter and Laporte 1998,
p. 5 (Table 1)), Nurmi and Kyngas (2008)). As a part of the HSTTP is to assign rooms
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to events, it seems that this problem is even more related than other school time-
tabling problems. The far most popular solution methods for the CCTP are heuristics
(see Lewis (2008) for a survey). However, lately also integer programming has been
tried. An interesting decomposition technique for the CCTP is described in Lach and
Lübbecke (2008, 2012), where the assigning of rooms is postponed into a second op-
timization problem, while still maintaining optimality. This entails smaller IPs, which
is proved to enhance solution times. Interesting approaches with integer programming
for the university course timetabling problem are also found in Burke et al. (2008) and
Burke et al. (2010). Daskalaki et al. (2004) presents a mathematical formulation using
binary variables and several operational rules for a department at a Greek university,
with convincing computational results.

Other papers which treats related problems: Dige et al. (1993) describes the time-
tabling problem at Danish primary schools, however this problem lack the complexity
of the corresponding problem for high schools. Kingston (2010) covers the problem of
assigning resources (e.g. teachers and rooms) after times has been assigned. In Prescott-
Gagnon et al. (2009), Branch-and-Price as used as a repair method in a LNS framework
for the VRPTW, with good results. A natural extension of the methods used in this
paper would likewise be to combine the MIP approach and the ALNS heuristic.

The work presented in this paper has a practical character. I.e. the goal is to
deploy the best possible solution approach to the customers of Lectio, and most of the
described constraints originate more or less from feature-requests made by the users of
Lectio. Papers which describe solution methods used in practice are not very common.
Both Yoshikawa et al. (1996) and Kingston (2007) describe implementations which are
used to create timetables for a few high schools. For universities, both Martin (2004)
and Schimmelpfeng and Helber (2007) describe an IP-based approach tailored to a
speci�c university.

2.2 Mixed-Integer Programming Formulation

A MIP formulation of the problem is given step-by-step, i.e. variables and parameters
are introduced as needed. This formulation is stated such that a feasible solution always
exists, as it is feasible to not assign an event to a timeslot and/or a room. However in
such cases a penalty is given. Hence in principle, an optimal solution might be to not
assign any events at all to timeslots or rooms, but in practice this is extremely unlikely.
How we deal with events not assigned a timeslot is discussed under future research in
Section 5. A feasible solution to the HSTTP is hence de�ned as a feasible solution to
this MIP model.

The following sets are de�ned: Days D , modulesM, timeslots T , events E , rooms
R and classes C . The set of entities is denoted A, which includes both students and
teachers. I.e. an entity a ∈ A is either a student or a teacher. Grouping these two
types of entities in the same set allows us to write certain constraints in more compact
form. To reduce problem size, students which are assigned exactly the same events are
grouped into one super-entity. This is related to the concept of curricula in university
course timetabling, and reduces the problem size considerably. LetMa ∈ N denote the
number of 'real' entities which entity a represents (so Ma = 1 if entity a is a teacher).
In addition, let ρ(i) denote the zero-based ordinal number of i ∈ I, e.g. if I = {a, b, c},
then ρ(b) = 1 with respect to set I.



6 Matias Sørensen, Thomas R. Stidsen

Below constraints and objective function-terms of the problem are stated. First a
basic model with well known constraints is introduced, and afterwards expanded to
allow more specialized constraints. Finally various 'soft constraints' are added, which
models di�erent quality-metrics of the timetable. The notation used is lazy; ∀e is
short for ∀e ∈ E , ∀e 6= e′ is short for ∀e ∈

{
E \ {e′}

}
, and

∑
e is short for

∑
e∈E .

Parameters are written in uppercase (except for cost-parameters in the objective which
are denoted with Greek letters), and variables are written in lowercase.

2.2.1 Basic model

The main decision variable is xe,r,t ∈ {0, 1}, which takes value 1 if event e takes place
in room r in timeslot t, and 0 otherwise. Each event should be assigned one room and
one timeslot, so we introduce the constraint∑

r,t

xe,r,t = 1 ∀e (1)

To ensure a feasible solution exists, the set of timeslots and the set of rooms are
extended by 'dummy' elements, which models that an event is not assigned a timeslot
or a room, respectively.

T = {T ∪ {tD}}, R = {R ∪ {rD}} (2)

An assigning to either of these dummy-elements yields a big penalty (de�ned in Section
2.4).

The auxiliary variable ye,t ∈ {0, 1} is introduced, which takes value 1 if event e is
placed in timeslot t, and is constrained by the following∑

r

xe,r,t = ye,t ∀e, t (3)

This auxiliary variable is introduced for two reasons; 1) It simpli�es the visual appear-
ance of many of the constraints introduced further on. 2) It greatly reduces the number
of non-zeros in the model, which reduces the memory-consumption when solving the
MIP model.

Each entity can only participate in one event in each timeslot, except in the dummy-
timeslot. Let Be,a ∈ {0, 1} take value 1 if entity a is part of event e, and zero otherwise.
The following constraint is imposed,∑

e

Be,aye,t ≤ 1 ∀a, t 6= tD (4)

Each room (except for the dummy room) can only be assigned once to each timeslot
(except for in the dummy timeslot). Furthermore, a room might be unavailable for
teaching in certain time slots, for instance if it is shared by the high school and other
institutions, or if its undergoing maintenance, etc. Let Gr,t ∈ {0, 1} take value 1 if
room r is available at timeslot t, and zero otherwise. This constitutes the following
constraint,∑

e

xe,r,t ≤ Gr,t ∀r 6= rD, t 6= tD (5)
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An event might be locked to a speci�c timeslot or a speci�c room by the user. Let
LT e,t ∈ {0, 1} take value 1 if event e is locked to timeslot t, and let LRe,r ∈ {0, 1}
take value 1 if event e is locked to room r. The following constraints are imposed,

ye,t = 1 ∀e, t, LT e,t = 1 (6)∑
t

xe,r,t = 1 ∀e, r, LRe,r = 1 (7)

Some events might require special rooms, i.e. chemistry lectures or physical edu-
cation. Let Ke,r ∈ {0, 1} take value 1 if event e can be assigned to room r, and zero
otherwise. The following constraint is imposed,∑

t

xe,r,t ≤ Ke,r ∀e, r (8)

It is not possible to assign a room to an event unless the event is also assigned
a timeslot. This is because assigning timeslots is considered far more important than
assigning rooms, and therefore it does not make sense to assign a room unless the event
has a timeslot. Consider for instance an event assigned to the dummy timeslot. This
event can be assigned to any room without violating the room con�ict constraint (5).
On the other hand, it is completely legal to assign an event to a timeslot, but not to a
room. The following constraint is imposed,∑

r∈R\{rD}

xe,r,tD −
∑
r

LRe,r ≤ 0 ∀e (9)

This constraint speci�es that if event e is not locked to any room, then it cannot be
assigned to both a room di�erent from the dummy-room rD and the dummy-timeslot
tD. However if the event is locked to a room, it is legal to assign it to this room and
the dummy-timeslot.

If an event is not assigned to a timeslot and/or a room, a penalty must be imposed.
Denote this penalty by αe,r,t ∈ R+. The objective of the model therefore reads,

min
∑
e,r,t

αe,r,txe,r,t (10)

2.2.2 Extended model

In this section, the model is extended to allow for constraints which arise from Event-
Chains and other features of the Lectio interface.

In the Lectio interface, an event can be locked to more than one room, which
clashes with constraint (1) in our formulation. This is handled in the following way:
Assume event e1 is locked to rooms r1, r2 and r3. A 'super-room' entity r1 is created,
which represents exactly these rooms. Hence event e1 is locked to r1, and the set of
rooms is extended accordingly R = {R ∪ {r1}}. However this requires modi�cation
of the room con�ict constraint (5), as an assigning to r1 forbids assigning to r1, r2
and r3 for a given timeslot, and vice versa. Let Ur be the set of rooms which cannot
be used simultaneously with room r, and let the set of rooms R be extended by all
super-rooms. If room r is not a super-room, then it always applies that r ∈ Ur. I.e. for
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this example, Ur1 = ∅, Ur1 = {r1, r1}, Ur2 = {r2, r1}, Ur3 = {r3, r1}. Constraint (5)
is modi�ed to look as follows,∑

e,r′∈Ur

xe,r′,t ≤ Gr,t ∀r 6= rD, t 6= tD (5′)

The EventChains are modeled by specifying that some events should be assigned
the same timeslot as others, and that some events should be in contiguous timeslots.
Let Se be the set of events which must be assigned the same timeslot as event e, and
let Ce be the set of events which must be assigned the timeslot following immediately
after the timeslot assigned to event e. The following two constraint are added to the
model,

ye,t − ye′,t = 0 ∀e, e′ ∈ Se, t (11)

ye,t − ye′,t′ = 0 ∀e, e′ ∈ Ce, t, t′, dt = dt′ , ρ(t) + 1 = ρ
(
t′
)

(12)

where dt denotes the day of timeslot t. The following example illustrates that constraint
(12) is not completely su�cient for events which should be in contiguous timeslots;
Assume event e2 should follow in the timeslot immediately after event e1, and that
timeslot t1 and t2 is the �rst and second timeslot on some day, respectively. Constraint
(12) speci�es that if event e1 is assigned timeslot t1, then event e2 must be assigned
timeslot t2. However we also need to constraint the problem such that it is forbidden
to assign event e1 to the dummy-timeslot, and e2 assigned to timeslot t1. This is done
by extending the set of forbidden timeslots for an event, i.e. in this case forbid the
assigning of event e2 to timeslot t1.

The EventChains imply further restrictions; Since the user might create Event-
Chains which in itself causes a con�ict between entities in terms of constraint (4),
modi�cations to this constraint are needed. Let the set E′a ⊆ E be the subset of events
for which entity con�icts are checked for entity a. I.e. since we can a priori determine
between which events in some EventChain an entity con�ict will occur, we simply
exclude some events from constraint (4). See Figure 2.

a1 a1

a1 a1 a1

a1

a1

E′a1

(a) Three EventChains with several
events where entity a1 participates at
same o�set. Only a subset of events are
checked for con�icts for entity a1.

Monday

TS1

TS2

a1

a1

a1

E′a1

(b) Two EventChains locked to time-
slots, with several events where en-
tity a1 participates. Only a subset of
events are checked for con�icts for en-
tity a1.

Fig. 2: Only some events are checked for entity con�icts

The modi�ed constraint is shown below,∑
e∈E′

a

ye,t ≤ 1 ∀a, t ∈ T \ {tD} (4′)
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Furthermore, EventChains might also cause con�icts for a room in terms of constraint
(5′), if several events are locked to the same room. See Figure 3. We introduce the set

r1 r1

r1 r1 r1

r1

r1

E′′

(a) Three EventChains with several events
locked to room r1 for same o�set. Only a
subset of these events are checked for con-
�icts.

Monday

TS1

TS2

r1

r1 r1
E′′

(b) Two EventChains locked to timeslots,
with several events locked to room r1. Only
a subset of these events are checked for con-
�icts.

Fig. 3: Room con�icts exceptions

E′′, denoting the events which should be checked for room con�icts. Constraint (5′) is
modi�ed to read∑

e∈E′′,r′∈Ur

xe,r′,t ≤ Gr,t ∀r 6= rD, t 6= tD (5′′)

2.2.3 Timetable quality metrics

In this section, the model is extended by several quality metrics for a timetable. Most
of these are modeled in the form of unwanted properties, whose (weighted) quantitative
appearance should be minimized, commonly known as soft-constraints. However also
a few hard-constraints are described, as some properties of a timetable are considered
infeasible.

Idle timeslots An undesirable property of a timetable for an entity is idle timeslots.
I.e. timeslots for an entity where no events are scheduled, but there is both an earlier
and a later timeslot on that day where an event is scheduled, hence the entity must
sit idle throughout some timeslots. By interviewing the high school planners, it is our
experience that they especially consider idle timeslots for students to be undesirable.
This might be due to (1) A student typically participates in so many events that a
completely compact timetable seems to be possible, and/or (2) The high school planner
believes that students are unlikely to do school-related tasks in an idle timeslot. For
teachers, idle slots are also undesirable. However the high school planner will much
prefer an idle timeslot for a teacher over an idle timeslot for a student.

Let the variable ha,d ∈ N0 be the number of idle timeslots for entity a on day d.
This variable is penalized in the objective as follows,∑

a,d

Maβaha,d (13)

where βa ∈ R+ is the cost of an idle timeslot for entity a. Furthermore, let the variables
ha,d ∈ N0 and ha,d ∈ N0 be the �rst and last timeslot where entity a is active on day
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d, respectively. The following constrains are imposed,

ha,d − ha,d −
∑

e∈E′
a,t∈Td

ye,t + 1 = ha,d ∀a, d (14)

|M| − (|M| − ρ(t))
∑
e∈E′

a

ye,t ≥ ha,d ∀a, d, t ∈ Td (15)

ρ(t)
∑
e∈E′

a

ye,t ≤ ha,d ∀a, d, t ∈ Td (16)

Equations (15) and (16) ensures that variables ha,d and ha,d are constrained properly.
Notice that in case of entity a has no activities on day d (which naturally entails no idle
timeslots), the value of ha,d can be set to 1, to avoid ha,d to take value 1. Notice that
these constraints use big-M notation, which is known to give bad LP-relaxations. This
might have negative impact on solution times. A formulation without big-M notation
is known, but it requires too many extra constraints to be applicable.

Unavailabilities For each event, it might be infeasible to assign it to certain times.
This is used to prohibit teaching of certain classes at certain times. E.g. it is common
that teaching of �rst year students is undesirable in the late modules on each day.
Another example is to prohibit all teaching in the last module on Fridays, and only
use this module in case a solution without it cannot be found.

Let De,t ∈ {0, 1} take value 1 if it is feasible to assign event e to timeslot t. The
following constraint for event unavailability is imposed,∑

t,De,t=0

ye,t = 0 ∀e (17)

Furthermore, it is possible for the user to setup that certain timeslots are undesirable
for a certain teacher. These 'soft-unavailabilities' are handled by simply adjusting the
weight αe,r,t for these timeslots for those events which the teacher is part of, see Section
2.4.

Days o� It is quite common to require that all teachers have at least one day o�.
They can for instance use this day for preparation of future lectures. Let Fa ∈ N0 be
the number of days o� required for entity a (takes value 0 for all students). Notice
that these days o� are 'anonymous'. Let fa,d ∈ {0, 1} take value 1 if entity a has no
events on day d, and zero otherwise. To make this variable take appropriate values,
it is incorporated in constraint (4′). The rephrase of constraint (4′) is denoted (4′′),
which constraints the problem in equivalent way, but also makes fa,d take appropriate
values,∑

e∈E′
a

ye,t + fa,d ≤ 1 ∀a, d, t ∈ Td (4′′)

The following constraint ensures entities are assigned to their required number of days
o�,∑

d

fa,d ≥ Fa ∀a (18)
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Besides the required number of days o�, it is generally preferred for teachers to have
as many days o� as possible. Therefore we also maximize the number of days o� in the
objective,∑

a

Maγa

(
|D| −

∑
d

fa,d

)
(19)

where γa ∈ R+ denotes the penalty for a day not being a day-o� for entity a. Notice
that the cardinality of D is incorporated to avoid this term to go below 0. Thereby the
lower bound of the entire MIP is kept at 0.

The planners prefer that students have no days o�. Therefore days o� for students
are penalized by adding the following term to the objective,∑

a,d

Maδafa,d (20)

where δa ∈ R+ is the penalty for a entity a having a day o� (takes value 0 for all
teachers). Notice that since this expression minimizes fa,d, constraint (4

′′) does not
constrain fa,d su�ciently. Constraint (4

′′) only speci�es that if an entity a has at least
one event on day d, fa,d must take value 0. I.e. if an entity a has no events assigned
on some day d, we need to make sure fa,d is forced to take value 1. This is done by
the following constraint,∑

e∈E′
a,t∈Td

ye,t + fa,d ≥ 1 ∀a, d (21)

Room stability A class would like all of its lectures to take place in the same room. We
therefore aim at minimizing the number of di�erent rooms assigned to events where a
given class participates. Recall that if a lecture is locked to multiple rooms, these are
grouped into one super-room, and let vc,r ∈ {0, 1} take value 1 if class c is assigned
to room r at least once and if room r is not a super-room, and zero otherwise. Let
Qr ∈ {0, 1} take value 1 if room r is a super-room, and zero otherwise. Let Je,c ∈ {0, 1}
take value 1 if class c is part of event e, and zero otherwise. The following constraint
is imposed,∑

e,t 6=tD

Je,cxe,r,t −
∑
e

Je,cvc,r′ ≤ 0 ∀r, r′ 6= rD, r ∈ Ur′ , Qr′ = 0, c (22)

This constraint speci�es that if some event e is assigned room r and class c is part of
event e, and room r cannot be used simultaneously with some room r′, and room r′

is not a super-room, then force variable vc,r′ to value 1. Notice that usually r = r′.
Let sc ∈ N0 be the number of rooms assigned to class c minus one, i.e. the number of
'excess' rooms,∑

r

vc,r − 1 ≤ sc ∀c (23)

This following term is added to the objective,

ε
∑
c

sc (24)

where ε ∈ R+ is the cost of each excess room assigned to a class.
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Day-con�icts Each class can only be taught once each day, unless several events con-
taining the same class are part of the same EventChain (e.g. double-lectures), or unless
several events of this class are locked to timeslots on this day. Let bc,t ∈ {0, 1} take
value 1 if class c is part of at least one event on day d, and let E′′′ ⊆ E be the set
of events for which day-con�icts are checked. All events are included in E′′′, with the
following exceptions (see also Figure 4):

� Some events of the same class are part of the same EventChain. All of these, except
one, is excluded from E′′′.

� If multiple events are locked to timeslots on the same day, all of these events, except
one, are excluded from E′′′.

c1

c1

c1

E′′′

(a) One EventChain where class c1 partic-
ipates in several events. Only one of these
events is added to E′′′

Monday

TS1

TS2

TS3

c1

c1 c1

c1

E′′′

(b) Two EventChains locked to the same
day. Only one event which c1 is part of is
checked for day-con�icts.

Fig. 4: Day con�icts exceptions

The following constraint is added to the model,∑
e∈E′′′

Je,cye,t ≤ bc,t ∀c, t (25)

Day-con�icts of classes are thereby avoided by adding following constraint,∑
t∈Td

bc,t ≤ 1 ∀c, d (26)

Neighbor days for classes Another undesirable property for a timetable is neighbor-
day-clashes for classes. Both students and teachers prefer that lectures of a class are
spread throughout the week, for instance to allow more time for homework between
lectures. Let Pd,d′ take the value 1 if day d and day d

′ are neighbor days, and zero oth-
erwise. Neighbor-day pairs are Monday-Tuesday, Tuesday-Wednesday, etc., excluding
Tuesday-Monday, Wednesday-Tuesday, etc. Let the variable nc,d ∈ {0, 1} take value
1 if class c has a neighbor-day-con�ict on day d, and zero otherwise. The following
constraints are imposed,∑

t∈Td

bc,t +
∑
t∈Td′

bc,t − nc,d ≤ 1 ∀c, d, d′, Pd,d′ = 1, Rc,d +Rc,d′ ≤ 1 (27)

If class c is locked to at least one event on two contiguous days, this is not de�ned as
a con�ict. Let Rc,d ∈ {0, 1} take value 1 if class c is locked to some event on day d,
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and zero otherwise. Neighbor-day con�icts are penalized by the following term in the
objective (where ζ ∈ R+),

ζ
∑
c,d

nc,d (28)

In case a class has few lectures, neighbor-day con�icts might even be infeasible. Let
Nc ∈ N0 be the number of allowed neighborday-con�icts for class c, de�ned as follows:

Nc =


0 NCc ≤ 2

w NCc = 3

3w NCc = 4

4w NCc ≥ 5

(29)

where NCc is the number of EventChains where class c participates, and w ∈ {1, 2}
is the number of weeks being planned. The following constraint is added to the model,∑

d

nc,d ≤ Nc ∀c (30)

Teacher daily workload It can be preferred for teachers that they do not have to teach
in all modules on a day. Let Wa ∈ N0 be the maximum number of lectures on a day
for entity a (takes value 0 for all student entities). The following constraint is imposed,∑

e,t∈Td

ye,t ≤Wa ∀a, d (31)

On the other hand, teachers do not like days with too few lectures. It is generally
believed among the planners that a teacher should have at least two lectures on 'active'
days, i.e. days with only one lecture are undesirable. In the following the model is
constrained so days with only one active timeslot for an entity is penalized. Let oa,d ∈
{0, 1} take value 1 if entity a is a teacher and has only one lecture on day d, and zero
otherwise. The following constraint is imposed,

2−
∑

e∈E′
a,t∈Td

ye,t − 2fa,d ≤ oa,d ∀a, d (32)

The following expression is added to the objective,∑
a,d

ηaMaoa,d (33)

Deviation from previous solution When the users are running the algorithm, they
prefer that the found solution does not deviate too much from the previous solution.
A small penalty is imposed on assignments of timeslots and rooms which deviate from
those of the previous solution. Let tP (e) and rP (e) be the previous timeslot and
previous room assigned to event e, respectively. The variable ue ∈ {0, 1} take value 1
if event e was not assigned its previous timeslot, and zero otherwise. pe ∈ {0, 1} takes
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value 1 if event e was not assigned its previous room, and zero otherwise. The following
constraints are imposed,∑

t∈T \{tD,tP (e)}

ye,t = ue ∀e (34)

∑
r∈R\{rD,rP (e)},t

xe,r,t = pe ∀e (35)

These variables are punished in the objective by the following,

θ
∑
e

(ue + pe) (36)

If no previous solution exists, these constraints are omitted.

2.2.4 Two week schedule metrics

Planning two weeks instead of one gives twice the amount of timeslots, and thereby
larger �exibility, which is prefered by some planners at the high schools. E.g. suppose
a class in average should have �ve lectures each week. Instead of assigning �ve events
to each week, four events could be assigned to the �rst week, and six events could
be assigned to the second week. The planning of two weeks yields additional quality
metrics.

Days o� stability for teachers It is preferred to have the required days o� for entities
distributed equivalently among the two weeks, e.g. in case of 3 required days o�, each
week must contain at least 1 day o�. This is done by the following constraint,∣∣∣ ∑

d∈d(T )

fa,d −
∑

d∈d(T )

fa,d

∣∣∣ ≤ 1 ∀a (37)

where d(T ) and d
(
T
)
denotes days of the �rst and second week, respectively. This

constraint is easily transfered into linear-form using two set of constraints.

Stability for lectures of classes Likewise, the distribution of lectures for classes should
also be evenly distributed between weeks. Let wc ∈ N0 be the number of events out of
week-balance for class c. This is punished in the objective by

ι
∑
c

wc (38)

and is constrained by the following,∣∣∣ ∑
e,t∈T

Je,cye,t −
∑
e,t∈T

Je,cye,t

∣∣∣− 1 = wc ∀c (39)

The complete model is shown in Model (40). Notice that all variables except for
xe,r,t, ye,t and vc,r can be stated as LP variables, as they will naturally take integer
values. It is expected that not having integer requirements on these variables will
facilitate a more e�cient solution procedure.
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HSTTP Mixed lnteger Linear Program (40)

min

∑
e,r,t

αe,r,txe,r,t +
∑
a,d

Maβaha,d + ε
∑
c

sc + ζ
∑
c,d

nc,d +
∑
a,d

ηaMaoa,d +∑
a

Maγa

(
|D| −

∑
d

fa,d

)
+
∑
a,d

Maδafa,d + θ
∑
e

(ue + pe) + ι
∑
c

wc
(40a)

s.t.
(time/room)

∑
r,t

xe,r,t = 1 ∀e (40b)

(aux. link)
∑
r

xe,r,t = ye,t ∀e, t (40c)

(entity conf.)
∑
e∈E′

a

ye,t + fa,d ≤ 1 ∀a, d, t ∈ Td (40d)

(room conf.)
∑

e∈E′′,r′∈Ur

xe,r′,t ≤Gr,t ∀r 6= rD, t 6= tD (40e)

(locked time) ye,t = 1 ∀e, t, LT e,t = 1 (40f)
(locked room)

∑
t

xe,r,t = 1 ∀e, r, LRe,r = 1 (40g)

(feas. rooms)
∑
t

xe,r,t ≤Ke,r ∀e, r (40h)

(not only room)
∑

r∈R\{rD}

xe,r,tD −
∑
r

LRe,r ≤ 0 ∀e (40i)

(same time) ye,t − ye′,t = 0 ∀e, e′ ∈ Se, t (40j)

(cont. times) ye,t − ye′,t′ = 0
∀e, e′ ∈ Ce, t, t′, dt = dt′ ,
ρ(t) + 1 = ρ

(
t′
) (40k)

(n.d. conf.)
∑
t∈Td

bc,t +
∑
t∈Td′

bc,t − nc,d ≤ 1
∀c, d, d′, Pd,d′ = 1,
Rc,d +Rc,d′ ≤ 1

(40l)

(n.d. conf.)
∑
d

nc,d ≤Nc ∀c (40m)

(forbid. times.)
∑

t,De,t=0

ye,t = 0 ∀e (40n)

(idle slots) |M| − (|M| − ρ(t))
∑
e∈E′

a

ye,t ≥ ha,d ∀a, d, t ∈ Td (40o)

(idle slots) ρ(t)
∑
e∈E′

a

ye,t ≤ ha,d ∀a, d, t ∈ Td (40p)

(idle slots) ha,d − ha,d −
∑

e∈E′
a,t∈Td

ye,t + 1 = ha,d ∀a, d (40q)

(days o�)
∑

e∈E′
a,t∈Td

ye,t + fa,d ≥ 1 ∀a, d (40r)

(days o�)
∑
d

fa,d ≥ Fa ∀a (40s)

(room stabl.)
∑

e,t 6=tD

Je,cxe,r,t −
∑
e

Je,cvc,r′ ≤ 0 ∀r, r′ 6= rD, r ∈ Ur′ , Qr′ = 0, c (40t)

(room stabl.)
∑
r

vc,r − 1 ≤ sc ∀c (40u)

(day conf.)
∑
e∈E′′′

Je,cye,t ≤ bc,t ∀c, t (40v)

(day conf.)
∑
t∈Td

bc,t ≤ 1 ∀c, d (40w)

(worklimit)
∑
e,t∈Td

ye,t ≤Wa ∀a, d (40x)

(one lecture) 2−
∑

e∈E′
a,t∈Td

ye,t − 2fa,d ≤ oa,d ∀a, d (40y)

(prev. time)
∑

t∈T \{tD,tP (e)}

ye,t = ue ∀e (40z)

(prev. room)
∑

r∈R\{rD,rP (e)},t

xe,r,t = pe ∀e (40aa)

(class stabl.)
∣∣∣ ∑
e,t∈T

Je,cye,t −
∑
e,t∈T

Je,cye,t

∣∣∣− 1=wc ∀c (40ab)

(d.o. stabl.)
∣∣∣ ∑
d∈d(T )

fa,d −
∑

d∈d(T )

fa,d

∣∣∣ ≤ 1 ∀a (40ac)

xe,r,t, ye,t, vc,r ∈ {0, 1} (40ad)
fa,d, bc,t, nc,d, oa,d, ue, pe ∈ [0, 1] (40ae)
ha,d, ha,d, ha,d, sc, wc ∈ R+ (40af)
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2.3 Two-stage formulation

Inspired by the approach taking in Lach and Lübbecke (2012), we propose to solve
model (40) in two stages. I.e. in stage one, assign events to timeslots, and in stage two,
assign events to rooms given the assigned timeslots. By this approach, the explosion
in the number of variables caused by xe,r,t is avoided, as each stage can instead be
modeled by a binary variable with two indices.

2.3.1 Stage One

In stage one, set R = {RL ∪ rD}, where RL is the set of rooms which are locked
to at least one event. If an event e is not locked to a room, set the dummy-room as
the only feasible room for this event, i.e. Ke,rD = 1 and Ke,r = 0 ∀r 6= rD. This
forces all events which are not locked to a room to be assigned to the dummy-room.
By this setting of parameters, exactly one feasible room exists for each event, which
signi�cantly reduces the number of variables in terms of xe,r,t. I.e. xe,r,t is substituted
by Ke,rye,t.

As we would like to not only generate good solutions by this approach, but also to
generate lower bounds, it is assumed that each event can be assigned the best room
possible. I.e. set

αe,r,t = min
r′

αe,r′,t (41)

Furthermore, the room stability constraints (40t) and (40u) are removed. These con-
straints are not redundant as they still applies to all locked rooms, but the constraints
must be removed to generate a valid lower bound. I.e. some of the penalty produced
by these constraints due to locked rooms might disappear when additional rooms are
assigned in the stage two model.

Constraint (40aa) is redundant with this setting of parameters, so it is removed
from the model.

With these modi�cations, Model (40) is solved to obtain a solution y∗e,t where
events are assigned timeslots. The lower bound obtained by solving this model is a
lower bound on Model (40). Notice that no constraints are imposed to ensure events
can be assigned an eligible room in the next stage. This might give us worse solutions,
but it is expected that the natural spread among the timeslots events are assigned to
will also ensure a fair amount of rooms can be assigned without causing con�icts. It is
expected that not adding additional constraints will give an easier model to solve.

2.3.2 Stage Two

In stage two, Model (40) is solved with the variables ye,t �xed as set by y∗e,t. This
turns the problem into a matter of assigning rooms to events, and this problem has a
lot less variables than the original problem. All constraints are redundant, except for
(40e), (40t), (40u) and (40aa). A feasible solution for this model is clearly a feasible
solution to Model (40).
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2.4 Weights

Below are listed the values of the weights used in the objective. These values have been
selected on the basis of user inputs, and changes might come in the future. Let mt

denote the module of timeslot t.

αe,r,t =


0 LT e,t = 1

60 t = tD

2ρ(mt) + 4
∑
aMaBe,aVa,t else

+


0 LRe,r = 1

10 r = rD

2(pe,r − 1) else

(42)

where Va,t takes value 1 if it is undesirable for entity a to be assigned timeslot t (takes
value 0 for all student entities), and pe,r ∈ {1, 2, 3} is the priority of room r for event
e. Notice that the value of αe,r,t is dependent on the module number of the timeslot,
as early timeslots are generally more preferred than late timeslots. Furthermore if an
event is locked to a timeslot or a room, no penalty for either of these assignings is
given.

Remaining weights are de�ned as follows:

βa =

{
6 a is teacher

7 a is student
(43)

γa =

{
1 a is teacher

0 a is student
(44)

δa =

{
0 a is teacher

1 a is student
(45)

ε = 1 (46)

ζ = 8 (47)

ηa =

{
4 a is teacher

0 a is student
(48)

θ = 1 (49)

ι = 8 (50)

Notice that by far the biggest penalty comes from not assigning an event to a timeslot.

2.5 Complexity

Most common variants of non-trivial school timetabling problems have been proved to
be NP-hard, see Even et al. (1975); Cooper and Kingston (1996); ten Eikelder and
Willemen (2001). However, we have not been able to �nd a formulation of timetabling
which resemble exactly the one of this paper. Therefore it is proven in the following
that both model (40) and the two-stage formulation is NP-hard. This is done by using
the well-known link between timetabling and graph-coloring.
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2.5.1 HSTTP

To prove that HSTTP is NP-hard, Proposition 6.3 of Wolsey (1998) is used. I.e. it
must be shown that HSTTP is in NP , and that another NP-complete problem can be
polynomially reduced to the decision-version of HSTTP (by De�nition 6.7 of (Wolsey
1998, p. 88)).

Let the objective value of model (40) be denoted zHSTTP. The decision version
of model (40) asks whether a solution exists with objective zHSTTP ≤ k. Clearly the
decision version of HSTTP is in NP as a solution xe,r,t to model (40), can be checked
to have objective value less than k in polynomial time.

The well known NP-complete problem Graph k-Colorability problem (GCP) asks
whether it is possible to assign each vertex of a graph G a color such that no two
adjacent vertices have the same color, using at most k colors. To show that GCP is
polynomial reducible to HSTTP, a conversion scheme is now given, which transforms
any instance of GCP into an instance of HSTTP. An instance of GCP consists of a
graph G with vertices V and edges F , and a number of colors k.

� Start with an empty instance of HSTTP, i.e. D = M = E = C = ∅, T =
{tD},R = {rD}.

� For each vertex v ∈ V , create an event e.
� For each edge f ∈ F between vertices v1 and v2, create an entity a. Let events e1

and e2 represent vertices v1 and v2, respectively. Assign entity a to both e1 and
e2, i.e. Be1,a = Be2,a = 1.

� Create one day d with k timeslots {t0, . . . tk−1}.

� Set αe,r,t =

{
0 t = tD

1 else
, and ε = βa = γa = δa = ζ = ι = θ = ηa = 0.

� As the only room in the instance is the dummy-room, the following substitution is
made: ye,t = xe,rD,t.

This problem-setting makes a lot of constraints and variables redundant. The HSTTP
instance can therefore be written as follows (written as a maximization-problem by
changing sign of αe,r,t):

HSTTP reduced problem (51)

max zHSTTPReduced =
∑
e,r,t

αe,r,txe,r,t (51a)

s.t.

(one time/room)
∑
t

xe,rD,t =1 ∀e (51b)

(entity conf.)
∑
e

Be,axe,rD,t ≤1 ∀a, t 6= tD (51c)

Solving model (51) gives an objective zHSTTPReduced, corresponding to the number of
events which are assigned a timeslot di�erent from the dummy-timeslot. By the conver-
sion scheme, an event corresponds to a vertex in graph G and a timeslot corresponds
to a color. Therefore zHSTTPReduced corresponds to the number of vertices which is
assigned a color. To answer whether graph G is k-colorable, one can simply check if
zHSTTPReduced = |V | ≤ k (corresponding to solving the decision version of model
(51)).
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Any instance of GCP can thereby be converted into an instance of the decision
version of HSTTP. Therefore the decision version of HSTTP is NP-complete, so by
De�nition 6.7 of (Wolsey 1998, p. 88), HSTTP is NP-hard.

2.5.2 Two-stage Formulation

By de�nition of stage one in the two-stage formulation, it di�ers from the original
formulation by having only one room, the dummy-room. This is equivalent to the
parameter setting in the proof of NP-completeness for the original MIP. Therefore
the exact same conversion scheme can be applied to this problem, and therefore this
problem must be NP-hard.

In the original description of the decomposition in Lach and Lübbecke (2012),
stage two consisted of solving a bipartite perfect matching problem for each timeslot.
However when taking soft-constraints such as room-stability into consideration, this
problem structure is destroyed. Currently we have no insight on the complexity of the
stage two problem, but the amount of time needed to solve the problem to optimality
is in many cases negligible, as will be shown in Section 4. As stage one is NP-hard,
solving the two-stage formulation is NP-hard.

3 Adaptive Large Neighborhood Search

In this section a heuristic solution approach based on ALNS is described.
Adaptive Large Neighborhood Search is a recent extension of the Large Neighbor-

hood Search (LNS) paradigm, often credited to Ropke and Pisinger (2006). As in the
LNS framework, �rst a destruct (ruin/remove) operator is applied to the solution at
hand, and then a construct (recreate/insert) operator is used to repair the solution.
In an ALNS framework, multiple destruct and construct operators are used, and the
adaptive layer keeps track of their individual performance, and increases the probabil-
ity of selecting operators which have previously performed 'good'. ALNS has mainly
been applied to variants of the Vehicle Routing Problem (VRP) (Azi et al. (2010);
Hemmelmayr et al. (2011); Salazar-Aguilar et al. (2011); Ribeiro and Laporte (2012)),
but lately also other problem-domains (Muller et al. (2011); Muller (2010)).

We refer to Kristiansen et al. (2013), Kristiansen and Stidsen (2012) and Sørensen
et al. (2012) (and references therein) for an introduction to ALNS for educational
timetabling problems, and will here only brie�y describe our implementation. This
speci�c implementation is similar to that of Kristiansen et al. (2013), in which details
such as method-selection and acceptance criteria are described. These are summarized
below.

By description of LNS, one new solution Snew is found in each iteration. This
solution is accepted with probability

exp

(
z(Scur)− z(Snew)

T

)
(52)

where T ∈ R+ is the current temperature, Scur is the current solution, and denote by
z(S) the objective value of solution S. The initial temperature T0 is selected by (S0

denotes the initial solution)

T0 =
wSA · z(S0)

ln 2
(53)
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and is decreased in each iteration by

T = dSAT (54)

where 0 < dSA < 1 is the decay factor.
A run of the algorithm is divided into segments {t0, t1, . . . , tn} each consisting of

Nit iterations. Let π
t
i be the weight of heuristic i in segment t. Initially in the �rst

section t0, π
t0
i = 1 ∀i. The probability of choosing heuristic i in segment t is

πt
i∑

j π
t
j
.

At the end of each segment t, the following update is performed for all heuristics,

πt+1
i = ρ

π̄ti
ati

+ (1− ρ)πti (55)

where ati is the number of times heuristic i has been selected in segment t. π̄ti is the
observed weight of heuristic i in segment t, which in each iteration is incremented
depending on the quality of the new found solution. ρ ∈ [0, 1] is the reaction factor. A
high reaction factor means that the weights of a segment will be very dependent upon
the observed weights of the previous segment.

The observed weight π̄ti is updated in each iteration, by the following:

gap =
z(Scur)− z(Snew)

z(Scur)
(56)

π̄ti = π̄ti + 5min(σ·gap,1) (57)

where σ ∈ R+ is the scaling parameter.
Hence this ALNS algorithm contains parameters wSA, dSA for controlling the

acceptance-criteria, and parameters Nit, ρ, σ for controlling the adaptive selection
of insert/remove methods.

A solution to the HSTTP is a list of (event,room,timeslot)-tuples, each representing
an assignment of an event to a room and to a timeslot. The concept of amove is de�ned
as follows: Given some feasible solution to an instance of the HSTTP, the move M
permutes the solution S1 such that a new feasible solution S2 is obtained, and the
change in the objective is ∆(M) = z(S2) − z(S1). For simplifying notation we only
consider moves which does not yield an infeasible solution, however in practice such
moves exist, but since they will never be applied to the solution in our implementation,
they are ignored in this description. Four classes of moves have been implemented:

� M time
ec,t assigns EventChain ec to timeslot t.

� ��M
time
ec,t un-assigns EventChain ec from timeslot t.

� M room
e,r assigns event e to room r.

� ��M
room
e,r un-assigns event e from room r.

As the assign-time moves apply to EventChains, as opposed to events, the constraints
for events which should be placed in the same/contiguous timeslots are handled im-
plicitly, which simpli�es the implementation.

By these moves, the remove- and insertion-operators are constructed.
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3.1 Insertion methods

Algorithm 1 shows the general pseudo-code for the implemented insertion methods.
M time denotes a move which assigns an EventChain to a timeslot. The insertion meth-
ods di�er in how they select this move in each iteration. Once an assign-time move has
been selected, it is attempted to perform an assign-room move on each of the events
in the EventChain of this assign-time move. See Algorithm 1.

Algorithm 1 Insertion method

input: A feasible solution S
loop

Mtime = ...
if ∆

(
Mtime

)
> 0 then

return
end if
apply Mtime to S
for all e ∈ ec

(
Mtime

)
do

Mroom = argminr∆
(
Mroom
e,r

)
if ∆(Mroom) < 0 then

apply Mroom to S
end if

end for
end loop

In the following, the approach for selecting the assign-time move is described for each
insertion-method.

3.1.1 InsertGreedy

In each iteration, the move which reduces the objective most is chosen, written as

M time = arg min
ec,t

∆
(
M time
ec,t

)
(58)

3.1.2 InsertRegret-k

This is similar to the Regret-N neighborhood applied to variants of the VRP (Tillman
and Cain (1972); Martello and Toth (1981); Potvin and Rousseau (1993)). Let k ∈
{2, 3, . . . , |T |}, and letM time

ec,{i} denote the i-th best time-move for EventChain ec. For
a given k, the move selection is given by:

M time = arg min
ec

∆(Mtime

ec,{1})<0

∆(M time
ec,{1}

)
−

k∑
i≥2

∆
(
M time
ec,{i}

) (59)

E.g. a InsertRegret-2 method selects in each iteration the best time move for the
EventChain where the di�erence between the best time move and the second-best time
move is most negative. The intuition is to perform the move which we will regret most
if not done now. The following choices of k have been made by basic tests: 2, 3, 4, |T |,
which constitute four di�erent insertion methods.
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3.2 Remove methods

In each iteration of the ALNS, a number of events q is selected to be unassigned from
timeslots in the solution at hand. The quantity q is selected as a random integer in the
interval

[
3,max

(
pdes|E |, 5

)]
, where the parameter pdes ∈]0; 1] describes the maximum

percentage of events to be removed. As in Kristiansen et al. (2013), pdes is decreased
with time, i.e. at time 0: pdes = pdesstart, and when reaching the timelimit: pdes = pdesend.
In between, a linear decay of the parameter is applied.

Algorithm 2 shows the general pseudo-code for the implemented destroy-methods.
Let RP () denote a remove procedure, which performs a number of unassign-moves
and which returns the total number of events unassigned from timeslots. Recall that
an event can not be assigned a room if it is not assigned a timeslot. Throughout this
section it is therefore implicitly handled, that if an event is unassigned from a timeslot,
it is also unassigned from its rooms.

Algorithm 2 Remove method

input: A feasible solution S, and remove-quantity q (number of events)
q = 0
while q ≤ q do

q = q +RP ()
end while

3.2.1 RemoveRandom

In this method, select aM randomly among all EventChains assigned a timeslot. This
method will undoubtedly diversify the search. Let E(M) denote the number of events
of the EventChain of move M .

Algorithm 3 RPrandom

input: A feasible solution S, and remove-quantity q
q = 0
while q ≤ q do

Random select a move��Mtime
ec,t

Apply��Mtime
ec,t to S

q = q + E(��Mtime
ec,t )

end while
return q

3.2.2 RemoveRelated

This method is related to Shaw operator (Shaw (1997, 1998)). The related measure-
ment is de�ned as the percentage overlap among entities, and classes between two
EventChains ec and ec′, i.e.

Re,e′ = RA

∣∣A(ec) ∪ A(ec′)
∣∣

min(|A(ec)|, |A(ec′)|) +RC

∣∣C(ec) ∪ C(ec′)
∣∣

min(|C(ec)|, |C(ec′)|) (60)
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where A(ec) and C(ec) denote the set of entities and classes of EventChain ec, re-
spectively. RA ∈ [0, 1] and RC ∈ [0, 1] are scaling parameters which require tuning.
The amount of randomness in the selection is determined by prelated. Let the remove
procedure be de�ned as follows:

Algorithm 4 RPRemoveRelated

input: A feasible solution S, and remove-quantity q
q = 0
ec = a random selected chain assigned to a timeslot
Ddone = {ec}
while q < q do

ec′ = randomly selected from Ddone

L = all EventChains assigned to a timeslot, sorted by similarity to ec'
Choose a random number y ∈ [0; 1[
ec = element number yprelated |L| of L
Apply��Mtime

ec,t to S, where t is the timeslot assigned to EventChain ec
Ddone = Ddone ∪ ec

end while
return q

3.2.3 RemoveTime

In this method, �rst select some random timeslot. Now remove EventChains assigned
to this timeslot, until q EventChains have been removed. If at some point no more
EventChains are assigned to the timeslot, select a new random timeslot. The exact
remove-procedure looks as follows:

Algorithm 5 RPRemoveTime

input: A feasible solution S, and remove-quantity q
q = 0
Tdone = ∅
while q < q do

t = Randomly select from {T \ Tdone}
while q < q do

Randomly select an EventChain ec assigned to t
Apply��Mtime

ec,t to S
q = q + E(��Mtime

ec,t )
end while
Tdone = Tdone ∪ {t}

end while
return q

3.2.4 RemoveClass

Select a random class, and remove EventChains which contains it until q EventChains
have been removed. If at some point no more EventChains are assigned to the timeslot,
select a new random timeslot. The exact remove-procedure looks as follows:
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Algorithm 6 RPRemoveClass

input: A feasible solution S, and remove-quantity q
q = 0
Cdone = ∅
while q < q do

c = Randomly select from {C \ Cdone}
while q < q do

Randomly select an EventChain ec of c assigned to some timeslot t
Apply��Mtime

ec,t to S
q = q + E(��Mtime

ec,t )
end while
Cdone = Cdone ∪ {c}

end while
return q

3.3 Coupled destroy/repairs

Coupling certain destroy methods with certain repair methods is a small extension of
the ALNS framework. This implies that the logic for choosing certain destroy/repair
methods are extended, such that also certain pairs of methods can be chosen. This is
useful for specialized destroy/repair methods, where a speci�c part of the solution is
destroyed, and a competitive solution is not expected unless this part of the solution
is repaired. In the following we describe a neighborhood where coupling seems useful,
namely InsertRoom and RemoveRoom.

3.3.1 InsertRoom

In InsertRoom, rooms are assigned to events in a greedy way:

Algorithm 7 InsertRoom

input: A feasible solution S
loop

Mroom = argmine,r∆
(
Mroom
e,r

)
if ∆(Mroom) > 0 then

return
end if
apply Mroom to S

end loop

3.3.2 RemoveRoom

In RoomRemove, q random room-assignment are removed from the solution:
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Algorithm 8 RPRemoveRoom

input: A feasible solution S, and remove-quantity q
q = 0
while q ≤ q do

Random select a move��Mroom
e,r

Apply��Mroom
e,r to S

q = q + E(��Mroom
e,r )

end while
return q

3.4 Parameter Tuning

A basic implementation of F-Race (Birattari (2005); Balaprakash et al. (2007)) is used
to tune parameters for best algorithmic performance. The values obtained in Kris-
tiansen et al. (2013) were used as a starting point. Table 1 shows the chosen value for
each parameter.

Parameter w
SA

d
SA

N
it

ρ σ RA RC p
related

pdes
start

pdes
start

Domain ]0; 1[ ]0; 1[ [0;∞] [0; 1] [0;∞] [0; 1] [0; 1] [1;∞] [0; 1] [0; 1]
Value 0.01 0.99 100 0.3 10000 0.7 0.3 20 0.10 0.01

Table 1: List of parameters and their tuned value

4 Results

The purpose of this section is to compare and evaluate the described solution ap-
proaches. A variety of datasets are therefore selected from the Lectio database. Using
these datasets, we thereby aim at answering these question:

� How the found solutions compare with the bounds obtained from the IP-based so-
lution approaches? This is a way of evaluating the quality of the obtained solutions,
and/or the bounds obtained by the MIP approaches.

� Which solution approach obtains best solutions within a short timeframe? This is
important to evaluate which approach to deploy to the users of Lectio.

4.1 Datasets

Currently the Lectio database contains almost 5000 potential datasets from 110 dif-
ferent high schools. Some of these datasets are obviously incomplete test-instances,
in the sense that they lack information. It is attempted to �lter out such instances;
however, it can be hard to detect whether an instance is a 'test-instance'. Furthermore,
datasets from the same school for the same year are considered identical. I.e. datasets
are grouped by (school,year), and the most recent dataset from each group is chosen.
A selection of 100 datasets is thereby made. Table 2 shows statistics for these datasets.
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Table 2: Statistics for selected datasets. Column '#ECs' denotes the number of
EventChains, and the last two columns denote the amount of events which are part
of an EventChain, and the event-to-timeslots ratio, respectively.

Dataset |E | #ECs |R| |D| |M| |T | |A| |C| |E |
#ECs

|E |
|T |

AalborTG2012 768 296 116 5 7 35 231 202 0.39 21.9
AarhusA2011 768 50 101 5 6 30 383 306 0.07 25.6
AarhusA2012 803 44 94 5 6 30 437 302 0.05 26.8
Aars2009 682 10 47 5 9 45 158 209 0.01 15.2
Aars2010 1112 480 46 10 9 90 143 154 0.43 12.4
Aars2011 924 286 46 10 7 70 140 154 0.31 13.2
Aars2012 713 99 46 10 6 60 116 141 0.14 11.9
Alssund2010 729 293 38 5 9 45 214 229 0.40 16.2
Alssund2012 1473 3 34 10 9 90 215 245 0.00 16.4
BagsvaG2010 278 28 33 5 6 30 102 95 0.10 9.3
BirkerG2011 1637 193 81 5 9 45 587 439 0.12 36.4
BirkerG2012 1574 250 79 5 9 45 102 461 0.16 35.0
BjerrG2009 730 16 33 5 9 45 197 313 0.02 16.2
BjerrG2010 545 186 35 5 9 45 208 160 0.34 12.1
BjerrG2011 571 195 42 5 9 45 202 175 0.34 12.7
BjerrG2012 564 180 42 5 9 45 208 175 0.32 12.5
BroendG2012 389 38 31 10 4 40 74 102 0.10 9.7
CPHWGym2010 467 196 39 5 9 45 225 147 0.42 10.4
CPHWGym2011 511 223 39 5 9 45 245 165 0.44 11.4
CPHWGym2012 525 218 41 5 9 45 285 169 0.42 11.7
CPHWHG2012 634 6 27 5 8 40 217 163 0.01 15.9
CPHWHTX2010 530 28 35 5 10 50 111 124 0.05 10.6
CPHWHTX2011 688 213 34 5 10 50 110 121 0.31 13.8
CPHWHTX2012 434 13 30 5 10 50 89 82 0.03 8.7
DetFG2012 858 220 51 5 11 55 343 167 0.26 15.6
DetKG2010 185 8 26 5 7 35 111 69 0.04 5.3
DetKG2011 195 10 26 5 7 35 111 76 0.05 5.6
EUCN2009 249 18 55 5 7 35 89 78 0.07 7.1
EUCN2010 583 173 55 5 7 35 192 189 0.30 16.7
EUCN2011 286 108 64 5 7 35 29 98 0.38 8.2
EUCN2012 303 72 64 5 7 35 107 100 0.24 8.7
EUCNHG2010 190 83 29 5 8 40 49 56 0.44 4.8
EUCS2012 252 81 19 5 9 45 50 59 0.32 5.6
FaaborgG2008 1754 0 47 10 14 140 188 180 0.00 12.5
FalkonG2009 1139 2 71 10 5 50 468 326 0.00 22.8
FalkonG2011 955 1 72 10 5 50 369 284 0.00 19.1
FalkonG2012 1120 17 68 10 5 50 369 313 0.02 22.4
GUAasia2010 555 10 36 5 12 60 33 141 0.02 9.3
GUQaqor2011 524 262 15 10 10 100 90 70 0.50 5.2
GUQaqor2012 518 259 15 10 10 100 73 61 0.50 5.2
HadersK2011 662 3 75 5 5 25 483 318 0.00 26.5
HasserG2010 1275 75 71 10 5 50 526 384 0.06 25.5
HasserG2011 1369 86 79 10 5 50 585 408 0.06 27.4
HasserG2012 1471 146 70 10 5 50 623 422 0.10 29.4
HerningG2010 135 25 88 5 6 30 7 5 0.19 4.5
HerningG2011 1783 79 97 10 6 60 269 363 0.04 29.7
HerningG2012 1924 87 107 10 6 60 276 411 0.05 32.1
HoejeTaG2008 201 0 74 5 8 40 99 66 0.00 5.0
HoejeTaG2009 610 0 74 5 8 40 254 207 0.00 15.3
HoejeTaG2010 607 0 74 5 8 40 228 202 0.00 15.2
HoejeTaG2011 688 0 76 5 8 40 267 226 0.00 17.2
HoejeTaG2012 827 12 76 5 8 40 270 268 0.01 20.7
HorsenS2009 380 1 50 5 5 25 297 195 0.00 15.2
HorsenS2012 1119 5 54 10 5 50 551 409 0.00 22.4
Johann2012 1304 249 67 5 8 40 202 419 0.19 32.6
KalundG2011 1701 177 64 10 7 70 376 281 0.10 24.3
KalundG2012 1654 198 66 10 7 70 425 299 0.12 23.6
KalundHG2010 376 44 17 5 9 45 87 98 0.12 8.4
KoebenPG2012 95 1 22 5 6 30 63 43 0.01 3.2
KoegeH2012 1092 425 64 5 9 45 214 294 0.39 24.3
KongshoG2010 441 5 69 5 4 20 301 245 0.01 22.1
MariageG2009 692 10 71 10 4 40 240 183 0.01 17.3

Continued on next page
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Table 2 � continued from previous page

Dataset |E | #ECs |R| |D| |M| |T | |A| |C| |E |
#ECs

|E |
|T |

MorsoeG2012 584 41 40 10 5 50 237 161 0.07 11.7
NaerumG2008 1533 0 75 10 4 40 567 513 0.00 38.3
NaerumG2009 1435 0 77 10 4 40 93 483 0.00 35.9
NielsSG2011 265 0 73 5 10 50 96 74 0.00 5.3
NielsSG2012 669 174 73 5 10 50 111 235 0.26 13.4
NordfynG2012 771 51 60 10 4 40 239 209 0.07 19.3
NyborgG2011 1191 4 59 10 5 50 466 336 0.00 23.8
OdderCfU2010 766 15 73 5 11 55 467 231 0.02 13.9
OdderG2009 782 2 47 10 6 60 175 199 0.00 13.0
OdderG2012 843 22 41 10 5 50 184 219 0.03 16.9
OrdrupG2010 1044 521 52 10 8 80 151 133 0.50 13.1
OrdrupG2011 1564 782 52 10 8 80 236 229 0.50 19.6
RibeK2011 837 2 61 5 8 40 263 227 0.00 20.9
RysenG2010 1477 36 74 10 4 40 396 319 0.02 36.9
RysenG2011 1294 26 74 10 4 40 427 395 0.02 32.4
RysenG2012 1382 59 75 10 4 40 469 516 0.04 34.6
SanktAG2012 773 16 47 10 4 40 63 210 0.02 19.3
SkanderG2010 1116 11 57 10 6 60 69 277 0.01 18.6
SkanderG2011 1161 14 56 10 6 60 463 284 0.01 19.4
SkanderG2012 1275 25 57 10 6 60 571 289 0.02 21.3
SkiveG2010 2665 1241 58 10 9 90 304 331 0.47 29.6
SlagelG2012 2152 164 103 10 6 60 607 469 0.08 35.9
SoendS2011 1206 76 98 10 4 40 383 332 0.06 30.2
SoendS2012 1278 1 111 10 4 40 340 379 0.00 32.0
StruerS2012 2915 160 71 10 9 90 348 401 0.05 32.4
VardeG2012 887 1 65 10 5 50 251 277 0.00 17.7
VejenG2009 928 10 52 10 6 60 209 189 0.01 15.5
Vejlefjo2011 714 63 45 5 14 70 186 234 0.09 10.2
VestfynG2009 585 234 64 5 8 40 260 168 0.40 14.6
VestfynG2010 582 239 62 5 8 40 246 167 0.41 14.6
VestfynG2011 619 255 57 5 8 40 257 180 0.41 15.5
VestfynG2012 613 254 51 5 8 40 195 180 0.41 15.3
ViborgK2011 1302 4 59 10 6 60 456 308 0.00 21.7
ViborgTG2009 549 90 27 5 10 50 87 120 0.16 11.0
ViborgTG2010 454 6 21 10 5 50 86 110 0.01 9.1
ViborgTG2011 473 42 23 10 4 40 90 109 0.09 11.8
VirumG2012 1731 225 65 10 4 40 536 443 0.13 43.3
VordingbG2009 615 57 67 5 7 35 262 227 0.09 17.6

Avg. 892 114 57 7 7 50 252 230 0.1 18.1
Max. 2915 1241 116 10 14 140 623 516 0.5 43.3

4.2 Solution approach comparison

In this following, a comparison between the proposed solution approaches is performed.
In all cases Gurobi 5.01 has been used as MIP-solver, and tests were run in C# 5.0
using nUnit 2.6 on Windows 8 64bit. The machine was equipped with an Intel i7 CPU
clocked at 2.80GHz and with 12GB of RAM. The default parameter settings of Gurobi
were used. As initial solution ('MIPStart' parameter), events where assigning to either
their locked timeslot/room or the dummy-timeslot/room. The percentage-gap between
an objective value z and a lower bound LB is calculated by

gap = 100
z − LB

z
(61)

The goal of this section is two-fold; 1) Compare the solutions obtained by each
solution approach when applying a high time-limit. This is important for evaluating
the potential of each approach. 2) Evaluate the solution approaches in terms of the
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bounds obtained by solving the MIP and the two-stage MIP. This is an important
measure of solution quality.

The maximum number of threads and time-limits were set as follows:

MIP 2-stage MIP ALNS

Max. CPU threads 8 8 1
Time limit (s) 7200 6480 / 720 240

As we are interested in obtaining good bounds from the MIP approaches, these are
allowed more computational time and more CPU threads. This means the compari-
son of solution quality favors the MIP approaches. In the next section, a more direct
comparison of solution quality is made.

It should be noted that the described version of ALNS has no parallelization im-
plemented, so it would not bene�t from more threads. A parallel version is considered
for future work (see e.g. Ropke (2009)).

Table 3 shows that the ALNS heuristic �nds the best solution in 78 cases. In no
cases are the pure MIP approach best, and in 20 cases are the two-stage approach
best. In those cases where the two-stage approach is best, the dataset is usually small
in terms of number of events. It was expected that the two-stage approach would
outperform the pure MIP, but it is surprising that the ALNS heuristic outperforms
both MIP approaches.

In total, a lower bound was found for 79 datasets. The MIP was able to �nd a lower
bound in 46 cases, whereas the two-stage approach found a bound in 79 cases. This
means that for the two-stage model, Gurobi was not able to solve the root relaxation
of the stage one model in 21 cases, which is surprising. The model is not numerical
instable, so currently our best guess is that we are facing issues with degeneracy. In 33
cases, the bound obtained by the MIP were best, and in 46 cases the bound obtained
by the two-stage model were best. Note that if the root LP was not solved for a speci�c
dataset, the reported solution is equal to the initial solution.

For those instances where a bound is found, the gap obtained for the ALNS is in
average 25.6%, which seems rather high. Especially considering that those instances
where a gap is not found are the big instances, where it seems likely that the gap is
high. The inevitable question arises whether this is due to a poor bound, or due to
poor solution quality. Future research will hopefully shed light upon this matter.

Figure 5a shows the linear regression of objectives as a function of number of events
in dataset. This shows that as the size of datasets grows, the performance advantage
of ALNS compared to the other solution approaches increases. I.e. the ALNS heuristic
scales better with the size of the datasets. Figure 5b summarizes key measurements
from Table 3.
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Table 3: Comparison of solution approaches. For the MIP model, column 'Time'
shows the runtime, column 'Obj' shows the objective of the obtained solution, col-
umn 'LB' shows the lower bound, and 'Gap' shows the gap between the objective
and the bound found by the MIP and the two-stage MIP. For the two-stage MIP,
column 'Stg1' and 'Stg2' shows the elapsed time for solving the �rst and second
stage, respectively. The remaining columns are analogous to the those de�ned for
the MIP approach. For ALNS is shown the average objective found over 10 runs
'Obj', the standard deviation of these runs 'σ', and 'Gap' denotes the gap between
the average objective and the best bound found. When a bound or solution is not
found within the timelimit, a dash is written. The best solution for each dataset is
written in bold font (skipping draws).

MIP Two-stage MIP ALNS

Dataset Time Obj LB Gap Stg1 Stg2 Obj LB Gap Obj σ Gap

AalborTG2012 >7200 6118 5946 2.8 >6480 1 6018 5934 1.2 6317 66.6 5.9
AarhusA2011 >7200 58015 - 89.7 >6480 93 15872 5986 62.3 10037 387.2 40.4
AarhusA2012 >7200 17096 5722 64.9 >6480 >720 8947 6005 32.9 7971 87.9 24.7
Aars2009 >7200 49504 - 76 >6480 6 20780 11874 42.9 14900 154 20.3
Aars2010 >7200 81970 - 84 >6480 15 25057 13134 47.6 16268 158.8 19.3
Aars2011 >7200 77967 - 87.6 >6480 11 30623 9709 68.3 14256 287.1 31.9
Aars2012 >7200 55049 - 86.5 >6480 4 21206 7456 64.8 10701 99.1 30.3
Alssund2010 >7200 52717 - 87.1 >6480 27 23173 6811 70.6 9967 438.5 31.7
Alssund2012 >7200 108810 - - >6480 2 108810 - - 29803 609.9 -
BagsvaG2010 >7200 6777 3171 53.2 >6480 14 3916 3063 19 3960 87.8 19.9
BirkerG2011 >7200 119600 - - >6480 1 119600 - - 42063 751.9 -
BirkerG2012 >7200 110180 - 85.8 >6480 >720 19322 15662 18.9 19552 54.1 19.9
BjerrG2009 >7200 52639 - 78.9 >6480 8 35514 11094 68.8 16877 271 34.3
BjerrG2010 >7200 12868 3928 69.5 >6480 22 5788 3868 32.1 4983 74 21.2
BjerrG2011 >7200 13009 4142 68.2 >6480 >720 9302 4060 55.5 6334 119.1 34.6
BjerrG2012 >7200 17200 5055 70.6 >6480 354 15265 5007 66.9 8023 220.3 37
BroendG2012 >7200 2005 1881 6.2 1173 14 1929 1859 2.5 2040 30 7.8
CPHWGym2010 >7200 34415 - 89.1 >6480 2 19363 3759 80.6 6775 328.6 44.5
CPHWGym2011 >7200 38232 - 89.3 >6480 2 16212 4095 74.7 5679 179.3 27.9
CPHWGym2012 >7200 40945 - 89.7 >6480 2 15543 4205 73 6762 217.7 37.8
CPHWHG2012 >7200 46625 8157 82.1 >6480 10 23088 8338 63.9 11077 227.6 24.7
CPHWHTX2010 >7200 27174 9179 66.2 >6480 10 15943 8828 42.4 11342 146.4 19.1
CPHWHTX2011 >7200 22466 20460 8.9 >6480 5 20708 18490 1.2 20734 27.6 1.3
CPHWHTX2012 >7200 25998 14481 44.3 >6480 13 21392 13115 32.3 16256 126.1 10.9
DetFG2012 >7200 8017 7168 10.6 >6480 6 7265 7018 1.3 7560 73.4 5.2
DetKG2010 >7200 6058 1732 69.9 >6480 1 4006 1821 54.5 2947 69 38.2
DetKG2011 >7200 5594 1732 68.2 >6480 14 4366 1780 59.2 2820 136 36.9
EUCN2009 >7200 7557 2911 61.5 >6480 2 4298 2856 32.3 3737 116 22.1
EUCN2010 >7200 4231 3329 21.3 >6480 32 3463 3246 3.9 3882 76 14.2
EUCN2011 >7200 1435 1395 2.8 >6480 1 1430 1384 2.5 1468 13 4.9
EUCN2012 >7200 9430 2327 74.9 >6480 1 5059 2363 53.3 3289 160 28.2
EUCNHG2010 >7200 1476 1371 7.1 >6480 5 1421 1368 3.5 1505 28 8.9
EUCS2012 >7200 4689 3576 23.7 >6480 12 3783 3347 5.5 3714 32 3.7
FaaborgG2008 >7200 125330 - - >6480 54 125330 - - 68124 2156 -
FalkonG2009 >7200 88890 - - >6480 0 88890 - - 10449 251 -
FalkonG2011 >7200 76170 - 93.2 >6480 >720 16543 5183 68.7 8584 271 39.6
FalkonG2012 >7200 100190 - 93.9 >6480 >720 16666 6105 63.4 10143 432 39.8
GUAasia2010 >7200 6579 6354 3.4 6 >720 6461 6035 1.7 6527 7 2.7
GUQaqor2011 >7200 19623 4537 76.8 >6480 6 10005 4554 54.5 6674 301 31.8
GUQaqor2012 >7200 11488 4314 62.5 >6480 15 7619 4294 43.4 5733 134 24.8
HadersK2011 >7200 51190 - 92.4 >6480 >720 14229 3909 72.5 7128 386 45.2
HasserG2010 >7200 96790 - - >6480 0 96790 - - 11963 132 -
HasserG2011 >7200 99840 - - >6480 1 99840 - - 16061 472 -
HasserG2012 >7200 112160 - - >6480 2 112034 - - 18338 672 -
HerningG2010 2 37 37 0 0 2 37 35 0 37 0 0
HerningG2011 >7200 163785 - 94 >6480 12 23117 9829 57.5 15091 144 34.9
HerningG2012 >7200 185433 - 94.7 >6480 >720 14952 9763 34.7 13147 76 25.7
HoejeTaG2008 >7200 6292 2253 59.3 >6480 1 2707 2563 5.3 2958 92 13.4
HoejeTaG2009 >7200 45260 - 87.2 >6480 470 26066 5773 77.9 9157 303 37

Continued on next page
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Table 3 � continued from previous page

MIP Two-stage MIP ALNS

Dataset Time Obj LB Gap Stg1 Stg2 Obj LB Gap Obj σ Gap

HoejeTaG2010 >7200 45095 - 86.3 >6480 116 25678 6188 75.9 9862 232 37.3
HoejeTaG2011 >7200 51050 - 86.8 >6480 48 32630 6726 79.4 10158 201.5 33.8
HoejeTaG2012 >7200 72455 7592 89.2 >6480 224 18627 7845 57.9 12502 143.4 37.3
HorsenS2009 63 3100 3100 0 0 2 3100 2865 0 3111 9 0.4
HorsenS2012 >7200 86090 - - >6480 0 86090 - - 10056 434.9 -
Johann2012 >7200 92575 - 80.1 >6480 >720 27781 18456 33.6 23001 193.4 19.8
KalundG2011 >7200 126150 - - >6480 1 126150 - - 38479 514.5 -
KalundG2012 >7200 123010 - - >6480 1 123010 - - 26768 348.8 -
KalundHG2010 >7200 12103 4540 62.4 >6480 16 6351 4551 28.3 5631 83.1 19.2
KoebenPG2012 >7200 1872 637 65.7 >6480 2 874 642 26.5 888 31 27.7
KoegeH2012 >7200 108347 - 91.6 >6480 2 20150 9096 54.9 11418 136.2 20.3
KongshoG2010 >7200 8889 2411 72 >6480 3 7954 2488 68.7 4296 175.8 42.1
MariageG2009 >7200 54030 - 90.5 >6480 161 20138 5118 74.6 8013 251.6 36.1
MorsoeG2012 >7200 42762 - 91 >6480 54 10241 3854 62.4 5651 122.6 31.8
NaerumG2008 >7200 118370 - - >6480 0 117894 - - 24104 502.8 -
NaerumG2009 >7200 100450 - 94.9 209 >720 6681 5114 23.5 7667 62.5 33.3
NielsSG2011 >7200 10464 3323 67.4 >6480 2 6132 3412 44.4 4953 111.7 31.1
NielsSG2012 >7200 12747 5722 55 >6480 16 8003 5738 28.3 6952 107.4 17.5
NordfynG2012 >7200 8201 4152 49.4 >6480 205 4890 4048 15.1 5160 38.6 19.5
NyborgG2011 >7200 94059 - 93.5 >6480 >720 31809 6129 80.7 13944 434.4 56.1
OdderCfU2010 >7200 59540 - 79.5 >6480 1 40032 12188 69.6 18219 189.2 33.1
OdderG2009 >7200 59851 - - >6480 2 57586 - - 9308 206.8 -
OdderG2012 >7200 17402 9602 44.8 >6480 >720 14888 8878 35.5 12307 157.8 22
OrdrupG2010 >7200 75700 - 85.9 >6480 37 12936 10665 17.6 13663 391.8 21.9
OrdrupG2011 >7200 116400 - 85.5 >6480 >720 31329 16904 46 21612 630.4 21.8
RibeK2011 >7200 61945 - 73.8 >6480 390 43175 16209 62.5 21679 260.1 25.2
RysenG2010 >7200 110690 - - >6480 1 110690 - - 39971 148 -
RysenG2011 >7200 100313 - 82.3 >6480 >720 25989 17756 31.7 22260 99.1 20.2
RysenG2012 >7200 110111 - 86.3 >6480 >720 22156 15115 31.8 19841 189.2 23.8
SanktAG2012 >7200 4624 3415 26.2 75 >720 3911 3376 12.7 4207 33.5 18.8
SkanderG2010 >7200 7708 6051 21.5 77 >720 6875 5712 12 7209 36.5 16.1
SkanderG2011 >7200 88470 - - >6480 0 88470 - - 22525 368.5 -
SkanderG2012 >7200 98487 - - >6480 1 95319 - - 20138 682.8 -
SkiveG2010 >7200 194740 - - >6480 21 194740 - - 43120 1261.2 -
SlagelG2012 >7200 162960 - - >6480 36 162765 - - 32167 1225.7 -
SoendS2011 >7200 83560 - - >6480 1 83560 - - 11776 248.4 -
SoendS2012 >7200 17778 6838 61.5 >6480 2 11915 6647 42.6 8420 94 18.8
StruerS2012 >7200 - - - >6480 18 207488 - - 73361 3188 -
VardeG2012 >7200 20933 5921 71.7 >6480 13 20622 5720 71.3 10777 1911 45.1
VejenG2009 >7200 69450 - - >6480 0 69450 - - 11264 209 -
Vejlefjo2011 >7200 52035 - 83.6 >6480 >720 18043 8511 52.8 13514 183 37
VestfynG2009 >7200 11606 4176 64 >6480 347 5999 4137 30.4 5973 148.5 30.1
VestfynG2010 >7200 16895 4308 74.5 >6480 354 5974 4225 27.9 6761 211.3 36.3
VestfynG2011 >7200 13624 5110 62.5 >6480 25 6657 4925 23.2 7013 218.7 27.1
VestfynG2012 >7200 11095 4279 61.4 >6480 48 5212 4210 17.9 5244 52.5 18.4
ViborgK2011 >7200 99170 - - >6480 0 99170 - - 14923 406.1 -
ViborgTG2009 >7200 19891 8695 56.3 >6480 33 12077 8356 28 10216 102 14.9
ViborgTG2010 >7200 12727 4130 67.6 >6480 112 10226 3990 59.6 4932 66 16.3
ViborgTG2011 >7200 16433 6716 59.1 >6480 46 9808 6204 31.5 7478 40 10.2
VirumG2012 >7200 140883 - 87.4 >6480 >720 32183 17770 44.8 27738 502 35.9
VordingbG2009 >7200 17025 5457 68 >6480 91 9905 5243 44.9 8568 97 36.3

Avg.† 65.3 41.3 25.6
Max. 94.9 80.7 56.1
No. times best 0 20 78
No. bound found 46 79
No. best bound 33 46

† Rows where either of the gap columns are not available are skipped for a fair comparison.
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(a) Objective of datasets as a function of num-
ber of events. Linear regression for each set of
points is also shown.
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Fig. 5: Performance of the three solution approaches illustrated.

4.3 Operational considerations

In this section it is considered what approach can be used to �nd the best solutions
within a short time horizon. I.e. for the MIP approaches, we are not interested in
the bound, but only in actual solutions. According to the documentation of Gurobi,
some parameters will make the solver focus on �nding good solutions. Table 4 shows
the chosen values for these parameters. Furthermore the max. number of threads for
Gurobi is set to 1, to obtain a fair comparison with the ALNS heuristic.

Table 4: Gurobi parameter settings in operational setting

Default Value Intention

MIPFocus 0 1 Focus on �nding good solutions
Heuristics 0.05 0.90 Attempt to spend 90% of solver time on heuristics
ImproveStartTime in�nity 0 Immediately focus on solution quality
Cuts -1 0 Turn o� all cuts

Table 5 shows for each dataset the best found solution by each solution approach after
240, 420 and 600 seconds. A user of Lectio will usually not run the algorithm for more
than 10 minutes, so these time horizons seem appropriate.

The table shows that the ALNS algorithm �nds better solutions for all three time
horizons in the majority of cases (88, 86 and 87, respectively). Furthermore ALNS is
able to �nd a feasible solution in all cases. This clearly makes ALNS the strongest
candidate to deploy to the users of Lectio.
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Table 5: Best found solutions for the three solution approaches at certain points
in time.

240s 420s 600s

Dataset MIP 2SMIP ALNS MIP 2SMIP ALNS MIP 2SMIP ALNS

AalborTG2012 8530 6182 6296 8530 6069 6278 7776 6067 6259
AarhusA2011 58015 58015 10244 58015 58015 10063 58015 58015 9995

AarhusA2012 66350 12121 8013 66350 10966 7907 66350 10738 7880

Aars2009 - 49484 15068 49504 49484 14900 49504 49484 14835

Aars2010 - 81970 16474 - 30344 16250 - 30344 16127

Aars2011 - 64774 14511 77967 64774 14230 77967 64774 14150

Aars2012 - 52520 10674 55049 25984 10544 55049 25252 10510

Alssund2010 52717 52585 9825 52717 52585 9714 52717 52585 9658

Alssund2012 - 108810 30349 - 108810 29088 - 108810 28530

BagsvaG2010 9212 5855 3942 9212 5400 3939 8142 5247 3939

BirkerG2011 - 119600 42190 - 119600 41415 119600 119600 41066

BirkerG2012 - 19526 19642 - 19497 19566 - 19464 19434

BjerrG2009 52639 52395 17152 52639 52395 16846 52639 52395 16716

BjerrG2010 44901 7327 4923 14512 7118 4889 14512 7052 4885

BjerrG2011 52933 11371 6339 52933 11059 6302 52933 10796 6257

BjerrG2012 39745 39745 7974 39745 39745 7838 39745 39745 7797

BroendG2012 2263 1935 2040 2207 1935 2036 2002 1935 2036
CPHWGym2010 34415 34415 6670 34415 34415 6583 34415 34415 6560

CPHWGym2011 38232 37368 5713 38232 16573 5628 38232 16573 5601

CPHWGym2012 40945 37095 6554 40945 37095 6508 40945 21405 6487

CPHWHG2012 46625 46099 11023 46625 46099 10954 46625 46099 10919

CPHWHTX2010 38497 21441 11293 38497 21441 11215 38497 21441 11199

CPHWHTX2011 30578 21508 20745 24403 21349 20729 24403 21024 20724

CPHWHTX2012 31860 27169 16137 31860 26028 16096 31860 25441 16090

DetFG2012 19736 7460 7583 14147 7417 7557 13618 7415 7546
DetKG2010 7556 6139 2951 7556 6046 2949 7418 6041 2949

DetKG2011 14445 6360 2863 6653 6348 2848 6653 6185 2846

EUCN2009 18590 5833 3680 18590 5693 3672 7856 5335 3671

EUCN2010 5958 3961 3940 5947 3873 3916 5947 3873 3910
EUCN2011 1451 1484 1479 1448 1478 1479 1448 1478 1479
EUCN2012 22570 8262 3253 22570 7549 3227 22570 6993 3223

EUCNHG2010 1847 1443 1488 1842 1442 1484 1842 1442 1484
EUCS2012 6629 4229 3710 5169 4078 3707 5169 4078 3706

FaaborgG2008 - 125330 69675 - 125330 64777 - 125330 62082

FalkonG2009 - 88890 10541 - 88890 10212 - 88890 10098

FalkonG2011 - 76170 8629 76170 76170 8375 76170 76170 8286

FalkonG2012 - 82629 10153 100190 82629 9786 100190 82629 9688

GUAasia2010 - 6466 6534 38850 6462 6515 38850 6457 6509
GUQaqor2011 38210 11910 6749 38210 11795 6625 38210 11810 6577

GUQaqor2012 42346 10810 5780 42346 9306 5694 42346 9296 5666

HadersK2011 51190 51190 7156 51190 51190 7029 51190 51190 6974

HasserG2010 - 96790 12061 96790 96790 11645 96790 96790 11491

HasserG2011 - 99840 15970 - 99840 15479 99840 99840 15280

HasserG2012 - 112034 19099 - 112034 18379 - 112034 18016

HerningG2010 - 37 37 - 37 37 - 37 37
HerningG2011 163785 102119 15971 163785 26648 15602 163785 26646 15347

HerningG2012 185433 - 13290 185433 28140 13117 185433 28140 12964

HoejeTaG2008 14865 4950 2941 6923 4646 2921 6923 4175 2920

HoejeTaG2009 - 45260 9275 45260 45260 9118 45260 28064 9079

HoejeTaG2010 - 45095 9733 45095 32686 9644 45095 28120 9615

HoejeTaG2011 - 51050 10168 - 51050 10065 51050 51050 10021

HoejeTaG2012 - 30074 12468 - 30074 12349 - 25206 12298

HorsenS2009 3100 3100 3115 3100 3100 3115 3100 3100 3115
HorsenS2012 - 86090 10181 - 86090 9733 86090 86090 9550

Johann2012 - 92575 23104 - 31672 22892 92575 31507 22780

KalundG2011 - 126150 39102 - 126150 38464 126150 126150 37929

KalundG2012 - 123010 27503 - 123010 26451 - 123010 25828

KalundHG2010 27530 7981 5631 12214 7879 5599 12008 7758 5596

KoebenPG2012 2517 1589 876 2517 1483 876 2517 1333 876

KoegeH2012 - 26279 11431 108347 22745 11338 108347 21005 11274

KongshoG2010 34265 10249 4302 34265 8675 4278 34265 8602 4268

MariageG2009 54030 54030 8152 54030 54030 8045 54030 54030 7962

Continued on next page
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Table 5 � continued from previous page

240s 420s 600s

Dataset MIP 2SMIP ALNS MIP 2SMIP ALNS MIP 2SMIP ALNS

MorsoeG2012 42762 42395 5681 42762 42395 5627 42762 42395 5609

NaerumG2008 - 117894 24543 118370 117894 23776 118370 117894 23311

NaerumG2009 - 6752 7767 - 6752 7679 - 6746 7545
NielsSG2011 - 10828 4852 19200 10486 4799 19200 8954 4796

NielsSG2012 50253 11041 6945 50253 10756 6902 50253 10752 6848

NordfynG2012 63210 6216 5218 63210 5909 5158 8227 5909 5137

NyborgG2011 - 85372 14041 - 85372 13647 94059 85372 13430

OdderCfU2010 - 59473 18229 - 59473 18059 - 59473 17997

OdderG2009 59851 57586 9271 59851 57586 9037 59851 57586 8939

OdderG2012 86520 16963 12482 86520 14977 12282 86520 14976 12210

OrdrupG2010 75700 75700 13645 75700 14806 13465 75700 13944 13337

OrdrupG2011 - 116400 21986 - 116400 21798 - 116400 21541

RibeK2011 - 61945 21762 61945 61945 21544 61945 61945 21490

RysenG2010 - 110690 40194 - 110690 40010 110690 110690 39778

RysenG2011 - 89741 22391 100313 89741 22191 100313 89741 22006

RysenG2012 - 95590 20242 - 95590 19910 110111 95590 19598

SanktAG2012 54080 3824 4252 54080 3821 4200 54080 3819 4172
SkanderG2010 - 6893 7320 - 6878 7234 - 6876 7152
SkanderG2011 - 88470 22985 - 88470 22374 - 88470 22087

SkanderG2012 - 95319 20367 - 95319 19659 - 95319 19334

SkiveG2010 - 194740 43699 - 194740 42967 - 194740 42127

SlagelG2012 - 162765 30743 - 162765 30186 - 162765 29673

SoendS2011 83560 83560 12049 83560 83560 11674 83560 83560 11519

SoendS2012 87883 14589 8451 16717 13920 8355 16717 12765 8298

StruerS2012 - 207488 69927 - 207488 68367 - 207488 67294

VardeG2012 60980 60980 9684 60980 60980 9526 60980 60980 9455

VejenG2009 - 69450 11224 - 69450 10886 69450 69450 10779

Vejlefjo2011 - 52035 13478 - 52035 13338 52035 52035 13293

VestfynG2009 62063 7914 6117 62063 5867 6037 62063 5755 6011
VestfynG2010 61216 11853 6647 61216 10155 6562 61216 9303 6548

VestfynG2011 67790 8577 7068 67790 8521 6997 67790 8269 6936

VestfynG2012 66096 7607 5241 66096 7354 5187 66096 7352 5182

ViborgK2011 - 99170 15459 - 99170 14670 - 99170 14360

ViborgTG2009 39385 21077 10229 39385 14309 10156 39385 13630 10141

ViborgTG2010 34980 12299 4972 34980 11733 4943 34980 10977 4934

ViborgTG2011 36300 11887 7496 36300 9723 7474 36300 9723 7469

VirumG2012 - 111119 23561 140883 111119 23359 140883 34158 23176

VordingbG2009 55115 11646 8607 55115 10953 8535 55115 10939 8523

No. solutions 55 99 100 70 100 100 81 100 100
No. times best 1 11 88 1 13 86 1 12 87

5 Conclusion

A complex model of timetabling for high schools in Denmark has been described.
This model is build upon the timetabling component of Lectio, and has been proven
to be NP-hard. An in-depth description of a MIP approach has been given, and a
simple decomposition suggested. Furthermore, a heuristic based on Adaptive Large
Neighborhood Search has been discussed, which yields a total of three di�erent solution
approaches.

Using 100 real-life datasets, these solution approaches have been evaluated in using
lower bounds and solution quality in a production setting. The ALNS heuristic proved
to perform best wrt. both aspects.

The gap between the solutions found by ALNS and the best bound found is in
average 25.6%, which is unsatisfactory. Future research will hopefully be able to narrow
this gap, either by �nding better bounds, or by strengthening the solution approaches.

The �rst version of the ALNS heuristic went into production in Lectio on 27/2-2012.
The response received from the high schools has been positive, and numerous feature
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requests and problem extensions have been suggested. This facilitates the ongoing
development of the algorithms.

The chosen problem formulation might leave events which are not assigned to a
timeslot. This can happen either because the problem is too constrained due to the
parameters set by the high school, or it can happen as a sub-optimal solution was
provided by the algorithm. A way to tackle such unassigned events is topic for future
work. Currently we believe a solution could be to incorporate a di�erent algorithm
which is independent of the solution approaches described in this paper. I.e. once
the algorithm is �nished, assume a number of events are left unassigned to timeslots.
Now the user of Lectio can attempt to �nd a timeslot for one or several of these events,
using an algorithm which slightly permutes the timetable, and thereby �nds reasonable
timeslots for the selected unassigned events. This algorithm could possible be based on
a concept like Cyclic Transfers (Post et al. (2010)) or a variant of the Repair Problem
for timetables (Kaneko et al. (1999); Kingston (2012)).
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A Conversion to the XHSTT format

The XHSTT format (Post et al. (2012a)) is an XML-based format for (High) School
Timetabling problem instances. It was used for the International Timetabling Compe-
tition 2011 (Post et al. (2012b)). Currently, 38 non-arti�cial datasets from 11 di�erent
countries are available.

In this section the problem instances of Lectio will be modeled in the XHSTT
format. This will allow us to easily publish our instances. However, some aspects of
HSTTP cannot currently be modeled with XHSTT, which is discussed in Section A.2. It
is assumed throughout this section that the reader has in-depth knowledge of XHSTT.
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Times

� TimeGroups: One day-TimeGroup is created for each day d ∈ D . Furthermore, if
the instance is a two-week instance, a week-TimeGroup representing each week is
also created. Furthermore a TimeGroup is created for each neighbor-day pair, as
described in Section 2.2.3, which contain all times of the respective days.

� Time: One Time is created for each timeslot t ∈ T .

Resources

� ResourceTypes: Three ResourceTypes exist, namely Room, Student, Teacher.
These correspond analogously to the sets R and A (students and teachers).

� Resources: For each room r ∈ R and each entity a ∈ A, a Resource of corre-
sponding type is created.

Events

� EventGroups: For each class c ∈ C , a corresponding EventGroup is created. The
members of an EventGroup are the events where the class participates. Notice that
this is very similar to the de�nition of Courses, but since an event can contain
more than one class, we use EventGroups instead of Courses.

� Events: A conversion from HSTTP EventChains to XHSTT-Events is now de-
scribed. Events are either combined into the same event or linked together using
constraints (i.e. certain events should be placed in the same or immediately follow-
ing timeslot as other events).
� Denote the set of entities, the set of classes, and the set of eligible rooms for

event e by Ae, Ce and Re, respectively. If for EventChain ec there exists
two events e1, e2 ∈ ec for which the set of entities, classes, eligible rooms,
or locked room are di�erent, i.e. if Ae1 6= Ae2 , Ce1 6= Ce2 , Re1 6= Re2 ,
or LRe1,r 6= LRe2,r, then all events in EventChain ec must be linked using
constraints.

� If any event e ∈ ec should be placed alongside other events, i.e. Se 6= ∅, then
all events in EventChain ec must be linked using constraints.

� If none of the above applies, events are combined into one Event.
Figure 6 illustrates conversion of some EventChains to XHSTT Events.

e6 e7

e3 e4 e5

e8

e9
e10 e11

e12 e13
e1

e2

Fig. 6: Conversion from EventChains to XHSTT events. e1 and e2 represent
events which are combined into one XHSTT-Event. The remaining events are
linked together using constraints.
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A.1 Constraints

In the following constraints of HSTTP is mapped to the XHSTT format. As in the
MIP model (40), all constraints have CostFunction = Sum.

A.1.1 One timeslot - AssignTime

Only a single AssignTime constraint is needed, which applies to all events. Weight is
set equal to 1, and Required equals true.

A.1.2 One room - AssignResource

A single AssignResource constraint is created, which applies to all events, and has
Role = Room and Required = true. The Weight is set equal to 1.

A.1.3 Do not split events - SplitEvent

No events should be split, so all events are grouped by their duration, and for each
group a single SplitEvent constraint is created, which applies to these Events, have
Required = true, Weight = 1000, MinimumDuration and MaximumDuration set
accordingly, and MinimumAmount = MaximumAmount = 1.

A.1.4 Teacher unavailable times - AvoidUnavailableTimes

The set of unavailable timeslots for a teacher is known (these partly de�nes parameter
De,t). Group teachers by this set of timeslots, and create a AvoidUnavailableTimes

constraint which applies to these teachers, and the respective set of timeslots. Further,
Required = true, and Weight = 1.

Unavailable times for students are skipped as these are usually arti�cial in the sense
that students are only marked as unavailable in certain timeslots by preference. I.e. for
students it is preferred that late timeslots on each day are only used if necessary.

A.1.5 Do not split EventChains over days - PreferTimes

Neither an event or an EventChain can be assigned timeslots such that it spans over
several days. For each event, identify its feasible timeslots by its EventChain. E.g. if
an event has events which must be placed in contigious positions, then it cannot be
assigned the last timeslot on a day.

Group events by their set of feasible timeslots. Create a PreferTimes constraint
which apples to the appropriate events and times, has Required = true and Weight =
1.

A.1.6 Eligible rooms - PreferResource

Each event must be constrained such that it is only assigned its eligible rooms. Identify
a set of Resources by parameterKe,r, and create an PreferResource constraint with
Required = true, Weight = 1000 and Role = Room. If several events have the same
set of eligible rooms, these PreferResource constraints can be grouped. Notice that
the priority of rooms as de�ned by eq. (42) is ignored.
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A.1.7 Entity and Room con�icts - AvoidClashes

Only one AvoidClashes constraint is de�ned, which applies to all rooms, students
and teachers. The constraint has Required set to true and Weight = 1. The XHSTT
format does not currently allow us to restrict AvoidClashes constraint to only check
for clashes in a subset of events, as was done in eq. (4′) and eq. (5′′). Therefore instances
might have inevitable violations of hard constraints.

A.1.8 Required days o� - ClusterBusyTimes

Group teacher-entities by their number of required days o� D, skipping those which
require no days o�. For each of these groups, generate a ClusterBusyTimes constraint
which applies to these entities, with Minimum = 0, Maximum = |D| −D, Required =
true, Weight = 1 and TimeGroups equal to the set of timegroups representing days.

A.1.9 Days occupied penalty - ClusterBusyTimes

Create a ClusterBusyTimes constraint which applies to all teacher-entities, with
Minimum = Maximum = 0, Required = false, Weight as set by eq. (44), and
TimeGroups equal to the set of timegroups representing days.

A.1.10 Days o� penalty - ClusterBusyTimes

Create a ClusterBusyTimes constraint which applies to all student-entities, with
Minimum = Maximum = |D|, Required = false, Weight as set by eq. (45), and
TimeGroups equal to the set of timegroups representing days.

A.1.11 Neighbor day con�icts - SpreadEvents

De�ne an SpreadEvents constraint which applies to all EventGroups representing
classes, with Weight as set by eg. (47) and Required = false. The TimeGroups

section contains all TimeGroups which de�ne a neighbor-day pair, and all entries have
Minimum = 0, Maximum = 1. Notice that all neighborday con�icts are penalized for all
classes, contrary to eq. (40m).

A.1.12 Penalize idle slots - LimitIdleSlots

Two LimitIdleSlots constraints are created, which applies to all student-entities and
all teacher-entities, respectively. The Weight is set as by eq. (43), and both constraints
have Required = false, Minimum = Maximum = 0, and TimeGroups representing
days.

A.1.13 Events in same timeslot - LinkEvents

Events which should be placed in the same timeslot as others can be speci�ed using
the LinkEvent constraint. For each set of these events, create a LinkEvents con-
straint which applies to these events, with Required = true, Weight = 1, and one
EventGroup which represents all events.
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A.1.14 Events in contiguous timeslots - OrderEvents

For events which should be placed in contiguous timeslots ('followers'), an OrderEvents
constraints is created with Required = true and Weight = 1000. The constraint
applies to all pairs of events (e1, e2) where e2 should follow immediately after e1. All
pairs have MinSeparation = MaxSeparation = 0.

A.1.15 Class day con�icts - SpreadEvent

A single SpreadEvents constraint is created, which applies to all EventGroups repre-
senting classes, with Required = true and Weight = 1. The TimeGroups-section is set
equal to the set of timegroups representing days, with every entry having Minimum = 0
and Maximum = 1, Notice that it is not possible to constrain the events for which this
constraints is applied, as was done in eq. (25). This may lead to hard constraint vio-
lations if classes are part of several events in the same EventChain, and these events
cannot be combined into the same Event, as described in the Event-conversion scheme.

A.1.16 Daily workload - LimitBusyTimes

Group all teacher-entities by their maximum number of work-hours per day Wa. For
each of these groups, create a LimitBusy constraint which applies to these teachers,
with Minimum = 0,Maximum = Wa, Required = true, Weight = 1, and timegroups
representing days.

A.1.17 More than one timeslot - LimitBusyTimes

Create a LimitBusy constraint which applies to all teachers, with Minimum = 2,
Maximum = |M|, Weight as set by eq. (48), Required = false, and timegroups
representing days.

A.1.18 Week stability - LimitBusyTimes

The week stability constraint (40ab) cannot be modeled entirely as-is. Instead it is
assumed that all events of class c is assigned a timeslot. This assumption seems fair in
light of the applied AssignTime constraint. Let dc =

∑
e Je,c be the number of events

containing class c. Now group classes by dc and create a SpreadEvents constraint
which applies to all EventGroups representing these classes, have Required = false

and applies to two timegroups, each representing a week, with Minimum = bdc2 c and
Maximum = ddc2 e. Thereby a class with 5 event must have a week-distribution of 2/3
or 3/2, and a class with 6 events must have the distribution 3/3.

A.2 Summary

The following aspect of HSTTP are not modeled with the XHSTT format:

� Penalty for rooms with low priority for events, as de�ned in eq. (42). This is a
minor �aw, as few events will have second and third-priority rooms.
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� Events can be assigned a room, but not a timeslot. This also clashes with a hard
constraint of HSTTP, however, it does not pose a major problem as such events
could be �ltered out if we imagine solving the XHSTT instance in a practical
setting.

� All neighbor-day con�icts are penalized. As the penalty given is small, this is a
minor �aw.

� All room con�icts, entity con�icts and class day con�icts are penalized, which might
give inevitable violation of hard constraints.

� Previous room and previous timeslot constraints (40aa) and (40z) are not added,
even though it would be possible using PreferRoom and PreferTime constraints.
However these constraints of HSTTP are more related to the practical scenery of
Lectio, and therefore those does not seem well-suited for an XHSTT instance.

� Constraints room stability ((40u) and (40t)) and days o� week stability ((40ac))
cannot currently be modeled with XHSTT. Both are small �aws, as these represent
soft-constraints with a small weight.

� The combining of students as described in the beginning of Section 2.2 is not
taken into account. This would be possible by introducing separate constraints for
di�erent groups of students.

Even with these inconclusive aspects of XHSTT with respect to HSTTP, we still believe
the conversion of Lectio instances have signi�cant contribution. All hard-constraints
can be modeled more or less accurate. The soft-constraints which are left out are not
of very signi�cant character. Furthermore the resulting datasets are the �rst ones to
use the OrderEvents constraint, and the �rst ones to span multiple weeks.

A.3 XHSTT Datasets

Currently, copyright issues have been settled with three schools, such that three datasets
have been made available in the archive XHSTT-2013. We hope to be able to make
more datasets publicly available soon.

Table 6 shows statistics for the datasets converted into the XHSTT format. The
heuristic described in Sørensen et al. (2012) is applied to all instances 10 times, each
with a timelimit of 240 seconds, and the best solution found is shown in the table.
It is seen that all found solutions contain hard constraint violations. As previously
described, it is expected that in the majority of cases, the optimal solution will contain
some violation of hard constraints.

Table 6: XHSTT datasets statistics.

Dataset Times Teach. Rooms Classes Stud. Events
Total

duration Best sol.

FalkonG2012 50 91 63 313 278 1120 1120 (101,19464)
HasserG2012 50 100 69 423 521 1475 1475 (319,24312)
VejenG2009 60 46 53 189 163 928 928 (2,23275)



A complex model of high school timetabling is presented, which originates from the problem-setting 
in the timetabling software of the online high school ERP-system Lectio.
An Integer Programming formulation is described in detail and a two-stage decomposition is sug-
gested. It is proven that both of these formulations are NP-hard.
An heuristic based on Adaptive Large Neighborhood Search is also applied. Using 100 real-life data-
sets, comprehensive computational results are provided showing that the ALNS heuristic outper-
forms the IP approaches.
The ALNS heuristic has been incorporated in Lectio and is currently available to almost 200 different 
high schools in Denmark.
Furthermore, a conversion of the datasets into the XHSTT format is described and some datasets 
are made publicly available.
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