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ABSTRACT

In this paper we present a new approach for estimating the number of
active speech sources in the presence of interfering noise sources and
reverberation. First, a binaural front-end is used to detect the spa-
tial positions of all active sound sources, resulting in a binary mask
for each candidate position. Then, each candidate position is char-
acterized by a set of features. In addition to exploiting the overall
spectral shape, a new set of mask-based features is proposed which
aims at characterizing the pattern of the estimated binary mask. The
decision stage for detecting a speech source is based on a support
vector machine (SVM) classifier. A systematic analysis shows that
the proposed algorithm is able to blindly determine the number and
the corresponding spatial positions of speech sources in multisource
scenarios and generalizes well to unknown acoustic conditions.

Index Terms— binaural processing, binary mask, computa-
tional auditory scene analysis (CASA)

1. INTRODUCTION

The automatic detection of target sources is required for a wide range
of applications, among them self-steering hearing aids [1] and tele-
conferencing systems. In such applications it is important to detect
only the speech sources and distinguish them from interfering noise.

If it were assumed that only target sources are acoustically ac-
tive, which is a strong limitation for practical applications, it might
be appropriate to cluster direction of arrival (DOA) estimates to
make inferences about the number of target sources [2, 3, 4]. In
more realistic scenarios, however, two target speakers might be in-
volved in a conversation while noise sources and room reverberation
interfere, making the problem much more difficult. Thus, evidence
about the spatial activity of sound sources needs to be combined
with a distinction between speech and noise sources.

Recently we have presented a speech detection module (SDM)
which is able to select an a priori known number of speech sources
from a set of candidate positions by exploiting the distinct spectral
characteristics of speech and noise sources with a missing data (MD)
classifier [5]. The current study extends the approach by remov-
ing the a priori knowledge about the number of target sources. To
achieve a blind estimation of the number of active speech sources,
each detected candidate source is characterized by a set of features.
A decision stage based on an SVM classifier is employed to auto-
matically select the candidate sources that are most likely speech. In
addition, the present study investigates to what extent the pattern of
an estimated binary mask is specific to speech sources and whether
features describing the mask pattern itself can be exploited to further
improve the detection of speech sources in adverse acoustic scenar-
ios. Therefore, a new set of mask-based features is proposed which
aims at capturing the specific patterns of reliable T-F units in the
estimated binary mask of speech and noise sources.

2. SYSTEM DESCRIPTION

Given a binaural mixture, the proposed algorithm aims at determin-
ing the number and the spatial locations of all active sources and
subsequently identifying the ones that correspond to speech sources.
The system consists of three main stages, namely a binaural front-
end for robust localization of active sound sources, a feature extrac-
tion stage, and an SVM-based decision stage. In the following the
individual blocks are explained in detail.

2.1. Binaural front-end for robust localization

The localization stage is based on a binaural front-end for robust
sound source localization [4]. The assumed input is a binaural sig-
nal sampled at 16 kHz. First, the acoustic signal is split into Q = 32
Gammatone filter channels with center frequencies equally spaced
on the equivalent rectangular bandwidth (ERB) scale between 80
and 5000Hz. Then, interaural time differences (ITDs) and inter-
aural level differences (ILDs) are extracted in individual frequency
channels by analyzing 20-ms frames (B samples) with a shift of
10ms (O samples). Both interaural cues are combined in a two-
dimensional (2D) binaural feature space �xt,f = { ˆitdt,f , ˆildt,f},
where t and f indicate time frames and Gammatone filter channels,
respectively. To achieve robust localization for a set of K = 37
sound source directions {ϕ1, . . . , ϕK} spaced by 5◦ within the
range of [−90◦, 90◦], the joint distribution of both ITDs and ILDs is
approximated by a set of frequency- and azimuth-dependent diago-
nal Gaussian mixture models (GMMs) {λf,ϕ1 , . . . , λf,ϕK} with 15
Gaussian components [4]. Multi-conditional training is performed
to incorporate the uncertainty of binaural cues resulting from mul-
tiple sound sources, changes in the source-receiver configuration,
and reverberation [4]. Given the binaural feature vector �xt,f , a
three-dimensional spatial log-likelihood can be computed that the
k-th source direction is active at frame t and frequency channel f :

L (t, f, k) = log p (�xt,f |λf,ϕk ) . (1)

To obtain a robust estimation of the spatial positions of all active
sources, the log-likelihood about a source location is first accumu-
lated across all frequency channels, and the most probable location
is used to reflect the frame-based azimuth estimate:

P̂ (t) = arg max
k

∑Q

f=1
L (t, f, k) . (2)

Then, all frame-based azimuth estimates P̂ (t) are pooled together
over the entire mixture to form an azimuth histogram H , where H[k]
represents the number of azimuth estimates that are assigned to the
k-th sound source direction. Peaks in this histogram indicate relevant
sound source activity, and the corresponding histogram bin indices
are used to form a set of M candidate positions L = {�1, . . . , �M}.
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Furthermore, the spatial log-likelihood about sound source loca-
tions is used to estimate a binary mask M for each candidate posi-
tion by determining the most dominant source direction among all
candidate positions for each individual T-F unit:

Mm (t, f) =

{
1 if m = arg max

k∈L
L (t, f, k)

0 otherwise.
(3)

2.2. Feature extraction

All detected candidate positions are characterized by a set of fea-
tures X. The first three features are based on the previously devel-
oped speech detection module [5]. Furthermore, a new set of mask-
based features is proposed to describe the distribution of reliable T-F
units in the estimated binary mask.

2.2.1. Speech detection module features

As proposed in [5], the estimated binary mask is used to exploit the
distinct spectral characteristics of the speech and noise signal with a
missing data (MD) classifier. Based on a smoothed envelope ef ob-
tained by low-pass filtering the half-wave rectified output of the f -th
Gammatone channel with a time constant of 10ms, the mean abso-
lute deviation of the envelope over B time samples with a shift of O
samples is calculated as F (t, f) = 1

B

∑B−1
b=0 |ef (tO + b)− ēf |,

where ēf reflects the mean envelope of the t-th frame. Note that the
left and right ear signals are averaged prior to envelope extraction.
The distribution of this spectral feature F is approximated by two
diagonal GMMs, namely λSpeech and λNoise, for about 30 minutes
of clean speech and noise files. Based on the estimated binary mask
Mm, the two GMM models λSpeech and λNoise, and the spectral
feature space F , the first feature computes the log-likelihood ratio
that the m-th candidate corresponds to a speech source:

Xm,1 = log

(
p (F|λSpeech)

p (F|λNoise)

)
. (4)

The second feature uses a normalized histogram of the frame-
based azimuth estimates to approximate the probability that the m-th
candidate was acoustically active over the entire mixture:

Xm,2 = H [�m] /
∑
k

H [k] (5)

The third feature is a combination of the first two features
Xm,3 = Xm,1+log(Xm,2). This azimuth-weighted log-likelihood
ratio performed best in ranking candidate sources according to their
likelihood of being speech [5]. Therefore, Xm,3 will be also used as
a decision criterion for the first baseline system (see Section 3.2).

2.2.2. Mask-based features

By visual inspection it often seems possible to identify the mask pat-
tern of a speech source when comparing it with mask patterns that
correspond to noise sources. An illustration of typical mask pat-
terns estimated by the binaural front-end is given in Fig. 1 where
the masks in panels (a) and (b) depict noise sources and the mask in
panel (c) corresponds to a speech source. Although spectro-temporal
regions of speech-dominated T-F units are sparsely distributed in the
presence of noise [6], they still tend to occupy contiguous groups of
neighboring T-F units, resulting in coherent patches, so-called frag-
ments. In contrast, the patterns of noise-dominated T-F units often
appear to be more diffuse and less compact. This discernability of
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Fig. 1. Typical mask patterns corresponding to 3 competing sources:
(a)-(b) factory noise sources located at −85 ◦ and −45 ◦, and (c) a
speech source at 35 ◦. Black pixels indicate reliable T-F units.

mask patterns related to speech and noise sources motivated the de-
sign of a new feature set, which aims at characterizing these distinct
differences in the distribution of reliable T-F units between speech
and noise sources. Furthermore, in the context of speech recogni-
tion, a recent study reported that mask patterns contain sufficient
information to be used for isolated digit recognition [7].

To describe the sparsity of a particular binary mask patternMm,
we first extract a set of t, f indices Rm = {t1, f1, . . . , tR, fR} de-
scribing the position of all reliable T-F units. Furthermore, a set of
fragments Pm = {P1

m, . . . ,PP
m} is created. A fragment itself is

defined as a set of at least two t, f indices which refer to the position
of reliable T-F units in the binary mask that are connected either hor-
izontally or vertically (4-neighbors connectivity). Then, we extract
the following fragment-related features: the number of fragments re-
lated to the total number of reliable T-F units Xm,4 = |Pm|/|Rm|,
where |.| refers to the cardinality of a set; the average fragment size
Xm,5 = 1

P

∑P
p=1 |Pp

m|; and the percentage of reliable T-F units that
are covered by fragments Xm,6 = 1

|Rm|
∑P

p=1 |Pp
m|. Likewise, the

percentage of reliable T-F units that are covered by fragments larger
than 10 and 20 T-F units is computed, resulting in feature Xm,7 and
Xm,8, respectively.

To measure the amount of randomness that is associated with the
distribution of reliable T-F units, a 2D entropy filter is applied to the
binary maskMm, resulting in a 2D entropy map Em

Em(t, f) = entropy
{Mm

(
t′, f ′) :

(
t′, f ′) ∈W(t,f)

}
, (6)

where W(t,f) is chosen to be a plus sign-shaped neighborhood func-
tion [8] of dimensions 3 x 3 which is centered around t, f

W(t,f) := {(u, v) : max {|u− t|, |v − f |} ≤ 1 ∧ (7)
min {|u− t|, |v − f |} = 0}.

Note that the mask pattern Mm is symmetrically mirrored for T-F
units that are located at the boarders of the mask. Afterwards, the
mean of the entropy map Em is calculated over the set of reliable
T-F units

Xm,9 =
1

|Rm|
∑

t,f∈Rm

Em(t, f). (8)

We hypothesize that lower entropy values will be observed for
speech-specific mask patterns where a consistent labeling of T-F
units over a wider range of connected T-F units is expected. In
contrast, higher values are conceivable for noisy mask patterns with
a more sparse distribution of reliable T-F units as shown in Fig. 1.

Speech-dominated T-F units are often located in frequency re-
gions of formants. Therefore, the centroid is used to describe the
center of gravity of the m-th mask pattern

Xm,10 =
1

|Rm|
∑

t,f∈Rm

Mm(t, f) · cf , (9)

where cf refers to the center frequency of the f -th Gammatone chan-
nel in Hz.



Table 1. Acoustic conditions for training and evaluation.
Training Testing

# speech sources S 1, 2 0, 1, 2, 3
# noise sourcesN 1 1, 2, 3

SNR (dBA) {−∞, 10, 20,∞} {0, 5, 10, 15, 20}
noise type babble, factor 1 babble, factory 1,

and factory 2 factory 2, destroyer
engine, cockpit, car

T60 (s) 0.5 0, 0.29, 0.48
drad (m) 0.5, 1.0, 2.0 1.5

Speech signals are broadband and tend to simultaneously excite
a number of neighboring frequency channels (see Fig. 1(c)), which
is not generally true for noise. Therefore, onsets are detected by
computing the first order difference of the binary mask patternMm

across adjacent time frames. Then, the number of onsets are inte-
grated across frequency channels and averaged over all frames to
measure the average onset strength Xm,11.

2.3. SVM classifier

The decision stage is based on an SVM classifier. A single SVM
is constructed with a radial basis function using the LIBSVM tool-
box [9]. The classifier is designed to distinguish between two
classes, namely speech sources and background. The background
class is used to summarize acoustic activity that is not related to
speech sources but caused by interfering noise or reflections.

During training, a set of training files is processed by the binau-
ral front-end. According to the number of local peaks in the azimuth
histogram H[k], the binary masks and the set of features are com-
puted for all M candidate positions. To assign the extracted features
to one of the two classes (speech or background), a priori knowledge
about the spatial position of speech and noise sources is employed.
First, the a priori known positions of all speech sources are com-
pared to all candidate positions. Only if all speech sources in the
training mixture are detected within an absolute error margin of 5 ◦,
the file is used for training, and the corresponding features are used
to train the speech class. This prevents leakage of speech files that
are not properly detected into the background class. Secondly, all
remaining candidate sources are assigned to the background class.

The SVM parameters are optimized on the training set by 5-
fold cross validation. Due to an unbalanced distribution of training
samples for the two classes (20% speech and 80% background), we
find that optimizing the hit rate minus false alarm rate leads to better
results rather than optimizing the overall accuracy of the SVM.

3. EVALUATION

3.1. Acoustic mixtures

Binaural sound sources are created by convolving monaural speech
and noise signals with binaural room impulse responses (BRIRs).
Speech and noise files are randomly positioned within the azimuth
range of [−90◦, 90◦] while having an angular distance of at least
15 ◦. The corresponding BRIRs are simulated according to the
image-source model [10] where the receiver (KEMAR) was placed
in a simulated room of dimensions 6.6 x 8.6 x 3m. Speech files,
randomly selected from the speech separation challenge (SSC)
database [11], are mixed with various noise types from the NOISEX-
92 database [12]. The signal-to-noise ratio (SNR) is adjusted by

Table 2. Accuracy in % of estimating the number of up to three
active speech sources in the presence of interfering noise averaged
over all six types of background noise.

T60 (s) Method SNR (dBA)
0 5 10 15 20

0
SDM 50.3 68.2 78.5 83.0 83.9

SVM SDM 46.3 66.1 81.8 91.8 93.9
SVM Prop 61.3 81.0 92.9 96.2 96.0

0.29
SDM 45.4 61.0 70.9 69.9 67.9

SVM SDM 43.5 63.1 76.2 85.3 90.4
SVM Prop 54.0 72.0 87.5 89.7 92.0

0.48
SDM 36.6 50.6 59.6 56.5 53.8

SVM SDM 37.6 55.1 68.4 74.4 78.6
SVM Prop 44.2 61.0 76.6 83.0 88.8

comparing the broadband energy of all binaural speech sources with
the energy of all binaural noise sources. The level between multiple
speech or noise sources was always set equal.

The binaural localization model and the SVM classifier are both
trained with BRIRs corresponding to three radial distances (differ-
ent from the one used for evaluation). Whereas the reverberation
characteristic is intentionally simplified during training by using a
frequency-independent reverberation time of T60 = 0.5 s, a realistic
frequency-dependent reverberation time with a low-pass characteris-
tic is used for evaluation. Further, the SVM classifier is partly eval-
uated with noise types that are not used for training. This mismatch
between training and testing conditions is incorporated to analyze to
what extend the proposed approach is able to generalize to unknown
acoustic conditions. An overview about the acoustic conditions dur-
ing training and testing is given in Tab. 1. To train the SVM clas-
sifier, 50 binaural mixtures are created for each training condition,
resulting in a total number of 3600 training files. For testing, 10 files
are created for each testing condition, resulting in 10800 test files.
Mixtures had an average length of 1.95 s. During testing, a binaural
mixture is correctly classified if the number and the azimuth of all
detected speech sources is correct (within ±5 ◦ of the true azimuth).

3.2. Algorithms

We consider three variations to estimate the number of active speech
sources. The first system, denoted as SDM, is solely based on the
azimuth-weighted log-likelihood ratio (feature Xm,3) as proposed
in [5]. A speech source is detected if Xm,3 ≥ θ, where the optimal
decision threshold θ is found by maximizing the hit rate minus false
alarm rate on the training set using 5-fold cross validation. The sec-
ond system, referred to as SVM SDM, uses the first three features
supplied by the speech detection module in combination with an
SVM classifier. The proposed method SVM Prop uses the complete
feature vector X, which additionally includes the newly developed
mask-based features.

4. RESULTS

The ability of all three methods to estimate the number and the spa-
tial position of up to three competing speech sources in the presence
of up to three interfering noise sources is shown in Tab. 2 depending
on the SNR and the reverberation time T60. The first baseline system
SDM achieves the overall lowest performance and seems to be par-
ticularly affected by reverberation. By using the first three features



Table 3. Performance improvement in % of the proposed system
SVM Prop over SVM SDM when incorporating mask-based features.

Types of noise SNR (dBA)
0 5 10 15 20

babble, factory 1, factory 2 10.3 10.3 11.3 5.8 4.7
destroyer engine, cockpit, car 11.0 9.4 9.1 5.8 4.4

All noise types 10.7 9.9 10.2 5.8 4.6

in combination with an SVM classifier, a substantial improvement
as high as 22% at higher SNRs is observed, which can be mainly
attributed to the SVM classifier. The system SVM Prop, which addi-
tionally includes the mask-based features, achieves the highest per-
formance and significantly outperforms the other two systems over
all experimental conditions. Especially at lower SNRs, the addi-
tional use of mask-based features provides a performance gain of up
to 15%. These results confirm that there are distinct differences in
binary mask patterns of speech and noise sources and that the pro-
posed mask-based features which exploit these differences can sup-
ply complementary information to the SVM classifier, allowing for
an improved discrimination between speech and noise sources.

To analyze the influence of the background noise on the mask-
based features, the improvement of the proposed system SVM Prop
with mask-based features in comparison to SVM SDM is shown in
Tab. 3 for known and unknown noise types averaged over the three
T60’s. The consistent benefit of the proposed system for both known
and unknown types of background noise validates that the proposed
system is able to generalize to unknown noise conditions.

Finally, the confusion matrices of the proposed SVM system are
presented in Fig. 2 averaged over all six types of background noise,
where S represents the true number of speech sources and Ŝ indi-
cates the estimate. It’s worth mentioning that although the system
was only trained for acoustic scenarios with one and two speech
sources in the presence of one interfering noise source, the system
is fairly well able to generalize to scenarios with three competing
speech sources for a wide range of acoustic conditions.

5. CONCLUSIONS

In this paper, we have presented a new method to automatically esti-
mate the number and the spatial positions of active speech sources in
reverberant multisource scenarios. The system first detects the spa-
tial position of active sound sources and then extracts a set of features
for each candidate position. An SVM-based decision stage distin-
guishes between speech and noise sources. A new set of mask-based
features was introduced and substantially improved the discernibil-
ity between speech and noise sources in complex scenarios. Further-
more, experimental results indicate that the proposed system is able
to generalize to unknown acoustic conditions, which corroborates
the relevance of the presented approach for practical applications.
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