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Abstract

This paper compares several recently proposed techniques for per-
forming discriminant analysis in high dimensions, and illustrates that
the various sparse methods differ in prediction abilities depending on
their underlying assumptions about the correlation structures in the
data. The techniques generally focus on two things: Obtaining spar-
sity (variable selection) and regularizing the estimate of the within-
class covariance matrix. For high-dimensional data, this gives rise to
increased interpretability and generalization ability over standard lin-
ear discriminant analysis. Here, we group the methods in two: Those
who assume independence between the variables and thus use a di-
agonal estimate of the within-class covariance matrix, and those who
assume dependence between the variables and thus use an estimate
of the within-class covariance matrix, which also estimates the corre-
lations between variables. The two groups of methods are compared
and the pros and cons are exemplified using different cases of simulated
data. The results illustrate that the estimate of the covariance ma-
trix is an important factor with respect to choice of method, and the
choice of method should thus be driven by the nature of the problem
at hand.
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1 Introduction

Linear discriminant analysis (LDA) was first introduced in 1936 Fisher (1936).
LDA is a widely used technique for supervised classification when the number
of observations, n is larger than the number of variables, p (n > p). However,
when the number of variables exceeds the number of observations (p > n),
LDA fails to give accurate predictions as the within-class covariance matrix
becomes singular. Recently, much emphasis has been put on developing new
techniques which overcome this problem, see e.g. Hastie et al. (1995); Tib-
shirani et al. (2003); Guo et al. (2007); Clemmensen et al. (2011); Witten
and Tibshirani (2011); Shao et al. (2011). These techniques focus on two
things. First, they introduce sparsity where a number of parameters is set
to zero in order to exclude variables irrelevant to the separation of classes.
Second, they regularize the estimate of the within-class covariance matrix to
achieve full rank. The previous papers give discussions and promote each
their method based on the choice of algorithm due to speed, the choice of
cost function, or the choice of sparsity measure. We illustrate that these
choices are not the priority when the best classification rate is the goal.

In this paper, we show that it is the estimate of the within-class covariance
matrix, which is the most important factor for good predictions. The choice
of estimate of the within-class covariance matrix is based on an underlying
assumption about the correlation structure between the covariates. If this
assumption is right, the predictions are better. Therefore, we will not go into
details on algorithms, object functions and speed of the methods, but focus
on the estimate of within-class covariance matrix.

The paper is organized as follows. First, I briefly summarize linear dis-
criminant analysis and the newly developed versions of this and give the
estimates of the within-class covariance matrices used in each of the tech-
niques (Section 2). Secondly, I describe the simulated data (Section 3) and
the results obtained with the various techniques (Section 4), and finally the
paper summarizes with a discussion of the results and the techniques (Section
5).

2 Methods

This section first reviews linear discriminant analysis (LDA), which is a
widely used method for classification Fisher (1936). Secondly, it briefly re-
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views the some of the newer classification techniques, which modify LDA to
work in settings with more variables than observations (p > n). In particular,
the estimates of the within-class covariance matrix are given for each of the
models. It is not an extensive work of all methods which perform discrim-
inant analysis in high dimensions. Other techniques could be considered,
such as various shrinkage approaches of the covaraince estimates, see e.g.
Schäfer and Strimmer (2005), but are left out in this analysis. The selected
techniques have been split into two subsections. The first one includes the
techniques that use a diagonal estimate of the within-class covariance ma-
trix. The second one includes the techniques that also estimate off-diagonal
elements of the within-class covariance matrix.

2.1 Linear discriminant analysis

In LDA, we consider data which can be modelled by K classes of Gaussian
normals, i.e. the kth class has the distribution Ck ∼ N(µk,Σ) with mean
value µk and common covariance Σ, k = 1, ..., K. The maximum likelihood
estimate of the within-class covariance matrix is

Σ̂ = 1/n
K∑
k=1

∑
i∈Ck

(xi − µ̂k)(xi − µ̂k)T , (1)

where µ̂k = 1/nk

∑
i∈Ck

xi is the maximum likelihood estimate of the mean

of the nk observations in the kth class. If data are normalized, such that
each variable has zero mean and length one, we have that Σ̂ is an estimate
of the within-class correlation matrix rather than the within-class covariance
matrix.

A new observation xnew is classified using the rule maxCk
{µkΣ

−1xT
new −

1
2
µkΣ

−1µT
k } when assuming equal priors and losses, see e.g. Hastie et al.

(2009).
However, when the number of variables is larger than the number of

observations (p > n), the within-class covariance matrix becomes singular
and LDA fails. In the next sections we review methods, which overcome this
problem.

2.2 Assuming independence

One approach to regularization of the estimate of the within-class covariance
matrix is to use a diagonal estimate. This is similar to a univariate regression
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approach Sjöstrand et al. (2008), and thus assumes independence between
the covariates. Two such methods are nearest shrunken centroids (NSC) and
penalized linear discriminant analysis (PLDA).

2.2.1 Nearest shrunken centroids

In NSC Tibshirani et al. (2003) the covariance is estimated as the diagonal
of the full covariance estimate Σ̂NSC = diag(Σ̂), and the class means are
shrunken using soft thresholding:

Σ̂−1NSCµ̂
∗
k = sign(Σ̂−1NSCµ̂k)(|Σ̂−1NSCµ̂k| −∆)+, (2)

where ∆ is a constant, and tunes the degree of sparsity in the model and (·)+
denotes a thersholding to zero when the value is less than zero.

2.2.2 Penalized linear discriminant analysis

PLDA Witten and Tibshirani (2011) uses the Fisher’s scoring problem as a
starting point for their technique. Again, the diagonal estimate of the within-
class covariance matrix is used, Σ̃PLDA = diag(Σ̂). The sparse discriminant
directions are found using an L1 penalty on the parameter estimates of the di-
rections in the Fisher’s discriminant problem, and the solution is found using
a minorization algorithm which iteratively decreases the objective function
until a local optimum is reached. The weight on the L1 penalty, λ controls
the degree of sparseness in the model.

This method can also be used with a fused lasso penalty Tibshirani and
Saunders (2005) if an ordering of the variables is known a priori.

2.3 Assuming correlations exist

Another approach to regularization of the estimate of the within-class co-
variance matrix is to take into account the correlation structure between
the covariates. These techniques in general range from an estimate with a
full correlation structure to a diagonal estimate of the covariance matrix,
depending on the weight of the penalization. Four such methods are: penal-
ized discriminant analysis (PDA), regularized discriminant analysis (RDA),
sparse discriminant analysis (SDA), and sparse linear discriminant analysis
by thresholding (SLDAT).
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2.3.1 Penalized discriminant analysis

PDA was proposed in Hastie et al. (1995), and uses a ridge-type Hoerl and
Kennard (1970) regularization of the within-class covariance estimate:

Σ̂PDA(γ) = Σ̂ + γI, (3)

where γ ≥ 0. Letting γ = 0 gives a full estimate of the covariance matrix,
and letting γ →∞ gives an identity matrix as the estimate of the covariance
matrix. Hence, γ controls the degree of diagonalization of the within-class
covariance matrix. PDA introduces no sparsity and therefore we have not
included the method in the later comparisons.

2.3.2 Regularized discriminant analysis

Closely related to PDA, but introducing sparsity in the estimates of the
class means is shrunken centroids regularized discriminant analysis (RDA)
proposed in Guo et al. (2007). In RDA, the within-class covariance matrix
is a weighted average of the full estimate and the diagonal estimate

Σ̂RDA(α) = αΣ̂ + (1− α)diag(Σ̂), (4)

where 0 ≤ α ≤ 1. Letting α = 0 gives a diagonal estimate of the within-class
covariance matrix, and letting α = 1 gives a full estimate of Σ̂. When data
is normalized Σ̂ is the estimate of the correlation matrix, and we see that
it is equivalent to the correlation matrix estimate in PDA. The sparsity is
introduced by shrinking the class means as

Σ̂−1RDAµ̂
∗
k = sign(Σ̂−1RDAµ̂k)(|Σ̂−1RDAµ̂k| −∆)+, (5)

like in NSC, but with a different estimate of Σ̂, where ∆ is a positive con-
stant. The feature selection properties of this form of shrunken centroids
are considered conservative as it in general includes a large number of vari-
ables. Here, α, and ∆ control the degree of diagonalization of the within-class
covariance matrix and the degree of sparsity, respectively.

2.3.3 Sparse discriminant analysis

In the sparse discriminant analysis (SDA) algorithm proposed in Clem-
mensen et al. (2011) the discriminant problem is recast as optimal scoring
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which is a regression type problem. The discriminant directions βk, k =
1, ..., K−1 are found through an optimal scoring problem using both the L2,
and L1 penalties through the elastic net Zou and Hastie (2005). The discrim-
inant directions are penalized with the model parameters λ and stop, where
λ is a positive constant which controls the degree of diagonalization, and stop
controls the degree of sparsity. A full covariance estimate is used based on the
sparse discriminant directions Σ̂SDA = 1/n

∑K
k=1

∑
i∈Ck

(x̃i − µ̃k)(x̃i − µ̃k)T ,

where x̃i = xiβ̂ and µ̃k = 1/nk

∑
i∈Ck

x̃i. As the sparse directions are both
ridge and lasso penalized, the covariance estimate will depend only on the
active variables and will be ridge regularized as in PDA.

This method can also be used for mixtures of Gaussians and thus a non-
linear separation of classes.

2.3.4 Sparse linear discriminant analysis by thresholding

Another variant of LDA that introduces sparsity and goes from a full esti-
mate of the covariance matrix to a diagonal estimate is called sparse linear
discriminant analysis by thresholding (SLDAT) and was proposed in Shao
et al. (2011). SLDAT uses thresholding to induce sparsity into the estimate
of the covariance matrix in the following manner

Σ̂ij,SLDAT = ŝijI(|ŝij| > t1), with t1 = M1

√
log p/

√
n, (6)

where M1 is a positive constant in general, and specifically 0 ≤ M1 ≤√
n/
√

log p when Σ̂ is the correlation matrix. Additionally, ŝij is the (i, j)th

element of Σ̂, and I(A) is the indicator function of the set A. Letting
M1 → ∞ gives a diagonal estimate of Σ, and letting M1 = 0 gives a full
estimate of Σ. In the case where Σ̂,SLDAT is not invertible a generalized
inverse is used.

SLDAT additionally introduces sparseness on the difference between the
class means, likewise by thresholding parameter estimates at a level t2, where
t2 = M2(log p/n)0.3, and M2 is a positive constant. The difference between
the means of class k and l is then given as δ̃i,kl = δ̂i,klI(|δ̂i,kl| > t2), where

δ̂kl = µ̂k − µ̂l and δ̂i,kl is the ith element of δ̂kl.
Here, M1 and M2 control the degree of diagonalization and the degree

of sparsity, respectively. In Shao et al. (2011), it is shown that if (µ1 −
µ2)

TΣ−1(µ1 − µ2) is bounded, then SLDAT is asymptotically optimal.

6



3 Simulations

This section describes the simulations conducted to illustrate and examine
the limits of the assumptions of independent versus correlated variables.

The aim is to simulate different correlation structures as the claim is that
the techniques will perform different according to the correlation structures
in the data. Two simulation settings are considered with different correla-
tion structures between the variables, and the case where the variables are
independent (the correlation is set to zero in either of the two cases).

3.1 Data description

In the first case, there are four classes of Gaussian distributions with indepen-
dent or dependent features, Ck : xi ∼ N(µk,Σ), k = 1, ..., 4. The means sep-
arate the classes in blocks of 100 variables µjk = 0.7× 1((k−1)×100+1≤j≤k×100).
The covariance structure of Σ is block diagonal with 100 variables in each
block, and the blocks have the (j, j′)th element r|j−j

′|, where 0 ≤ r ≤ 1.
These simulations are similar to those in Witten and Tibshirani (2011), but
here with varying correlation degrees r.

The experiments were

• S1: Independent variables with p = 500, and r = 0.

• S2: Correlated variables with p = 500, and r = 0.99.

• S3: Correlated variables with p = 1000, and r = 0.99.

• S4: Correlated variables with p = 1000, and r = 0.9.

• S5: Correlated variables with p = 1000, and r = 0.8.

Another simulation was conducted with the same settings as above, ex-
cept from the correlation structure Σ where all correlations in the off-diagonal
were equal to ρ. In this setting, the following simulations were performed

• X1: Correlated variables with p = 1000 and ρ = 0.8.

• X2: Correlated variables with p = 1000 and ρ = 0.6.

• X3: Correlated variables with p = 1000 and ρ = 0.4.

• X4: Correlated variables with p = 1000 and ρ = 0.2.
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• X5: Independent variables with p = 1000 and ρ = 0.

The data were simulated using the package mvtnorm in R by drawing data
from a multivariate Gaussian distribution using rmvnorm with the above
mentioned parameters.

3.2 Procedure

An outcome of 1200 observations were simulated given the distributions in
the previous section. One hundred observations were used to train a model,
and another hundred observations were used to validate the model and tune
model parameters, and finally another 1000 observations were used to test
the model and estimate the prediction error. This setting was repeated 25
times and mean values and standard deviations were calculated.

A grid was spanned for the model parameters for each of the methods.
The grids used were as follows:

• PLDA: λ ∈ {0 : 0.03 : 3}

• NSC: δ The default 30 values tried in the pamr package which range
from 0 to the relation between the maximum absolute difference be-
tween the centroids of each group and the overall centroids over the
standard deviation of these differences.

• SDA: stop ∈ {−500 : 100 : −300,−250 : 50 : −150,−120 : 20 :
−80,−70 : 10 : −50} × λ ∈ {102, 103, 104, 106} chosen similar to the
values in Clemmensen et al. (2011).

• RDA: δ ∈ {0 : 0.11 : 0.99} × α ∈ {0 : 0.33 : 3} the default in the rda

package.

• SLDAT:M1 ∈ {0.001, 0.01, 0.1 : 0.475 : 2, 3 : 5} andM2 ∈ {0.001, 0.01, 0.1 :
0.475 : 2, 3 : 5} Note that the values are in a different range than those
used in Shao et al. (2011). The size of the model parameters for SLDAT
can differ a lot from problem to problem depending on the variance of
the variables.
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4 Results

R was used to conduct the simulations and estimate prediction errors for
each of the techniques. The following R packages from CRAN (2009) were
used: penalizedLDA (PLDA), pamr (NSC), rda (RDA), sparseLDA (SDA),
and the author’s own implementation of SLDAT.

The results are summarized in Table 1. RDA performs well for all simula-
tions reflecting that the model parameters can tune the model from a diagonal
estimate of the within-class covariance matrix to a full estimate. SDA does
not perform well when the variables are completely independent, but gives
the best estimates when a strong degree of correlations exists. NSC and
PLDA perform best when the variables are independent. SLDAT performed
best when the variables were correlated, but in general did not perform quite
as well as RDA and SDA, though considerably better than PLDA and NSC
in the cases where correlations exist.

The results of NSC performing better than PLDA is consistent with re-
sults in Witten and Tibshirani (2011), where it was penalized LDA with a
fused lasso penalization which in general gave the lowest errors. Results of
SLDAT performing worse than RDA are not consistent with the results re-
ported in Shao et al. (2011). This may be caused by the problems analyzed or
the values of model parameters examined. It is noted that the selected model
parameters generally were within the examined range, though the examined
grid did not have as high a resolution as in the original paper. Results of
SDA performing similar to or slightly better than RDA in problems with
highly correlated covariates are consistent with results in Clemmensen et al.
(2011).

It is worth noting that for SDA, RDA and SLDAT the erros drop con-
siderably when some of the variables are correlated (compare simulations S1
with S2-5). This is also the case for NSC and PLDA when all variables are
correlated (compare simulations X5 with X1-4).

5 Discussion

The performance results on the different test data matched the estimates
of the within-class covariance matrix. Thus, the methods with a diagonal
estimate, assuming independence between variables, performed best when
data indeed were simulated from a distribution with independence (penal-
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Table 1: Summary of mean errors and mean number of non-zero features
in the solutions for each of the methods and each of the simulations. The
means are taken over 25 simulations, and the standard errors are given in
the parentheses. The lowest numbers of errors for each simulation is in bold.

PLDA NSC SDA RDA SLDAT
S1: #errors 116.6(4.3) 88.5(2) 124.4(4.6) 90.9(2.4) 141.2(5.9)

#features 348(18.8) 276(17.1) 261.7(18.1) 218.1(12.3) 292(23.1)
S2: #errors 539.72(23.9) 424.84(26.6) 0(0) 0.36(0.3) 13.2(10.8)

#features 264.32(34) 143.92(12.3) 500(0) 449.52(14.7) 473.28(14.8)
S3: #errors 602.1(18.8) 449.2(24.9) 0(0) 0.04(0) 18.6(6.5)

#features 444.4(69.5) 170.2(27.3) 847.6(1.6) 715.9(39.2) 890.8(43.5)
S4: #errors 622.4(18.2) 440.2(21) 0.12(0.1) 3.1(0.8) 256.9(24.7)

#features 566.9(66.6) 153.5(23) 841.4(10.8) 955.7(35.8) 711(76.9)
S5: #errors 550.7(22.7) 412.9(26.9) 2.2(0.4) 5(1.4) 397.4(21.9)

#features 436.2(68) 161.6(21.1) 814.3(18.2) 867.7(62.4) 585(85.2)
X1: #errors 166.9(10.1) 58.4(10.4) 0(0) 2.2(0.6) 12.5(1.5)

#features 133.7(16.6) 125.6(24.8) 857.4(1.7) 376.4(86.7) 725.8(73.3)
X2: #errors 134.7(7.9) 29(6.2) 0(0) 6.72(2.1) 42.4(6.6)

#features 155.2(6.6) 141(14.3) 857.3(2.1) 293(81.1) 218.3(53.9)
X3: #errors 106.3(7.8) 17.4(3.4) 0.04(0) 7.12(1.5) 21.4(6.1)

#features 192.2(6.5) 161.6(30.6) 858.3(1.8) 477.4(94.2) 125.6(6.3)
X4: #errors 36(4.3) 5.6(1.1) 0.08(0.1) 6.4(1.4) 5(1.5)

#features 245.2(36.4) 363.5(47.8) 862.4(1.7) 594.9(93) 181.2(16.8)
X5 #errors 166.3(6.7) 116.7(3.3) 174.6(4.2) 120(5.1) 211.7(6.2)

#features 418.2(45.1) 320.6(33.4) 339.6(27) 296(22.3) 357.4(50.8)
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ized linear discriminant analysis - PDA, nearest shrunken centroids - NSC).
Similarly, the methods which estimate the off-diagonal as well, assuming cor-
relations between variables exist, performed best when data were simulated
from a distribution with correlations (sparse discriminant analysis - SDA,
shrunken centroids regularized discriminant analysis - RDA, sparse linear
discriminant analysis by tresholding - SLDAT).

In practice a correlation matrix of high dimensions cannot be calculated,
but a correlation matrix of a subset of say 100 variables is feasible to calculate
and may reveal the correlation structures of the given data. A choice of
method could then be based on the observed correlation structure, or simply
by a priori knowledge of the associations in the problem at hand.

Another practical issue to consider is the interpretability of the given
models, where models which give low-dimensional projections of data can be
very useful. The methods which provide such low-dimensional projections
are SDA and PLDA. Finally, if speed is an issue, then PLDA, NSC and RDA
are faster alternatives than SDA and SLDAT.
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