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Nomenclature

Greek Characters

α Closure coefficient in the k-ω-model

β Closure coefficient in the k-ω-model

β Coefficient in point distribution along the bed shape

β∗ Closure coefficient in the k-ω-model

δP Penetration depth

ǫ Dissipation of turbulent kinetic energy

ǫ Upper boundary when evaluating IU

φ+ The phase lag between the free stream and the upstream seperation

φ− The phase lag between the free stream and the lee side seperation

Γ The strength of the recirculation cell over the computational domain

Γ0 The strength of the recirculation cell over the size of this cell

λ Ripple length

µ Gravity correction parameter

ν Molecular kinematic viscosity

νT Turbulent eddy viscosity

Ω Vorticity

ω Cyclic frequency

ω Specific dissipation rate in the k-ω-model

ωb Boundary condition at the bed in the k-ω-model

ΦB Non-dimensional bed load transport

iii



iv NOMENCLATURE

ρ Density of water

σ Closure coefficient in the k-ω-model

σ∗ Closure coefficient in the k-ω-model

τb Bed shear stress

τij Reynolds stress tensor

θ The Shields parameter due to skin friction

θ∗ The Shields parameter due to skin friction with gravity correction.

Roman Characters

a Near bed amplitude of the oscillatory flow

A The area of half the computational domain

A(δP ) The area of the computational domain from the bed to the penetra-
tion depth

D Height of the computational domain

d The median grain diameter

f The degree of rouding of the parabolic shaped bed form

fw Friction factor for wave motion

g Acceleration due to gravity

h0 Ripple height

h Parametric formulation of the ripple profile

h̃0 Reduced height when smoothing the parabolic shape

h The ripple profile

Iτ Integral of the period averaged bed shear stress over half a ripple
length

IU Integration of the horizontal velocity component over the horizontal

IΦB
Bed load integrated over half the ripple profile

IT/2 Integral of the bed shear stress over half a period and half the ripple
length

IT/2 Integral of the period averaged bed shear stress over half the ripple
length



NOMENCLATURE v

k Turbulent kinetic energy

kN Nikuradse’s roughness

k+
N Nikuradse’s roughness non-dimensionlized by wall quantities

p Pressure

qB Bed load transport

∆Q0 Threshold for the drift in the numerical model

∆Q Drift in the numerical model

r Radius of the rounding of the parabolic shaped bed form

S Parameter used to described the ripple profile

s Relative density of sediment grains

SR Closure coefficient in the boundary condition for ω

T Wave period

t Time

U Horizontal time averaged velocity component

u Horizontal velocity component

Uf The friction velocity

Um Maximum velocity of the near bed oscillatory motion

Uf,0 The maximum friction velocity on a flat bed

Ub Horizontal component of the near bed flow

u′ Horizontal fluctuating velocity component

V Vertical averaged velocity component

v Vertical velocity component

v′ Vertical fluctuating velocity component

ws Sediment fall velocity

W Magnitude of the velocity vector

xS Distance from the crest to stable point

∆y The averaged horizontal resolution of the wall computational cells



vi NOMENCLATURE

y+ Wall coordinate

y0 The center of the smoothing

Definitions and Other Parameters

NS Number of successive periods within the threshold ∆Q0

NT Number of time steps per wave period

Nx Number of computational cells in the x-direction

Ny Number of computational cells in the y-direction

Rea The Reynolds number based on a and Um

S91% The parabolic shaped bed form smoothed to 91% of the maximum
slope

S93% The parabolic shaped bed form smoothed to 93% of the maximum
slope

S97% The parabolic shaped bed form smoothed to 97% of the maximum
slope

S100% The parabolic shaped bed form

S1 The cosine shaped bed form

S2 The higher order cosine shaped bed form
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Abstract

In this work, the flow and bed load transport over ripple profiles under
the influence of oscillatory will be investigated. The investigation is made
through a parametric study, where the bed shape and the ripple steepness
are varied. For the sediment transport, the Shields parameter relative to
the critical one is varied in the range 1.31-3.45.

A detailed flow description in terms of phase resolved quantities and
period averaged quantities are given. The former are phase lag between
the free stream flow and the separation and a description of the lee side
vortices behind vortex ripples. The latter are the recirculation zone and
its penetration into the main flow. This will be compared to the period
averaged bed shear stress.

An analysis of the bed load transport, both as a transport capacity
in the phase resolved space and an analysis of possible stable ripples is
conducted. This leads to some stable ripples and the general conclusion
is that sharp crested ripples is thought unlikely to become stable under
oscillatory flow due to the large increase in bed shear stresses because of the
rapid contraction of the flow around the crest.

Further, a dynamically moving ripple crest is investigated. The key focus
is to investigate how a perturbation on top of the ripple influences the flow.
It will be seen that both the shape and the velocity of the crest are affecting
the period averaged flow globally.
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Abstract in Danish

I denne afhandling vil strømning og bundtransport over bølgegenererede
ribber blive undersøgt. Undersøgelsen baserer sig p̊a et parametrisk studie,
hvor det er ribbeformen og stejlheden af denne, som varieres. Med henhold
p̊a bundtransporten, s̊a bliver Shields parametren i forhold til den kritiske
værdi varieret i intervallet 1.31-3.45.

Der vil blive givet en detaljeret strømningsbeskrivelse b̊ade med hen-
blik p̊a en faseopløst beskrivelse samt en periodmidlet beskrivelse. Den
første inkluderer faseforskellen mellem seperation og den frie strømning
samt en beskrivelse af hvivlerne nedstrøms ribbetoppen. Den periodmidlede
beskrivelse behandler recirkulationszonen og dennes indflydelse p̊a den ydre
strømning. Disse resultater vil blive sammenholdt med den periodemidlede
bundforskydningsspænding.

En analyse af bundtransporten er udført med henblik p̊a transportka-
paciteterne samt, om der er mulige stabile ribbeformer. Denne analyse
udpeger nogle stabile former, og den generelle konklusion er, at ribber
med en spids top bliver betragtet som usandsynlige som stabile former
under bølgep̊avirkning grundet forøgelsen i bundforskydningsspændingerne.
Denne forøgelse optræder p̊a grund af den kraftige kontraktion ved ribbe-
toppen.

Endvidere er en dynamisk ribbetop undersøgt. Formålet med dette
er at undersøge, hvordan en perturbation som bevæger sig inden for en
bølgeperiode p̊avirker strømningen. Det vil blive vist, at b̊ade formen og
hastigheden af en s̊adan perturbation p̊avirker det periodemidlede strømnings-
felt globalt.
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Chapter 1

Introduction

In this work, the goal is to determine the shape of ripples subject to os-
cillatory motion. Further a detailed flow description due to the interaction
between ripple profile and water will be carried out. The motivation is to
make a first step toward the shape of ripples under combined waves and cur-
rent or waves including streaming effects. Knowing the equilibrium shape,
the period averaged sediment transport can be estimated more accurately.
This type of sediment transport is typically linked to the cross shore sed-
iment transport in coastal zones, thus estimates of coastal evolution can
attribute from a more detailed description.

Many experimental works have been made to described the evolution
of the ripple profiles and the flow over these starting with Bagnold (1946),
where he oscillates a tray covered with sand in otherwise still water. This
method is doubtful as the shape of the ripples will be influenced by the grain
inertia, thus ripple profiles in these experiments should be expected to be
less steep than under the same conditions achieved by oscillating the water.
Based on these experiments, the distinction between rolling grain ripples
and vortex ripples is introduced.

The theoretical work by Fredsøe and Hedegaard (1983) uses a simple
back-ward facing step approximation with a constant shear stress outside
the separation zone. This lead to three theoretical shapes of ripples where
bed load dominates. Two of these shapes are stable. Further, from the work
of Hedegaard (1985) a simple relation of the ripple length was found, namely
λ = 1.2a, with λ being the ripple length and a the orbital amplitude of the
near bed flow. The present work will be limited to this relation.

Further the theoretical work by Andersen (1999) made use of phase
resolved morphological updating of the ripple profile. One of his findings was
that the sediment and flow quantities was qualitatively the same averaged
over one wave period when comparing live and rigid ripple profiles. This
conclusion encouraged the present analysis using period averaged quantities.

The present work will try to reach the equilibrium profile through an inte-

1



2 Chap. 1. Introduction

grated formulation, i.e. in terms of the period averaged sediment transport.
This will be done in a pure oscillatory flow and at first only bedload will
be considered, thus the Shields parameter will be kept close to the critical
value on a flat bed. The cloud of sediment ejected into the flow at the crest
of the ripple, e.g. as discussed in Andersen (1999), will be ignored. This is
valid since the ratio between the sediment fall velocity and the amplitude of
the outer flow velocity, ws/Um, will be large.

As a first approximation, the flow will be that of an oscillator, thus
there will be no streaming effects on a flat bed, hence the bed profile will
throughout this work be perfectly symmetric. Further no percolation is
taken into the description.

1.1 Physical Processes

When a flat bed subject to oscillatory motion is perturbed, two kinds of rip-
ples can be generated. These are termed “rolling grain ripples” and “vortex
ripples” respectively, see figure 1.1. The former is present up to h0/λ < 0.1
and the latter in the range 0.1 < h0/λ < 0.25, where λ is the ripple length
and h0 the trough-to-crest height, see Sleath (1984).

Vortex ripple

Rolling grain ripple

Converging part Diverging part

h0

h(x)

h(S)
S

Figure 1.1: Sketch of the difference between rolling grain ripple and vortex ripples.
Two ways of representing the ripple profile is shown, namely in carte-
sian coordinates and using a parametric formulation with the parameter
S.

Rolling grain ripples are characterized by a perturbation where separa-
tion does not occur on the lee side of the ripple whereas separation does
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occur in the case of vortex ripples. Separation is the one occurring due to
expansion of the cross section and not the one due to flow reversal each half
period. The latter type of separation will be termed “separation due to flow
reversal”.

These two types of ripples have some common physical features. First
these feature will be mentioned in overview and secondly the cause and effect
will be discussed in greater detail.

1. At the end of each half wave period there will be ejection of vortices
into the main part of the flow. This vortex will gain larger and larger
distances to the bed while being dissipated.

2. A non-zero period averaged bed shear stress will be directed toward
the crest of the perturbation. The non-zero bed shear stress will drive
a streaming effect.

3. There will be a period averaged non-zero sediment transport directed
toward the crest.

These features will now be discussed in details and differences between
rolling grain ripples and vortex ripples will be discussed, if such differences
exist.

ad. 1. Due to reversal of the outer flow each half wave period, the vortex
generated in the previous half period is ejected into the main flow.
This vortex is generated in two different ways and due to two different
mechanisms in the case of either rolling grain ripples or vortex ripples.
In the case of the former it is generated at the point of flow reversal
in the boundary layer and in the case of the latter it is generated as
early as at the point where the vortex in the previous half period is
ejected into the main flow. The mechanisms will be discussed later in
the work, as it is one of the general findings.

After the ejection, the vortex moves up and down following the flow,
but the general trend is that the vortex moves away from the bed, also
reported Bagnold (1946) in his rigid bed experiment. This movement
continues until the vortex is dissipated completely, thus a penetration
depth into the main flow can be found. The variation of the pen-
etration depth with bed shape and steepness is discussed in section
3.3.2.

ad. 2. In Sleath (1984) an analytical solution of the laminar oscillatory flow
over a perturbed bed was given. This showed that to higher order, the
solution yields time independent results, which have the same charac-
teristics as the streaming over ripples, namely flow toward the crest at
the bed, and flow toward the trough some distance from the bed, see
figure 1.2 for a schematic presentation
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Trough Crest

λ/2

UU

y

x

Figure 1.2: Sketch of the recirculation cell over half a ripple length.

In the more general case, the presence of such a recirculation zone can
be argued based on the near bed behaviour of the flow. Engelund and
Fredsøe (1974) argues that in order to get instability of a perturbed
bed in the case of dunes dominated by bed load, it is not sufficient
to calculate the bed shear stress from the local depth, the average
velocity and a constant friction factor. An effect of convergence and
divergence of the flow has to be taken into consideration, see figure
1.1, thus the friction is modified by a local slope correction yielding
increased bed shear stress on the converging part and decreased on
the diverging part. This analysis of the flow can be carried over to
the case of oscillatory flow. Since the bed shear stress in the case
of Engelund and Fredsøe (1974) is asymmetric around the crest, the
period averaged bed shear stress will become non-zero in the case of
waves. This non-zero bed shear stress will be directed toward the crest,
based on the increase on the converging side. Finally this bed shear
stress drives a period averaged flow toward the crest at the bed and
from continuity reasons, this flow must be in the opposite direction
some distance from the bed.

In the following the general cause and effect will be discussed, since
a different point of view on the recirculation zone leads to a different
cause to the driving mechanism.

ad. 3. As discussed by Sleath (1984), the recirculation is the mechanism be-
hind the increasing height of the ripple, as there will be a net sediment
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transport toward the crest, as long as the induced bed shear stresses
are sufficiently large. This transport will then stop, when the steepness
of the ripple exceeds the steepness where gravity become dominant.
This ending of build up of ripples can be illustrated by the results in
Bagnold (1946) where a stable rolling grain ripple was found when it
reached a certain height.

A couple of things should be kept in mind regarding the flow, when
choosing an appropriate numerical flow solver. These are that the flow is
over a rough surface, thus the model should be capable of treating rough
boundaries. The flow is not always wall bounded due to the adverse pressure
gradient coming from the free stream flow and the adverse pressure gradient
induced due to the expansion of the cross sectional area on the lee side of
the crest. Thus the numerical model should be capable of treating adverse
pressure gradients and separated flows as well. The numerical model will be
discussed in section 2.1.

1.2 Dimensionless Quantities

This section is mainly inspired by the work of Andersen (1999). The flow
over ripples has been found to rely on several different non-dimensional
parameters. For the ripple-flow interaction

λ

a
,

h0

λ
(1.1)

are of significant importance and such values as

kN

a
,

D

a
, Rea =

aUm

ν
(1.2)

are of minor importance. λ is the ripple length, a is the near bed amplitude,
h0 is the height of the ripple, kN = 2.5d is the Nikuradses roughness, where
d is the grain median diameter, D is the height of the computational domain
and Rea is the Reynolds number.

Regarding the sediment transport the following parameters are of im-
portance

θ =
U2

f

(s − 1)gd
,

ws

Um
, s (1.3)

where the last is of less importance compared to the other. s is the relative
density of the sediment to water. θ is the Shields parameter and ws is the fall
velocity of the individual grains, which is calculated as outlined in Fredsøe
and Deigaard (1995).

In the present study the dependence of the ripple steepness, h0/λ, and
θ will be investigated with respect to flow properties and bed load sediment
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transport. ws is changed as a consequence of changing θ and demanding
constant roughness, a/kN . The effect of the change in ws is not investigated
as it is kept so large, that it is assumed that suspended sediment transport
is neglectable.



Chapter 2

Model Description

In this chapter the numerical model is described in terms of the flow solver
and the sediment transport formulations. Regarding the sediment trans-
port it will only concern bedload, since suspended sediment transport is
neglected in the present analysis. The numerical model is verified against
the measurements by Jensen et al. (1989). Further an analysis of the nec-
essary parameters needed to obtain a grid independent solution is discussed
and a grid configuration is chosen.

2.1 Mathematical Formulation of Flow Solver

In section 1.1 it was discussed that adverse pressure gradients are present in
the flow. In Wilcox (1993) he states that a k-ω-model succeeds in modeling
flow with adverse pressure gradients whereas k-ǫ-models are not capable of
doing so. Further it is stated by Patel and Yoon (1995) that the tested
k-ǫ-model underestimates the bed shear stress even on a flat rough bed,
whereas the k-ω-model estimates the bed shear stress within a few percent
of the Moody-diagrams.

Based on these arguments the k-ω-model by Wilcox (1994) will be used in
this study. The model is based on the following mathematical formulation,
namely the continuity equation

∂ui

∂xi

= 0 (2.1)

and the Navier-Stokes equations

∂ui

∂t
+ uj

∂ui

∂xj

= −
∂p

∂xi

+ ν
∂

∂xj

(

∂ui

∂xj

+
∂uj

∂xi

)

, (2.2)

where ui are the velocity components, xi are the spatial coordinates, t is
the time, p is the pressure and ν is the molecular kinematic viscosity. The

7



8 Chap. 2. Model Description

density, ρ, is left out as incompressible flows are considered. The velocity
components are written as a combination of time averaged velocities and
instantaneous velocity fluctuations

ui = Ui + u′

i (2.3)

with Ui being the time averaged component and u′

i the fluctuating part.
Time averaging (2.1) and (2.2) becomes

∂Ui

∂xi

= 0 (2.4)

∂Ui

∂t
+ Uj

∂Ui

∂xj

= −
∂p

∂xi

+
∂

∂xj

[

ν

(

∂Ui

∂xj

+
∂Uj

∂xi

)

+
τij

ρ

]

. (2.5)

The latter equations are called the Reynolds Averaged Navier-Stokes equa-
tions. τij is the Reynolds stress tensor, which expresses the additional shear
stresses due to momentum transfer from the turbulent fluctuations. This
quantity is expressed in terms of the eddy viscosity concept by

τij

ρ
= νT

(

∂Ui

∂xj

+
∂Uj

∂xi

)

−
2

3
kδij (2.6)

where δij is the Kronecker delta and k is the turbulent kinetic energy

k =
1

2
u′2

i . (2.7)

The overbar denotes time averaging.
The equations adopted to close the system are taken from Wilcox (1994)

with a transport equation for the turbulent kinetic energy

∂k

∂t
+ Uj

∂k

∂xj

=
τij

ρ

∂Ui

∂xj

− β∗kω +
∂

∂xj

[

(ν + σ∗νT )
∂k

∂xj

]

(2.8)

and a transport equations for the specific dissipation rate, ω,

∂ω

∂t
+ Uj

∂ω

∂xj

= α
ω

k

τij

ρ

∂Ui

∂xj

− βω2 +
∂

∂xj

[

(ν + σνT )
∂ω

∂xj

]

(2.9)

The coefficients in these two equations are closure coefficients which takes
the values given in table 2.1.

The terms in equations (2.8) and (2.9) is on the left hand side temporal
change and advection of k and ω respectively. On the right hand side the
terms are production, dissipation and diffusion of k and ω respectively. The
diffusion is a combination of molecular and turbulent diffusion. The presence
of the molecular kinematic viscosity allows the model to describe the viscous
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Table 2.1: Closure coefficients for the k-ω-equations given in (2.8) and (2.9).

α β β∗ σ σ∗

5/9 3/40 9/100 1/2 1/2

sublayer without the use of wall functions which the k-ǫ-models are forced
to use. This freedom allows the k-ω-model to solve for significantly more
complex flows. The boundary condition for ω includes the surface roughness.

The final closure equation relates k and ω to the eddy viscosity by

νT =
k

ω
. (2.10)

Further the dissipation of turbulent kinetic energy, ǫ, can be expressed as

ǫ = β∗ωk (2.11)

Special attention has to be given the continuity equation, (2.4), since it
should be used to solve for the pressure, p, but the pressure is not a variable.
Instead the continuity equation is applied onto the momentum equations,
i.e. the divergence of the momentum equations are derived. This leads to a
Poisson equation for p which is solved (see Tjerry, 1995, for details on the
numerical treatment).

The described set of equations have been implemented in a research code
called Dune2D. The core of the model has been developed by Tjerry (1995)
whereas the k-ω-model has been implemented on a later stage.

2.1.1 Boundary Conditions

In this section the applied boundary conditions are described, see figure
2.1. At the upper boundary a symmetry condition is set, i.e. the vertical
derivatives of all quantities have to be zero.

On the vertical boundaries a periodicity condition has been applied,
which results in solving for an infinite number of ripples.

The bed boundary condition is somewhat more complex as a value, ωb,
needs to be pre-described to ω. The routine to describe the rate of dissipa-
tion is adopted by Wilcox (1994) in which

ωb =
U2

f

ν
SR (2.12)

at the bed, where Uf is the friction velocity defined by

U2
f =

τb

ρ
(2.13)
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Upper symmetry boundary

∂
∂y {U, Y, k, ω} = 0

{U, V, k, ω}(x, h(x), t) = {0, 0, 0, ωb}

D

λ

y

x

{U
,
V
,
k
,
ω
}(
−

λ
/2

,y
,t

)
=

{U
,
V
,
k
,
ω
}(

λ
/2

,y
,t

)

{U
,
V
,
k
,
ω
}(
−

λ
/2

,y
,t

)
=

{U
,
V
,
k
,
ω
}(

λ
/2

,y
,t

)

Figure 2.1: Sketch of the boundary conditions in the computational domain.

with τb being the bed shear stress. The quantity SR is a function of the
non-dimensional bed roughness, k+

N = kNUf/ν, where kN is the Nikuradse’
roughness, kN = 2.5d, and d is the median grain diameter. The dependency
is given as

SR =

{

(50/k+
N )2 for k+

N < 25

100/k+
N for k+

N ≥ 25
(2.14)

Patel and Yoon (1995) showed in their work that (2.14) on a flat bed is valid
up to at least k+

N = 4000.
The velocity components, Ui, are set with a no-slip condition and the

turbulent kinetic energy, k, is 0 at the bed.
The Poisson equation for the pressure is solved with homogeneous Neu-

mann conditions on all boundaries.

2.1.2 Verification of the Flow Solver

The model will be verified against the experimental data by Jensen et al.
(1989). The compared quantities are the bed shear stress as a function of
time and the velocity profile for ωt = 90◦, where ω is the cyclic frequency,
2π/T , with T being the wave period.

Figure 2.2 shows the comparison between the measured and calculated
friction velocity, Uf , at different phases. The comparison shows an excellent
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prediction by the numerical model both in terms of the magnitude of the
friction velocity and the phase lag between the free stream flow and the bed
shear stress.
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f
,
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Jensen et al. (1989)
Present model

Figure 2.2: Comparison between the present model and the experimental investiga-
tion by Jensen et al. (1989). The data points are taken from their figure
7.

In figure 2.3 a comparison between the velocity profiles over the vertical
for ωt = 90◦ is seen. In the figure the horizontal velocities are averaged with
the instantaneous maximum velocity. As seen, there is a good prediction of
the shape of the velocity profile.

2.1.3 Convergence of Waves

The numerical model generates an artificial drift, ∆Q, because the initial
conditions are defined by setting all quantities to zero. This drift has an
extremely slow convergence, thus the calculation time with pure waves is
huge. Therefor another approach is needed.

It was realized that inducing a small pressure gradient, constant within
one wave period, and changing it each period would make the convergence
significantly faster. The method is the PID-control described in Andersen
(1999).

This method is oscillatory in nature when approaching the correct solu-
tion, see sketch in figure 2.4, thus to avoid choosing the first zero crossing,
which is not the desired solution, a demand for a number of successive oc-
currences, NS, within a threshold, ∆Q0, is set. For the rest of this work
NS = 10. The same procedure is working for combined waves and current.
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Figure 2.3: Comparison between measured velocity profiles from Jensen et al. (1989)
and the ones calculated by the present model for ωt = 90◦. The data is
taken from their test 13. D is half the height of the oscillatory tunnel.
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Figure 2.4: Sketch of the oscillatory behaviour of the PID-control, where ∆Q is the
drift in the system and ∆Q0 is the threshold for the drift.
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2.1.4 Grid Generation

The grid for the numerical calculations is curvilinear and is generated using a
hyperbolic grid generator, see Tjerry (1995). The method allows clustering
of the grid points at the bed to allow better prediction of the bed shear
stress. An example of a grid can be seen in figure 2.5.
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Figure 2.5: Example of a grid generated using a hyperbolic grid generator with clus-
tering of the points at the bed. The size of the grid is Nx×Ny = 40×30.

2.1.5 Non-Dimensionality of the Model

The numerical model is made in terms of non-dimensional equations, where
the equations have been made non-dimensional with appropriate length and
velocity scales. In the present work Um and a has been chosen to be the
characteristic scales, thus all results in the following will be given in terms
of non-dimensional results using these as characteristic scales.

Recall that the mass scale is indirectly chosen to be ρ, but it is not
present in the model formulation due to incompressibility.

2.1.6 New Mathematical Formulation

It should be noted that the used model is based on Wilcox (1994), but
research has been conducted in the recent years. In Wilcox (2006) the
recommended model has been modified in terms of the ω-equation which has
been added a cross-diffusion term between k and ω, the closure coefficients
have been changed and the wall boundary condition for ω has been modified.
The new model treats wall bounded flows as good as the model from Wilcox
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(1994) which includes backward facing step type of flows, but for such flows
as free shear flow, the model is improved. The present work with ripples is a
combination of these two as the separation behind the ripple resembles the
backward facing step, and the shedding of vortices every half wave period
induces free shear. There has not been used time on implementing the new
model.

2.2 Bedload Transport

When water flows over a bed consisting of loose grains, the grains will begin
to move if the bed shear stress becomes larger than the retarding forces
on the sediment. In the case of a flat bed and cohesive-less sediment this
retarding force is the inter-granular friction.

The force balance between the destabilizing and retarding forces, see
Fredsøe and Deigaard (1995), is expressed in terms of the Shields parameter
due to skin friction

θ =
U2

f

(s − 1)gd
(2.15)

where Uf is the friction velocity, s is the relative density of the sediment
compared to water, g is the acceleration due to gravity and d is the median
grain diameter. The critical value of θ is found to vary with Red = Ufd/ν,
but only slightly, thus the critical value is throughout this work kept constant
at θc = 0.05.

In the present study the sediment transport will take place on sloping
beds, where the influence of gravity will either increase or decrease the stabil-
ity depending on the slope compared to the flow direction. This has resulted
in a modification to include sloping beds, see Fredsøe (1974), namely

θ∗ =
U2

f

(s − 1)gd
− µ

∂h(x)

∂x
(2.16)

where µ takes the value 0.1.
The adopted transport formulae is the Meyer-Peter and Müller formulae

including the above slope correction, see Fredsøe (1974), which looks like

ΦB =
qB

√

(s − 1)gd3
= 8(θ∗ − θc)

3/2 (2.17)

This is a local sediment transport formulation which only take the mean flow
quantities into considerations and not the level of turbulence. Regarding the
influence of turbulence, this has been investigated recently by Sumer et al.
(2003) and there is a clear correlation. This means that at the reattachment
point of the vortex on the lee side the bed shear stress become zero in
terms of averaged quantities, but due to turbulence there can be sediment
transport. This feature is not captured.
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2.3 Analysis of Grid Independence

In order to get consistent results, it is necessary to investigate whether
it is possible to obtain grid independent results, i.e. that a small change
in the grid does not change the results. Even though it sounds easy and
objective, the choice of an “independent” grid is a trade-off between the
desired accuracy and the available computational time.

The grid quantities, which have been identified to be of importance in
the present work, are the resolution at the bed, since the bed shear stress is
calculated directly based on the velocity gradient evaluated in the compu-
tational cell next to the bed.

Further the height of the domain is important because a too low domain
results in lid generated effects, due to interaction between the ripple and the
lid.

The number of computational cells in the x and y directions is of impor-
tance. The number of cells are referred to as Nx and Ny respectively. In the
work by Andersen (1999) the resolution at the crest was investigated as well,
namely the quantity ∆x/a, but in the present work this has been avoided
by investigating the necessary value of Nx and using the same distribution
of the points along the bed throughout the work. The distribution cluster
the points at the crest, since it is expected that a larger number of points is
needed to describe the flow separation accurately. The distribution is given
as

x

a
=

λ

2a

[

sin (βN)

sin (β)
− 1

]

(2.18)

where

β =
9

10

π

2(Nx/2 + 1)
and N = 0, 1, . . . ,

Nx

2
(2.19)

This gives a distribution of points along half a ripple length. This procedure
needs to be reconsidered if combined waves and current is investigated, since
that kind of forcing results in an asymmetric ripple profile, e.g. seen in Gray
et al. (1991).

Finally the dependency on the number of time steps per wave period,
NT , has been investigated for the chosen grid configuration.

The independence analysis uses a parabolic bed shape, see equation (3.3),
with the steepness h0/λ = 0.167 and λ/a = 1.2, where h0 is the trough-to-
crest height, λ is the ripple length and a is the near bed amplitude of the
oscillatory motion.

From this point on, period averaged quantities will be given with an
overbar, e.g.

U =
1

T

∫ T

0
Udt (2.20)
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which is the period averaged horizontal velocity.

2.3.1 Bed Resolution

The bed resolution is described in terms of the non-dimensional wall coor-
dinate

y+ =
∆yUf,0

ν
(2.21)

where ∆y is the averaged height of the computational cells along the bed
shape, Uf,0 is the friction velocity on a flat bed, which is determined from
the empirical relation

U2
f,0 =

τb

ρ
=

1

2
fwU2

m , fw = 0.04

(

a

kN

)−1/4

for
a

kN
> 50 (2.22)

(see Fredsøe and Deigaard, 1995) and ν is the kinematic viscosity. The flat
bed property has been chosen since the actual friction velocity is not known
in advance, thus it is more convenient to work with flat bed quantities.
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Figure 2.6: IT as a function of y+ for three test cases, A, B, and C, see table 3.1.
Other quantities are NT = 1750, Nx ×Ny = 50 × 50.

The convergence of the flow has been investigated in terms of

IT =
1

∫ 1/2
0 ‖h′(S)‖dS

∫ 1/2

0
τ b‖h

′(S)‖dS (2.23)

where S is a coordinate following the ripple profile and the whole profile is
given for the interval S ∈ [0; 1], i.e. the integral is evaluated for the first
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half part of the ripple. The entire profile is not usable, as IT would become
zero.

Considering the convergence of IT as a function of y+, see figure 2.6, it is
seen that convergence has not been achieved for as small values of y+ = 0.03.
Decreasing y+ below O(0.1) increases the necessary time steps significantly,
thus y+ = O(0.1) has been chosen to be used throughout the report. This
choice induces errors in the order of magnitude of 1% in IT , if the linear
trend in figure 2.6 can be extrapolated to y+ = 0. Wilcox (1994) reports
that y+ < 1 has to be used to obtain reasonable results.

2.3.2 Height of the Domain

The height of the domain has to be investigated to avoid effects on the flow
from the upper boundary, i.e. it has to be investigated how far away the lid
should be for IT and

IT/2 =
1

∫ 1/2
0 ‖h′(S)‖dS

∫ 1/2

0

2

T

∫ T/2

0
τb‖h

′(S)‖dt dS (2.24)

to converge. IT/2 expresses the bed shear stress over a half wave period on
the upstream side of the crest. This integral is used in addition to IT , since
the convergence on the two sides of the crest for half a wave period differs,
thus the combination of IT and IT/2 covers this.
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Figure 2.7: Convergence analysis of the height of the computational domain, D/a,
where D is the height of the domain and a the amplitude of the motion
at the bed. NT = 1750, Nx × Ny = 50 × 50 and y+ = 0.08. The
superscript R means that the results are relative to the corresponding
ones found for D/a = 1.6.

Based on the results in figure 2.7, the height D/a = 1.6 has been chosen.
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As help to future users, it is noted that the upper boundary in Dune2D
is always at y/ℓ = 1 in the grid generator, where ℓ is the characteristic
length scale. A higher domain is thus generated by shifting the bed shape
downward.

2.3.3 Grid Dimensions

When analyzing the necessary number of grid cells in the horizontal and
vertical directions, Nx and Ny respectively, a two-dimensional feature has
been used to analyse the convergence. This feature is

ΓA =

∫

A
ΩdA (2.25)

where Ω is the vorticity and A is half the area of the computational domain,
namely

A =

[

−
λ

2a
; 0

]

×

[

h(x)

a
;

D

a

]

(2.26)

This quantity expresses the strength of the recirculation cell which was dis-
cussed in section 1.1.

As figure 2.8 reveals, the results lie within a few percent, but it is not
possible to point out one independent grid configuration. The main focus in
this work is on the bed load and the two dimensionality, e.g. Γ, is secondary,
thus for the rigid bed analysis, see chapters 3, the grid configuration Nx ×
Ny = 70 × 40 was chosen initially. This gave extremely bad convergence
properties, thus simply to obtain results a grid configuration with Nx×Ny =
50 × 40 was adopted.

2.3.4 Independence of NT

The time stepping scheme is of first order, thus the number of time steps is
of substantial importance. In figure 2.9 runs on a 50×40 grid for varying NT

are analysed. This analysis shows that the results converge for increasing
NT , as expected. The analysis has been carried out for both test case A

and D, see table 3.1, and no Reynolds dependence was found.

Based on this figure, NT = 1000 has been chosen for the rigid bed
analysis. It results in errors in the order of magnitude of 2%, which has been
accepted over the linearly increasing computational time when increasing
NT .

2.3.5 Comment Regarding the Point Distribution

It is realized that the method for distributing the points along the bed
induces peaks in the bed shear stress at the “crest” even if the steepness
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Figure 2.8: Plot of the three quantities IT , IT/2 and Γ for different grid sizes. Nx
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the legend for the variation in the latter. NT is 2000 and y+ = 0.08.
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Figure 2.9: The convergence of the results as a function of NT for Nx × Ny =
50 × 40. The superscript R means that the results are relative to those
obtained for NT = 3900.

is zero. This effect has been investigated and it is concluded that it is
of insignificant importance for the rigid bed investigation in chapter 3 but
this behaviour can be important when considering the morphological update
based on period averaged bed load. A discussion of this and the problems
encountered with a clustered point distribution is discussed in section 4.2.



Chapter 3

Flow and Bedload Over

Rigid Bed Shapes

The main part of this work considers the flow and sediment transport over
rigid bed shapes, where six different shapes have been used. Based on an
analysis of these six bed shapes it is the hope that a period average equilib-
rium shape of ripple under the influence of oscillatory flows can be given.

Further the analysis leads to a detailed analysis of the flow patterns
both with respect to the phase resolved flow and with respect to the period
averaged flow quantities.

In this chapter the rigid bed shapes and the considered flow is presented.
Secondly a phase resolved flow description will be given in terms of the way
separation occur on the upstream and lee side of the ripple.

Afterward the period averaged quantities are investigated which will fo-
cus on the recirculation cell discussed in section 1.1. The investigated quanti-
ties will be the strength of the recirculation zone, the penetration depth and
a correlation of these two quantities. Further a correlation of the strength
with period averaged bed shear stress is considered.

Having established a good flow description and understanding of the
processes, the sediment transport over the different shapes as a function of
the Shields parameter, θ, will be given. The sediment transport capacities,
CB, are analysed as a function of the ripple profile.

3.1 Shape of the Rigid Bedforms

The choice of rigid bed shape covers six different shapes and two kinds of
crests, namely smooth or sharp. Three of the bedforms are simple ana-
lytic functions and the other three are modifications to one of the analytic
functions. The analytic functions with a smooth crest are given by a pure

21
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cosine

S1 : h(x) =
h0

2
cos

(

2π

λ
x

)

+
h0

2
(3.1)

and a cosine added a second harmonic

S2 : h(x) =
h0

2

{

cos

(

2π

λ
x

)

+ 0.25 cos

(

4π

λ
x

)}

+
3h0

8
(3.2)

The sharp crested ripple is parabolic and given as

S100% : h(x) =

{

4h0λ
−2
(

x + λ
2

)2
for x < 0

4h0λ
−2
(

x − λ
2

)2
for x ≤ 0

(3.3)

where λ is the length of the ripple and h0 the trough-to-crest height. The
parabolic shape has been chosen inspired by the analytic finding by Fredsøe
and Hedegaard (1983). The length of all of the ripples has been chosen to
be λ = 1.2a from the consideration in Hedegaard (1985).

The modified bed shapes are based on S100% to see the effect of a round-
ing of the sharp crest. This rounding is created by introducing a part of a
circle on top of the parabola, see figure 3.1.

r

y0

h0 − h̃0

Figure 3.1: Sketch of the smoothing routine of the parabola to a smooth crested
ripple.

The rounding if defined by the criterion

max

∣

∣

∣

∣

dSf

dx

∣

∣

∣

∣

= f max

∣

∣

∣

∣

dS100%

dx

∣

∣

∣

∣

= f
4h0

λ
(3.4)

thus meaning that the maximum slope of the ripple profile should be f
times the maximum slope of S100%. In this way three different bed shapes
are introduced, namely S97%, S93% and S91%. The effective height of the
ripple is changed from h0, since it is not possible to maintain the same
height with a reduced slope. All profiles will still be referred to as having
the height h0 as the one given for S100% for a matter of comparability.

The height of the crest is written as

h̃0 = r + y0 (3.5)
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where h̃0 is the reduced height, r is the radius of the smoothing and y0 is
the y-coordinate of the center of the circle. Those are given as

r =
(1 − f)λ2

8fh0

√

(8fh0λ−1)2 + 1 (3.6)

y0 = f2h0 −
(1 − f)λ2

8fh0
(3.7)

The fact that the height is reduced means that the flow is less contracted
over the crest. This has to be taken into account when analyzing the results.
The reduction in the height is in the order of magnitude O(1 − f) for the
present work with h0/λ ≪ 1. Comparison of the shapes can be seen for S1,
S2, S91% and S100% in figure 3.2. The shapes of S93% and S97% will be in
between S100% and S91%.

−0.4 −0.2 0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 
S1
S2

S91%
S100%

x/a

h
(x

)/
h

0

Figure 3.2: Four of the bed shapes with heights relative to h0.

The steepness of the bed shapes varies in the range h0/λ ∈ [0.00, 0.158],
which is the limiting steepness for S2, i.e. the maximum slope exceeds the
angle of repose of the sand. The test cases are summarized in table 3.1. In
this θ0 is the maximum Shields parameter on a flat bed.

The theoretical and the modeled ratio of the Shields parameter to the
critical one deviates significantly. This is explained by figure 2.5 in Fredsøe
and Deigaard (1995), where the data points for a/kN = 130 deviates from
the expression in (2.22). In the following θ0/θc calculated by Dune2D will
be referred to as M.

As can be seen in table 3.1 ws/Um > 0.20 for all the test cases, thus it is
reasonable to exclude suspended sediment transport (see Andersen, 1999).
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Table 3.1: A summary of the parameters used in the present investigation of flow
over rigid bed forms.

Rea · 10−5 a/kN θ0/θc, (2.22) θ0/θc, Dune2D Deviation ws/Um

A : 1.527 130.0 1.00 1.31 31% 0.310
B : 3.903 130.0 1.60 2.15 34% 0.256
C : 6.144 130.0 2.00 2.74 37% 0.231
D : 9.601 130.0 2.50 3.45 38% 0.208

Further NT = 1000, NS = 10, ∆Q0 = 10−6 and y+ = O(0.08) has been
used.
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3.2 Phase-Resolved Flow Description

In this section the phase resolved flow properties will be considered. These
are vortex generation through flow separation and the direction of the hori-
zontal component of the near bed velocity. This is used to specify the phase
lag between flow separation and the free stream velocity; this is done for
both the upstream and lee side of the ripple, termed φ+ and φ− respec-
tively. Based on these results three kinds of vortex generation is presented.

First a qualitatively description of the flow quantities and the general
physical mechanisms behind the different observations will be given in sec-
tion 3.2.1. To keep the length of this analysis reasonably, results for S97%

are the only to be presented.

Then a quantitatively description of the phase lag will be given in section
3.2.2, where the phase lag will be connected to the different kinds of flow
separation.

Finally a preliminary discussion of the influence of the different types of
flow separation on the bed load transport will be presented. The detailed
analysis of the bed load transport is presented in section 3.4.

3.2.1 Qualitatively Description of Flow Separation on the

Lee Side

In figure 3.3, the vorticity for three different steepnesses are plotted for the
phase ωt = 90◦. The red color is identical to positive vorticity, i.e. clockwise
rotation, and the blue color is negative vorticity. Vorticity larger than 40
have been removed from the data set to make the important features visible.
The vorticity is used, since the initiation of separation is hard to seen in a
simple vector plot of the velocity field.

For the smallest steepness, see figure 3.3(a), the vorticity is positive along
the entire bed, thus no separation has occurred at the present state on the
lee side of the ripple. For the steepness in between, see figure 3.3(b), it is
seen that the positive part of the vorticity has values less than the threshold
close to the bed. Actually a small area of negative vorticity is present at the
crest, but this is not visible in the figure. This illustrates the initialization
of flow separation at the bed. For the steepest ripple, see figure 3.3(c), there
is a thin layer of negative vorticity on the lee side of the ripple and the
separation is in a mature state.

Due to the nature of waves, flow separation must occur each half period,
but figure 3.3 shows that the separation takes place for different phases
as a function of the ripple steepness. The actual point of separation has
been investigated for the three cases. The horizontal component of the near
bed velocity, Ub(x, t), is plotted in figure 3.4 for the x-coordinate, where
separation is initialized. The initialization is defined as the first occurrence of
a negative velocity on the lee side of the ripple, see figure 3.6 for a definition
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Figure 3.3: The vorticity over S97% at ωt = 90◦ for varying steepness. All are
plotted for test case D. The dashed line is the ripple.
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sketch. The phase, where separation occurs, is marked by a red square in
figure 3.4. The phase resolved plot supports the results in figure 3.3, because
for the small steepness, flow separation does not occur before ωt = 153◦, the
intermediate steepness has flow separation at ωt = 80◦ and for the steepest
ripple the separation is completely out of phase with the free stream velocity,
i.e. separation occurs at ωt = 0◦.
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Figure 3.4: The near bed horizontal velocity, Ub, in the point where separation is
initialized on the lee side of the ripple. The ripple profile is S97% and
the red squares are the phases where separation occurs.

The separation for h0/λ = 0.025 occur at such a late state that it cor-
respond to the phase lag on a flat bed, which is determined to be 27◦ − 30◦

for a/kN = O(100) (see Dixen et al., 2007). Due to the small steepness, this
ripple is in the rolling grain ripple regime, thus this result is expected due
to the lack of vortex generation.

The movement of the vortex for h0/λ = 0.150 is similar to the mechanism
reported by Fredsøe et al. (1999), where a volume of fluid with opposite
rotation is washed over the crest together with the main vortex. This volume
remains attached to the ripple crest and initiate the growth of the following
vortex.

The third kind of separation has not been seen reported. This is prob-
ably because other authors used a combination of rather steep and sharp
crested ripples, and as will be seen in section 3.2.2 this kind of separa-
tion occur exclusively for intermediate ripple heights and relatively smooth
crests. In this case, separation occur around ωt = 90◦, i.e. when the free
stream reaches its maximum outer velocity and the global pressure gradient
is approximately 0. Due to the contraction of the flow at the crest there
will be a lower pressure on the crest than the in trough. This results in an
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adverse pressure gradient which apparently is strong enough to cause flow
separation.

Local favorable pressure gradient Local adverse pressure gradient

Free stream direction

Converging part Diverging part

Local pressure

Figure 3.5: Definition sketch of the pressure over the ripple, and thus the working
pressure gradients.

This further gives the anticipation to the following analysis that the flow
separation on the lee side of the ripple will occur with an increasing phase
lag to the outer flow when the ripple increases in steepness, because the
pressure gradient due to expansion of the cross section gives an additional
adverse pressure gradient on top of the global one, see figure 3.5. Thus
an earlier separation is expected. Similarly a later separation due to flow
reversal on the upstream side is expected, as the adverse pressure gradient
on the lee side acts in the opposite direction, i.e. as a favorable pressure
gradient on the upstream side due to the periodicity of the model.

3.2.2 Quantitatively Description of the Flow Separation

One of the most significant features in the phase resolved flow is the flow
separation, which in the above is seen to vary with the steepness of the ripple.
In the following a quantitative analysis is given on this mechanism for all
bed shapes and all steepnesses. Both the upstream and lee side separation
are considered. The upstream separation relative to the free stream velocity,
φ+, is defined as the phase where Ub, measured just upstream of the crest,
changes sign from positive to negative in the interval ωt ∈ [0◦, 180◦]. This
definition is chosen since the separation zone expands from the downstream
side to the upstream side, thus considering the entire upstream side would
yield erroneous results, see figure 3.6 for a definition sketch.

Regarding the lee side separation it is defined as the phase where the
sign of Ub first becomes negative. The phase is not as rigidly restricted to
a phase interval since the flow separation on the lee side can lead over the
free stream velocity with more than 180◦.

An analysis of the two separation points are carried out for all shapes
and all test case. The results are to be seen in the figures 3.7(a)-3.7(f). The
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Lee sideUpstream side
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Evaluation of φ+

Free stream direction

Figure 3.6: Sketch of the definition of the separation on the upstream and lee side of
the ripple. The upstream side is defined at the crest due to the expansion
of the vortex over the trough. Separation on the lee side is defined where
it first occurs; here ωt1 < ωt2 < ωt3.

results will be discussed in details in the following.

1. The phase lag on a flat bed corresponds to the phase lag found exper-
imentally. Several experimental investigations are compiled by Dixen
et al. (2007).

2. The upstream phase lag, φ+, follows the expected trend for all shapes
up to a certain steepness. In this interval the phase lag decreases
and it can only be explained by the increase in inertia of Ub due to
convective acceleration on the converging part of the ripple. This
acceleration must the driven by a favorable pressure gradient which
counter acts the global adverse pressure gradient, thus a decrease in
the phase lag is the result. The increase in φ+ on steeper profiles has
not been explained, but is noted to be correlated with the large phase
lags in φ−.

3. For the downstream phase lag, φ−, three different kinds of separation,
described in 3.2.1, are found. For the very gentle profiles, namely S1

and S2, there is an extremely gentle transition from the flat bed phase
lag to a larger one. This increase in phase lag is due to the additional
adverse pressure gradient on the lee side of the ripple and the smaller
Ub on the lee side.

For the parabolic shaped ripples there is a more pronounced and al-
most discontinuous jump between the three types of separation. It is
seen that the less the parabolic shaped ripple is smoothed, the smaller
the steepness is needed for the separation to come out of phase with the
free stream velocity. Actually the intermediate flow separation zone
tends to be decreased significantly and the flow goes more or less from
flow reversal separation to out of phase reversal. This faster transition
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(a) Ripple shape S1
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(b) Ripple shape S2
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(c) Ripple shape S91%
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(d) Ripple shape S93%
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(e) Ripple shape S97%
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(f) Ripple shape S100%

Figure 3.7: The upstream and lee side phase lag between the point of separation and
the free stream velocity. The data is plotted for all shapes.
Red: φ+. Blue: φ−. ▽: Test case A. ◦: Test case B. �: Test case C.
⊳: Test case D.
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to out of phase vortex generation must be due to the volume of fluid
carried over the crest at the point of flow reversal, which more easily
gets hold on the crest, so it can initialize the vortex generation.

4. It is seen from the data sets that there is approximately no dependence
on the Reynolds number, thus only one data set will be plotted in the
following flow analyses.

In figure 3.8 the location of the separation point is plotted against the
lee side phase lag. From this, two thing are seen, namely that as the phase
lag increases from the flat bed value, the point of separation moves toward
the crest. Further it is seen that the point of separation is located almost at
the crest for the out of phase separation, which fits well with the mechanism
of having one vortex washed over from the opposite side of the ripple and
being attached to the crest and hereby initiate the separation.
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Figure 3.8: The phase lag on the lee side of the ripple, φ−, as a function of the
distance from the crest where separation occur.

3.2.3 Comments on the Vortices

First it is to be noted that based on an analysis of the numerical results, it
looks like the rule of thump that vortex ripples appears when h0/λ exceeds
0.10 is qualitatively well. There is some shape dependence, especially for
S97% and S91%, where the vortex is present for smaller steepnesses.

Secondly, assuming that the steepness is large enough, the vortices tends
to appear in two different ways. These ways are governed by the sharpness
of the crest, and the groups consist of S1, S2 and S91% in the first and S93%,
S97% and S100% in the second. The difference in appearance is sketched in
figure 3.9.
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S1, S2 and S91% types

S93%, S97% and S100% types

Free stream direction

Free stream direction

Figure 3.9: Two types of vortices generated on the lee side of the vortex, the first
separates some distance from the crest on the lee side, and the second
separates qualitatively at the crest.

The two different groups is governed by the sharpness of the crest, and
for the smooth type of ripple profiles, the top panel in figure 3.9, the flow
remains attached at the lee side of the ripple until some distance from the
crest, where the adverse pressure gradient become to large. This attached
flow remains attached until the flow separation due to flow reversal, thus the
vortex does not grow in the direction of the crest. The second type of vortex,
the lower panel in figure 3.9, is separated at the crest, at least qualitatively.
The rounded parabolic shapes does tend to have a short distance on the lee
side where the near bed velocities are directed in the freestream direction,
but this distance is qualitatively neglectable.

3.2.4 Preliminary Discussion on Bed Load Transport

Due to the large deviation in the phase where separation occur on the lee
side, a direct effect on the sediment transport must be expected. Figure 3.4
illustrates this influence well. This figure shows the occurrence of separation
along the ripple for different steepnesses.

For the smallest steepness, the near bed velocity is almost sinusoidal
distributed centered around a zero mean. The effect of earlier separation is
that the period averaged near bed velocity becomes more and more nega-
tive, thus the period averaged sediment transport will probably have a crest
directed component until the gravity effect becomes large enough. For the
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steepest ripple there is almost no positive component, and from the previous
analysis, this point is seen to be situated at the crest, thus this indicates
that the extremely sharp, i.e. large curvature of the crest, cannot be stable
in terms of a period averaged profile.

2

2

2

3

3
3

3
4

4

4

4
5

5
5

6

6

6

7

7
7

8
8

9

9

10

11
12

 

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
2

3

4

5

6

7

8

9

10

11

12

S1

S2

S91%

S93%

S97%

S100%

h0/λ

Figure 3.10: The amplification factor of the maximum bed shear stress due to an
increase in the steepness. The amplification factor is given for all
shapes.

Another feature, which has direct influence on the bed load transport is
the Shields parameter. In figure 3.10 the amplification of the maximum bed
shear stress due to the increase in steepness is depicted. This shows that
for S100% the amplification in the maximum bed shear stress, and therefor
directly an amplification of the maximum Shields parameter, exceeds 12
for the steepest of this bed shape. This means that even for test case A

the maximum Shields parameter will be close to the limit of sheet flow,
commonly accepted at θ = 0.8. This support the analysis based on the
phase lag, φ− that the sharp ripple profile is highly unlikely to be the period
averaged equilibrium shape, as the transport will be large and therefor the
profile will be eroded at the crest.

The more round crested ripples on the other hand, namely at least up to
S91%, have smaller amplification factors thus there is a less drastic increase
in the Shields parameter. Thus this amplification factor further supports
the discussion that with a less pronounced separation at the lee side of the
ripple gives longer time for down slope sediment transport, which can help
stabilizing the profile. The transport capacity along the ripple side and the
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stability of the ripples is discussed in section 3.4. Further the influence on
the amplification factor by a dynamically moving crest is discussed in section
4.1.

The increase in amplification factor as the sharpness of the ripple crest
is increased has to be shape related. This is stated as the steepness is
the same for S1 and S100%, but there is a factor of 4 in difference. This
factor must originate from the convective acceleration of the water along
the ripple profile. In the case of S1 this acceleration takes place gradually,
thus the thickness of the boundary layer has time to be developed along the
ripple profile. In the case of S100% the opposite happens, as the slope of the
ripple steadily increases, and thus the local acceleration happens over such
a short distance that the development in the boundary layer thickness will
be insignificant compared to the contraction of the flow and thus increase
the near bed velocity.
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3.3 Description of the Period Averaged Flow

In this section the period averaged flow description will be given. The pe-
riod averaged flow quantity is as already discussed the recirculation zone
spanning over half a ripple length from trough to crest. The height of the
recirculation zone is defined as the penetration depth, δP .

First a qualitatively description of the recirculation zone as a function of
the bed shape and the steepness will be considered. Afterward a more quan-
titative description will be given based on calculated penetration depths,
recirculation strengths and shape dependence.

3.3.1 Qualitatively Description of the Recirculation Zone

Two different kinds of period averaged flow over ripples are given in the
following. In figure 3.11 the period averaged flow for a small steepness is
given for all six shapes. In figure 3.12 the same is plotted just for a larger
steepness. As the period averaged flow quantities are found to be Reynolds
independent the results are only plotted for test case D.

These figures show first of all that there are recirculation cells in the
period averaged quantities in oscillatory flows over ripples as long as the
height is different from 0.

When comparing the flow for the six shapes for h0/λ = 0.05 there is
hardly any difference to be seen. The height of the recirculation zone is
approximately constant and the velocities are in the same order of magni-
tude. The differences in the current magnitude must be attributed to the
differences in the curvature of the bed shape and thus different locations
where the convective acceleration takes place.

For h0/λ = 0.15 a significantly different pattern is seen, because in this
case the flow is highly bed shape dependent. The following shape specific
features can be identified just from looking at the figures 3.12(a)-3.12(f):

1. The steeper the ripple the larger the near bed velocities. The impor-
tance of the steepness is clearly illustrated by comparing S2 and S93%.
Despite the actual height of S2 being larger than S93%, see section
3.1, the current velocities for S93% are in the order of magnitude 15%
larger in the case of the smoothed parabola.

2. The steeper the ripple becomes, the more pronounced are the vertical
velocity components at the crest. This influences greatly the height of
the recirculation zone, since a larger vertical velocity will reach deeper
into to the main flow measured from the bed shape. In section 3.3.2 it
will be shown that the vertical velocity distribution along the vertical
over the crest plays a significant rôle in the strength of the recirculation
zone.
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Figure 3.11: The recirculation zone over the six different bed forms for a steepness
of h0/λ = 0.05. Results from test case D. The surface plot gives the

magnitude of the velocity vector, namely W/Um =

√

U
2

+ V
2
/Um.

The red dot is the approximate center of the recirculation cell.
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Figure 3.12: The recirculation zone over the six different bed forms for a steepness
of h0/λ = 0.15. Results from test case D. The surface plot gives the

magnitude of the velocity vector, namely W/Um =

√

U
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+ V
2
/Um.

The red dot is the approximate center of the recirculation cell. Be
aware of the different scales.
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3. The approximate center of rotation of the recirculation zone is greatly
effected by the bed shape. In the figures 3.12(a)-3.12(d) the trend is
that the center moves away from the bed and toward the crest. For the
last two bed shapes, see figure 3.12(e)-3.12(f) the opposite happens,
namely that the center of rotation moves away from the crest.

The significant change in the flow from h0/λ = 0.05 to h0/λ = 0.15
reveals that the period averaged properties of the flow changes significantly
when moving from the rolling grain ripple regime to the vortex ripple regime.

3.3.2 Quantitatively Description of the Recirculation Zone

In figure 3.13 the strength of the recirculation cell over the computational
domain A, see section 3.1, is plotted. The rotational strength is calculated
as

AΓ =

∫

A
ΩdA (3.8)

From the figure it is seen that the strength grows with the steepness of the
ripple which is expected as the more convergent/divergent the flow becomes,
the larger the difference between the bed shear stress in the half period with
convergent and the half period with divergent flow.

This effect is quite insignificant compared to the significance of the actual
shape of the ripple, where it is seen that S1 results in the smallest strength
and S100% in the largest one. Further AΓ(S2) ≃ AΓ(S91%).

The strength of the recirculation zone can be put up against the phase
at which separation occur. From this comparison it is seen that in general,
the stronger the vortex the more out of phase the flow separation is with the
free stream flow. The difference in phase lag does not govern it completely
as φ−(S91%) > φ−(S2) but the recirculation strength is almost identical.
Thus the shape and steepness of the ripple must be influencing as well. The
comparison of strength and phase lag is discussed more detailed later in this
section.

It should be noted that these strengths are calculated over the entire
height of the domain, thus figure 3.13 gives the averaged rotational strength
over the computational domain and not the actual strength, which only
works over a part of the domain.

Therefore the penetration depth, see definition in figure 3.14, has been
estimated. The procedure of determining δP is first to evaluate the following
integral

IU (y) =

∫ ǫ(y)

λ/(2a)
U(x, y)dx (3.9)
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Figure 3.13: The strength of the recirculation cell over the computational area A.
The results are plotted for test case D.
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Figure 3.14: Sketch of the evaluation of IU (y) together with the formal definition of
the penetration depth δP .
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where

ǫ(y) =

{

h−1(y)/a for y/a < h0/a
0 for y/a ≥ h0/a

(3.10)

Due to symmetry and D/a being so large that the flow is uninfluenced by
the upper boundary

∫ D/a

0
IU (y)dy = 0 (3.11)

From (3.9) δP has been defined as

|IU (δP )|

max |IU (y)|
= 0.01 (3.12)

i.e. the distance from the bed, where IU becomes 1% of the maximum of
IU (y).

To illustrate the results from this analysis IU (y) for all shapes and for
h0/λ = 0.05 and h0/λ = 0.15 is plotted in figure 3.15(a)-3.15(b). From these
it is seen that for small steepnesses the results are remarkably the same.
The penetration depth, δP , is the same for all shapes and the differences in
the maximum can be explained by differences in the curvature of the ripple
profile. For larger steepnesses huge differences occur. The penetration depth
is only changed a little and is in the same order of magnitude for all shapes.
On the other hand the maximum value of IU deviates significantly from
shape to shape. This must be explained by the larger rotational strength
for the steepest of the ripples which again is a consequence of earlier flow
separation.

Taking δP as the actual height of the recirculation zone, the strength of
the recirculation zone is modified as

A(δP )Γ0 = AΓ (3.13)

where Γ0 is the strength of the recirculation zone and A(δP ) is the hatched
area in figure 3.14. Γ0 is plotted in figure 3.16(a). As can be seen from these,
there is more or less just a factor difference in the results between figure 3.13
and 3.16(a). This observation leads to plotting δP as a function of h0/λ and
a nice correlation has been found, see figure 3.16(b). These results does not
have direct influence on the current analysis, since the two-dimensionality
of the flow is not important for the bed load transport, though it is highly
important when considering suspended sediment transport. The effect on
the suspended sediment is due to having light sediment and large penetra-
tion depth, then the suspended sediment cannot come out of suspension
thus the suspended sediment is of little significance on the redistribution of
sediment. The opposite argumentation can be taken with small penetration
and relatively large fall velocity.
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Figure 3.15: IU (y) for all shapes for two different heights. The results are plotted
for test case D.

Until now it is only the different mechanisms occurring in the flow, which
have been analysed as a function of the bed shape and height. The actual
mechanism behind driving the recirculation has not been given any atten-
tion. This is done in figure 3.17, where the strength of the recirculation zone
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Figure 3.16: The area corrected recirculation strength, Γ0 and the relation between
the penetration depth as a function of ripple steepness.
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is plotted against the average bed shear stress, namely

Iτ =
1

∫ 1/2
0 ‖h′(S)‖dS

∫ 1/2

0
τ b‖h

′(S)‖dS (3.14)

As this is the driving force, the clear correlation between the strength of the
recirculation and the acting force is not surprising.
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Figure 3.17: The strength of the recirculation, Γ0, as a function of the driving force,
Iτ . The data has been plotted for all bed shapes and test case B.

The increase in period averaged bed shear stress is due to the combined
convergence and divergence of the flow as discussed in section 1.1. It is
interesting how this quantity correlates with the phase lag in the flow sep-
aration, since earlier separation is expected to increase the strength of the
vortex generated every half period. This comparison can be seen in figure
3.18.

No universal trend is to be seen due to significant shape dependence.
The results from the parabolic shaped ripples falls on top of each other until
a certain point where the actual shape of the crest can be felt. As expected
this happens the earliest for S100% and the latest for S91%. Even though
it is highly shape dependent there is a trend toward larger phase lag with
increasing Iτ and thus increasing strength of the recirculation zone. Though
it should be emphasized that the phase lag, and thus the growth time for
the vortex, does not account for everything.
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Figure 3.18: The phase lag on the lee side of the ripple, φ−, as a function of the
period averaged bed shear stress Iτ .

Re-Evaluation of Γ

The introduction of IU (y) leads to another interesting feature. This is
achieved by considering the definition of IΩ, which rewritten gives

ΓA =

∫

A
ΩdA =

∫ D/a

0

∫ ǫ(y)

−λ/(2a)

[

∂U

∂y
−

∂V

∂x

]

dxdy

=

∫ D/a

0

[

∂

∂y

∫ ǫ(y)

−λ/(2a)
Udx − U(ǫ(y), y)

∂ǫ(y)

∂y

]

dy −

∫ D/a

0
V
∣

∣

∣

ǫ(y)

−λ/(2a)
dy

Using the no-slip condition for U and V and IU (0) = 0 this is reduced to

ΓA(δP ) = IU (δP ) −

∫ δP

h0/a
V (0, y)dy +

∫ δP

0
V

(

λ

2a
, y

)

dy (3.15)

where a general upper bound is inserted, namely the penetration depth δP .
This shows that if δP is chosen such that IU (δP ) = 0, i.e. outside the
sphere of influence by the near bed flow, the strength of the rotation is
completely determined by the vertical velocity distribution over the trough
and the crest. The mechanism in driving the recirculation zone can then be
considered as the vertical velocities inducing a deformation of the volume
enclosed between trough and crest. This deformation leads to movement and
induces shear stresses at the bed. This analysis is opposite of the theoretical
mechanism introduced in section 1.1, but the result is the same, and the shift



Description of the Period Averaged Flow 45

between cause and effect is simply due to different ways at looking at the
process.

It is not possible to say which mechanism is the correct, since both of
them appears immediately if the flow is initialized from still water.
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3.4 Bed Load Transport

In this section the bed load transport will be considered. In section 3.4.1 the
bed load transport capacities will be considered. In section 3.4.2 a discussion
of the stability of the the ripples will be discussed.

3.4.1 Transport Capacities

The bed load capacity in the flow is defined as

CB = sign(UB)
(

U2
B + V 2

B

)3/2
(3.16)

since it is given that without the gravity correction, qB ∝ θ3/2 ∝ CB , where
UB and VB are the horizontal and vertical near bed velocities respectively.
This quantity describes, as the name indicates, the capacity of the flow to
move the sediment, in which direction the transport would go and at which
phases it occur.

In the figures 3.19 and 3.20 CB/C0
B(S1) is plotted for two different lo-

cations along the ripple profile, namely x/a = 0.3 and x/a = 0.55, where
the former is halfway between crest and trough and the latter almost at the
trough. C0

B(S1) is the maximum transport capacity for the shape S1 on a
flat bed. In the figures the color scale is limited to ±1.5 thus large dark
areas exist. This has been chosen as it is the direction and the duration
of one direction or the other which is of interest and not the magnitude in
itself.

In the figure 3.19 it is seen that the flow is close to periodic for almost
every steepness for all of the shapes. Further it is seen that there is some
protection of the motion in the trough due to the crest, thus the flow is
qualitatively independent of shape and steepness as long as the curvature of
the ripple crest is small. For the steepest of S97% the separation zone begins
to come into play as seen by the negative transport capacity for ωt = 120◦.
This tendency is even more clear in the case of S100%, where the separation
zone expands to the trough for even smaller steepnesses.

In figure 3.20 the transport capacity for the point in between the crest
and the trough is depicted. It should be noted, that at this point h ≤
h0/2, where the equality holds for S1. From this is can be seen that the
transport capacity is negative significantly longer than positive for even
small steepnesses. This means that the transport capacity tends to give crest
directed sediment transport and thus the influence of gravity is essential to
give zero mean flux of bed load transport.

3.4.2 Stable Ripple Profiles

Based on the above analysis of the rigid ripple profiles, it is interesting
whether or not it is possible to defined one rigid ripple profile, which is in
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Figure 3.19: The transport capacity for all six bed shapes as a function of steepness
and phase in the point x/a = 0.55.
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Figure 3.20: The transport capacity for all six bed shapes as a function of steepness
and phase in the point x/a = 0.30.
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equilibrium under the given conditions. Considering the ripple profile in
figure 3.21, the strongest definition of stability most be

IΦB
=

1
∫ 1/2
0 ‖h′(S)‖dS

∫ 1/2

0
|ΦB| ‖h

′(S)‖dS = 0 , (3.17)

i.e. the period averaged bed load transport is zero along half the ripple
profile. This has not been achieved for any combination of the investigated
profiles or test cases. Thus to give an estimate of a stable steepness as a
function of shape and M, a looser definition has to be chosen.

h(0)
h(1)

S
h0/λ

xS

h(S)

λ = 1.2a

x

y

Trough CrestStable section

Φ
T
B Φ

S
B Φ

C
B

Crest sectionTrough section

Figure 3.21: Sketch of the considered ripple with a definition of the different quan-
tities.

This looser definition is indicated in figure 3.21 by the distance xS from
the crest. The stability criterion can be defined in two different ways, namely
based on a magnitude consideration or a gradient consideration. These two
approaches have different properties in terms of morphologically evolution
of the bed shape. First the continuity equation of sediment is examined
using

∂h

∂t
= −

∂qB

∂x
(3.18)

where porosity is incorporated in qB. This gives that the rate of change in
slope using the above must be

∂

∂t

∂h

∂x
= −

∂2qB

∂x2
. (3.19)

With this in mind, the two approaches will be presented.

1. Having that Φ
T
B and Φ

C
B must be 0 due to symmetry consideration,

i.e. the transport in the trough and at the crest respectively, then if
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a point at the distance xS exists such that Φ
S
B = 0, then the ripple is

termed stable. The underlying argument is that having such a point,
the ripple does only change locally as no transport takes place between
the trough and crest sections. Looking at the equations (3.18)-(3.19)
this allows the ripple profile to alter both height and slope in the stable
point. Thus the stable point is given two degrees of freedom.

2. The second definition of stability restricts the degrees of freedom to
one, namely demanding that ∂qB/∂x = 0 for x = xS . The underlying
argument is in this case that the profile does redistribute sediment
across the stable point xS , but since the gradient of the transport is
zero only the slope in the point changes due to (3.18).

Though the second leaves the stable point with fewer degrees of freedom
and thus more rigidly defined, there are some problems in defining this
quantity, see figure 3.22. This behaviour in ∂h/∂t is extremely explosive
and is for obvious reasons not stable if taken a morphological step. Due to
this behaviour, the second approach is discarded.
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Figure 3.22: The gradient in qB expressed as ∂h/∂t.

It was considered to take some value of xS and find the combination of
shape and steepness which would fulfill qB = 0. This gave scattered data,
thus instead the inverse approach was adopted, namely determine xS .

The results are given in the figures 3.23(a)-3.23(f). In these figures the
value of xS is reported, where the possible interval is [0, 0.6] with 0 being
the crest and 0.6 the trough. Further the lee side phase lag, φ− and the
x-coordinate where h(x) = h0/2 is plotted, the latter as the solid green line.

1. First of all it should be noted that even though a xS exist it will not
be regarded as a stable point, if xS/a > 0.3, since it is regarded as
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(b) Ripple shape S2
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(c) Ripple shape S91%
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(d) Ripple shape S93%
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(e) Ripple shape S97%
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(f) Ripple shape S100%

Figure 3.23: Plot of the xS/a-coordinate, where a zero period averaged bed load
transport is encountered for the first time measured from the ripple
crest. �: Test case A, M = 1.31. ◭: Test case B, M = 2.15. •:
Test case C, M = 2.74. ◮:Test case D, M = 3.45. −: x/a-value,
where h(x/a) = h0/2. �: The phase lag, φ−, from section 3.2.2 for
test case D
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being so far away from the crest that everything can happen. This is
further supported by the green line indicating h(x) = h0/2 which is
less than 0.3a from the crest.

2. It is noted that for smaller M, xS is smaller, i.e. the stable point
is closer to the crest. As the bed shear stress at the crest are larger
because the ripple is most exposed at that point, this is expected, as
the smaller the mobility number the more exposed the sand grains
can be and still be kept in equilibrium by gravity as a period averaged
consideration.

3. None of the test cases D gives any indication of stability and hardly
any of the cases C except for S2, where xS/a tends to the upper limit
0.3.

4. Choosing the location where h(x) = h0/2 to be the limiting value for
xS it is seen that the possible solutions are even more limited, actually
limited to test case A exclusively.

5. As the phase lag increases so does xS. The behaviour of φ− and xS is
actually well correlated with a sudden increase in xS when φ− tend to
become larger than 180◦. Thus the slope of the ripples are simply not
large enough to induce a sufficiently large retarding force from gravity.
Further this supports the analysis of the transport capacities, where
the crest directed capacities became large compared to the trough
directed when moving up the ripple face toward the crest.

6. Considering the rounding of the crest in the case of the parabolic
shapes it is seen that there are some pronounced shape similarities.
The decrease and increase in xS takes place in the same manner, and
for the smoothed ones the minimum of xS is achieved for φ− = 100◦.
Further it is seen that the more the crest is rounded the smaller xS

can become and more importantly, the more the ripple is smoothed
the larger the number of possible solutions, e.g. there is no xS for
S100% at steepnesses larger than 0.11.

In figure 3.24 the stability based on two different definitions has been
summerized. These definitions are qB = 0 for x/a = 0.3 and qB = 0 for
x = h−1(h0/2) respectively. This figure shows two thing, namely as already
stated that it is only for M = 1.31 and M = 2.15 that it is possible to
find a stable point. Further test case B dominates for the first approach
and in the latter the second approach dominate. The trend though is the
same, namely for increasingly sharp crested ripples the stable steepness is
decreased. Further it is seen that for both approaches test case A and B

have an upper and a lower solution, which with reference to φ− corresponds
to a rolling grain ripple and a vortex ripple respectively.
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Figure 3.24: The stable steepness as a function of shape for two different definitions
of stability. Filled: qB = 0 for x/a = 0.3. Empty: qB = 0 where
h(x) = h0/2, i.e. green line in figure 3.23.
�/�: Test case A. ◦/•: Test case B

These observations results in the concluding remarks that none of the
rigid ripples has been found to be stable for M > 2.15. For very small
steepnesses such a stability point does not even exist which symbolizes a
pure crest directed transport, i.e. a growth of the ripple. When the steepness
exceeds some value, stable points are to be found, but they are not close to
the upper bound chosen for xS . This means that non of the investigated
shapes are well suited for describing the ripple shape for M > 2.15.

For M ≤ 2.15 on the other hand stable shapes has been found and the
interesting thing is that due to the U-shape of the curves in figure 3.23 it is
possible to find two solutions for the different shapes, namely solutions lying
in the rolling grain ripple regime and the vortex ripple regime respectively.
Even though two solutions can be found, it is unlikely that the rolling-grain
ripple solution will be stable, as a small perturbation on top of the ripple
will increase the maximum bed shear stress and therefor an increase in the
bed load toward the crest will be the consequence. Thus this procedure will
not stop until the stable vortex ripple is reached.
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Chapter 4

Dynamic Ripples and

Morphology

In this chapter, the dynamics of ripple profiles will be discussed. This is
both in terms of dynamics within one wave period due to a perturbation
on top of the rigid ripple, which moves back and forth with the flow and
in terms of morphological updating of the ripple profile based on period
averaged quantities.

First the phase resolved dynamics of the ripple will be discussed in sec-
tion 4.1. Secondly the attempts to apply morphological updating on the
ripple profile will be discussed in section 4.2. The former type will be termed
“dynamic ripple” in the following.

4.1 Dynamic Ripple

The dynamic ripple is based on one of the rigid ripple profiles discussed
in chapter 3. On top of this rigid shape a small perturbation is placed,
which is the only part of the entire ripple, which is allowed to move. The
perturbation is both considered using a triangular shape, i.e. sharp, and a
smooth shape.

The size of the triangle is based on the semi-period averaged quantities
of the flow. The cross sections in figure 4.1 has been chosen such that
∫ T
0 qA1

B dt =
∫ T
0 qA2

B dt = 0. Hence the integral
∫ T/2
0 qA1

B dt =
∫ T/2
0 qA2

B dt = C
due to symmetry reasons.

Due to this symmetry condition there will be mass conservation inside
the part of the ripple profile constrained by A1 and A2. Hence the volume
exchanged over the crest over half a wave period from the left hand side to
the right hand side can be expressed as

V =
1

1 − n

∫ T/2

0
qC
B − qA1

B dt (4.1)

55
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Figure 4.1: Sketch of the entire ripple profile with a perturbation on top of the crest.
The size of the perturbation is based on the sediment transport averaged
over one half wave period.

in deposited volume. This information can be used to calculate the size of
the perturbation.
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t = 0

t = ∆t
t = n∆t

t = T/2

Envelope
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Rigid shape

Figure 4.2: Sketch of the dynamic perturbation on top of some rigid shape. (a)
Principal movement of the perturbation profile. The time is local in
terms of the near bed velocity and not the free stream velocity. (b) The
shaded area is the volume moved each half period.

In figure 4.2 the phase resolved movement of the ripple over half a wave
period is sketched. At t = 0, the left side stands with the angle of repose
and the right hand side has a more gentle slope. As this profile evolves the
left side of the triangle gets an increasingly more gentle slope and the moved
sand is placed at the top, so the new top slopes toward the right with the
angle of repose. This process continues until t = T/2, where the profile is
the mirror of the one at t = 0. The initial gentle slope is the tangent to the
rigid profile. From this the maximum shape of the perturbation is limited
to the hatched area in figure 4.2 being equal to V in (4.1).

In Andersen (1999), figure 6.31, it is seen that during a half wave period,
it is actually the entire ripple profile which is active, and not only small
movements at the crest. Since this analysis is to evaluate the effect of small
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perturbations on the period averaged quantities, significant changes is not
desired, thus the size of the triangle is restricted by αV , where α = O(1%)
in the present work.

The only drawback of this formulation is that the crest becomes sharp
even though a smooth rigid bed profile is used as basic shape. Thus it is
hard to evaluate whether the effect is due to the movement or the sharp
crest. A formulation of a smooth dynamically moving crest has not been
derived due to the much more complex mathematical formulation, if the
same principal as in figure 4.2 should be followed.

Instead a more simple approach has been adopted. Namely, choose some
smooth perturbation and combine this with its mirrored counterpart into
time independent shape functions. Expressed mathematically, this gives

ηP (t) = (1 − β(t))η−p + β(t)η+
p (4.2)

where ηP is the time dependent perturbation and η±p are the shape functions
constant in time with the weight β being time dependent.

4.1.1 Preliminary Investigation

The preliminary investigation is to see the effect of how to move the dynamic
part of the ripple. The investigation has been made with both procedures,
i.e. sharp and smooth perturbations. Two methods of moving the pertur-
bation is investigated. Both changes is based on transport of volumes of
sediment. The first method is to move a constant volume per time step and
the second method is to move a volume which is proportional to U3

B each
time step. The latter as U3

B is proportional to the bed load transport. UB

is taken at the crest.

In figure 4.3 the period averaged bed shear stress and the period averaged
bed load transport is plotted. The grid points move in space due to the
change in the bed shape, but since the analysis is based on bed properties
it is assumed that a direct averaging can be applied with no consideration
to the movement of the bed.

As seen from the results there is two main conclusions which can be
derived from this preliminary investigation. First of all the maximum in
the period averaged bed shear stress become smaller if the perturbation is
moved with a velocity proportional to the crest velocity. This is reasonable,
otherwise the perturbation will move to fast around flow reversal and to
slow during occurrence of the maximum outer velocity, i.e. inducing a local
and non-physical velocity field. Secondly, it is seen that the sharp crested
method gives rise to global changes, which must be due to the more well
defined separation point due to the sharp crest. In the case of smooth
perturbation on the other hand, there is practically no influence on the
properties away from the crest.
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Figure 4.3: The effect on τ b and ΦB due to a dynamically moving ripple crest.
Sharp is the sharp crested method, smooth the smooth crested, con-
stant is constant movement of the perturbation and varying is move-
ment based on U3

b . The reference bed shape is S2 with h0/λ = 0.117.

It is seen that both types of perturbations give rise to a significant in-
crease in the bed shear stress and bed load transport. But only the triangular
shaped perturbation gives rise to a global effect, i.e. away from the ripple
crest. The significant peaks in both the bed shear stress and the transport
can originate from either the additional slope on top of the otherwise flat
ripple, i.e. increased convective acceleration, or it could also be that the dis-
cretization of the perturbation is not sufficiently fine, as only a few points
describes the crest.

4.1.2 Results with Perturbed Ripples

Based on this preliminary investigation it is decided that the movement of
the bed should follow the velocity at the crest and due to the uncertainty
of the effect of the discretization, Nx = 80 is chosen. The rigid shape will
be S91% and analysed for all steepnesses. The triangular perturbation is
defined such that the effective height of the ripple is increased by 7.5%. The
smooth perturbation is defined as a smoothing of the triangular shape.

The bed is updated 360 times per wave period and NT = 3600.

Two different results have been extracted from these data sets. These
are the amplification factor and the value of xS/a, i.e. the distance from
the crest to the point where ΦB = 0. These results can be seen in figure
4.4(a) and 4.4(b) respectively. In these, reference data from the two ripple
profiles S91% and S100% are also presented. In should be noted that not all
the results are fully converged, i.e. ∆Q > ∆Q0 and this is presented with
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empty markers on the lines.

From these results, two main conclusions are derived, namely inducing
a perturbation on top of a ripple greatly increases the maximum bed shear
stress, actually the amplification factor in the case of the sharp perturbation
is even larger than for S100% even though the effective steepness is smaller.

Further the stability is greatly disturbed and both types of perturbations
tends to the stability shape of S100% even though the perturbations are on
top of S91%. The perturbed solutions have quantitatively more in common
with S100% than S91%. This further shows that the actual shape of the ripple
crest is of paramount importance for the flow characteristics and sediment
transport patterns.

4.2 Morphology

Different attempts to update the bed to achieve a morphological develop-
ment to obtain a bed shape, which fulfill the stability condition given by
equation (3.17), has been tried. Though none have been successful, a short
overview of the attempts and the drawbacks will be given here.

1. An integrated approach was the first attempt, where one or two points
in between the ripple trough and crest was chosen. Based on the period
averaged bed load transport over these points, the bed shape over the
entire ripple profile was updated. This was tried with and without
mass conservation of the sediment.

The drawbacks in this approach was that the flow is extremely sensitive
to the shape of the ripple and especially the behaviour of the crest,
thus to give a good description of the shape in between the considered
points was not found to be an easy task without any knowledge of the
sediment transport in between these points.

2. Therefor a full morphological updating procedure was considered using
equation (3.18) in every point along the ripple.

The drawbacks in this approach was that the resulting ∂h/∂t terms
had some extreme peaks at the crest, see e.g. figure 4.5, which it was
not possible to smooth using any of the ordinary smoothing routines.
Peaks of that kind resulted in extremely small morphological time
steps when updating the bed, and further a more pronounced peak
appeared. A peak which in the previous analysis is seen to increase the
amplification factor and hence the sediment transport toward the crest.
Further due to the sign change at the crest in ∂h/∂t, the bed shape
after a few iterations revealed a triple peaked ripple. This happened
typically significantly before the slope exceeded the angle of repose.
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Figure 4.4: The value of xS/a and the amplification factor for both sharp and
smooth perturbations on top of S91%. Red: Reference for S91%. Green:
Reference for S100%. �: Smooth perturbation. •: Sharp perturbation.
Filled: Converged. Empty: Non converged.
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Figure 4.5: The morphological change, ∂h/∂t, based on the gradient in qB for test
case B over S91% with a steepness of 0.117.

The failure in achieving a full morphological evolution of the ripple pro-
file might also be due to the clustering of the points at the crest. In figure
4.6, ∂h/∂t for S1 with the steepness h0/λ = 0.15 has been plotted for both
a clustered point distribution and an equidistant point distribution. As can
be seen, using the equidistant point distribution, the peak in ∂h/∂t disap-
pears. This would allow for a much more robust updating in a morphological
scheme. The discouraging result is that the removal of the peak has only
been successful over S1 whereas it does not disappear on an equidistant grid
on S2 which is the second most smooth profile.

Further it should be noted that there is no influence from the point
distribution just a little distance from the crest.



62 Chap. 4. Dynamic Ripples and Morphology

−0.4 −0.2 0 0.2 0.4 0.6
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

∂
h
/∂

t

x/a
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Chapter 5

Discussion and Future Work

In this chapter the main results presented in chapters 3 and 4 will be dis-
cussed. Further a short section will describe the issues which it would be
interesting to address in future works.

5.1 Discussion

In chapter 3 a thorough presentation of the numerical results was given.
These results show a flow pattern which increases in intensity with increas-
ing sharpness of the ripple. The flow quantities was the strength of the
recirculation zone, Γ0, the ripple averaged bed shear stress, Iτ , and the
phase lag between flow separation on the lee side of the ripple and the free
stream flow. Further there was found a significant increase in the maximum
bed shear stress as a function of increasing curvature of the ripple crest.

Based on these informations together with the bed load transport, it is
obvious to draw the conclusion that ripple profiles with a large curvature
of the crest will be hard to get stable, since the extreme magnitude of the
Shields parameter in this work would directly give a rounding of the crest,
thus it cannot be stable. This is further supported by theoretical consider-
ations.

In Fredsøe and Hedegaard (1983) the argument which lead to the parabolic
ripple profile involves a discontinuity in the bed shear stress at the crest.
This discontinuity relates to ∂h/∂x thus giving a discontinuity in the slope.
What on the other hand is expected is that the top of the ripple moves back
and forth, as noted by both Sleath (1984) and in the numerical investigation
by Andersen (1999). Thus the period averaged bed shear stress is expected
to be smoothed to yield a continuous distribution along the ripple profile,
and thus the ripple profile cannot contain a discontinuity in the slope, i.e.
the profile must be expected to be smoothed to some degree.

The smoothing through a dynamic perturbation was investigated, but
the exact opposite was found, namely that the bed shear stresses are in-
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creased and the stability limit, defined by xS/a, is almost vanishing. This
investigation shows that the shape of the crest and dynamic behaviour is
of paramount importance for the flow description. Even that of choosing a
smooth perturbation instead of a sharp lead to significant differences. The
most significant change is that the sharp crested ripple gives global impact
where as the smooth only influences the near crest area.

The actual shape of the perturbation can also be discussed, as the present
formulation is a minor movement of sediment directly on top of the crest.
This does not support the findings that the semi-period averaged sediment
transport over the crest is O(100) times larger than the volume of sediment
moved in the present formulation. This support the sketch in Sleath (1984),
see reproduction in figure 5.1, that the dynamic part of the ripple is placed
on the side of the ripple slope and not on the crest. The actual mechanism
in moving the sediment from one side to the other is not discussed, but one
theory could be, that large Shields parameters at the crest gives almost no
gradient in ΦB thus all the sediment is simply transported over the crest and
deposited on the lee side of the ripple. This theory should further include
the finding that the smooth ripple profile has attached flow on part of the
lee side. To a first extend it can be estimated that the drop in bed shear
stress on the lee side is sufficiently large to deposit most of the sediment
close to the crest.

x

y

λ

Free stream direction

Figure 5.1: Reproduction of figure 4.7 in Sleath (1984) showing the phase resolved
movement of the ripple crest.

Though the parabolic profile with a small rounding is disregarded as a
possible equilibrium profile in the present analysis, it is not utterly impos-
sible. It is not impossible since the case of subcritical Shields parameters
on a flat bed has not been investigated. This would lead to supercritical
Shields numbers on a perturbed bed, but the increase would not come near
the sheet flow state. But it should be emphasized that it is not S100% which
is thought of, but one of the smoothed parabolic shapes.

It was further seen that the increase in the phase lag, φ−, gave rise
to significant crest directed transport capacities simply because of the in-
crease in the period averaged bed shear stress over half the ripple length,
Iτ . Further it was seen that none of the bed shapes with M > 2.15 could



Future Works 65

be termed stable. This can only be explained by the amplification factors
in the bed shear stress, thus the sediment transport at the crest would be
in a state of sheet flow for some period of time. This means that suspended
sediment transport cannot be disregarded as a mechanism of redistributing
the sediment away form the crest for large M.

The amplification factor further explains why no solutions for a stable
ripple exist at all for S97% and S100% if the steepness becomes to large.
For these steepnesses the amplification factor and the phase lag corporate
to make the near bed flow crest directed and inducing large shear stresses,
thus the gravity correction to the Shields parameter is insignificant.

When comparing all the results from the flow analysis it is seen that
for small steepnesses there is minor shape dependence, but increasing the
steepness pronounced differences occur. The key point is that the smooth
ripples cannot achieve the same magnitudes in say strength, bed shear stress,
etc, even though the smooth ripples are increased in steepness. This shows
that for large steepnesses it is essential to know the actual shape of the ripple
to describe the flow accurately. As a consequence, having a co-existing
current, the net-sediment transport is extremely dependent on the actual
shape of the ripples, as the correlation between bed shear stress and ripple
shape is not expected to be significantly different in that case.

One comment should be given the amplification factor and the bed shear
stresses in general. It is seen that the bed shear stresses in general are
larger in the case of steep parabolic ripples than for the cosine ripple. The
actual distance from the bed to the first computational cell in terms of wall
coordinates is smaller for the cosine ripple than the parabolic ripples, as the
friction velocity is smaller. Thus the prediction of the shear stresses over the
cosine bed is better than for the parabolic. This leads to a smaller difference
in the amplification factor than there actually is, but it is only a matter of
few percent, thus probably not of any significance.

5.2 Future Works

One of the key obstacles using the present code has been the slow conver-
gence rate for certain configurations. Some flows did not even converge to
a solution with ∆Q < ∆Q0 in 10.000 wave period. This is clearly not ac-
ceptable, thus a more stable algorithm for making the solution convergence
is necessary.

Further, suspended sediment has been mentioned in the previous chap-
ters, thus an obvious step is to include suspended sediment in the calcula-
tions and see what the effect on stability will be.

Finally, studies comprising of combined waves and current should be
undertaken, as this combination are closer to realistic conditions than the
conditions investigated in the present work.
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Chapter 6

Conclusion

In this work the flow and bed load transport over ripples under the influence
of oscillatory flow has been investigated using a numerical model.

There has been made a parametric study where the ripple shape, the
ripple steepness and the flat bed Shields parameter have been varied.

With respect to the flow, it is seen that increasing the steepness of the
ripples gives rise to a contraction of the flow, which results in an increase in
the maximum bed shear stress compared to the one induced on a flat bed.
This amplification is seen to vary with the actual ripple profile. For large
curvatures of the bed shape an amplification factor up to 12 is achieved. For
more gently changing bed shapes the amplification factor does not exceed
4.

Due to the presence of a ripple, a non-zero period averaged bed shear
stress is seen and this is further seen to vary with the shape and steepness in
the same manner as the amplification factor. This non-zero bed shear stress
is found to drive a recirculation zone and the extend of this recirculation
into the main flow has been mapped. This mechanism is important for
suspended sediment transport.

With respect to the bed load transport the dependence on the ampli-
fication is clearly seen, as the sharp crested ripples achieves large Shields
numbers at the crest; so large that it is unlikely that the sharp crested (or
even ripple shapes with large but finite curvature at the crest) can be stable
as a period averaged consideration as the crest will be smoothed due to the
large bed shear stresses.

The amplification factor has been investigated in further detail, namely
the dependence of this quantity on the behaviour of the crest. This is done by
perturbing the rigid ripple profile with a dynamic part, which moves back
and forth. This perturbation lead to significantly increased amplification
factors, but the way to perturbed the ripple was questioned.

Finally it should be stressed that it is not sufficient to map the ripples
by such quantities as the ripple height, h0, the ripple length, λ, the Shields
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parameter, θ, and the free stream quantities. In this work it is seen that the
shape is essential for the flow and sediment transport.
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