Technical University of Denmark

European Food Safety Authority; Analysis of the baseline survey of Salmonella in holdings with breeding pigs, in the EU, 2008; Part B: Analysis of factors potentially associated with Salmonella pen positivity

EFSA publication; Hald, Tine

Link to article, DOI: 10.2903/j.efsa.2011.2329

Publication date: 2011

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

EFSA publication (2011). European Food Safety Authority; Analysis of the baseline survey of Salmonella in holdings with breeding pigs, in the EU, 2008; Part B: Analysis of factors potentially associated with Salmonella pen positivity. Parma, Italy: European Food Safety Authority. (The EFSA Journal; No. 2329, Vol. 9(7)). DOI: 10.2903/j.efsa.2011.2329

DTU Library Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

SCIENTIFIC REPORT OF EFSA

Analysis of the baseline survey on the prevalence of *Salmonella* in holdings with breeding pigs, in the EU, 2008¹

Part B: factors associated with Salmonella pen positivity

European Food Safety Authority^{2, 3}

European Food Safety Authority (EFSA), Parma, Italy

ABSTRACT

A European Union-wide Salmonella baseline survey was conducted in 2008 in holdings with breeding pigs. A total of 1,609 randomly selected holdings housing and selling mainly breeding pigs (breeding holdings) and 3,508 holdings housing commercial breeding pigs and mainly selling pigs for fattening or slaughter (production holdings) were sampled. In each selected holding, pooled fresh faecal samples were collected from 10 randomly chosen pens of breeding pigs over six months of age, representing the different stages of the breeding herd, and examined for the presence of Salmonella. Analyses at country-level demonstrated a strong positive association between the prevalence of Salmonella-positive breeding holdings and the prevalence of Salmonella-positive production holdings, suggesting a vertical dissemination of Salmonella between the holdings. Based on the combined results from breeding and production holdings, multivariable regression analysis showed that the odds of Salmonella-positive pens with pigs increased with the number of breeding pigs in the holding and with the following pen-level factors: flooring systems other than slatted floors or solid floors with straw, presence of maiden gilts, number of pigs per pen, feed of commercial compound origin or pelleted feed. A tendency towards some Member State group-specific Salmonella serovars was identified, but spatial distribution of other serovars was heterogeneous. S. Typhimurium and S. Derby were widespread and dominant in the EU, in both breeding and production holdings. However, many other serovars were relatively prevalent in Western EU Member States. A complementary within-holding prevalence study indicated that, due to a non-perfect diagnostic test sensitivity, the observed EU-level prevalence of Salmonella-positive holdings with breeding pigs was roughly 80% of the estimated true EU-level prevalence. But this proportion varied between Member States.

© European Food Safety Authority, 2011

KEY WORDS

Salmonella, pigs, breeding pigs, baseline survey, risk factors, EU

Suggested citation: European Food Safety Authority; Analysis of the baseline survey of *Salmonella* in holdings with breeding pigs, in the EU, 2008; Part B: Analysis of factors potentially associated with *Salmonella* pen positivity. EFSA Journal 2011; 9(7):2329. [159 pp.] doi:10.2903/j.efsa.2011.2329. Available online: www.efsa.europa.eu/efsajournal.htm.

¹ On request from the European Commission, Question No EFSA-Q-2006-043B, issued on 25 May 2011.

² Correspondence: zoonoses@efsa.europa.eu

³ Acknowledgement: EFSA wishes to thank the members of the Task Force on Zoonoses Data Collection: Marta Bedriova, Susan Chircop, Georgi Chobanov, Veronica Cibin, Jürg Danuser, Kris De Smet, Kostantins Golubevs, Matthias Hartung, Birgitte Helwigh, Merete Hofshagen, Simona Iannetti, Sarolta Idei, Patrícia Inácio, Elina Lahti, Lesley Larkin, Emma Martín Denia, Peter Much, Edith Nagy, Ioana Neghirla, Lisa O'Connor, Jacek Osek, Manca Pavšič, Christodoulos Pipis, Saara Raulo, Jose Luis Saez Llorente, Julien Santolini, Petr Šatrán, Snieguole Sceponaviciene, Joseph Schon, Richard Smith, Jelena Sõgel, Johanna Takkinen, Chris Teale, Kilian Unger, Rob Van Oosterom, Luc Vanholme, Dimitris Vourvidis for the endorsement of the report; the members of the working group: Vojislava Bole-Hribovšek, Mariann Chriél, Rob Davies, June Fanning, Arjen W. van de Giessen, Laura Pérez Palancar, Antonia Ricci, Nicolas Rose, Lucy Snow for the preparation of this EFSA scientific output; Arjan Stegeman for the peer review; the EFSA's contractors: Hendriek Boshuizen and Gerda Doornbos from National Institute for Public Health and Environment (RIVM), Tine Hald from Danish Technical University, National Food Institute, Elinor Jones, Mark Arnold and Alasdair Cook from the Veterinary Laboratories Agency (VLA), and the EFSA's scientific output.

SUMMARY

A European Union-wide baseline survey on Salmonella in holdings with breeding pigs was carried out in 2008. In the context of this survey, breeding pigs were defined as sows and boars of at least six months of age kept for breeding purposes. The survey distinguished between breeding holdings (holdings housing breeding pigs and delivering replacement breeding pigs to breeding holdings and production holdings) and production holdings with breeding pigs (holdings housing breeding pigs and producing mainly pigs for fattening or slaughter). Breeding and production holdings were randomly sampled from holdings harbouring at least 80% of the breeding pig population in each Member State. In each selected holding, pooled faecal samples for Salmonella detection were collected from 10 randomly selected pens of breeding pigs representing the different stages of production of the breeding herd (maiden gilts, pregnant pigs, farrowing and lactating pigs, pigs in the service area, or mixed). A total of 5,117 holdings with breeding pigs with validated results from 24 European Union Member States, plus Norway and Switzerland, were included in the survey analyses, corresponding to information on 1,609 breeding holdings and 3,508 production holdings. Samples were taken from a total of 48,951 pens selected in both breeding and production holdings. The results of the analysis of Salmonella prevalence have already been published by the European Food Safety Authority on 17 December 2009 in the Part A report. The present Part B report provides the results from analyses of the associations of 19 pen- or holding- level factors and Salmonella positivity of pens in holdings with breeding pigs. The investigated prevalence was the observed prevalence, meaning that the prevalence estimates did not account for imperfect test characteristics. Also the results from correlation analyses between Salmonella prevalence in breeding and in production holdings, from analyses of the Salmonella serovar distribution across the European Union, and from analyses of an additional within-holding prevalence study carried out by five Member States are also presented in this part B report.

Correlation analyses at country-level demonstrated a strong and significant positive association between the prevalence of *Salmonella*-positive breeding holdings and *Salmonella*-positive production holdings, suggesting the likelihood of vertical dissemination of *Salmonella* between the holdings. This hypothesis was further underpinned by the significant positive association between the prevalence of *Salmonella*-positive holdings with breeding pigs of the present survey and the 2006 to 2007 baseline survey prevalence of *Salmonella*-positive slaughter pigs.

Multivariable regression analysis of the combined dataset for breeding and production holdings showed that at European Union⁴ level the odds of pens being positive to *Salmonella* increased as the holding size increased. Also the holding gilt replacement policy (way in which gilts are replaced in the holding) was associated with Salmonella pen positivity in breeding holdings, but not in production holdings. The odds of pens being positive to *Salmonella* increased with the number of pigs in the pen, with a 3% increase in odds per 10 additional pigs. The production stage of the pigs was also found to be significantly associated with *Salmonella* positivity with pens containing maiden gilts having higher odds than pens with pregnant or farrowing and lactating pigs. In breeding holdings, pens with fully slatted floors were associated with lower Salmonella-positivity than the category of pens with 'other' floor type. In production holdings, fully slatted pen floors had lower odds of being positive than outdoors in fields or paddocks as well as the other types of floor, except 'solid floor with straw' and pens where the floor type was classified as 'other'. Pens where pigs were fed with feed of commercial origin had higher odds of Salmonella positivity compared to those in which either home-mill mixed feed or feed from some other sources were used. Also, pens where pigs received pelleted feed as type of diet were associated with a higher Salmonella-positivity when compared to pens where pigs were fed with meal or wet feed.

In addition, the odds of pens being positive with *Salmonella* varied significantly between countries and between holdings within a country, even when other associated factors were accounted for.

⁴ Two non-MSs, Norway and Switzerland, were included in the overall EU level dataset.

Moreover, swab samples (swab passed through accumulated mixed faeces in the pen) were more likely to be *Salmonella*-positive than composite samples (comprising individual pinches from faeces), suggesting that sampling using swabs was a more sensitive method for detecting *Salmonella* in the pen than the composite sample.

Holding level factors that were included in the analysis but which were not significantly associated with *Salmonella*-positive pens were season of sampling, delay between sampling and testing, type of breeding or production holding, and boar replacement policy. Non-significant pen-level factors were age category of the pigs, gender of the pigs, indoor/outdoor production, individual housing, all–in/all-out production and cleaned, feed/water supplement and the use of antibiotics in the pig pens. However, for some of the factors the power of the analyses was low due to too few samples in some specific categories. Moreover, the analyses showed that 56% of the unexplained variance in the *Salmonella*-positive pen results might have been attributable to holding-specific factors for which no data were gathered during the survey and/or to the clustering of *Salmonella* linked to its infectious character.

The highest estimated theoretical reduction of *Salmonella*-positive pens would be observed if specific control measures were put in place that focus on the reduction of the exposure to feed of commercial compound origin and pelleted feed diet.

A notable variation in the number of different *Salmonella* serovars was observed across the European Union Member States indicating a heterogeneous serovar distribution between participating countries. *S.* Typhimurium and *S.* Derby were widespread and dominant in most Member States, while other serovars, such as *S.* London, *S.* Infantis or *S.* Rissen were frequently isolated in some specific countries and their relevance cannot be generalised to the European Union as a whole. Many serovars isolated in the breeding pigs' survey are also common in slaughter pigs as well as in other food producing animal species and food thereof, indicating that the potential for contribution of these serovars to human infections may be shared between different sources.

The analysis of a complementary within-holding prevalence study allowed estimating the sensitivity of the pooled faecal sampling method, as well as the EU and MS level true prevalence of Salmonellapositive holdings with breeding pigs. The sensitivity of the pooled faecal sample was estimated to be 92% and it was shown to increase with the prevalence of positive pigs within the pen. Moreover, the results indicated that the EU level true prevalence of *Salmonella*-positive holdings with breeding pigs, as reported in the Part A report, and based on the sampling of 10 pens per holding, could be underestimated by 20%, although this percentage would vary between the Member States. It is recommended that Member States consider the factors found to be associated with Salmonellapositive pens at the European level in this survey, when they are designing and implementing national Salmonella control programmes for breeding pigs. Further national studies identifying more closely the factors that put pens with breeding pigs at risk of becoming infected with Salmonella in a country are recommended, taking into account the national Salmonella prevalence and the characteristics of the national breeding pig population. Also national investigations on prevention and intervention measures to contain Salmonella and achieve Salmonella reduction in holdings with breeding pigs are recommended. Since risk factors may vary between Member States and/or serovars, Member States are also encouraged to conduct serovar-specific analysis using their country specific data in order to identify risk factors for relevant serovars within their own country. Member States are encouraged to develop and enhance Salmonella controls in breeding holdings because these holdings have a unique potential role in the dissemination of Salmonella contamination throughout the whole production chain, as well as in contamination of the environment. Pooled faecal samples proved to be a robust and economic sampling method for surveys and should be used in future studies, as well as for monitoring the Salmonella status of breeding herds. Sampling procedures require standardisation to enhance sensitivity and comparability of monitoring results. Those Member States that did not participate in the within-holding prevalence study may wish to conduct their own research to validate pooling in their own situations.

TABLE OF CONTENTS

Abstract	1
Summary	2
Table of contents	4
List of tables	11
Background	13
Terms of reference as provided by the European Commission	13
Analysis	14
1. Introduction	14
2. Definitions	14
3. Objectives	17
4. Materials and methods	17
4.1. Survey design	17
4.2. Data description.	17
4.3. Correlation between the prevalence of <i>Salmonella</i> -positive breeding and produce holdings	1001
4.4. Analysis of factors associated with Salmonella pen positivity	19
4.4.1. Definition of outcome variables	19
4.4.2. Factors investigated	19
4.4.3. Exploratory analysis of potentially associated factors	21
4.4.4. Identification of factors associated with Salmonella pen positivity	22
4.4.4.1. Analysis of multicollinearity among potentially associated factors	22
4.4.4.2. Statistical model	22
4.4.4.3. Aspects of clustering and of weighting of results	22
4.4.4.4. Model building for <i>Salmonella</i> -positivity, at EU-level	23
4.4.4.5. Analysis of the variance explained by the holding random effect	24
4.4.5. Estimation of the Population Attributable Fractions	24
4.5. Analysis of the <i>Salmonella</i> serovar distribution across the EU	24
4.5.1. Comparison of the distribution of <i>Salmonella</i> serovars between countries	25
4.6. Analysis of the within-holding prevalence study	25
5. Results	27
5.1. Correlation between the prevalence of <i>Salmonella</i> -positive breeding and produce holdings.	iction27
5.2. Analysis of factors associated with Salmonella pen positivity	28
5.2.1. Exploratory analysis of potentially associated factors	28
5.2.2. Analysis of multicollinearity among potentially associated factors	33
5.2.3. Multivariable regression analysis at EU level	33
5.2.4. Population Attributable Fractions	35
5.3. Analysis of the Salmonella serovar distribution across the EU	36
5.3.1. Frequency distribution of <i>Salmonella</i> serovars in holdings with breeding pigs	36
5.3.2. Spatial distribution of <i>Salmonella</i> serovars in holdings with breeding pigs in the EU	J 38
5.3.3. Comparison between <i>Salmonella</i> serovar distributions in breeding pigs, other an	nimal
sources, feed and humans.	38
5.3.4. Correlation between the prevalence of <i>Salmonella</i> -positive slaughter pigs in the	e EU
with breeding pigs in the EU baseline survey in 2008	ungs 1
with orccurring pigs in the EU dasenne study in 2008	41 11
5.4.1 Descriptive results of the within-holding prevalence study	44 ЛЛ
5.4.2 Sensitivity of tests for detection of <i>Salmonella</i> in breeding pice	····· - τ · ····
5.4.3 True prevalence of Salmonella- positive holdings with breeding pigs	 ⊿A
or the prevalence of buildness positive notalings with breeding pigs	

6. Discussion	47
6.1. Context of the Salmonella baseline survey and study limitations	47
6.2. Correlation between the prevalence of <i>Salmonella</i> -positive breeding and prod holdings	uction 47
6.3. Factors associated with Salmonella pen positivity in breeding and production holdings	48
6.3.1. Effect of the holding on the risk of <i>Salmonella</i> pen positivity	50
6.3.2. Population Attributable Fraction	51
6.4. Analysis of the Salmonella serovar distribution across the EU	51
6.4.1. Comparison of <i>Salmonella</i> serovar distribution in breeding pigs, slaughter pigs, p feed and humans	oultry, 52
6.5. Correlation between the prevalence of <i>Salmonella</i> -positive slaughter pigs and <i>Salmo</i> positive holdings with breeding pigs	onella- 53
6.6. Analysis of the within-holding prevalence study	54
Conclusions	55
Recommendations	57
References	58
Appendices	62
List of abbreviations	159

LIST OF FIGURES

- Figure 12: Scatter diagram of the prevalence^(a) of *S*. Derby-positive breeding holdings versus the prevalence of *S*. Derby-positive production holdings, *Salmonella* EU baseline survey, 2008

- Figure 14: Proportion of *Salmonella*-positive pens with 95% confidence interval by testing delay in days (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

- Figure 18: Proportion of *Salmonella*-positive pens with 95% confidence interval by gilt replacement policy (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008
- Figure 20: Proportion of *Salmonella*-positive pens with 95% confidence interval by type of sample (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008.....109

- Figure 23: Proportion of *Salmonella*-positive pens with 95% confidence interval by gender of the pigs (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008
- Figure 24: Proportion of *Salmonella*-positive pens with 95% confidence interval by production stage (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008.....113

- Figure 31: Proportion of *Salmonella*-positive pens with 95% confidence interval by use of antibiotics (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008.....120

Figure 32: Relative frequency distribution (%) of S. Typhimurium, S. Derby, S. Enteritidis, S. Infantis, S. Rissen, S. Livingstone, S. London, S. Anatum, S. Goldcoast and S. Bredeney in breeding (B) and in production (P) holdings in EU MSs and Switzerland, Salmonella EU baseline survey, 2008
Figure 33: Prevalence of <i>Salmonella</i> -positive breeding holdings, <i>Salmonella</i> EU baseline survey, 2008
Figure 34: Prevalence of <i>Salmonella</i> -positive production holdings, <i>Salmonella</i> EU baseline survey, 2008
Figure 35: Prevalence of <i>S.</i> Typhimurium-positive breeding holdings, <i>Salmonella</i> EU baseline survey, 2008
Figure 36: Prevalence of <i>S.</i> Typhimurium-positive production holdings, <i>Salmonella</i> EU baseline survey, 2008
Figure 37: Prevalence of <i>S</i> . Derby-positive breeding holdings, <i>Salmonella</i> EU baseline survey, 2008
Figure 38: Prevalence of <i>S</i> . Derby-positive production holdings, <i>Salmonella</i> EU baseline survey, 2008
Figure 39: Prevalence of S. Enteritidis-positive breeding holdings, Salmonella EU baseline survey, 2008
Figure 40: Prevalence of <i>S</i> . Enteritidis-positive production holdings, <i>Salmonella</i> EU baseline survey, 2008
Figure 41: Prevalence of <i>S</i> . Infantis-positive breeding holdings, <i>Salmonella</i> EU baseline survey, 2008
Figure 42: Prevalence of S. Infantis-positive production holdings, Salmonella EU baseline survey, 2008

Figure 43:	Prevalence of <i>S</i> . Rissen-positive breeding holdings, <i>Salmonella</i> EU baseline survey, 2008
Figure 44:	Prevalence of S. Rissen-positive production holdings, Salmonella EU baseline survey, 2008
Figure 45:	Prevalence of <i>S</i> . Livingstone-positive breeding holdings, <i>Salmonella</i> EU baseline survey, 2008
Figure 46:	Prevalence of S. Livingstone-positive production holdings, Salmonella EU baseline survey, 2008
Figure 47:	Prevalence of S. London-positive breeding holdings, Salmonella EU baseline survey, 2008
Figure 48:	Prevalence of S. London-positive production holdings, Salmonella EU baseline survey, 2008
Figure 49:	Prevalence of S. Anatum-positive breeding holdings, Salmonella EU baseline survey, 2008
Figure 50:	Prevalence of S. Anatum-positive production holdings, Salmonella EU baseline survey, 2008
Figure 51:	Prevalence of S. Goldcoast-positive breeding holdings, Salmonella EU baseline survey, 2008
Figure 52:	Prevalence of <i>S</i> . Goldcoast-positive production holdings, <i>Salmonella</i> EU baseline survey, 2008
Figure 53:	Prevalence of S. Bredeney-positive breeding holdings, Salmonella EU baseline survey, 2008
Figure 54:	Prevalence of <i>S</i> . Bredeney-positive production holdings, <i>Salmonella</i> EU baseline survey, 2008
Figure 55:	Relative distribution of <i>S</i> . Typhimurium, <i>S</i> . Derby, <i>S</i> . Enteritidis, <i>S</i> . Infantis, <i>S</i> . Rissen, <i>S</i> . Livingstone, <i>S</i> . London, <i>S</i> . Anatum, <i>S</i> . Goldcoast and <i>S</i> . Bredeney in breeding holdings (B), production holdings (P), carcass lymph nodes (L) and carcass swabs (C) in 10 MSs, <i>Salmonella</i> EU baseline survey, 2008
Figure 56:	Comparison between the prevalence of <i>Salmonella</i> -positive lymph nodes of slaughter pigs in the 2006-2007 EU baseline survey and the prevalence of <i>Salmonella</i> -positive breeding holdings observed in the 2008 EU baseline survey
Figure 57:	Comparison between the prevalence of <i>Salmonella</i> -positive lymph nodes of slaughter pigs in the 2006-2007 EU baseline survey and the prevalence of <i>Salmonella</i> -positive production holdings observed in the 2008 EU baseline survey
Figure 58:	Comparison between the prevalence of <i>S</i> . Typhimurium-positive lymph nodes of slaughter pigs in the 2006-2007 EU baseline survey and the prevalence of <i>S</i> . Typhimurium-positive breeding holdings observed in the 2008 EU baseline survey146

- **Figure 59:** Comparison between the prevalence of *S*. Typhimurium-positive lymph nodes of slaughter pigs in the 2006-2007 EU baseline survey and the prevalence of *S*. Typhimurium-positive production holdings observed in the 2008 EU baseline survey ... 147
- Figure 61: Boxplots of the estimated within-holding prevalence of *Salmonella* derived from the output of the Bayesian model, by participating MS* for those holdings that were sampled during the within-holding prevalence study, *Salmonella* EU baseline survey, 2008......156

LIST OF TABLES

Table	1:	Overview	of the	validated	data	set	at ho	lding	level	by	type	of	breeding	and	production
		holdings, S	Salmone	ella EU bas	seline	sur	vey, 2	008 ^(a)							

Table	6:	Spearm	an co	rrelation	coefficient	s for	testin	g the	con	rrelation	betw	veen	the	prevalence	of
		lymph r	iodes	Salmone	ella-positive	e slav	ughter	pigs	in	2006-20)07 a	and	the	prevalence	of
		Salmone	<i>lla-</i> po	sitive ho	ldings with	breed	ling pi	gs in 2	2008	8 ^(a)	•••••	•••••			.41

- **Table 8:** Descriptive summary of the data for the five Member States that participated in the withinholding prevalence study, *Salmonella* EU baseline survey, 2008

 44
- Table 9: Categorisation of the factors investigated in the analysis, Salmonella EU baseline survey, 2008

 64
- Table 10: Additional description of factors investigated in the analyses, Salmonella EU baseline survey, 2008

 65

 Table 11: Number and proportion of Salmonella-positive pens by Member State and risk factor,

 Salmonella EU baseline survey, 2008

Table 12: Summary of findings from the collinearity analysis
 94

- Table 14: Bivariable odds ratios of Salmonella-positive pens in holdings with breeding pigs, by risk factor, from a model with country as fixed effect and holding as random intercept; EU Salmonella baseline survey, 2008

 121
- Table 15: Full logistic mixed model^(a) for factors associated with Salmonella-positive pens,

 Salmonella EU baseline survey, 2008

- Table 17: Number of tested and positive breeding holdings, positivity percentage and number of serovars reported in breeding holdings by 24 MSs, Norway and Switzerland, Salmonella EU baseline survey, 2008

 126
- Table 18: Number of tested and positive production holdings, positivity percentage and number of serovars reported in production holdings with breeding pigs by 24 MSs, Norway and Switzerland, Salmonella EU baseline survey, 2008.

 127
- **Table 20:** Frequency distribution of the top 20 serovars from production holdings with breeding pigsin the EU, Norway and Switzerland, Salmonella EU baseline survey, 2008129
- Table 21: Salmonella serovars reported in humans in the EU, EUSR, 2005-2008......143
- **Table 23:** Priors used in the "first step" of the Bayesian model to estimate the within-holdingprevalence of Salmonella in holdings with breeding pigs sampled in five MSs in theframework of the within-holding prevalence study, Salmonella EU baseline survey, 2008150
- **Table 24:** Additional posterior estimates of the parameters used in the "first step" of the Bayesian model for the within-holding prevalence study, *Salmonella* EU baseline survey, 2008 151
- Table 25: DIC values and DIC weights for each model fitted to the within-holding prevalence study data, *Salmonella* EU baseline survey, 2008

 152
- Table 27: Estimates of the true MS-level prevalence of Salmonella-positive holdings for the five

 Member States that participated in the within-holding prevalence study, Salmonella EU

 baseline survey, 2008
- **Table 28:** Observed holding level *Salmonella* results together with Bayesian estimates of the median within-holding prevalence and its 95% credible interval (CrI), for each holding sampled in the five countries that carried out the within-holding prevalence study, *Salmonella* EU baseline survey, 2008

 153
- Table 29: Calculation of EU true prevalence of Salmonella-positive holdings, Salmonella EU baseline survey, 2008

 158

BACKGROUND

The Regulation (EC) No 2160/2003⁵ on the control of *Salmonella* spp. and other specified zoonotic agents provides for the setting of Community targets for reducing the prevalence of *Salmonella* serovars with public health significance in food/animal populations. Furthermore, these targets are to be set for breeding herds of pigs. For the purpose of target setting, several European Union (EU) wide baseline surveys have been carried out.

Upon a request of the European Commission, the European Food Safety Authority (EFSA) adopted a "Report of the Task Force on Zoonoses Data Collection on a proposal for technical specifications for a baseline survey on the prevalence of *Salmonella* in breeding pigs (EFSA, 2007d)".

Based on the EFSA proposal, the Commission adopted the Decision $2008/55/EC^6$ of 20 December 2007 concerning a financial contribution from the Community towards a survey on the prevalence of *Salmonella* spp. and Methicillin-resistant *Staphylococcus aureus* in herds of breeding pigs to be carried out in the Member States (MSs). The survey started on 1 January 2008 for a period of 12 months. The present report deals only with the survey regarding *Salmonella* spp.

TERMS OF REFERENCE AS PROVIDED BY THE EUROPEAN COMMISSION

The Commission requested EFSA, on 19 April 2006, to analyse the results of the baseline survey on *Salmonella* spp. in herds of breeding pigs, in particular:

- to estimate the prevalence of *Salmonella* spp. in herds of breeding pigs in Member States and at level of the European Union,
- to assess quantitatively the risk factors for *Salmonella* spp. in herds of breeding pigs based on the information collected.

⁵ Regulation (EC) No 2160/2003 of the European Parliament and of the Council of 17 November 2003 on the control of Salmonella and other specified food-borne zoonotic agents, OJ L 325, 12.12.2003, pp. 1–15.

⁶ Commission Decision 2008/55/EC of 20 December 2007 concerning a financial contribution from the Community towards a survey on the prevalence of *Salmonella* spp. and methicillin-resistant *Staphylococcus aureus* in herds of breeding pigs to be carried out in the Member States (notified under document number C(2007) 6579), OJ L 14, 17.1.2008, pp. 10–25.

ANALYSIS

1. Introduction

A baseline survey (BS) was carried out in the EU to estimate the prevalence of *Salmonella* in holdings with breeding pigs. This survey was the fifth in a series of baseline surveys carried out within the EU. The objective of the survey has been to obtain comparable data for all MSs through harmonised sampling schemes. According to Regulation (EC) No 2160/2003⁷ on the control of *Salmonella* and other zoonotic agents, which aims to reduce the incidence of food-borne diseases in the EU, the results of such a survey will inform the setting of the Community target for the reduction of the prevalence of *Salmonella* in holdings with breeding pigs.

A scientific report by EFSA on the "Analysis of the baseline survey on the prevalence of *Salmonella* in holdings with breeding pigs, in the EU, 2008, part A: *Salmonella* prevalence estimates" (EFSA, 2009b) was published on 17 December 2009. This Part A report included the estimation of the prevalence of *Salmonella* spp., *S.* Typhimurium, *S.* Derby and serovars other than *S.* Typhimurium and *S.* Derby positive breeding holdings and production holdings at EU level and for each MS as well as the analyses of the most frequently identified *Salmonella* serovars in holdings with breeding pigs across the EU MSs, Norway and Switzerland.

The present Part B report presents the analyses of the correlation between the prevalence of *Salmonella*-positive breeding holdings and the prevalence of *Salmonella*-positive production holdings; the analyses of factors associated with *Salmonella*-positive pens in holdings with breeding pigs, as well as more in-depth analyses of the identified *Salmonella* serovar distributions. The Part B report also describes the results from the additional within-holding prevalence study, in which five Member States (the Czech Republic, Denmark, Slovenia, Sweden, and the United Kingdom) participated.

The objectives, sampling frame and methods of bacteriological analysis, as well as the collection and reporting of data, and the timelines of this *Salmonella* baseline survey in breeding pigs were specified in the Commission Decision $2008/55/\text{EC}^8$.

Twenty-four EU MSs carried out the survey but Greece, Malta and Romania did not participate. In addition, two countries not belonging to the EU, Norway and Switzerland, (hereafter referred to as non-MSs) participated in the survey.

2. Definitions

In the scope of this baseline survey and report the following definitions were considered:

Breeding pig: pig (sow or boar) of at least six months of age kept for breeding purposes

Breeding holding: holding housing breeding pigs and selling gilts and/or boars for breeding purposes. Typically, a breeding holding sells 40% or more of the reared gilts for breeding whilst the remainder are sold for slaughter. It covers both nucleus holdings and multiplier holdings. The nucleus holdings generate genetic improvement of pure-bred pigs to render them better adapted to the requirements of farmers, processors and consumers, and deliver future pure-bred breeding pigs to multiplier holdings. Multiplier holdings produce future hybrid breeding pigs and deliver them to the production holdings with a breeding herd.

⁷ Regulation (EC) No 2160/2003 of the European Parliament and of the Council of 17 November 2003 on the control of *Salmonella* and other specified food-borne zoonotic agents, OJ L 325, 12.12.2003, pp. 1–15.

⁸ Commission Decision 2008/55/EC of 20 December 2007 concerning a financial contribution from the Community towards a survey on the prevalence of *Salmonella* spp. and methicillin-resistant *Staphylococcus aureus* in herds of breeding pigs to be carried out in the Member States (notified under document number C(2007) 6579), OJ L 14, 17.1.2008, pp. 10–25.

Farrow-to-finish holding: a pig holding consisting of a herd of sows and their piglets, which are born, reared, weaned, grown and fattened in the one holding.

Farrow-to-grower holding: a pig holding including a sow herd and its progeny in which piglets are born, reared, weaned and grown for several weeks and then moved to the care of specialist fatteners.

Farrow-to-weaner holding: a pig holding consisting of a herd of sows and their piglets, which are born and reared up to weaning in the one holding, and then moved to the care of specialist growers and fatteners.

Gilt: a female breeding pig that has not yet had a litter of piglets.

Maiden gilt: a female breeding pig that has not yet had a litter of piglets.

Multiplier holding or supplier holding: a holding of pure-bred pigs that usually produce cross-bred future breeding pigs for production holdings.

Nucleus holding: a holding of pure-bred pigs that produces pure-bred breeding pigs (pure-bred gilts and boars) for multiplier and production holdings.

Pen: group of breeding pigs over six months of age kept in the same enclosure/yard.

Population attributable fraction: is the proportion of disease in the whole population that is attributable to the exposure, and would be avoided if the exposure were removed from the population. In this report, the term Population attributable fraction (PAF) was used to indicate the proportional reduction in *Salmonella*-positive pens that would occur if exposure to a risk factor was reduced to an alternative ideal exposure scenario (reduced exposure to the risk factor). Therefore, in this context PAF can be interpreted like a "partial impact fraction". In the present report, PAF calculation is used as a theoretical approach as no specific assumption of causal relationships can be made based on a cross sectional study.

Prevalence: the observed (apparent) prevalence estimate that accounts for the aspects of clustering and of weighting but not for imperfect test sensitivity or specificity.

True prevalence: represents the actual prevalence of the infection in the population in question. The true prevalence can be estimated from the apparent/observed prevalence by correcting for test misclassification bias due to the imperfect diagnostic tests used. The discrepancy between the apparent and the true prevalence is a function of the sensitivity and the specificity of the diagnostic test used.

Prevalence definitions used in the within-holding prevalence study

- Within-pen prevalence: proportion of individual samples positive to *Salmonella*, within a pen in a holding.
- Within-holding prevalence: proportion of pigs in a holding infected with *Salmonella*. The within-holding prevalence could not be directly observed from the survey results because pooled faecal samples were used. Instead, the within-holding prevalence was estimated using a Bayesian model in which the following factors were considered: the sensitivity of individual faecal samples, the sensitivity of pooled faecal samples (taking into account how it varies according to the proportion of positive samples in the pool), the clustering of infection within pens, and the relationship between the within-holding prevalence and the proportion of pens infected. Therefore, the result of this analysis is an estimate of the number of pigs that would have been positive for *Salmonella* if individual samples had been taken at random, accounting for the imperfect test sensitivity.

- **True MS-level prevalence of** *Salmonella*-**positive holdings**: proportion of *Salmonella*-positive holdings out of the total number of holdings in a country. This is the true prevalence estimated using a Bayesian model in which data on the observed number of positive pens from each holding sampled in each MS were combined with the following information: the sensitivity of a pooled faecal sample, the clustering of infection within pens and the relationship between the within-holding prevalence and the proportion of pens infected (further details in the Material and Methods section).
- **True EU-level prevalence:** EU-level prevalence estimated by weighting each MS's true prevalence with the fraction of its total number of holdings housing at least 50 breeding pigs out of the total number of holdings housing at least 50 breeding pigs in the EU. This EU true prevalence was calculated using the formula illustrated in Annex C of the Report Part A (EFSA, 2009b).

Production holding: a holding housing breeding pigs and selling mainly pigs for fattening to other specialised holdings or for slaughter. It covers farrow-to-weaner holdings or farrow-to-grower holdings or farrow-to-finish holdings.

Proportion of positive units: the number of positive units out of the sampled units, not accounting for any design aspect.

Salmonella: all Salmonella spp. which can be isolated by the prescribed culture technique.

Salmonella-positive pen: a pen from where *Salmonella* spp. has been isolated in the pooled faecal sample.

Samples tested in the context of this baseline survey:

- Routine sample: pooled sample of freshly voided faeces collected in each of the ten pens selected in a holding. *Salmonella* bacteriological positive results from routine samples are used to calculate the number of *Salmonella* contaminated holdings (used for estimating the MS and EU level prevalence of positive holdings) and the number of *Salmonella* contaminated pens (used as outcome for the risk factor analysis). This sample may be taken with a fabric swab which is passed through accumulated naturally pooled faeces or by combining separate faecal samples into a composite pool during collection.
- **Individual sample**: sample of freshly voided faeces collected in the framework of the withinholding prevalence study. Ten original individual samples of at least 30g are taken in each of the 10 pens selected in a holding. In the laboratory, the original individual sample is divided in two parts. One part weighting at least 25g is mixed and then tested individually: this is considered to be the 'individual sample'. The remaining second part is used to prepare the artificially pooled sample.
- Artificially pooled sample: pooled sample of 25g freshly voided faeces prepared in the laboratory pooling 2.5g from each of the 10 original individual samples collected in the framework of the within-holding prevalence study.

(**Diagnostic**) sensitivity: the conditional probability that a pooled faecal sample containing *Salmonella* will be positive using the prescribed survey culture technique.

(**Diagnostic**) **specificity:** the conditional probability that a pooled faecal sample not containing *Salmonella* will be negative using the prescribed survey culture technique.

Additional definitions can be found in Report part A (EFSA, 2009b).

3. Objectives

The specific objectives related to this Part B report were:

- to investigate the association between Salmonella prevalence in breeding and production holdings
- to investigate the effect of factors, which may be associated with Salmonella pen positivity, at the EU level
- to investigate the geographical distribution of Salmonella serovars across the EU
- to analyse the within-holding prevalence study results, more precisely:
 - to quantify the sensitivity of pooled faecal sampling to detect *Salmonella* infection in pigs,
 - to estimate the true EU-level and MS-specific prevalence of *Salmonella*-positive holdings with breeding pigs

4. Materials and methods

A detailed description of the design of the baseline survey, sampling scheme, sample size and bacteriological analyses is found in Commission Decision 2008/55/EC⁹ (Annex I) and in the Part A report (EFSA, 2009b). Aspects of the survey design, laboratory analysis, and data of particular relevance to data analysis and interpretation are described here.

4.1. Survey design

The survey took place in the EU between January and December 2008 and targeted a population of holdings that together harboured at least 80% of the breeding pig population in a MS. In each MS, holdings to be sampled were randomly selected from the breeding holdings and production holdings group. In each selected breeding and production holding, pooled freshly voided faeces, originating from at least 10 individual breeding pigs, were collected from 10 randomly chosen pens, yards or groups of breeding pigs over six months of age. The number of pens, yards or groups to be sampled was proportionally allocated according to the number of breeding pigs over six months of age, representing the different stages of production of the breeding herd (maiden gilts, pregnant pigs, farrowing and lactating pigs, pigs in the service area, or mixed).

Sampling management, laboratory analysis and data submission were carried out by the competent authority of the MS or under its supervision. Samples were tested by the National Reference Laboratory (or an authorised laboratory) using the latest ISO 6579 Annex D method (ISO, 2007).

4.2. Data description

A detailed description of the validation and cleaning of the dataset carried out is provided in the Part A report. The final cleaned dataset contained data from 5,117 holdings with breeding pigs in 24 MSs and in two non-MSs (Norway and Switzerland), including 1,609 breeding holdings and 3,508 production holdings, which formed the basis for all subsequent analyses. Greece, Malta and Romania did not carry out the survey. An overview of the validated dataset at holding level is given in Table 1.

⁹ Commission Decision 2008/55/EC of 20 December 2007 concerning a financial contribution from the Community towards a survey on the prevalence of *Salmonella* spp. and methicillin-resistant *Staphylococcus aureus* in herds of breeding pigs to be carried out in the Member States (notified under document number C(2007) 6579), OJ L 14, 17.1.2008, pp. 10–25.

In the analysis for this Part B report, Norway and Switzerland are included in the EU-level analysis dataset.

	Naarahaa	Number	of breeding l	holdings	Numb				
Country	of holdings	Nucleus	Multiplier or Supplier	Total	Farrow to finish	Farrow to grower	Farrow to weaner	Total	Number of pens
Austria	252	18	61	79	94	61	18	173	2,520
Belgium	225	5	11	16	134	66	9	209	1,657
Bulgaria	72	4	43	47	19	1	5	25	720
Cyprus	64		4	4	60			60	640
Czech Republic	267	2	104	106	27	124	10	161	2,670
Denmark	293	13	82	95	71	52	75	198	2,930
Estonia	34	3	3	6	25	1	2	28	340
Finland	207	16	34	50	56	101		157	1,629
France	343	27	130	157	161	6	19	186	3,430
Germany	201	11	35	46	59	54	42	155	2,010
Hungary	181	12	28	40	131	7	3	141	1,809
Ireland	189	6	34	40	132	7	10	149	1,890
Italy	214	12	31	43	78	67	26	171	2,140
Latvia	33		5	5	28			28	330
Lithuania	82	7	3	10	39	30	3	72	820
Luxembourg	44	1	2	3	21	6	14	41	440
Netherlands	321	42	67	109	15	193	4	212	3,210
Poland	322	19	125	144	64	102	12	178	3,220
Portugal	167	1	32	33	86	29	19	134	1,592
Slovakia	192	33	63	96	89		7	96	1,920
Slovenia	114	14	13	27	61	26		87	625
Spain	359	37	113	150	131	78		209	3,590
Sweden	207	17	40	57	47	103		150	1,694
United Kingdom	258	32	35	67	127	22	42	191	2,365
EU Total (24 MSs)	4,641	332	1,098	1,430	1,755	1,136	320	3,211	44,191
Norway	251	40	68	108	104	39		143	2,510
Switzerland	225	30	41	71	27	96	31	154	2.250

Table 1: Overview of the validated data set at holding level by type of breeding and production holdings, *Salmonella* EU baseline survey, 2008^(a)

^(a) 24 MSs and two non-MSs, Norway and Switzerland, conducted the survey. Greece, Malta and Romania did not participate in the survey.

4.3. Correlation between the prevalence of *Salmonella*-positive breeding and production holdings

Correlation between the prevalence estimates of *Salmonella* spp., *S.* Typhimurium, *S.* Derby and serovars other than *S.* Typhimurium and/or *S.* Derby in breeding and in production holdings in each participating country was graphically explored via scatter diagrams. The correlation was assessed

using the Spearman's rank correlation coefficient ρ , a nonparametric rank correlation procedure which can be used when few data pairs (in this case 26 data pairs: 24 MSs and two non-MSs) are available.

4.4. Analysis of factors associated with *Salmonella* pen positivity

The general assumptions and framework of the statistical analysis carried out are reported in detail in the Part A report (EFSA, 2009b). The effects of factors potentially associated with Salmonella were analysed at pen-level, as this is considered to be the epidemiological unit, because many holdings had multiple pens that differed with regard to physical properties or managerial factors (e.g. feeding practices). A pen was considered positive if Salmonella was detected in the pooled faecal sample originating from the pen. At the EU-level, the prevalence of Salmonella-positive pens was defined as the proportion of Salmonella-positive pens over the one-year period of the baseline survey. When assessing Salmonella prevalence, the Part A report distinguished between the two types of holdings housing breeding pigs, namely breeding holdings and production holdings with breeding pigs, and provided separate prevalence estimates in these two groups of holdings¹⁰. In the Part B report however data on *Salmonella* pen positivity in holdings with breeding pigs were analysed using the combined dataset, pooling the results from breeding holdings and production holdings. This was done to augment the power of the analyses. Nevertheless, in order to explore the potential different associations between the investigated factors and Salmonella pen positivity in the two types of holdings, the interaction terms with 'holding type' (breeding holding, or production holdings) were also investigated in the analyses.

4.4.1. Definition of outcome variables

In the Part A report, the prevalence of *Salmonella*, *S*. Typhimurium, *S*. Derby and other serovars than *S*. Typhimurium and/or *S*. Derby was presented. The Part B report focused on investigating factors associated with the detection of *Salmonella* spp. at pen level, and consequently positivity for *Salmonella* spp. was considered as the only outcome variable. It is acknowledged, though, that risk factors may differ between serovars, but that such an analysis would be most efficiently done at the MS level, since the serovar distribution differs between MSs and some MS-specific factors (e.g. previous *Salmonella* status, status of suppliers, etc.) may influence the occurrence of individual serovars.

4.4.2. Factors investigated

Data on factors, both at holding- and at pen-level, potentially associated with the above mentioned outcome were collected using a mandatory questionnaire by the competent authorities or under their supervision at the time of sampling in the holdings. The following factors potentially associated with *Salmonella*-positivity of pens in breeding holdings and production holdings were considered:

Holding level potential risk factors:

- Factors related to the sensitivity of the sampling and testing process
 - 1. Delay between the sampling date and testing date at the laboratory ('testing delay', in days)
- Factors related to holding-positivity
 - 2. Date of sampling
 - 3. Type of breeding/production holdings (Nucleus, multiplier or supplier, farrow to finisher, farrow to grower, farrow to weaner)

¹⁰ Hereafter in this report, those two types of holding are respectively referred to as 'breeding holdings' and 'production holdings' for brevity. The breeding and production holding types included in the survey are defined in detail in the Definitions section, and their positions within the pyramidal structure of the pig primary production sector are displayed in Appendix A.

- 4. Holding size (<100, 100-399, 400-999, >999)
- 5. Gilt replacement policy (>90% gilts homebred, 10-90% gilts homebred, >90% gilts purchased)
- 6. Boar replacement policy (no boars on farm, >90% boars homebred, 10-90% boars purchased, >90% boars purchased)

Pen-level potential risk factors:

- Factors related to the sensitivity of the sampling and testing process
 - 7. Type of sample (composite, swab)
- Factors related to pen-positivity
 - 8. Number of pigs in the pen
 - 9. Age category of the pigs (presence of gilts in the sampled pen: no gilts, mixed age, all gilts)
 - 10. Gender of the pigs (female, male, mixed)
 - 11. Production stage (maiden gilts, gilts, service area, pregnant, farrowing and lactating)
 - 12. Indoor/outdoor production (yes, no)
 - 13. Individual housing (yes, no)
 - 14. Floor type (Slatted floor, partly slatted floor, solid floor with straw, solid floor with other bedding, solid floor without bedding, outdoors in fields or paddocks, others)
 - 15. All in/all out and cleaned (yes, no)
 - 16. Origin of the feed (commercial compounds, feed with maize, home-mill, other)
 - 17. Type of diet (cobs/rolls/nuts/pellets, meal/mash, porridge/liquids, others)
 - 18. Feed/water supplement (probiotic supplement, organic acid supplement, other supplement, no supplement, unknown)
 - 19. Use of antibiotics (treatment, no treatment, unknown)

During the data analyses certain variables were recoded and certain data value categories of variables were grouped into broader categories, in order to deal with model fitting problems. Firstly, the variable 'time in days between sampling and testing' was recoded into the following classes: 0, 1, 2, 3-4 and \geq 5. Secondly, the variable 'date of sampling' was recoded into three new variables: 'month of sampling', 'quarter of sampling' (first quarter, January to March; second quarter, April to June; third quarter, July to September; and fourth quarter, October to December 2008) and 'season of sampling' (winter: December to February; spring: March to May; summer: June to August; autumn: September to November). These three new variables were investigated in the descriptive analyses, while only the variable 'season of sampling' was considered in the bivariable and multivariable regression models. Thirdly, the two smallest categories of the variable 'size of the holding' (originally categorised in five ordered classes of numbers of breeding pigs; <50, 50-99, 100-399, 400-999, and >999) were merged as many countries reported no or only few holdings with less than 50 breeding pigs. The variable 'number of pigs in the pen' contained very high values for some records, up to 999. In order to prevent these outlying values having too much influence on the results of the multivariable regression analyses, a winsorization¹¹ was used. This implies that in all pens, where the number of pigs was

¹¹ Winsorising or winsorization is the transformation of statistics by transforming extreme values in the statistical data. The distribution of many statistics can be heavily influenced by outliers. A typical strategy is to set all outliers to a specified percentile of the data; for example, a 90% winsorisation would see all data below the 5th percentile set to the 5th percentile, and data above the 95th percentile set to the 95th percentile. Winsorised estimators are usually more robust to outliers than their more standard forms, although there are alternatives, such as trimming, that will achieve the same effect.

higher than 100 (corresponding to 3.4% of the total number of pens) the number of pigs was set to 100. In the graphical and descriptive analysis the variable 'number of pigs per pen' was categorized into five ordered classes: 0-9, 10, 11-20, 21-100 and \geq 100. Since less than 1% of the pens had 'male' pigs, the categorical variable "gender of the pigs" (female, male, mixed) was recoded in 'male/mixed' and 'female' for the inclusion in the multivariable regression model, while the original variable with the three categories was used for the descriptive analyses and graphs. The categorical pen level variables 'floor type', 'origin of the feed', 'type of diet' and 'feed/water supplement' required further re-categorization. 'Floor type' was finally re-coded in seven classes: slatted floor (corresponding to fully slatted floor), partly slatted floor, solid floor with straw, solid floor with other bedding, solid floor without bedding, outdoors in fields or paddocks, and others. 'Origin of the feed' was re-coded into four classes; commercial compounds, feed with maize, home-mill, and other. 'Type of diet' was also re-coded in four classes; 'cobs/rolls/nuts/pellets', 'meal/mash', 'porridge/liquids', and 'others'. From the original variable 'feed/water supplement' three binary variables were created to be included separately in the regression analyses: probiotic supplement added (yes, no), organic acid supplement added (yes, no), other supplement added (yes, no). The 'unknown' data value category was only considered in descriptive analysis. Further details on the categorization and recoding of factors investigated in the present report are illustrated in Appendix B.

The variables 'time in days between sampling and testing' and the 'type of sample' were considered as factors related to the sensitivity of the sampling and testing process and not potential risk factors per se. Therefore, when one of these factors was retained in the final regression model, its results were just presented in the text, and not in the tables illustrating the output of the analysis, although it was used to adjust the odds ratios of the other factors included in the final regression model.

An exhaustive, detailed description of the MS-specific numbers and proportions of *Salmonella*positive pens, by pen-level factors, is presented in Appendix C (Table 11). Descriptive statistics for the holding level variables were not shown in Table 11 because of potential data confidentiality issues. Indeed, in some countries it could be possible to identify the farms based on holding level information such as holding size, holding type (breeding or production holdings) and gilt/boar replacement policy.

Some additional (optional) data and variables were collected on a voluntary basis by some countries. However, the effects of these optional factors could not be evaluated due to the scarcity of the data reported. An overview of the optional data reported by MSs is presented in Appendix D.

4.4.3. Exploratory analysis of potentially associated factors

A thorough description was made of the samples by all recorded factors or variables. The association between each potentially associated factor and the outcome variable was visually explored using bar graphs of the proportion of *Salmonella*-positive pens and 95% confidence intervals (CIs), by different levels of categorical variables, for breeding and production holdings separately. The association between each factor and the outcome of interest was tested by Chi-square tests, Spearman correlation and Cochran-Mantel-Haenszel Chi-square tests for linear trends. Moreover, a bivariable analysis was performed using a logistic regression model with country as fixed effect and holding as random effect (see following section). Due to possible confounding¹² these results should be interpreted cautiously and only within the context of an exploratory analysis. The bivariable analyses were carried out at overall level, for breeding and production holdings pooled together.

¹² A variable is a confounding factor if it satisfies two conditions: it is a risk factor for *Salmonella*-contamination of pens and it is associated with an investigated exposure factor, but it is not a consequence of exposure. The presence of confounding can distort the relationship between the exposure and the disease leading to an over- or under- estimation of the effect of a potential risk factor. In order to eliminate confounding, and to obtain valid estimates of the effect of risk factors, an adjustment for the variable 'country' as well as for the other recorded factors is necessary, which can be achieved by multivariable regression analysis. In certain cases, however, two or more potential risk factors may be so strongly associated that separate estimates of their respective effects cannot be obtained. In this case, the term collinearity or multicollinearity is used.

Descriptive analyses were performed in SAS 9.2, using Proc Report and Proc Tabulate to present the data from the SAS file directly in tabular form.

4.4.4. Identification of factors associated with *Salmonella* pen positivity

Multivariable regression analysis was applied to obtain adjusted estimates of the effect measure of factors associated with the *Salmonella* pen positivity in holdings with breeding pigs. The inclusion of multiple factors (predictors) in a regression model adjusts for confounding that may result from associations between these factors. Multiple regression analyses were carried out at EU-level, including 23 MSs and one non-MSs. Countries without any *Salmonella*-positive pens (Finland and Norway) were not included in the multivariable regression analysis as fitting such models is not possible when the prevalence is zero in one of the countries.

4.4.4.1. Analysis of multicollinearity among potentially associated factors

Data were further analysed for evidence of association among potentially associated factors, since they may be correlated with each other or one factor may completely explain the observed association of another (collinearity). The Variance Inflation Factor (VIF) was used as a formal method to detect correlation among candidate variables for the multiple regression analysis (multicollinearity). Essentially, each potential risk factor is used as the outcome in a regression analysis (described in detail in Appendix E). A VIF value that equals 1 indicates that there is no correlation between risk factors, whereas VIF values higher than 1 indicate a correlation. VIF values exceeding 10 are interpreted as an indication of strong multicollinearity. In addition to the VIF, the condition index was used as collinearity diagnostics. Values of the condition index above 30 are indication of severe multicollinearity, while values between 15 and 30 can be reason of concern (further details in Appendix E).

4.4.4.2. Statistical model

Given the use of a binary outcome variable (*Salmonella*-positive or negative pen status) taking only two mutually exclusive values (which were coded as "1" when the faeces sample was positive and "0" otherwise), logistic regression was the model of choice. However, as previously performed for the prevalence estimation presented in Report Part A (EFSA, 2009b), certain data properties needed to be taken into account in the analysis. The data analysed originated from a complex survey design and the aspects described in the following section were considered.

4.4.4.3. Aspects of clustering and of weighting of results

Holdings to be sampled were enrolled in the survey by participating countries. Moreover, within each selected holding, samples were collected from 10 randomly chosen pens, which were the epidemiological units of the analyses. Pens belonging to the same holdings were exposed to similar conditions and to certain common risk factors, including those on which no information was available in the current survey, but that might be associated with *Salmonella*-positivity. Specifically, pens belonging to the same holdings are more likely to be characterised by similar rearing processes, including similar origins of breeding pigs as well as comparable managerial and hygiene practices of farming. It was therefore reasonable to assume that pens originating from the same holding could not be considered as independent observations in the statistical analysis. Consequently, correlation of outcomes in pens from the same holding was accounted for in the regression models.

For the analysis of potential EU-level risk factors for *Salmonella* pen positivity, a model was fitted where the effect of the holding was included as a random intercept, resulting in a random intercept logistic regression. The assumption underlying this type of model is that each holding, and consequently each pen belonging to that holding, is characterised by a certain baseline-level of risk of positivity, regardless of the exposure to risk factors considered in the survey. The inclusion of a

random intercept for holdings in the model allows taking into account the within-holding correlation of *Salmonella*-positive pens. The random intercept models consider the population of interest as infinite. This statistical approach, the so-called "model-based" inference (EFSA, 2009c), is different from the Part A report where a "design-based" approach was used to estimate prevalence in a well-specified population. It is noteworthy that the interpretation of the regression coefficients (odds ratios - ORs) in this model is conditional on the holding-specific effects and that they cannot be interpreted as describing population-averaged effects of factors. This means that the obtained ORs are to be interpreted relative to holdings having comparable risk factors. Possible country confounding effects were also taken account in the analysis. Thus, regression models were fitted, where the effect of the holding was included as a random intercept and the effect of the country as a fixed effect. These mixed-effects models enabled investigating differences in the outcome (*Salmonella* positive pens) between holdings, within countries.

In 3% of sampled holdings, the total number of pens was less than 10 and, in line with the survey design, certain pens were re-sampled in these holdings, in order to reach the required total of 10 routine samples. Such sample results from the same pen cannot be considered as independent observations. However, because an adjustment of the statistical analysis for this correlation was technically not feasible and because the number of re-sampled pens was small, this aspect of clustering was not taken into account in the analysis. A sensitivity analysis was carried out by analyzing the data using only a single sample per pen (randomly sampled from the available samples). This showed that the width of confidence intervals did not change appreciably and all effects that were statistically significant remained so.

When estimating the EU-level prevalence in Part A report, weighting of the MS prevalences with the reciprocal of sampling probabilities was necessary in order to derive a proper estimate of the prevalence in the EU population, which is an existing population that can be exactly specified. In the present report Part B however the aim was to investigate effects of factors associated with *Salmonella* pen positivity in the sampled population of holdings and less to extrapolate to the aforementioned existing population. Consequently, the choice of the methods of analysis was geared towards that aim implying no use of weighting as this would decrease the power of the analysis.

4.4.4.4. Model building for *Salmonella*-positivity, at EU-level

The full (initial) model investigating *Salmonella*-positivity included a global intercept, the factors of interest, and a random intercept for holding. One by one the factors which were non significant were discarded starting by the largest *P*-value based on the Type III test. Only factors with *P*-values smaller than 0.05 were retained in the final model. The model was fitted using the GLIMMIX procedure in the SAS system. More details on the statistical approach are given in Appendix E.

As the survey was originally designed for analysis of breeding holdings and production holdings separately, based on the expectation that different mechanisms might be in operation in those groups, the interactions with 'holding type' (breeding holding, or production holdings) were also investigated for all the variables retained in the final model after backward selection (detailed in Appendix E). Moreover, in order to check if any of the factors discarded during the backward selection procedure had a different effect in breeding and production holdings, the interaction terms between 'holding type' and the variables that were discarded during the backward selection procedure were also tested, and included in the final model when statistically significant.

As in the Part A report, this Part B presents observed prevalence estimates that do not account for test misclassification bias, i.e. imperfect sensitivity or specificity of the test.

4.4.4.5. Analysis of the variance explained by the holding random effect

According to the outcome of the random effects models, the total variability could be split into two parts: one part explained by the investigated factors included in the model and a remaining unexplained part. The latter unexplained variance might be due to factors for which no data were gathered during the survey. However, even in the hypothetical case that all existing risk factors for Salmonella would have been included in the model, there still could be a certain amount of unexplained variance due to the fact that Salmonella is an infective agent, leading to clustering of infected pens within holdings. This unexplained variance was further investigated to quantify the proportion attributable to random effects (holding-specific effects). Therefore, the intra-holding or intra-cluster correlation coefficient (ICC) was estimated and approximated as the ratio of the variance of the random effects over the sum of the variance of the random effects and the variance of the standard logistic density (Molenberghs and Verbeke, 2005). The ICC ranges between zero and one corresponding respectively to scenarios of low (closer to zero) or high (closer to one) proportions of unexplained variance that was due to random effects (holding-specific effects, between-holding variability). In the latter case the Salmonella positivity results of pens within a holding are very much associated (alike). Caution is warranted while interpreting the ICC, because no conclusions can be made as regards the sources of the unexplained variance captured by the random intercept. This is because the proportion of unexplained variance due to random intercept could be either attributed to uninvestigated holding-specific factors and/or to the clustering of Salmonella linked to its infectious character. Details on the calculations of the ICC in the context of the used random effects models are presented in Appendix E.

4.4.5. Estimation of the Population Attributable Fractions

In order to estimate the potential impact of the associations found in the final multivariable regression model including interaction terms with holding type 'Population Attributable Fractions (PAFs)' (Last, 1983; Deubner et al., 1980) were calculated. In the context of this report PAFs should be interpreted as "partial impact fractions" because they estimate the proportional (%) reduction of *Salmonella*-positives pens that would be observed if the exposure - of all pens in the population - to the risk factor was reduced to less than its current (actual) exposure pattern. The choice of the "reduced exposure" categories was based on a realistic approach, taking into account the feasibility of having the chosen reference categories for the whole population. Possible future changes in the pig production management system were also considered when selecting the "reduced exposure" categories of potential risk factors. In the present report, PAF calculation is used as a theoretical approach as no specific assumption of causal relationship can be made based on cross-sectional studies.

As PAFs aim at estimating effect sizes in a specified population, weighting of the results was relevant. The report therefore presents both unweighted and weighted PAFs. Unweighted PAFS can be interpreted as theoretical potential reductions of *Salmonella*-positive pens in all holdings included in the baseline survey. Weighted PAFs should be interpreted as theoretical potential reductions of *Salmonella*-positive pens in all holdings with more than 50 breeding pigs in the EU because they take account of the disproportionate sample in the MSs. The holdings were weighted with the reciprocal of the sampling proportion for holdings (the number of holdings in a MS divided by the number of sampled holdings in the same MS). More detailed explanations on estimation of the PAFs are given in Appendix E.

4.5. Analysis of the *Salmonella* serovar distribution across the EU

The analyses of the *Salmonella* serovars in breeding pigs in the EU were based on the dataset described in the Part A of this report. The descriptive analysis of the serovar data was performed in SAS Enterprise Guide 3.0 and Microsoft Excel. Phage typing data were only available for a few MSs and were not considered.

4.5.1. Comparison of the distribution of *Salmonella* serovars between countries

For this report, data including country level prevalences for each *Salmonella* serovar were analysed. ArcGIS 9.3 was used to produce prevalence maps showing the spatial distribution of *Salmonella* spp. and the ten most commonly reported *Salmonella* serovars in the EU among MSs and non-MSs participating in the baseline study. Since geographical data were only available at country-level, it was not possible to appropriately investigate the spatial distribution of *Salmonella* serovars across the EU using spatial statistics.

The serovar distributions in breeding and production holdings were compared to those in other animal sources, animal feed and humans. The serovar distributions in animal populations were those of the *Salmonella* BS in holdings with laying hens (EFSA, 2007a), in broiler flocks (EFSA, 2007b), in slaughter pigs (EFSA, 2008b), in turkey flocks (EFSA, 2008a) and on broiler carcasses (EFSA, 2010b). The serovar distributions in humans and in feed originated from the EU Summary Reports (EUSR) 2005-2008 (EFSA, 2006, 2007c, 2009a, 2010a). Tables and bar graphs were produced using Microsoft Office Excel 2008.

4.6. Analysis of the within-holding prevalence study

Five Member States (the Czech Republic, Denmark, Slovenia, Sweden, and the United Kingdom) participated in an additional within-holding prevalence study. Together, 10 holdings, selected at random in each of the five MSs from the overall sample of breeding holdings and of production holdings were subjected to more intensive sampling. On each of the total of 49 holdings (one of the five MSs was only able to implement the additional sampling scheme in nine holdings), 10 routine pooled samples were collected. In addition, in the selected pens where a routine pooled sample was taken, 10 individual samples were collected and identified in such a manner that these 10 individual samples could be associated with the routine sample from that pen. Thus in total, 10 routine samples and 100 (10×10) individual samples were collected from each of the 10 holdings. A further artificially pooled sample, consisting of ten individual samples from a pen, was also subjected to testing for *Salmonella*. Further details on the sampling and testing methods are described in the Commission Decision 2008/55/EC¹³.

The first purpose of the within-holding prevalence study was the quantification of the sensitivity of the pooled faecal sampling to detect *Salmonella* infection in pigs. These sensitivity results served the ultimate purpose of estimating the EU level and MS specific true prevalence of *Salmonella*-positive holdings with breeding pigs.

Bayesian analysis techniques were used to analyse the data of the within-holding prevalence study. The basic idea behind the Bayesian approach is that prior knowledge (the "priors") relating to the unknown parameters (the test characteristics of faecal sampling for detection of *Salmonella* in pigs: sensitivity of the individual and pooled faecal sampling) can be included in the statistical analysis and will influence the final estimates. Since the final estimates (the "posteriors") resulting from Bayesian models are based on both the priors and the data, they are supported by more information than the observed data alone. In this case, the Bayesian approach allowed to make use of findings from previous studies on the sensitivity of pooled and individual sampling for detection of *Salmonella* in pigs (Arnold and Cook, 2009; Arnold et al., 2005). Medians of posterior distributions for each parameter of interest are usually used as point estimates, while 95% credible intervals (CrI) can be calculated by using appropriate percentiles of the estimated posterior distributions. In a Bayesian analysis, a mathematical model is developed which utilises prior information and the observed study

¹³ Commission Decision 2008/55/EC of 20 December 2007 concerning a financial contribution from the Community towards a survey on the prevalence of *Salmonella* spp. and methicillin-resistant *Staphylococcus aureus* in herds of breeding pigs to be carried out in the Member States (notified under document number C(2007) 6579), OJ L 14, 17.1.2008, pp. 10–25.

results to perform a set of calculations that yield an estimate of the various parameters of interest, e.g. prevalence. Within the model, there are so-called stochastic components that take on a different value from a range of possible values each time the model is run. Thus, every run can deliver a different set of results. Many thousands of iterations are conducted and the results from every run are saved. The 95% credible interval for any output, such as the estimated prevalence, is that within which 95% of the model results lie. Thus, the 95% credible interval can be thought of as analogous to a conventional 95% confidence interval although the basis of estimation is very different.

The Bayesian model used in the present analyses can be described as a "two-step" model. First, the detailed data on routine pooled samples, artificially pooled samples and individual samples from the five MSs conducting the within-holding prevalence study were analysed to obtain an estimate of the sensitivity of the routine pooled samples. These data were also used to provide information on variation in the proportion of positive samples in each pen. The true within-holding prevalence was then estimated for every holding that participated in the study. Successively, the outputs of the "first step" model were used in the "second step" of the Bayesian model to perform analysis for all 26 countries participating in the survey, where only routine pooled samples were taken. In particular, the posterior estimates for the sensitivity of artificial pooled samples, and the degree of clustering of infection within infected pens from the "first step" model were used as priors for the "second step" of the analyses. This enabled the within-holding prevalence of *Salmonella* for each of the 5,117 holdings sampled in the survey and MSs' true prevalence of *Salmonella* positive holdings to be estimated with much greater certainty by taking into account the imperfect test sensitivity. However, the representativeness of the inputs to the "second step" of the model was limited by the fact that only five countries participated in the within-holding prevalence study.

All model fitting was conducted in WinBUGS version 1.4.3. Further details on the statistical analysis are presented in Appendix N.

5. Results

5.1. Correlation between the prevalence of *Salmonella*-positive breeding and production holdings

The scatter diagram of the prevalence of *Salmonella*-positive breeding holdings versus production holdings is displayed in Figure 1. Similar scatter diagrams for *S*. Typhimurium, *S*. Derby and serovars other than *S*. Typhimurium and/or *S*. Derby are presented in Appendix F.

The scatter diagram shows that the prevalence of *Salmonella*-positive production holdings increases as the prevalence of *Salmonella*-positive breeding holdings increases, meaning that there is a positive correlation. This observation is notably clearer for countries with a prevalence above 5% for either breeding or production holdings. The estimated correlations are presented in Table 2. This table also includes *P*-values from testing the null hypothesis of no association between the prevalence estimates in the two types of holdings. Significant correlation was observed for *Salmonella*, *S*. Typhimurium, *S*. Derby and for serovars other than *S*. Typhimurium and/or *S*. Derby (*P*<0.05). These significant results are based on calculations that also take into account the results from MSs that reported no positive outcomes for both breeding and production holdings.

Table 2: Spearman's correlation coefficients and corresponding *P*-values for the correlation test between the prevalence of *Salmonella*-positive breeding and production holdings. *Salmonella* EU baseline survey, $2008^{(a)}$

Prevalence	Spearman p	<i>P</i> -value
Salmonella	0.924	<.0001
S. Typhimurium	0.868	<.0001
S. Derby	0.725	<.0001
Other S. serovars	0.765	<.0001

^(a) Greece, Malta and Romania did not conduct the survey and two non-MSs, Norway and Switzerland, participated.

Prevalence (%) of Salmonella-positive breeding holdings

Figure 1: Scatter diagram of the prevalence of *Salmonella*-positive breeding holdings versus the prevalence of *Salmonella*-positive production holdings, *Salmonella* EU baseline survey, 2008

5.2. Analysis of factors associated with Salmonella pen positivity

5.2.1. Exploratory analysis of potentially associated factors

Detailed univariable description and bivariable association analyses results of factors potentially associated with *Salmonella*-positive pens are presented in Appendix G (Tables 14-15, Figures 14-31). The most interesting univariable descriptive results are illustrated hereafter. As already mentioned in the section on Materials and Methods, due to possible confounding these results should be interpreted cautiously and only within the context of an exploratory analysis.

• Holding size (number of breeding pigs present in the holding on the date of sampling)

Figure 2 displays the proportion of *Salmonella*-positive pens according to the size of the holding. The proportion of positive pens appeared to increase as the size of the holding increased up to a size of 999 pigs; following which, the proportion of positive pens tended to decrease.

Figure 2: Proportion of *Salmonella*-positive pens in breeding and production holdings with 95% CI by holding size (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

• Floor type

Figure 3 displays the proportion of *Salmonella*-positive pens according to the type of floor. In both breeding and production holdings, the proportion of *Salmonella*-positive pens appeared to differ between pens having different types of floor. For example, the proportion of positive pens was higher in outdoor pens (field or paddock) than in indoor pens with diverse types of floor.

Production pig holding

• Origin of the feed

Figure 4 illustrates the proportion of *Salmonella*-positive pens according to the origin of the feed used for pigs. Both in breeding and production holdings, the proportion of *Salmonella*-positive pens appeared to differ between pens where pigs were fed with feed of different origin. Specifically, a higher proportion positive was found for pens where pigs were fed with commercial compounds compared to pens with feed of non-commercial origin.

Breeding pig holding

Figure 4: Proportion of *Salmonella*-positive pens in breeding and production holdings with 95% CI by feed origin (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

• Type of diet

Figure 5 illustrates the proportion of *Salmonella*-positive pens according to the diet of the pigs. In both breeding and production holdings, the proportion of *Salmonella*-positive pens appeared to be higher for pens where pigs were fed with a pelleted dry diet (cobs/rolls/nuts/pellets) compared to pens where pigs were fed with liquid (porridge/liquid), meal (meal/mash) and other/mixed diet (others).

Figure 5: Proportion of *Salmonella*-positive pens in breeding and production holdings with 95% CI by type of diet (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

Breeding pig holding

5.2.2. Analysis of multicollinearity among potentially associated factors

The VIF values calculated to test for the multicollinearity among the factors associated with *Salmonella* pen positivity in holdings with breeding pigs in the EU are presented in Appendix E. The most serious collinearity was between 'production stage' and 'gender of the pigs', which lead to a VIF of 9.95 for the variable 'gender of the pigs'. Therefore the variable 'gender of pigs' was left out of the multivariable analysis. Without this variable, the condition index became 18.1, and the higher VIF was 8.5. Inspection of the condition matrix revealed that this condition index was created by the correlations between country, production stage and age of the pigs.

5.2.3. Multivariable regression analysis at EU level

A full random effects model was fitted including the holding as random intercept and the following factors as fixed effects: country, delay between sampling and testing (in days), season, breeding/production type, holding size, gilt replacement policy, boar replacement policy, type of sample, number of pigs per pen, age of pigs, production stage, indoor/outdoor production, individual housing, floor type, all in/all out and clean, origin of feed, type of diet, probiotic feed/water supplement, organic acid feed/water supplement, other feed/water supplement, use of antibiotics. The OR estimates for the factors included in the full multiple random effect model are illustrated in Appendix H (Table 15).

The factors that were excluded based on the backward selection procedure were, consecutively: use of antibiotics, gilt replacement policy, individual housing, delay between sampling and testing, all in/all out and cleaned, breeding/production type, indoor/outdoor production, organic acid feed/water supplement, age of pigs, other feed/water supplement, probiotic feed/water supplement, and season.

The following factors for *Salmonella*-positive pens in holdings with breeding pigs were retained in the logistic mixed-effects model resulting from backwards selection: holding size, boar replacement policy, number of pigs per pen, production stage, floor type, origin of feed, type of diet and 'type of sample'.

Successively, interaction terms of the investigated variables with 'holding type' (breeding holding, or production holdings) were also included in the model. Significant interactions of 'holding type' with 'floor type' and 'gilt replacement policy' were detected. The OR estimates for these two factors are presented separately for breeding and production holdings in Table 3. As a consequence of including the interaction terms with 'holding type' in the model, the factor 'boar replacement policy' became non-significant (*P*-value=0.051) and was left out of the final model.

In Table 3, an OR > 1 indicates that exposure of pens to the factor increases the risk of *Salmonella* positivity, whereas an OR < 1 indicates a reduced risk of pen positivity due to exposure to the factor. An OR equal to 1 indicates no effect of the factor on *Salmonella* positivity. Consequently, if the 95% CI of the OR does not comprise 1, meaning that both the lower and the upper limits are either greater, or less than 1, it can be concluded that the association with a potential factor and *Salmonella* pen positivity is statistically significant (P < 0.05).

Risk factor ^(a)	OR ^(b)	95% CI		DF ^(c)	<i>P</i> -value	
SAME EFFECT IN BR	REEDING AND PRODUCTION HOLDINGS					
Holding size	100-399 vs <100	1.84	1.34	2.53	3	<.0001
	400-999 vs <100	3.23	2.26	4.62		
	>999 vs <100	5.25	3.48	7.93		
Number of Pigs in Pen	Per 10 pigs	1.03	1.00	1.06	1	0.0230
Production stage	Pregnant vs Maiden gilts	0.81	0.67	0.96	4	<.0001
	Farrowing and lactating vs Maiden gilts	0.65	0.53	0.80		
	Service area vs Maiden gilts	1.06	0.86	1.30		
	Mixed vs Maiden gilts	0.86	0.67	1.10		
Origin of feed	Other vs Commercial compound	0.51	0.27	0.97	3	0.0001
	Feed with maize vs Commercial compound	0.62	0.36	1.04		
	Home-mill vs Commercial compound	0.58	0.45	0.74		
Type of diet	Others vs Cobbs/rolls/nuts/pellets	0.67	0.43	1.05	3	<.0001
	Meal/mash vs Cobbs/rolls/nuts/pellets	0.52	0.41	0.67		
	Porridge/liquids vs Cobbs/rolls/nuts/pellets	0.46	0.34	0.62		
DIFFERENT EFFECT	' IN BREEDING AND PRODUCTION HOLDIN	IGS				
BREEDING HOLDING	GS					
Floor type	Outdoors in fields or paddocks vs Slatted floor	1.18	0.57	2.45		1)
	Solid floor other bedding vs Slatted floor	1.83	0.43	7.84		
	Solid floor with straw vs Slatted floor	0.63	0.38	1.03		
	Solid floor without bedding vs Slatted floor	1.30	0.77	2.20		
	Partly slatted floor vs Slatted floor	1.01	0.76	1.35		
	Other vs Slatted floor	3.82	1.21	12.10		
Gilt replacement policy	10-90% Gilts homebred vs >90% Gilts homebred	0.32	0.18	0.58		2)
	>90% Gilts purchased vs >90% Gilts homebred	0.76	0.52	1.10		
PRODUCTION HOLD	INGS					
Floor type	Outdoors in fields or paddocks vs Slatted floor	3.32	2.04	5.39		1)
	Solid floor other bedding vs Slatted floor	2.37	1.08	5.19		
	Solid floor with straw vs Slatted floor	1.12	0.75	1.67		
	Solid floor without bedding vs Slatted floor	2.07	1.49	2.89		
	Partly slatted floor vs Slatted floor	1.43	1.15	1.77		
	Other vs Slatted floor	1.04	0.40	2.68		
Gilt replacement policy	10-90% Gilts homebred vs >90% Gilts homebred	1.37	0.96	1.95		2)
	>90% Gilts purchased vs >90% Gilts homebred	1.15	0.90	1.46		

Table 3: Final logistic mixed-effects model^(a) for factors associated with *Salmonella*-positive pens including interaction terms, *Salmonella* EU baseline survey, 2008

^(a) Odds ratio estimates and standard errors were assessed using a mixed-effects model with the effect of holdings included as a random intercept and with the factor 'country' included as a fixed effect. The between holding variance (on the logodds scale) is 4.20 with a 95% confidence interval of [3.79; 4.67]. Both the holding (random intercept) and the country effects were statistically significant (*P*-value<0.0001). Single country effects are not shown.</p>

^{b)} All odds ratios were adjusted for the factor 'sample type', which was also retained in the final model.

c) DF=degrees of freedom.

1) Type III P-value of the of the main effect: 0.0002 (6 DF); type III P-value of the interaction: 0.0001 (6 DF)

2) Type III P-value of the of the main effect: 0.078 (2 DF); type III P-value of the interaction: 0.0198 (2 DF)

The final model included country-specific effects (not shown) and the factor sample type and ORs are, therefore, adjusted for these variables. According to the analyses, the sample type appeared to be significantly related to the sensitivity of the sampling and testing process. In particular, the use of

composite sample was found to be associated with a lower *Salmonella* positivity compared to the swab sample (OR 0.74; 95%CI: 0.58-0.93; *P*-value 0.01).

The results showed that the probability of *Salmonella* pen positivity in holdings with breeding pigs increased as the size of the holding, as measured by the number of breeding pigs, increased. For example, the odds of detecting *Salmonella*- positive pens in a holding housing between 400 and 999 breeding pigs was 3.23 times higher than the odds for a holding housing less than 100 breeding pigs. The odds of having a positive *Salmonella* result increased with the number of pigs per pen, with a 3% increase per 10 additional pigs. The production stage of the pigs in the pen was also significantly associated with *Salmonella* pen positivity with pens hosting maiden gilts having higher odds of being positive compared to pens with pregnant or farrowing and lactating pigs. Home-mixing of feed was found to have a greater protective effect than sourcing feed from a company. In addition to the origin of the feed, the type of diet (formulation of the ration) was also found to be significantly associated with *Salmonella*. Specifically, the use of pelleted feed, which is usually finely ground, was associated with higher odds of pen positivity when compared to meal or wet feed.

The type of floor was also significantly associated with *Salmonella* pen positivity but its effect was different in breeding holdings and production holdings. In production holdings pens with '(fully) slatted floor' were found to be significantly associated with lower odds of *Salmonella* positivity than the other types of solid floor, except 'solid floor with straw' and 'other' with which there were no statistically significant differences. Pens with a floor type 'outdoor in field or paddock' had more than three times higher odds of *Salmonella* positivity than the 'fully slatted floor'. Conversely, in breeding holdings, only the category 'other' type of floor put pens significantly at risk for *Salmonella* positivity when compared to pens with 'slatted floor' and no other associations were found between the type of floor and the *Salmonella* positivity.

The gilt replacement policy was significantly associated with *Salmonella* pen positivity in breeding holdings, but not in production holdings. Specifically, pens in breeding holdings housing 10-90% of gilts homebred had lower odds of being *Salmonella*-positive than pens in holdings housing more than 90% of gilts homebred.

The random intercept (effect of holdings) was highly significant (P<0.0001). This indicated that the baseline risk of *Salmonella*-positive pens varied between the holdings, even when other factors such as country, holding size, number of pigs per pens, production stage, origin of feed, type of diet, floor type, gilt replacement policy and significant interactions with holding type were accounted for. Consequently, within countries, there were holdings with an overall higher prevalence and holdings with an overall lower prevalence of *Salmonella*-positive pens. The proportion of the total variance in the prevalence of *Salmonella* positive pens that could be either attributed to uninvestigated holding-specific factors and/or to the clustering of *Salmonella* linked to its infectious character was 56%.

5.2.4. Population Attributable Fractions

Table 4 illustrates the population attributable fractions (PAFs) as calculated from the final regression model with interactions (see Table 3). For each of the factors included in the final model, the PAF was calculated for one or two scenarios of reduced exposure. Only scenarios related to risk factors that are amenable for control measures were considered.

Table 4: Population attributable fractions estimating the expected reductions (%) in the number of *Salmonella*-positive pens by theoretical elimination of significant risk factors for the EU MSs, *Salmonella* EU baseline survey, 2008

Variable	Theoretical scenarios of lower risk categories	Theoretical percentage reduction of <i>Salmonella</i> - positive pens [95% CL ^(a)]
Holding size (scenario 1)	All holdings would house less than 400 breeding pigs	18.0 [8.2;25.3]
Holding size (scenario 2)	All holdings would house less than 1,000 breeding pigs	4.4 [-5.1;11.6]
Number of pigs per Pen	All Pens would house 10 or less pigs	3.2 [-5.9;9.3]
Floor type (scenario 1)	All floors (except solid floors with straw) would be (fully) slatted floors	14.0 [2.2;21.7]
Floor type (scenario 2)	All floors (except slatted floors) would be solid floors with straw	17.8 [-0.1;32.6]
Origin of Feed	All feed would be home-milled	23.2 [10.7;33.7]
Type of diet	All diet would be porridge/liquid diet	23.5 [8.7;33.4]

^(a) The confidence limits (CL) only reflect the uncertainty of investigated factors in the sampled holdings (see Materials and Methods). It was assumed that the risk factor distribution in the total population of holdings with breeding pigs in each country was equal to that in the sampled holdings.

For example, in a theoretical situation where all MSs would reduce the size of all their holdings to less than 400 breeding pigs, there would, in theory, be an 18.0 % reduction in the proportion of *Salmonella*-positive pens across the EU compared with the current holding size situation. If the holding sizes would be less than 1,000 breeding pigs (scenario 2), the theoretical reduction in *Salmonella* pen positivity, as compared to the current exposure pattern, would be 4.4%, which is much less than in scenario 1.

In Appendix I, Table 16 presents weighted PAFs that should be interpreted as theoretical potential reductions of *Salmonella*-positives pens in all holdings with more than 50 breeding pigs in the EU because they take account of the disproportionate sample in the MSs. It was concluded that weighting had very little impact on the results.

5.3. Analysis of the *Salmonella* serovar distribution across the EU

5.3.1. Frequency distribution of *Salmonella* serovars in holdings with breeding pigs

The *Salmonella* serovars isolated from the routine pooled faecal samples collected in breeding and in production holdings were previously reported in the part A report (EFSA, 2009b). A total of 1,430 breeding holdings and 3,211 production holdings from 24 MSs were sampled, in addition to 179 breeding holdings and 297 production holdings from Norway and Switzerland, adding up to 51,170 tested pooled faecal samples.

The number of holdings tested, number and percentage of positives and number of serovars found in each country in breeding and production holdings are shown in Appendix J (Tables 18 and 19).

In breeding holdings, 54 different serovars were isolated in the 22 countries where *Salmonella* was detected in at least one sample. The leading isolated serovar was *S*. Derby (23.9% of isolates and 29.6% of positive holdings), followed by *S*. Typhimurium (17.9% of isolates, 25.4% of positive holdings) and *S*. Infantis (5.0% isolates, 7.7% of positive holdings). The latter was mainly due to a large number of isolates from France and Denmark. *S*. Rissen had similar percentages to *S*. Infantis (4.5% and 7.3%), but included a large number of isolates from Spain. The occurrence of *S*. London appeared less frequent than *S*. Infantis and *S*. Rissen, but was highly affected by the Netherlands. It was, however, more widespread than *S*. Infantis and *S*. Rissen and would be present in a larger proportion if Dutch, French and Spanish isolates were removed. The top 20 serovars isolated from breeding holdings in the study are presented in Appendix J (Table 19), ordered by the percentage of holdings positive to specific serovars.

In production holdings, 87 serovars were reported in the EU, and only one was found in Switzerland (S. Javiana), adding up to 88 serovars in total. As observed for the breeding holdings, the leading serovars were S. Derby, observed for 23.7% of isolates and 21.6% of positive holdings, and S. Typhimurium (13.7% and 15.2%). S. London appeared in third place (8.5% and 7.2%), followed by S. Infantis and S. Rissen. The proportions of these serovars were heavily influenced by data from the Netherlands, Denmark and Spain, respectively. The top 20 serovars isolated from production holdings are presented in Appendix J (Table 20), ordered by the percentage of holdings positive to specific serovars.

MS-specific overviews of the frequency distribution of serovars are shown in the Part A report (EFSA, 2009b). Among breeding holdings, in countries with positive samples, the number of isolated serovars varied from one in Luxembourg and Sweden to 27 in Spain. Among production holdings, this number varied from two in Estonia to 31 in the United Kingdom.

S. Derby and *S.* Typhimurium were the predominant serovars in both breeding holdings and productions holdings. In breeding holdings, *S.* Derby and *S.* Typhimurium were present in 18 and 17 countries, respectively, and in production holding in 20 and 16 countries, respectively. In general, these two serovars occurred in both breeding and production holdings within the same country. Notable exceptions included Austria, where no *S.* Typhimurium was found in production holdings, Switzerland where no *S.* Typhimurium was found in breeding holdings, and Luxembourg where these serovars were only found in production holdings. *S.* Derby was the dominant serovar in Cyprus, Germany, Denmark, France and Latvia, while *S.* Typhimurium had this position in Belgium, Ireland and Poland, and was isolated from the only positive sample in Sweden. *S.* Livingstone, although only present in substantive proportions in Austria, Belgium, Germany and Denmark, was one of the most widespread serovars, found in 11 countries in breeding holdings and 13 countries in production holdings. Similarly, *S.* London, present in breeding holdings in eight countries, was found in production holdings, *S.* London was found in 15 countries, but only in Italy, the Netherlands, Portugal and the United Kingdom did it constitute more than 10.0% of isolates.

Several serovars occurred more widespread in production holdings as compared to breeding holdings, but often high proportions of occurrence were confined to a few countries. These serovars include *S*. Infantis, which was found in production holdings in 13 countries and in breeding holdings in 7 countries. However, large proportion only occurred in specific countries such as Denmark (17.3%) and Slovenia (30.8%). *S*. Bredeney was also more geographically widespread in production holdings (13 versus 6 countries), but with large proportions occurring in Switzerland (26.2%) and Latvia (17.4%). *S*. Anatum and *S*. Enteritidis were isolated in 10 countries in production holdings, but also with large proportions in a small number of countries, such as Slovenia and Slovakia for *S*. Enteritidis (26.9% and 25.6%) and Spain for *S*. Anatum (16.2%).

Finally, some serovars predominated in a few countries. For instance, the Czech Republic had S. Bovismorbificans in over 30% of its isolates from breeding herds and S. Agona in 42.5% of its

isolates from production holdings. In Latvia 43.5% of the isolates was *S*. Kimuenza. Switzerland and Italy were the only countries with over 50% of isolates made by serovars not included in the top 20.

5.3.2. Spatial distribution of *Salmonella* serovars in holdings with breeding pigs in the EU

The EU geographic distribution of the prevalence of breeding and production holdings positive to *Salmonella* spp., *S.* Typhimurium, *S.* Derby, *S.* Enteritidis, *S.* Infantis, *S.* Rissen, *S.* Livingstone, *S.* London, *S.* Anatum, *S.* Goldcoast and *S.* Bredeney is displayed in Figures 33-54 in Appendix K. These figures visualised the heterogeneous geographical distribution of *Salmonella* serovars across the EU.

5.3.3. Comparison between *Salmonella* serovar distributions in breeding pigs, other animal sources, feed and humans.

Nearly all of the serovars isolated from breeding pigs were also isolated from pig lymph nodes and carcasses in a previous baseline survey in slaughter pigs (Table 5). Among breeding holdings, production holdings, slaughter pig lymph nodes and carcass swabs, *S*. Derby and *S*. Typhmurium are the predominant serovars in most countries. An exception is observed in Cyprus, where no *S*. Typhimurium was found in breeding holdings and no *S*. Derby was observed in slaughter pigs. *S*. Enteritidis was generally more frequent in lymph nodes than in carcass swabs, it is important to note that these serovars were only isolated in Spain in production holdings and in Denmark, France and Spain in breeding holdings, with Spain responsible for 62% of the isolates. Of these three countries, only Denmark submitted carcass swab results as part of the baseline survey in slaughter pigs. The observed absence of these serovars in carcass swabs may, therefore, be merely a reflection of the serovar and prevalence variation between countries and detection limits of the various sampling protocols and may not reflect differences in transmission between steps in the production line.

When comparing the overall serovar distribution in pigs with other animal sources and feed, the number of serovars in common varies from 13 on broiler carcasses to 18 in laying hen flocks out of the top-20 serovars in holdings with breeding pigs (Table 5). However, despite this overlap, the proportion of some of the most important serovars differs markedly between the different animal reservoirs.

Salmonella serovar	Breeding pigs ^(a) (breeding holdings)	Breeding pigs ^(a) (production holdings)	Slaughter pigs ^(b) (lymph nodes with serovar)	Slaughter pigs ^(b) (carcass swabs [*] with serovar)	Broiler carcasses with serovar ^(c)	Broiler flocks ^(d)	Laying hen flocks ^(e)	Fattening turkey flocks ^(f)	Detected in feed ^(g) (unspecified poultry or pig feed, or oil seed and fruit)
S. Derby	134	271	380	94	9	13	14	123	Yes
S. Typhimurium	115	191	1,040	191	66	65	123	86	Yes
S. Infantis	35	58	49	13	358	295	171	72	Yes
S. Enteritidis	8	21	126	5	167	538	899	55	Yes
S. London	29	90	33	2	0	3	6	31	Yes
S. Rissen	33	56	151	2	0	3	17	26	Yes
S. Livingstone	25	50	9	4	12	39	50	1	Yes
S. Bredeney	13	40	51	8	53	10	26	186	Yes
S. Anatum	25	43	63	1	7	32	21	4	No
S. Goldcoast	13	39	14	1	0	1	2	0	No
S. Agona	9	24	28	4	37	16	38	31	Yes
S. Bovismorbificans	9	31	14	1	0	1	4	0	No
S. Brandenburg	8	27	31	7	3	2	7	0	Yes
S. Mbandaka	3	9	7	0	30	114	101	9	Yes
S. Give	8	18	11	1	0	0	5	1	Yes
S. Panama	8	16	5	3	0	0	0	0	No
<i>S</i> . 4,5,12:i:- ^(h)	6	15	104	4	1	0	0	0	No
S. Kedougou	15	11	7	1	11	19	35	12	Yes
S. Meleagridis	7	11	7	0	10	3	2	90	Yes
S. Reading	8	18	5	6	0	0	2	0	Yes

Table 5: Frequency of *Salmonella* serovars reported in the Community Summary Report on feed and in the baseline surveys in holdings with breeding pigs, in slaughter pigs, on broiler carcasses, in broiler flocks, laying hen holdings, and turkey fattening flocks

(a) EU survey in breeding pigs 2008 (EFSA, 2009b); (b) EU survey in slaughter pigs 2006-2007 (EFSA, 2008b); (c) EU survey in broiler carcasses 2008 (EFSA, 2010b); (d) EU survey in broiler flocks 2005-2006 (EFSA, 2007b); (e) EU survey in laying hens 2004-2005 (EFSA, 2007a); (f) EU survey in turkeys 2006-2007 (EFSA, 2008a); (g) EFSA Community Summary Report 2008 (EFSA, 2010a).

* Only 13 MSs reported on the results of carcass swabs in the slaughter pig baseline study 2006-2007.

(h) According to EFSA's BIOHAZ panel scientific opinion on monitoring and assessment of the public health risk of "Salmonella Typhimurium-like" strains (EFSA, 2010d), this Salmonella antigenic formula is recommended to be reported as 'monophasic Salmonella Typhimurium'. However, to ensure consistency with the previously published Part A report (EFSA, 2009b), the Salmonella antigenic formula is kept here.

In Figure 6, the 10 most important serovars in humans in 2008 (EFSA, 2010a) are compared in terms of their relative distribution with those from pig breeding holdings, production holdings, pig lymph nodes, pig carcass swabs, broiler flocks, broiler carcasses, laying hen flocks and fattening turkey flocks. *S*. Enteritidis and *S*. Typhimurium are by far the most dominant serovars in humans, and it is notable that *S*. Derby and *S*. Typhimurium constitute a larger proportion in pigs, whereas *S*. Enteritidis and *S*. Infantis dominate in broilers and laying hens (i.e. *Gallus gallus*), suggesting a variable ranking of sources for human salmonellosis involving specific serovars.

Figure 6: Comparison of the *Salmonella* serovar distribution in humans and animal sources in the EU, *Salmonella* EU baseline survey, 2008.

Data on human cases caused by the most frequent serovars in all reporting countries were derived from the EUSR from 2005 to 2008 (EFSA, 2006, 2007c, 2009a, 2010a). Human data were reported through The European Surveillance System (TESSy) and represent case-based and aggregated data that have been approved by each MS. In the EUSR reports, the top-10 serovars isolated in humans are reported, but since the ranking of serovars differs between years, more than 10 different serovars are presented in Table 21 (Appendix L). The aggregation, however, has a disadvantage in that serovars reported individually in one year may be reported in the group of 'other' in other years (for example *S*. Bovismorbificans, which was reported individually in 2005 and 2008, was most likely included in the group of 'other' in 2006 and 2007).

5.3.4. Correlation between the prevalence of *Salmonella*-positive slaughter pigs in the EU baseline survey in 2006 to 2007 and the prevalence of *Salmonella*-positive holdings with breeding pigs in the EU baseline survey in 2008

Correlation between the 2006 to 2007 baseline survey prevalence results of *Salmonella* in lymph nodes of slaughter pigs (EFSA, 2008b) with the 2008 prevalence results of *Salmonella*-positive holdings with breeding pigs in each MS and non-MS (EFSA, 2009b) was analysed in the present report using the Spearman rank correlation coefficient, ρ .

The estimated correlations are presented in Table 6, as well as the *P*-values from testing the null hypothesis of no association between the prevalences observed in the two surveys. The results indicate a significant positive correlation (*P*-values <0.0001) between prevalence of *Salmonella*-positive holdings with breeding pigs and lymph nodes of slaughter pigs in countries that participated to both surveys. The scatter graph illustrated in Figure 7 further indicates that countries having high prevalence of *Salmonella*-positive holdings with breeding pigs had a high prevalence of *Salmonella*-positive lymph nodes taken from slaughter pigs during the 2006-2007 survey. A significant positive correlation between the prevalence of *S.* Typhimurium positive holdings with breeding pigs in 2008 and the prevalence of *S.* Typhimurium positive lymph nodes in slaughter pigs in 2006-2007 baseline survey was also found (Table 7). Figure 8 shows that countries having a high prevalence of *S.* Typhimurium-positive holdings with breeding pigs had a high prevalence of *S.* Typhimurium-positive holdings with breeding pigs had a high prevalence of *S.* Typhimurium-positive lymph nodes in slaughter pigs in 2006-2007 baseline survey was also found (Table 7). Figure 8 shows that countries having a high prevalence of *S.* Typhimurium-positive holdings with breeding pigs had a high prevalence of *S.* Typhimurium-positive holdings with breeding pigs had a high prevalence of *S.* Typhimurium-positive holdings are presented in *S.* Typhimurium positive holdings, separately for breeding and production holdings, and the prevalence of *Salmonella* and *S.* Typhimurium positive holdings, separately for breeding and production holdings, and the prevalence of *Salmonella* and *S.* Typhimurium positive lymph nodes in slaughter pigs are presented in Appendix M.

Table 6: Spearman correlation coefficients for testing the correlation between the prevalence of lymph nodes *Salmonella*-positive slaughter pigs in 2006-2007 and the prevalence of *Salmonella*-positive holdings with breeding pigs in 2008 ^(a)

Salmonella prevalence	Spearman p	P-value
Holdings with breeding $pigs^{(b)}$ & lymph nodes of slaughter $pigs^{(c)}$	0.751	<.0001
Breeding holdings ^(b) & lymph nodes of slaughter pigs ^(c)	0.770	<.0001
Production holdings ^(b) & lymph nodes of slaughter pigs ^(c)	0.708	<.0001

^(a) Twenty-five pairwise prevalence results were included in the analysis, corresponding to results from 24 MSs and Norway, which participated to both the 2008 EU baseline survey on *Salmonella* in breeding pigs and the 2006-2007 EU baseline survey on *Salmonella* in slaughter pigs.

^(b) 2008 EU baseline survey on Salmonella in breeding pigs

^(c) 2006-2007 EU baseline survey on *Salmonella* in slaughter pigs

Table 7: Spearman correlation coefficients for testing the correlation between the prevalence of lymph nodes *S*. Typhimurium-positive slaughter pigs in 2006-2007 and the prevalence of *S*. Typhimurium-positive holdings with breeding pigs in $2008^{(a)}$

Prevalence of Salmonella Typhimurium	Spearman p	P-value
Holdings with breeding $pigs^{(b)}$ & lymph nodes of slaughter $pigs^{(c)}$	0.79083	<.0001
Breeding holdings ^(b) & lymph nodes of slaughter pigs ^(c)	0.69477	0.0001
Production holdings ^(b) & lymph nodes of slaughter pigs ^(c)	0.79151	<.0001

^(a) Twenty-five pairwise prevalence results were included in the analysis, corresponding to results from 24 MSs and Norway, which participated to both the 2008 EU baseline survey on *Salmonella* in breeding pigs and the 2006-2007 EU baseline survey on *Salmonella* in slaughter pigs

^(b) 2008 EU baseline survey on Salmonella in breeding pigs

^(c) 2006-2007 EU baseline survey on *Salmonella* in slaughter pigs

Figure 7: Comparison between the prevalence of lymph node *Salmonella*-positive slaughter pigs in the EU baseline survey in 2006-2007 and the prevalence of *Salmonella*-positive holdings with breeding pigs in the EU baseline survey in 2008

Figure 8: Comparison between the prevalence of lymph node *S*. Typhimurium-positive slaughter pigs in the EU baseline survey in 2006-2007 and the prevalence of *S*. Typhimurium-positive holdings with breeding pigs in the EU baseline survey in 2008

5.4. Analysis of within-holding prevalence study

5.4.1. Descriptive results of the within-holding prevalence study

Table 8 displays the descriptive summary statistics for the data provided by the five participating MSs.

Table 8: Descriptive summary of the data for the five Member States that participated in the withinholding prevalence study, *Salmonella* EU baseline survey, 2008

	Czech Republic	Denmark	Sweden	Slovenia	United Kingdom	Total (five MSs)
Positive holdings (%) ^a	3	6	1	2	7	19
	(33.3%)	(60.0%)	(10.0%)	(20.0%)	(70.0%)	(38.8%)
Positive individual samples (%) ^b	58	83	1	14	207	363
	(6.4%)	(8.3%)	(0.1%)	(1.4%)	(20.7%)	(7.4%)
Positive artificially pooled samples (%) ^c	6	15	0	4	30	55
	(6.7%)	(15.0%)	(0%)	(4.0%)	(30.0%)	(11.2%)
Positive routine pooled samples (%) ^d	7	12	0	1	30	50
	(7.8%)	(12.0%)	(0%)	(1.0%)	(30.0%)	(10.2%)

^(a) The number (percentage) of holdings that had at least one *Salmonella*-positive (individual or pooled) faecal sample out of those tested (10 holdings in total in each MS, except in the Czech Republic where 9 holdings were tested).

^(b) The total number (percentage) of *Salmonella*-positive individual faecal samples (1000 samples in total in each MS, except in the Czech Republic where 900 individual samples were tested).

^(c) The total number (percentage) of *Salmonella*-positive artificially pooled samples (100 samples in total in each MS, except in the Czech Republic where 90 artificially pooled samples were tested)

^(d) The total number (percentage) of *Salmonella*-positive routine samples (100 samples in total in each MS, except in the Czech Republic where 90 pooled samples were collected)

In the within-holding prevalence study 10.7% of the pooled samples (combining routine and artificially pooled samples) across all the holdings were positive compared to 7.4% of the individual samples.

Further results obtained for the five countries participating in the within-prevalence study are illustrated in Appendix O.

5.4.2. Sensitivity of tests for detection of *Salmonella* in breeding pigs

The sensitivity of an individual faecal sample for detection of *Salmonella* in breeding pigs was estimated to be 87% [95% CI: 82-93%].

Since the sensitivity of the artificially pooled sample did not differ significantly from the sensitivity of the routine pooled sample (see Appendix N), these were treated as equal and hereafter the term 'sensitivity of the pooled sample' is used. Testing a pooled sample consisting entirely of positive samples had a sensitivity of 92% (95% CI 86-95%), which is apparently higher than that of a single individual faecal sample (87%). However, this difference was not statistically significant. A plot of the predicted sensitivity of pooled sample versus the within-pen prevalence is shown in Figure 9. This indicates that the sensitivity of testing a pooled sample increases as the prevalence of positive pigs within the pen increases.

Figure 9: Sensitivity of routine and artificially pooled samples for detection of *Salmonella* versus the *Salmonella* within-pen prevalence.

In order to examine the effect of holding size upon pooled faecal sample sensitivity, a model stratifying the farms by holding size, with a cut-off of 400 pigs, was also investigated. However, the model was deemed inappropriate, as the size of the holdings presented were biased towards one strata or the other for three of the five countries. This possible confounding between holding size and country was judged to be unacceptable and this putative association was not investigated further.

Figure 10 shows how the percentage of positive pens varies according to the prevalence of individual *Salmonella*-infected pigs within a holding (within-holding prevalence). The observed percentages of positive pens for the positive holdings in the study are given by asterisks. The observed values are generally slightly lower than the predicted percentage of positive pens since it is likely that *Salmonella* will not be isolated from some true positive pens which will therefore give false negative results, especially at low prevalence.

Figure 10: Percentage of positive pens versus the estimated prevalence of *Salmonella*-infected pigs within a holding ('within-holding prevalence') for the positive holdings in the within-holding prevalence study

5.4.3. True prevalence of *Salmonella*- positive holdings with breeding pigs

The results showed that the observed MS-level prevalence of *Salmonella*-positive holdings with breeding pigs is roughly 80% of the estimated true MS-level prevalence, although this proportion varies between MSs. Details on the country specific estimates of the true prevalence are included in Table 26 (Appendix N). The estimated distribution of median within-holding prevalence for each of the 24 countries where the within-holding prevalence was greater than zero is shown in Appendix O (Figure 62).

The true EU-level prevalence was estimated to be 40.6% (95% CrI: 35.0-46.8) and further details on this estimation are in Appendix O (Table 29).

6. Discussion

Salmonella infection in pigs is often sub-clinical and shedding of *Salmonella* may occur intermittently for long periods, leading to the persistence of infection in some herds. Although breeding pigs do enter the food chain at the end of their productive lives, such animals are probably a minor contributor to the risk of *Salmonella* infections in humans. More importantly, persistent infection in breeding pigs may play an important role in the maintenance and transmission of *Salmonella* infection, either to the slaughter pig generation (production herds), or act as a source of infection to the breeding pigs whose progeny will become the slaughter generation (nucleus and multiplier herds). Where the progeny is destined for slaughter, there is a direct risk of transmission of *Salmonella* through the food chain with resulting implications for food safety.

6.1. Context of the Salmonella baseline survey and study limitations

The EU-wide baseline survey estimated the prevalence of *Salmonella*-positive breeding and production holdings across the EU, and these estimates were published in the Part A report (EFSA, 2009b). The present part B report provides the results of the association between the investigated penand holding level risk factors and the *Salmonella* pen positivity in holdings with breeding pigs. Also, the association between the prevalence of *Salmonella*-positive breeding holdings and the prevalence of *Salmonella*-positive production holdings in a country was investigated. Moreover, more in-depth analyses of the identified *Salmonella* serovar distributions are presented in this Part B report. Lastly, the results are provided from the additional voluntary within-holding prevalence study, in which the Czech Republic, Denmark, Slovenia, Sweden, and the United Kingdom participated.

During the conduct of the survey, information was gathered through a mandatory questionnaire, which has had a major beneficial impact on the quality and completeness of the data received and the ability to carry out meaningful risk factor analysis. The choice of the potential risk factors to be investigated was made by the MSs, partly based upon EFSA's proposal for the survey design (EFSA, 2007d). This Part B report considers whether any of these factors can be associated with *Salmonella* pen positivity in holdings with breeding pigs. It should be kept in mind that a statistical association between an investigated factor and the odds of yielding a *Salmonella*-positive result does not necessarily indicate a causal relationship. Furthermore, cross sectional surveys only measure a single point in time and do not differentiate between factors that may influence persistence of *Salmonella* and those associated with introduction of the agent. As a consequence, this analysis only generates hypotheses for potential risk factors associated with *Salmonella* and possible biases must be carefully considered. It should be noted that some factors that are known to be associated with *Salmonella*, such as the age of the herd, cleaning and disinfection practices, the design of pens, manure removal systems and the presence of rodents and wild birds in the holding were not investigated and therefore potential confounding from these factors could not be controlled for in the epidemiological analysis.

The risk factor analysis was carried out at EU-level (including the two reporting non-MSs) and it is important to emphasize that in some cases it may not be valid to transpose EU-level risk factors to a country-level, and the findings presented in this report should be used as a guide to inform general control measures. Further work to assess the validity of interventions aimed at reducing exposure to specific risk factors is recommended. It should also be noted that the epidemiological unit of the risk factor analysis was the pen housing breeding pigs, which may not always correlate with the risk of infection at holding level.

6.2. Correlation between the prevalence of *Salmonella*-positive breeding and production holdings

There was a strong and significant positive association between the prevalence of *Salmonella* in breeding and production holdings across the different MSs. This result indicates that primary breeding holdings may have the potential to disseminate *Salmonella* down the production pyramid to holdings

producing pigs for breeding and fattening. The serovar distributions did not contradict this, being broadly similar between different holding types, with *S*. Derby and *S*. Typhimurium dominating in both groups and with several less common serovars occurring in both populations within and between countries. Some serovars that are known to occur in countries that have exported breeding pigs to other European countries were found in multiple locations, although another common source, such as a widely used contaminated feed ingredient can not be ruled out (Wales et al., 2009). Furthermore, the significant association between the prevalence of *Salmonella* in breeding and production holdings may be also attributed to other country level factors.

The potential of holdings with breeding pigs to disseminate *Salmonella* is likely underestimated because the survey sampling strategy was designed to include a small number of samples from each sector of the adult herd in the holding. This means that if the infection was clustered by sector of the holding (some holdings may have hundreds of pens distributed in a large number of separate buildings), *Salmonella*, or the presence of a specific serovar such as *S*. Typhimurium, on the holding was less likely to be detected than if a larger number of pen samples had been taken in all parts of the herd. In particular, the exclusion of sampling the progeny of breeding pigs, which are more likely to be infected than adult pigs, especially with *S*. Typhimurium (Wales et al., 2009), could have contributed to an important underestimation of the potential of breeding herds to disseminate *Salmonella*.

6.3. Factors associated with *Salmonella* pen positivity in breeding and production holdings

EU-level analysis identified a number of factors significantly associated with *Salmonella* in breeding pigs. The final model combined breeding and production holdings and considered results at the penrather than at holding level to give the analysis greater power to detect important associations. The inclusion of interaction terms for holding type (breeding or production holding) allowed evaluating the potential differences between the two types of holdings, while also permitting variables that did not differ to be investigated with greater power.

There was a significant increase in the pen-level *Salmonella* risk with increasing holding size; pens within holdings of 1,000 or more breeding pigs had over five times higher odds to be positive for Salmonella compared to those with less than 100 pigs. Holding size has been shown in a number of studies to be a key factor in determining the risk of Salmonella and other infectious diseases in pig herds (Carstensen and Christensen, 1998; Gardner et al., 2002). This effect might reflect a greater risk of introduction and/or of within-holding dissemination of Salmonella in larger holdings, for example through a more intensive introduction of replacement breeding stock or shared service areas or other facilities for a large number of pigs. Larger holdings also typically have larger volumes of inputs to the holding in terms of feed, movement of people and equipment. The majority of pigs exposed to Salmonella develop an immune response and once clear of the infection, do not continue to shed the organism. However, a small number of animals remain persistent carriers and may act as reservoirs and infect newly introduced stock, or recovered animals in which immunity has waned, thus maintaining Salmonella on the holding. The more pigs present, the more likely that some will not clear the infection and that infection will persist and recycle. There was also a significant association between the number of pigs per pen and Salmonella risk, with a 3% higher odds per 10 additional pigs. The impact of other unmeasured underlying risk factors that may be associated with structural characteristics and/or managerial practices typical for larger holdings could not be quantified in this survey.

Pens containing pregnant or farrowing and lactating pigs were less likely to be positive for *Salmonella* compared to pens housing maiden gilts. Similar findings have been reported previously (Davies and Wray, 1997, Wales et al., 2009) and are likely to be related to the susceptibility or carrier status of newly introduced gilts and a reduction of shedding of *Salmonella* during the early stages of lactation.

Pens where pigs were fed with commercial feed had higher odds to be *Salmonella*-positive compared to those where pigs were fed with home-mill mixed feed, or feed with maize, or feed from other sources. Home-mill mixed feed usually has a greater protective effect than sourcing feed from a company, this may be due to coarser grinding of grain and the reduced chance of contamination from the more limited range of ingredients used and locally sourced cereals. It has also been suggested that the contaminated dust present in some soya bean and oil seed processing plants and feed mills, particularly dust from persistently contaminated pellet cooling systems, may be an important source of contamination for feed (Jones and Richardson, 2004; EFSA, 2008c, Davies and Wales, 2010). Compound feed from a commercial company is also more likely to be finely ground and pelleted, although the analysis did not disclose collineary between the variables 'origin of feed' and 'type of diet'.

In addition to the source of the feed, the type of diet (formulation of the ration) was found to be significantly associated with *Salmonella*-positive pens. Pens where pigs were fed with pelleted feed had higher odds of positivity, while mash (meal/mash) or wet (porridge liquid) feed was found to have a protective effect. This finding confirmed what was previously indicated in other studies (Beloeil et al., 2004, Lo Fo Wong et al., 2004; Garcia-Feliz et al., 2009). The fine grinding and processing involved in the production of pelleted feed is thought to promote favourable conditions for the colonisation of *Salmonella* in the gut of the animals due to rapid transit through the stomach acid barrier and intestine and production of intra-luminal conditions that suppress protective flora such as lactobacilli and anaerobes (Hedemann et al., 2005; Lo Fo Wong et al., 2004, Hansen et al., 2001; Jorgensen et al., 2001). A number of other studies have shown liquid feed to have a protective effect. Liquid feeds are often naturally or specifically fermented or acidified and several studies indicated that a combination of certain organic acids and a low pH has a negative impact on the development of *Salmonella* in the gut of the pigs (van Winsen et al., 2000; Lo Fo Wong et al., 2004). Liquid diets that include whey are also protective due to stimulation of lactobacilli (van Winsen et al., 2000).

Furthermore, the type of floor was significantly associated with Salmonella pen positivity but its effect was different in breeding holdings and production holdings. In production holdings, pens with (fully) 'slatted floors' were found to be significantly associated with lower odds of Salmonella positivity than pens having solid floors with other-than-straw bedding or without bedding, or pens with partly slatted floors, except 'solid floor with straw' and the type of floor classified as 'other' with which there were no statistically significant differences. Pens with a floor type 'outdoor in field or paddock' had more than three times higher odds of Salmonella positivity than the 'fully slatted floor'. Slatted floors allow faecal matter to drain away from the pen, thereby reducing potential for other pigs in the pen to come into contact with contaminated material. Spread of contamination between pens is also reduced by slatted floor systems as solid floor pens often involve common scraper systems that move between pens, pens where pigs are moved sequentially from one end of a building to the other as the oldest pigs are removed from one end, seepage of effluents between pens or removal of contaminated bedding between batches. Pens with deep straw bedding are also likely to be more self contained in terms of spread of effluent, and there may be some contribution of a bioactive 'litter effect' (Olesiuk et al., 1971) in which Salmonella is reduced by the activity of competing microorganisms. It can in some cases also be more difficult to collect representative faeces from deep straw bedded sow pens, so it could be hypothesised that the sensitivity for detection may be reduced compared with solid floored pens where faecal material can normally be readily gathered. Conversely, in breeding holdings, only the category 'other' type of floor put pens significantly at risk for Salmonella positivity when compared to pens with 'slatted floor' and no other associations were found between the type of floor and the Salmonella positivity. This is likely to be related to the more widespread use of solid floors (so less opportunity for statistical comparison) in holdings that supply breeding pigs, since foot and leg strength is an important requirement (Anil et al., 2007).

The baseline survey also collected information on feed and water supplements, including organic acids and probiotics, however no significant associations were detected in this survey, despite some studies suggesting a limited beneficial effect from feed or water acidification (Wingstrand et al., 1997;

Martín-Peláez et al., 2010) and its widespread use in fattening pigs. However, several studies failed to show any beneficial effect (Lo Fo Wong, 2001; Cook, 2004; Cook et al., 2006).

Pens in breeding holdings housing 10-90% of gilts homebred had lower odds of being *Salmonella*positive than pens in holdings housing more than 90% of gilts homebred. Conversely, in production holdings no statistical link was found between the gilt replacement policy and the *Salmonella* pen positivity. Both findings on gilt replacement policy in breeding and production holdings were surprising, given the known association between *Salmonella* prevalence in breeding herds, production herds and slaughter pigs. These unexpected results could be due to the predominant effect of other farm-related factors that were not recorded in the survey, such as housing systems and mixing of pigs, the annual replacement rate of breeding stock and the average age of the breeding herd, which may have an effect on the within-herd prevalence and the susceptibly to *Salmonella* and other pathogens because of the effect on natural immunological protection after previous exposure of sows (Wilcock and Schwartz 1992).

Two types of sample were permitted in the survey; a large fabric swab passed through accumulated naturally mixed faeces in the pen or, where this was not possible, a composite faecal sample comprising a minimum of 10 individual pinches from faeces. The type of sample that was taken had a significant impact on the likelihood of recovering *Salmonella* with the composite faecal samples proving less sensitive than swab samples. The swab sample can therefore be considered a more sensitive sampling method in detecting *Salmonella* positivity than the composite sample. This is consistent with the faecal swab collecting material from a larger number of earlier defecations, thus producing a sample with contributions from a larger number of individual pigs as shown in the within-holding study (see further) and previous publications (Arnold et al., 2005; Arnold and Cook, 2009).

In this survey, no statistically significant associations were found between the prevalence of the *Salmonella*-positive pens and several holding- and pen-level factors, such as time between sampling and testing, season, type of breeding or production holding, boar replacement policy, gender of the pigs, indoor/outdoor production, individual housing, whether production was all-in/all-out, or the use of antibiotics in the groups of pigs. Nevertheless, these findings should be interpreted with caution since the risk factor analysis was performed pooling data at EU level. Significant associations may still exist at MS level due to differences in the primary pig production management between countries.

6.3.1. Effect of the holding on the risk of *Salmonella* pen positivity

The between holding variability was also considered in the analyses of risk factors potentially associated with *Salmonella* pen positivity. The results showed that the baseline risk of *Salmonella*-positive pens varied between the holdings, even when other factors such as country, holding size, floor type, production stage, number of pigs per pen, origin of feed, type of diet and significant interactions with holding type were taken into account in the statistical model. Thus, within countries the prevalence of *Salmonella*-positive pens varied between holdings, with some holdings having higher pen prevalence and other holdings having a lower prevalence of positive pens. The proportion of variance that remained unexplained by the investigated factors and that was due to betweenholding variability was 56%. This proportion of unexplained variance could be either attributed to uninvestigated holding-specific factors or to the clustering of *Salmonella* linked to its infectious character. Such unidentified factors could include the serovar and strain of *Salmonella* present, as some strains are able to spread prolifically by virtue of high levels of excretion in faeces, enhanced environmental survival or infectivity for pigs (Jones and Falkow, 1996). The type of pen and pen management also has an important effect, as in some pen types manure is regularly scraped through all pens to remove it or pigs are moved between uncleaned pens (Davies, 1998).

6.3.2. Population Attributable Fraction

The Population Attributable Fractions (PAFs) presented in this report provided a theoretical indication of the percentage of *Salmonella*-positive pens that might be attributable to the risk factor in question, and which may be prevented if specific control measures acting to reduce the exposure to the risk factor in the population of pens were in place. In the context of this report, the calculation of the PAFs should be considered as a theoretical exercise and so interpreted with caution, as no assumptions of a specific causal link between the risk factors and *Salmonella* pen positivity can be made based on data collected in this cross-sectional study.

The PAF results indicated that the type of feed used is a major determinant of Salmonella pen positivity in holdings with breeding pigs. Feed may impact the risk of Salmonella infection for two reasons: firstly, the type of feed influences gut physiology and may make the gut environment more or less favourable for multiplication of Salmonella if it is present (Hedemann et al., 2005; van Winsen et al., 2000; Lo Fo Wong et al., 2004, Hansen et al., 2001; Jorgensen et al., 2001); secondly, feed may be contaminated by *Salmonella* and thus be the vehicle through which infection is introduced into a pig holding. Feeding pigs on a porridge/liquid diet may be considered as a valuable control measure for Salmonella, leading to a theoretical reduction of 23.5% of the Salmonella pen positivity. Also, changes in feed formulation (e.g. meal versus pellets) or sources (home-mill mixed versus commercial compounds) may lead to a reduction in Salmonella prevalence. The main effect of the different feed related factors is dysbacteriosis caused by diets with high wheat content that are finely ground and pelleted and so lead to conditions in the gut that favour intestinal colonisation and persistence of Salmonella from any source (EFSA, 2008c). A Quantitative Microbiological Risk Assessment (QMRA) of Salmonella in slaughter and breeding pigs considered feed as a potential source of Salmonella and indicated that the control of Salmonella in feedstuffs should represent one of the key control measures of Salmonella in breeding pig farms. The QMRA analysis indicated that by feeding pigs with only Salmonella-free feedstuffs, a reduction in the prevalence of Salmonella of 10-20% in high prevalence MSs and 60-70% in low prevalence MSs could theoretically be achieved (EFSA, 2010c).

Furthermore, the PAF results suggested that the floor type and the holding size are other important determinants of *Salmonella* pen positivity and intervention strategies targeting these factors may contribute to a reduction of *Salmonella* in holdings with breeding pigs. Although the number of pigs per pen was found to be significantly associated with *Salmonella* pen positivity in the risk factor analysis, the PAF for this variable was low suggesting that control measures aimed at reducing the number of pigs per pen might not have a worthwhile impact on the *Salmonella* prevalence. The different PAFs estimated for the two holding/group size-related factors (holding size and pen size) suggested that spread of *Salmonella* between pens may be more important than spread within a pen, as predicted by earlier mathematical models (Hill et al., 2008).

Although PAFs make a number of assumptions, including causality between the risk factors and *Salmonella*, which cannot be verified by means of cross-sectional survey analyses such as those presented here, they can be informative in terms of assessing the potential impact of possible intervention strategies. Such theoretical assumptions must, however, be confirmed in controlled intervention trials as control of certain risk factors may be ineffective if other, sometimes unidentified, risks are not also effectively controlled.

6.4. Analysis of the Salmonella serovar distribution across the EU

S. Typhimurium and S. Derby were widespread and dominant in most MSs, while other serovars, such as S. London, S. Infantis or S. Rissen were frequently isolated in some Western MSs and their relevance cannot be generalised to the whole EU. The heterogeneous geographical distribution of *Salmonella* serovars across the EU may indicate the presence of common sources of infection within regions such as infected breeding holdings, contaminated feed production or trade in breeding pigs.

Geographic clustering is also consistent with the potential for the clonal spreading of a particular *Salmonella* serovar among holdings following the introduction into a region, e.g. through feed or animal transport vehicles. This may also relate to differences in prevalence and serovars between Western pig producing countries (possibly associated with industrialised pig production, large integrated specialist breeding companies, large trade in breeding pigs and high annual replacement rate, and the wide use of pelleted feed) and other regions (VLA-DTU-RIVM, 2010; EFSA, 2010c). In Eastern Europe, pig production may be organised mostly in small self-contained holdings. The small number of larger holdings use home-milled meal rations, and until recently have had little importation of breeding stock from other high prevalence countries. In certain regions, other factors (e.g. temperature, implementation of *Salmonella* control programmes, use of 'antibiotics' for *Salmonella* control) might also be involved (D'Souza et al., 2004; EFSA, 2011; Usera et al., 2002). The heterogeneous geographical distribution of *Salmonella* serovars across the EU may also reflect a selection pressure for specific serovars or clones driven by e.g. the preferences for using particular antimicrobials in some regions.

The difference in *Salmonella* prevalence between the Western and Eastern MSs was also observed in the EU baseline study in slaughter pigs and might partly be explained by the differences in pig farming structure, with predominantly larger and more industrialised productions in Western MSs and more extensive and mixed productions in Eastern MSs. MSs in which particular serovars are prevalent should attempt to identify specific risk and/or protective factors enabling appropriate control measures in their country.

6.4.1. Comparison of *Salmonella* serovar distribution in breeding pigs, slaughter pigs, poultry, feed and humans

S. Derby had a higher frequency of isolation than *S.* Typhimurium in both breeding and production holdings, whereas the opposite was observed in lymph nodes and carcass swabs from slaughter pigs (EFSA, 2008b). Such a difference could be explained by a higher invasiveness and ability of many strains of *S.* Typhimurium to persist in lymphatic tissue, higher numbers of organisms in gut contents of infected pigs, different age groups of the pigs sampled or a better ability of *S.* Typhimurium to survive along the slaughtering process (Stevens et al., 2009). It is also well known that *S.* Typhimurium is more likely than other serovars to be found in the rearing and fattening sectors of breeding herds (Wales et al., 2009). It cannot be ruled out, although unlikely since the distribution of the two serovars is relatively stable, that the difference could just be a reflection of the fact that the two baseline surveys were conducted two years apart, in which period a general shift in the serovar distribution may have occurred.

Looking at the comparison in the distribution of serovars from different animal sources, S. Typhimurium is the foremost common serovar reported in humans, breeding and production holdings, lymph nodes and carcass swabs, confirming the important potential role of pigs and pork products in the epidemiology of human salmonellosis caused by S. Typhimurium in the EU. At the individual MS level, atypical situations can be found, such as the high proportion of isolates, in production holdings, of S. London in Italy, the Netherlands, Portugal and the United Kingdom and of S. Infantis in Denmark and Slovenia. This is likely to be associated with the establishment of certain serovars at nucleus herd level, but the original origin is likely to be contaminated feed. The large proportions of S. Entertitidis in production holdings in Slovakia and Slovenia may suggest a transmission from the poultry reservoir due to more extensive pig production and mixed species farming. The rapid spread of monophasic strains of *Salmonella* Typhimurium in pig and human populations across Europe demonstrates the potential for rapid dissemination of infection via the pig industry (EFSA, 2010d).

Feed is recognised as a source of primary introduction of *Salmonella* in pig herds, particularly in the case of new serovars that may then be able to establish themselves as resident infections in pig production (Hald et al., 2006). The common pool of serovars isolated from both pig herds and feed

suggest that feed is one of the possible sources of infection in breeding and production holdings. However, the irregular and unharmonised reporting of the findings of *Salmonella* in animal feeding stuffs makes it difficult to draw any strong conclusion about the quantitative role of feed (O'Connor et al., 2008), which is also likely to vary between MSs depending on the current epidemiological status. A QMRA conducted on *Salmonella* in slaughter and breeding pigs recently concluded that the *Salmonella* prevalence in pig herds could be significantly reduced by *Salmonella*-free feed, but that the effect is expected to have a much higher impact in MSs having a low prevalence of *Salmonella* in pig herds compared to MSs with higher herd prevalence (EFSA, 2010c).

S. Enteritidis and S. Typhimurium are the predominant serovars causing illness in humans. The fact that S. Derby and S. Typhimurium constitute a larger proportion in pigs, whereas S. Enteritidis and S. Infantis dominate in broilers and laying hens (i.e. Gallus gallus), suggests a variable ranking of sources for human salmonellosis involving specific serovars, their exposure routes and virulence for humans. Based on a detailed comparison of the serovar distribution in different animal sources and humans, the above-mentioned QMRA concluded that the majority of human S. Typhimurium and S. Derby infections may be attributed to the pig reservoir. However, it was underlined that the relative importance of the different sources most likely varies between MSs depending for instance on the serovar-specific prevalence in the different animal sources, farming practices and consumption preferences (EFSA, 2010c). It is also notable that, during 2006-2009, the incidence of human S. Entertidis infections has been decreasing and the incidence of human S. Typhimurium infections seemed more stable while the relative importance of human S. Typhimurium infections increased (EFSA, 2010a). This may at least to some extent be a result of the control efforts implemented in the poultry reservoir after the baseline surveys in laying hen and broiler flocks (EFSA, 2010a), whereas pig production is still awaiting the results of this baseline survey and the subsequent discussion on how best to control Salmonella in the pig herds.

6.5. Correlation between the prevalence of *Salmonella*-positive slaughter pigs and *Salmonella*-positive holdings with breeding pigs

Comparison of the 2008 prevalence results of Salmonella-positive holdings with breeding pigs with the results of the 2006-2007 baseline survey prevalence results of Salmonella in lymph nodes of slaughter pigs (EFSA, 2008b) is not without difficulties. The results of the former survey might not represent the actual slaughter pig prevalence situation in 2008 and the surveys differed in the type of prevalence parameters studied. The 2008 survey estimated the Salmonella holding prevalence while the 2006-2007 survey estimated the prevalence at individual animal level, i.e. Salmonella-infected pigs. Prevalence estimation at holding level would very likely tend to be higher than the one at individual animal level, because infections like Salmonella cluster at group or holding level wherein it persists. Also, the designs of the surveys targeted different points in the food chain. The holding survey was conducted at primary production level whereas the carcass survey was carried out at slaughterhouse level. This implies that some carcasses sampled could have originated from nondomestic slaughter pigs, jeopardising a meaningful comparison between both survey results. Moreover, the present holding survey was based on faecal samples while the carcass survey was based on lymph node samples. Nevertheless, the descriptive comparison made between the Salmonella MS prevalence figures of both surveys disclosed a significant positive correlation. These results suggest that Salmonella has a potential to disseminate from breeding pigs to fattening and then slaughter pigs and it confirms what already suggested by the positive correlation between the prevalence of Salmonella-positive breeding holdings and production holdings. The findings of the correlation analysis are further supported by the conclusions of the QMRA conducted on Salmonella in slaughter and breeding pigs (EFSA, 2010c) that indicated the breeding pig herd prevalence as the major determinant of slaughter pig lymph node prevalence at EU level. The above mentioned QMRA also concluded that to achieve control of *Salmonella* in slaughter pigs the two major sources should be controlled: Salmonella-infected breeding pig herds, and Salmonella-contaminated feed.

6.6. Analysis of the within-holding prevalence study

The *Salmonella* within-holding prevalence study provided further information enabling the estimation of the true prevalence of *Salmonella*-positive holdings with breeding pigs, at EU and MS level. It is worthwhile reminding that, for pragmatic reasons only, the routine survey sampling strategy aimed at detecting with a 95% confidence holdings having a 10% or higher true within-holding prevalence. Therefore, the survey design potentially misclassified some holdings as negative when actually they were positive.

The MS level true prevalence of *Salmonella*-positive holdings was estimated using a Bayesian model in which data on the observed number of positive pens from each holding sampled in each MS were combined with the following information: the diagnostic sensitivity of a pooled faecal sample, the clustering of infection within pens and the relationship between the within-holding prevalence and the proportion of pens infected. However, the representativeness of the inputs to the Bayesian model estimating the true prevalence of *Salmonella*-positive holdings in 24 MSs and two non-MSs was limited by the fact that only five countries participated in the within-holding prevalence study.

The estimate of the diagnostic sensitivity of a 25g individual faecal sample for detection of Salmonella in breeding pigs was 87%, similar to that found in a previous study that focussed on finisher pigs (Arnold et al., 2005). These findings suggest that there are no large differences in the sensitivity of the individual faecal sampling between breeding pigs and finishing pigs. However, the previous study was based on data from the United Kingdom only, while the present study is based on data from five volunteer MSs although highly influenced by the results from the United Kingdom since a large proportion of the positive results were from there. Consistent with previous findings (Arnold et al., 2005), the diagnostic sensitivity of a pooled faecal sample was estimated to be 92% which is higher than that of the individual faecal sample; although this difference was not statistically significant. The sensitivity of pooled sample was shown to increase as the prevalence of positive pigs within the pen increases, as would be expected and as reported previously (Arnold and Cook, 2009; Arnold et al., 2005). However, the small number of countries that participated in the within-holding prevalence study, combined with the low prevalence of some of those participating countries means that this study only provided relatively weak evidence of a lack of variability. The applied methods and models described in this report could be adopted by other MSs wishing to conduct similar research in the future.

In the within-holding prevalence study 10.7% of the pooled samples across all the holdings were positive compared to 7.4% of the individual samples. In terms of detecting positive holdings, the routine pooled sampling process was estimated to detect approximately 80% of truly *Salmonella*-positive holdings across the Member States. This indicated that the EU level true prevalence of *Salmonella*-positive holdings with breeding pigs could be underestimated by 20%, leading to an EU true prevalence of *Salmonella*-positive holdings with breeding pigs of about 41% when the current sampling method is used. This proportion is highly dependent on the distribution of within-holding prevalence in each MS. In particular, the proportion of holdings with a low within-holding prevalence in a MS will have a large impact on the power of the sampling scheme within that MS, since low prevalence holdings are less likely to be detected. For the present study, no prior information on the distribution of within-holding prevalence within each MS was available, and while the within-holding prevalence study gave some indication of this distribution, only a few countries participated and furthermore, the estimate for those countries is likely not fully bias-free.

It would be interesting to explore whether there was any relationship between the MS true prevalence of *Salmonella*-positive holdings and the distribution of within-holding prevalence in each MS e.g. do positive holdings in MSs with a large true prevalence tend to have a higher within-holding prevalence than positive holdings in MSs with a low true prevalence? If such a relationship were found it would strengthen the power of the model to estimate MS true prevalence, although a plot of the distribution of estimated within-holding prevalence for each MS showed no obvious pattern.

CONCLUSIONS

This Part B report provides results from further analyses of the baseline survey on *Salmonella* in holdings with breeding pigs. These are results regarding the association of several pen- and holding level factors, on which data were collected, and *Salmonella* pen positivity. In addition, the correlation between the prevalence of *Salmonella*-positive breeding holdings and production holdings, as well as the distribution of the isolated serovars of *Salmonella* across the EU is included in the current report. Lastly, results are reported from the within-holding prevalence study.

- The risk for *Salmonella* pen positivity varied significantly between countries and between holdings within a country, even when adjusting for the effect of other associated risk factors. Thus, within countries there were holdings with a higher prevalence and holdings with a lower prevalence of *Salmonella*-positive pens.
- At EU level, the odds of *Salmonella* pen positivity in holdings with breeding pigs increased with the size of the holding, as well as with the number of pigs in the pen. Pens containing pregnant or farrowing and lactating pigs were less likely to be positive for *Salmonella* compared to pens housing maiden gilts. Pens where pigs were fed with commercial feed had higher odds of being positive compared to those where pigs were fed with home-mill mixed feed, or feed with maize, or feed from other sources. In addition to the source of the feed, the type of diet (formulation of the ration) was found to be significantly associated with *Salmonella*-positive pens. Pens where pigs were fed with pelleted feed had higher odds of positivity, while mash (meal/mash) or wet (porridge liquid) feed was found to have a protective effect.
- At EU level, in production holdings, pens with (fully) 'slatted floors' were significantly associated with lower odds of *Salmonella* positivity than pens having solid floors with other-than-straw bedding or without bedding, or pens with partly slatted floors. No significant differences were found when comparing 'solid floor with straw' and the type of floor classified as 'other' with (fully) 'slatted floors'. Pens with a floor type 'outdoor in field or paddock' had more than three times higher odds of *Salmonella* positivity than the 'fully slatted floor'. Conversely, in breeding holdings, the category 'other' type of floor put pens significantly at risk for *Salmonella* positivity when compared to pens with 'slatted floor' and no other associations were found between the type of floor and the *Salmonella* positivity.
- The pooled swab sample was a more sensitive sampling method for detecting *Salmonella* positivity compared to the pooled composite faecal sample.
- The analyses showed that 56% of the unexplained variance in the prevalence of *Salmonella*positive pens in holdings with breeding pigs could be either attributed to uninvestigated holdingspecific factors and/or to the clustering of *Salmonella* linked to its infectious character. It was not possible to estimate the association of these factors with *Salmonella* pen positivity and their potential confounding role on the effect of factors on which data were available.
- The results of the analyses of Population Attributable Fractions suggested that the type of feed used is a major determinant of *Salmonella* pen positivity in holdings with breeding pigs. Feeding pigs on a porridge/liquid diet may be considered as a valuable control measure for *Salmonella*, leading to a reduction of the *Salmonella* pen positivity. It was also suggested that intervention strategies targeting other factors such as floor type and holding size may contribute to reduce *Salmonella* in holdings with breeding pigs. Conversely, control measures aimed at reducing the number of pigs per pen might not have a worthwhile impact on the *Salmonella* prevalence.
- Heterogeneity in the distribution of *Salmonella* serovars between Member States indicated that some serovars tend to occur in pig production in specific geographic regions within the EU. This

spatial distribution, as well as the variation in prevalences across the countries might be related to differences in policies for trade in pigs, feeding and housing practices.

- The analyses of the *Salmonella* serovar distribution revealed agreement between the most frequently reported serovars in breeding pigs, those isolated in slaughter pigs and some serovars involved in human cases. This supports the role of pigs and pig meat as a potential source of *Salmonella* infection in humans; even though it is acknowledged that other food producing animal species and food thereof also play a role as sources of infection.
- Salmonella Typhimurium is the second most common serovar in humans in the EU and its relative importance has increased during recent years. This serovar was common in pigs, and relatively more common than in poultry, suggesting that the pig reservoir is likely to be an important source of some human *S*. Typhimurium infections.
- Even though the baseline surveys on *Salmonella* in slaughter pigs and in holdings with breeding pigs were conducted one year apart, the descriptive comparison made between the *Salmonella* Member States prevalence figures of both surveys disclosed a significant positive correlation, indicating that *Salmonella* has a potential to disseminate from breeding pigs to fattening and then slaughter pigs. This link was further evidenced by the strong association found between the prevalence of *Salmonella*-positive breeding holdings and the prevalence of *Salmonella*-positive production holdings in countries suggesting dissemination of *Salmonella* from breeding pigs to fattening pigs to fattening pigs.
- The results of the within-holding prevalence study indicated that, due to a non-perfect diagnostic test sensitivity, the observed EU-level prevalence of *Salmonella*-positive holdings with breeding pigs was roughly 80% of the estimated true EU-level prevalence. But this proportion varied between Member States. The diagnostic sensitivity of pooled and individual faecal samples was estimated to be 92% and 87%, respectively.

RECOMMENDATIONS

- Member States are invited to consider the factors found to be associated, at EU level, with *Salmonella*-positive pens in holdings with breeding pigs when they are designing and implementing national *Salmonella* control programmes for breeding pigs.
- Further national studies identifying more closely the factors that put pens with breeding pigs at risk of becoming infected with *Salmonella* in a country are recommended, taking into account the national *Salmonella* prevalence and the characteristics of the national breeding pig population. Also national investigations on prevention and intervention measures to contain *Salmonella* and achieve *Salmonella* reduction in holdings with breeding pigs are recommended.
- Since risk factors may vary between EU countries and/or serovars, Member States are also encouraged to conduct serovar-specific analysis using their country specific data in order to identify risk factors for relevant serovars within their own country.
- Member States are encouraged to develop and enhance *Salmonella* controls in breeding holdings because these holdings may have a unique potential role in the dissemination of *Salmonella* contamination throughout the whole production chain, as well as in contamination of the environment.
- Pooled faecal samples proved to be a robust and economic sampling method for surveys and should be used in future studies, as well as for monitoring the *Salmonella* status of breeding herds. Sampling procedures require standardisation to enhance sensitivity and comparability of monitoring results. Those Member States that did not participate in the within-holding prevalence study may wish to conduct their own research to validate pooling in their own situations.

References

- Anil SS, Anil L, and Deen J, 2007. Factors associated with claw lesions in gestating sows. Journal of Swine Health and Production. 15:78–83.
- Arnold ME and Cook AJC, 2009. Estimation of sample sizes for pooled faecal sampling for detection of *Salmonella* in pigs. Epidemiology and Infection. 137, 1734-1741.
- Arnold ME, Cook AJC, and Davies RH, 2005. A modelling approach to estimate the sensitivity of pooled faecal samples for isolation of *Salmonella* in pigs. Journal of the Royal Society Interface. 2: 365-372.
- Beloeil PA, Fravalo P, Fablet C, Jolly JP, Eveno E, Hascoet Y, Chauvin C, Salvat G, and Madec F., 2004. Risk factors for *Salmonella* enterica subsp. enterica shedding by market-age pigs in French farrow-to-finish herds. Preventive Veterinay Medicine. 63:103–120.
- Branscum AJ, Gardner WO, and Johnson IA, 2004. Bayesian modeling for animal- and herd- level prevalences. Preventive Veterinary Medicine. 66, 101-112.
- Carstensen B and Christensen J, 1998. Herd size and sero-prevalence of *Salmonella* enterica in Danish swine herds: a random-effects model for register data. Prev. Vet. Med. 34, pp. 191–203.
- Cook AJC, 2004. Measuring the impact of *Salmonella* control in finishing pigs lessons from a pilot study. Pig Journal. 53, 157-163.
- Cook AJC, Miller AJ, Williamson SM, Hayden J, Featherstone CA, O'Connor J, Twomey DF, Marier EA, and Davies RH, 2006. Investigating *Salmonella* infection on problem pig farms (ZAP level 3) case studies in England. The Pig Journal 58 pp. 190-203.
- Davies RH and Wales AD, 2010. Investigations into *Salmonella* contamination in poultry feedmills in the United Kingdom. Journal of Applied Microbiology, 109, 1430-1440.
- Davies RH and Wray C, 1997. Study of multi-resistant *Salmonella* Typhimurium infection in pig herds: preliminary findings. Pig Journal. 40, 80-88.
- Davies P, 1998. Fecal shedding of *Salmonella* by pigs housed in buildings with open-flush gutters. Swine Health and Production; 6(3):101–106.
- Deubner DC, Wilkinson WE, Helms MJ, Tyroler HA, and Hames CG. Logistic model estimation of death attributable to risk factors for cardiovascular disease in Evans County, Georgia. American Journal of Epidemiology 1980; 112: 135-143.
- D'Souza RM, Becker NG, Hall G and Moodie KB, 2004. Does ambient temperature affect foodborne disease? Epidemiology. 15(1):86-92.
- EFSA (European Food Safety Authority), 2006. The Community Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents, Antimicrobial Resistance and Foodborne Outbreaks in The European Union in 2005. The EFSA Journal 94.
- EFSA (European Food Safety Authority), 2007a. Report of the Task Force on Zoonoses Data Collection on the Analysis of the baseline study on the prevalence of *Salmonella* in holdings of laying hen flocks of *Gallus gallus*. The EFSA Journal 97.
- EFSA (European Food Safety Authority), 2007b. Report of the Task Force on Zoonoses Data Collection on the Analysis of the baseline study on the prevalence of *Salmonella* in broiler flocks of *Gallus gallus*, in the EU, 2005-2006, Part A. The EFSA Journal 98, 1-85.
- EFSA (European Food Safety Authority), 2007c. The Community Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents, Antimicrobial Resistance and Foodborne Outbreaks in the European Union in 2006. The EFSA Journal 130.

- EFSA (European Food Safety Authority), 2007d. Report of the Task Force on Zoonoses Data Collection on a proposal for technical specifications for a baseline survey on the prevalence of *Salmonella* in breeding pigs, The EFSA Journal 99, pp. 1-28.
- EFSA (European Food Safety Authority), 2008a. Report of the Task Force on Zoonoses Data Collection on the Analysis of the baseline survey on the prevalence of *Salmonella* in turkey flocks, Part A. The EFSA Journal 134, 1-91.
- EFSA (European Food Safety Authority), 2008b. Report of the Task Force on Zoonoses Data Collection on the analysis of the baseline survey on the prevalence of *Salmonella* in slaughter pigs, Part A. The EFSA Journal 135, 1-111.
- EFSA (European Food Safety Authority), 2008c. Scientific Opinion of the Panel on Biological Hazards on a request from the Health and Consumer Protection, Directorate General, European Commission on Microbiological Risk Assessment in feedingstuffs for food-producing animals. The EFSA Journal 720, 1-84.
- EFSA (European Food Safety Authority), 2009a. The Community Summary Report on Trends and Sources of Zoonoses and Zoonotic Agents in the European Union in 2007. The EFSA Journal 223.
- EFSA (European Food Safety Authority), 2009b. Analysis of the baseline survey on the prevalence of *Salmonella* in holdings with breeding pigs in the EU, 2008. Part A: *Salmonella* prevalence estimates. The EFSA Journal 7(12):1377.
- EFSA (European Food Safety Authority), 2009c. Report of the Task Force on Zoonoses Data Collection on the statistical analysis of temporal and spatial trends of zoonotic agents in animals and food. Part I: critical review of the statistical analysis carried out on the Community Summary Report 2006 data, The EFSA Journal, 253, 1-77.
- EFSA (European Food Safety Authority), 2010a. The Community Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents, and Food-borne Outbreaks in the European Union in 2008. The EFSA Journal 8(1):1496.
- EFSA (European Food Safety Authority), 2010b. Analysis of the baseline survey on the prevalence of *Campylobacter* in broiler batches and of *Campylobacter* and *Salmonella* on broiler carcasses, in the EU, 2008, Part A: *Campylobacter* and *Salmonella* prevalence estimates. EFSA Journal 8(3):1503.
- EFSA (European Food Safety Authority), 2010c. Scientific Opinion on a Quantitative Microbiological Risk Assessment of *Salmonella* in slaughter and breeder pigs. EFSA Journal; 8(4):1547.
- EFSA (European Food Safety Authority), 2010d. Scientific Opinion on monitoring and assessment of the public health risk of "*Salmonella* Typhimurium-like" strains. EFSA Journal; 8(10):1826.
- EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control), 2011. The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-borne Outbreaks in 2009; EFSA Journal; 9(3): 2090.
- García-Feliz C, Carvajal A, Collazos JA, and Rubio P, 2009. Herd-level risk factors for faecal shedding of *Salmonella* enterica in Spanish fattening pigs. Preventive Veterinary Medicine. 91, 130–136.
- Gardner IA, Willeberg P, and Mousing J, 2002. Empirical and theoretical evidence for herd size as a risk factor for swine diseases. Animal Health Research Review 3(1):43–55.
- Hald T, Wingstrand A, Brøndsted T, and Lo Fo Wong DMA, 2006. Human Health Impact of *Salmonella* Contamination in Imported Soybean Products: A Semi-Quantitative Risk Assessment, Foodborne Pathogens and Disease, 3(4):422-431;

- Hansen CF, Knudsen KE, Jensen BB and Kjaersgaard HD, 2001. Effect of meal feed and coarser grinding of pelleted feed on productivity, microbiology and physico-chemical properties in the gastro-intestinal tract of finishers. Proceedings of the 4th International Symposium on the Epidemiology and Control of *Salmonella* and other food borne pathogens in Pork. Leipzig, Germany 2-5 Sept 2001, 106-108.
- Hedemann MS, Mikkelsen LL, Naughton PJ, and Jensen BB, 2005. Effect of feed particle size and feed processing on morphological characteristics in the small and large intestine of pigs and on adhesion of *Salmonella* enterica serovar Typhimurium DT12 in the ileum in vitro. Journal of Animal Science. 83:1554-1562.
- Hill AA, Snary EL, Arnold ME, Alban L, and Cook AJC, 2008. Dynamics of *Salmonella* transmission on a British Grower-Finisher Farm: A stochastic model. Epidemiology and Infection, Volume 136, 320-333.
- Hosmer DW and Lemeshow S. Applied Logistic Regression, 2nd Edition. Hoboken, Wiley & Sons Inc, 2000.
- Jones BD and Falkow S, 1996. Salmonellosis: Host Immune Responses and Bacterial Virulence Determinants. Annu. Rev. Immunol. 14,533-561.
- Jones FT and Richardson KE, 2004. *Salmonella* in Commercially Manufactured Feeds. Poultry Science 83:384-391.
- Jorgensen L, Kjaersgaard HD, Wachmann H, Jensen BB, and Knudsen KEB, 2001. Effect of pelleting and use of lactic acid in feed on *Salmonella* prevalence and productivity in weaners. Proceedings of the 4th International Symposium on the Epidemiology and Control of *Salmonella* and other food borne pathogens in Pork. Leipzig, Germany 2-5 Sept 2001, 109- 111.
- Last JM, 1983. A Dictionary of Epidemiology. Oxford, United Kingdom: Oxford University; 1983
- Lo Fo Wong DMA, Dahl J, Stege H, van der Wolf PJ, Leontides L, von Altrock A, and Thorberg BM, 2004. Herd-level risk factors for subclinical *Salmonella* infection in European finishing-pig herds. Preventive Veterinary Medicine 62:253-66.
- Lo Fo Wong DMA, 2001. Epidemiology and control options of *Salmonella* in European pig herds, PhD Thesis, Royal Veterinary and Agricultural University, Copenhagen, Denmark.
- Martín-Peláez S, Costabile A, Hoyles L, Rastall RA, Gibson GR, La Ragione RM, Woodward MJ, Mateu E, and Martín-Orúe SM, 2010. Evaluation of the inclusion of a mixture of organic acids or lactulose into the feed of pigs experimentally challenged with *Salmonella* Typhimurium. Veterinary Microbiology. 19;142(3-4):337-45.
- Molenberghs G and Verbeke G, 2005. Models for discrete longitudinal data, Springer, New York.
- Morel JG, Bokossa MC, and Neerchal NK. Small sample correction for the variance of GEE estimators. Biometrical journal 2003, vol. 45, 395-409.
- O'Connor AM, Denagamage T, Sargeant JM, Rajic' A, and McKean J, 2008. Feeding management practices and feed characteristics associated with *Salmonella* prevalence in live and slaughtered market-weight finisher swine: A systematic review and summation of evidence from 1950 to 2005. Preventive Veterinary Medicine 2008; 87: 213–228.
- Olesiuk OM, Snoeyenbos GH, and Smyser CF, 1971. Inhibitory Effect of Used Litter on *Salmonella* typhimurium Transmission in the Chicken. Avian Diseases. Vol. 15, No. 1, pp. 118-124.
- Spiegelhalter DJ, Best NG, Carlin BP, and van der Linde A, 2002. Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical. Society. B. 2002; 64: 583-640.

- Stevens MP, Humphrey TJ, and Maskell DJ, 2009. Molecular insights into farm animal and zoonotic Salmonella infections. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 364, 2709–23.
- Usera MA, Aladueña A. González R, de la Fuente M, García-Peña J, Frías N, and Echeita MA, 2002. Antibiotic resistance of *Salmonella* spp. from animal sources in Spain in 1996 and 2000. J Food Prot 65, 768–773.
- van Winsen RL, Lipman LJA, Biesterveld S, Urlings BAP, Snijders, JMA, and van Knapen F, 2000. Mechanism of *Salmonella* reduction in fermented pig feed. J. Sci. Food Agric. 81:342–346.
- VLA (Veterinary Laboratories Agency) in consortium with DTU (Danish Technical University) and RIVM (National Institute for Public Health and the Environment), 2010. Quantitative Microbiological Risk Assessment on *Salmonella* in Slaughter and Breeder pigs: Final Report. Scientific Report submitted to EFSA. Available online at http://www.efsa.europa.eu/en/scdocs/doc/46e.pdf
- Wales AD, McLaren IM, Bedford S, Carrique-Mas JJ, Cook AJC, and Davies RH, 2009. Longitudinal survey of the occurrence of *Salmonella* in pigs and the environment of nucleus breeder and multiplier pig herds in England. Veterinary Record, 165, 648-657.
- Wingstrand A, Dahl J, Thomsen LK, Jorgensen L, and Jensen BB, 1997. Influence of dietary administration of organic acids and increased feed structure on *Salmonella* Typhimurium infection in pigs. Proceeding 2nd International Symposium on the Epidemiology and Control of *Salmonella* in Pork. pp. 170-172.

APPENDICES

A.	Overview of the pyramidal structure of the primary production in the EU <i>Salmonella</i> baseline survey in breeding pigs, 2008
B.	Factors investigated in the analysis
C.	Descriptive tables of <i>Salmonella</i> positive pens by risk factor per country
D.	Overview of the optional data reported in the framework of the baseline survey
E.	Statistical methods used in the risk factor analysis
F.	Correlation between the prevalence of Salmonella-positive breeding and production holdings 98
G.	Descriptive analysis of factors potentially associated with <i>Salmonella</i> positivity in breeding and in production holdings
H.	Risk factor analysis: full model
I.	Weighted population attributable fractions
J.	Details on the analysis of the Salmonella serovar distribution in the EU126
K.	Prevalence maps of the top-ten Salmonella serovars detected in the survey
L.	Comparison between <i>Salmonella</i> serovar distributions in different sources
M	Correlation between <i>Salmonella</i> prevalence in the breeding and slaughter pig EU-wide baseline surveys
N.	Within-holding prevalence study
0.	Additional results of the within-holding prevalence study

A. OVERVIEW OF THE PYRAMIDAL STRUCTURE OF THE PRIMARY PRODUCTION IN THE EU SALMONELLA BASELINE SURVEY IN BREEDING PIGS, 2008¹⁴

¹⁴ Weaner-to-finish holdings and finisher holdings are not covered by the survey.

B. FACTORS INVESTIGATED IN THE ANALYSIS

Table 9: Categorisation of the factors investigated in the analysis, Salmonella EU baseline survey,2008

Manaalory explanalo	ry variables collected at holding l	ievei in ine daseiine survey
Variable	Categories	Content in terms of the original variables
Country	Country	Country
Period of sampling	Descriptive tables and graphs:	 Quarter of sampling: January-March, April-
(month, quarter,	Month, quarter, season	June, July-September, October-December
season)	Regression models:	 Season of sampling: Winter (December –
	Season	February), Spring (March – May); Summer
		(June – August), Autumn (September –
T (1 1'	NT 1	November)
Type of breeding	• Nucleus	• Nucleus
holdings	 Multiplier or supplier 	Multiplier or supplier
lype of production	 Farrow to weaner Farrow to another 	 Farrow to weather Farrow to another
nolding	 Farrow to grower Farrow to finish 	 Farrow to grower Farrow to finish
Size of the holding ^(a)	 Farrow to linish <100 	 Farrow to finish <50, 50, 00
Size of the holding	 <100 100 300 	 <50, 50-99 100 300
	- 100-399 - 400 000	- 100-399 - 400 000
	 400-999 ► >000 	 400-999 >000
Gilt replacement	$\sim >90\%$ homebred	 >90% homebred
nolicy	 10-90% homebred 	 10-90% homebred
poney	 >90% purchased 	 >90% purchased
Boar replacement	 No boars on farm 	 No boars on farm
policy	 >90% homebred 	 >90% homebred
r · · J	10-90% homebred	10-90% homebred
	 >90% purchased 	>90% purchased
Mandatory explanato	ry variables collected at pen level	in the baseline survey
Variable	Categories	Content in terms of the original variables
Number of pigs in	Descriptive tables and graphs:	Continuous
the pen	0-9, 10, 11-20, 21-99, >100	
	Regression model:	
	Continuous, winsorized at 100	
Indoor/outdoor	Yes / No	Yes / No
production ^(a)	/	/
Individual housing ^(a)	Yes / No	Yes / No
Age category of the (a)	• No gilts	• No gilts
pigs ^(a)	• At least one gilt	• At least one gilt
Candan af the nine	 All glits Descriptions tables and enorther 	• All glits
Gender of the pigs	 <u>Descriptive tables and graphs</u>. Mala / mixed 	Mala + mixed
	 Male / Illixed Female 	 Male + IIIXeu Female
	Regression model:	
	Excluded (collinearity issue)	
Production stage	 Maiden gilts 	 Maiden gilts
1 roduction stuge	 Pregnant nigs 	 Pregnant nigs
	 Farrowing and lactating pigs 	 Farrowing and lactating pigs
	 Service area 	 Service area
	 Mixed 	 Mixed

Mandatory explanatory variables collected at holding level in the baseline survey

 $^{\rm (a)}~$ A description of these factors can be found in Table 10

 Table 9 (Contd): Categorisation of the factors investigated in the analysis, Salmonella EU baseline survey, 2008

Mandatory explan	natory variables collected at pen leve	l in the baseline survey
Variable	Categories	Content in terms of the original variables
Floor type	 Slatted floor 	 Fully slatted floor
	 Partly slatted floor 	 Partly slatted floor
	 Solid floor with straw 	 Solid floor with straw, solid floor with deep straw
	 Solid floor other bedding 	 Solid floor with peat, solid floor with compost, solid floor with wood shavings.
	Solid floor without bedding	 Solid floor without bedding
	 Solid hoor without bedding Outdoors in fields or paddocks 	 Outdoors in fields or paddocks
	• Other	• Outdoors in fields of paddocks
All in/all out and cleaned ^(a)	Yes / No	Yes / No
Type of diet	Cobs/rolls/nuts/pellets	Cobs/rolls/nuts/pellets
J1	 Meal/mash 	 Meal/mash
	 Porridge/liquids 	Porridge/liquids
	• Other	 Other, including combinations of the categories above when reported for the same pen
Feed origin	 Commercial compound 	 Commercial compound
U	• Feed with maize	 Maize+commercial supplement, including where maize was given in combination with other feed extension in the same new.
	• Homo mill	• Home mill mix
	Home-mill Other	 Home-mill mix Other including combinations of different
	• Other	• Other, including combinations of different
		for the same non
Organic acid	• Organic acid added	 Organic acid added
feed/water	 Organic acid added No organic acid added 	 Organic actu added No supplement added or supplement other than
supplement ^(b)	ito organie dela dadea	organic acid supplement added
(v1)	Unknown (only considered in	■ Unknown
(VI)	descriptive analysis)	
Probiotic	 No probiotic added 	No supplement added or supplement other than
feed/water	ito providic uducu	probiotic supplement added
supplement ^(b)	Probiotic added	 Probiotic added
(v2)	 Unknown (only considered in 	Unknown
()	descriptive analysis)	
Other feed/water	No other added	No supplement added or supplement different
supplements ^(b)		that "other" supplement added
(v3)	 Other added 	• Other added
	 Unknown (only considered in 	 Unknown
	descriptive analysis)	
Use of	 No treatment 	No treatment
antibiotics ^(a)	 Treatment 	In feed, in water, injection whole group,
		injection one or more individuals
	 Unknown 	 Unknown
Type of sample	Swab	 Swab
· - •	 Composite 	 Composite
Delay between	• 0	• 0
sampling and	• 1	• 1
testing (in days)	• 2	• 2
- /	■ 3-4	■ 3-4
	• >= 5	•>=5

A description of these factors can be found in Table 10

^(b) Distinct binary variables ('v1', 'v2', 'v3') have been created from the categories of the original variable "Feed/water supplement": these were entered separately in the multiple logistic regression models as fixed effect.

(a)

Table 10: Additional description of factors investigated in the analyses, *Salmonella* EU baseline survey, 2008

Variable	Description
Size of the holding	Total number of breeding pigs over 6 months of age present in the
	holding at the date of sampling
Indoor/outdoor production	It replies to the question 'Are the pigs in the sampled pen going
	outdoors?' providing information on outdoor access
Individual housing	Nature of accommodation within the sampled group (or pen) for breeding
	pigs: are the all breeding pigs in the sampled pen housed individually
	(unable to mix freely with other breeding pigs in the sampling group)?
Age category of the pigs	Presence of gilts in the sampled pen
All in/all out and cleaned	It replies to the question 'does this pen operate on an all in /all out basis?'
	All in/all out means that pigs are only moved into the pen when all
	previous have been removed and the pen has been cleaned.
Use of antibiotics	It replies to the question 'Have antimicrobials been used in food, water or
	by injections during the last 4 weeks in the animals in the pen?'

C. DESCRIPTIVE TABLES OF *SALMONELLA* POSITIVE PENS BY RISK FACTOR PER COUNTRY

The table below presents data on positivity only for the pen level variables. Data for the holding level variables were not shown because of potential data confidentiality issues.

			ing h	olding	production holding		
Austria		Ν	pos	% pos	N	pos	% pos
Number of pigs in pen	0-9	0			0		
	10	495	2	0.40	1,220	15	1.23
	11-20	174	6	3.45	307	1	0.33
	21-100	121	4	3.31	195	2	1.03
	>100	0			8	2	25.00
Indoor/outdoor	No	697	12	1.72	1,400	16	1.14
production	Yes	93	0	0.00	330	4	1.21
Individual housing	No	422	3	0.71	796	5	0.63
	Yes	368	9	2.45	934	15	1.61
Age of pigs	No gilts	149	6	4.03	451	10	2.22
	Mixed age	437	6	1.37	1,133	9	0.79
	All gilts	204	0	0.00	146	1	0.68
Gender of pigs	Male	22	0	0.00	26	1	3.85
	Female	681	9	1.32	1,599	19	1.19
	Mixed	87	3	3.45	105	0	0.00
Production stage	Maiden gilts	152	0	0.00	78	0	0.00
	Pregnant	298	4	1.34	866	11	1.27
	Farrowing and lactating	175	2	1.14	432	8	1.85
	Service area	75	0	0.00	161	1	0.62
	Mixed	90	6	6.67	193	0	0.00
Floor type	Outdoors in fields or paddocks	0			6	0	0.00
	Solid floor other bedding	1	0	0.00	3	1	33.33
	Solid floor with straw	207	0	0.00	308	2	0.65
	Solid floor without bedding	20	0	0.00	43	0	0.00
	Partly slatted floor	440	11	2.50	1,051	16	1.52
	Slatted floor	113	1	0.88	267	1	0.37
	Other	9	0	0.00	52	0	0.00
All in/all out	No	435	7	1.61	998	8	0.80
	Yes	355	5	1.41	732	12	1.64
Type of diet	Cobs/rolls/nuts/pellets	39	6	15.38	110	3	2.73
	Others	30	0	0.00	55	0	0.00
	Meal/mash	652	6	0.92	1,460	12	0.82
	Porridge/liquids	69	0	0.00	105	5	4.76
Origin of feed	Commercial compound	84	6	7.14	145	3	2.07
	Other	1	0	0.00	18	0	0.00
	Feed with maize	53	2	3.77	271	0	0.00
	Home-mill	652	4	0.61	1,296	17	1.31
Feed/water supplement	Not added	606	3	0.50	1,333	13	0.98
	Organic acid	116	6	5.17	239	5	2.09
	Organic acid and probiotic	0			0		
	Other	0			0		
	Probiotic	15	0	0.00	60	0	0.00
	Unknown/other	53	3	5.66	98	2	2.04
Use of antibiotics	No treatment	686	8	1.17	1,532	19	1.24
	Treatment	104	4	3.85	198	1	0.51
	Unknown	0			0		

		bre	eding	holding	production holding			
Beigium		Ν	pos	% pos	Ν	pos	% pos	
Number of pigs in pen	0-9	0			0			
	10	21	0	0.00	517	53	10.25	
	11-20	67	1	1.49	748	70	9.36	
	21-100	68	5	7.35	737	81	10.99	
	>100	4	0	0.00	88	5	5.68	
Indoor/outdoor	No	158	6	3.80	2,070	206	9.95	
production	Yes	2	0	0.00	20	3	15.00	
Individual housing	No	60	3	5.00	479	49	10.23	
	Yes	100	3	3.00	1,611	160	9.93	
Age of pigs	No gilts	101	3	2.97	1,376	125	9.08	
	Mixed age	39	2	5.13	569	69	12.13	
	All gilts	20	1	5.00	145	15	10.34	
Gender of pigs	Male	7	0	0.00	5	0	0.00	
	Female	142	6	4.23	1,968	197	10.01	
	Mixed	11	0	0.00	117	12	10.26	
Production stage	Maiden gilts	15	1	6.67	129	12	9.30	
	Pregnant	84	5	5.95	1,062	106	9.98	
	Farrowing and lactating	35	0	0.00	494	49	9.92	
	Service area	19	0	0.00	170	21	12.35	
	Mixed	7	0	0.00	235	21	8.94	
Floor type	Outdoors in fields or paddocks	0			0			
	Solid floor other bedding	1	0	0.00	4	0	0.00	
	Solid floor with straw	9	0	0.00	28	2	7.14	
	Solid floor without bedding	0			20	4	20.00	
	Partly slatted floor	127	6	4.72	1,617	176	10.88	
	Slatted floor	23	0	0.00	420	27	6.43	
	Other	0			1	0	0.00	
All in/all out	No	115	6	5.22	1,534	157	10.23	
	Yes	45	0	0.00	556	52	9.35	
Type of diet	Cobbs/rolls/nuts/pellets	60	6	10.00	719	110	15.30	
	Others	9	0	0.00	88	11	12.50	
	Meal/mash	91	0	0.00	1,256	86	6.85	
	Porridge/liquids	0			27	2	7.41	
Origin of feed	Commercial compound	121	6	4.96	1,780	173	9.72	
	Other	1	0	0.00	26	1	3.85	
	Feed with maize	38	0	0.00	184	27	14.67	
	Home-mill	0			100	8	8.00	
Feed/water supplement	Not added	146	6	4.11	1,780	171	9.61	
	Organic acid	4	0	0.00	76	3	3.95	
	Organic acid and probiotic	0			0			
	Other	10	0	0.00	177	28	15.82	
	Probiotic	0			0			
	Unknown/other	0			57	7	12.28	
Use of antibiotics	No treatment	145	6	4.14	1,847	191	10.34	
	Treatment	15	0	0.00	230	17	7.39	
	Unknown	0			13	1	7.69	

			eding	holding	production holding		
Bulgaria		Ν	pos	% pos	Ν	pos	% pos
Number of pigs in pen	0-9	0			0		
	10	70	0	0.00	32	0	0.00
	11-20	101	0	0.00	82	0	0.00
	21-100	249	0	0.00	112	0	0.00
	>100	50	1	2.00	24	0	0.00
Indoor/outdoor	No	0			0		
production	Yes	470	1	0.21	250	0	0.00
Individual housing	No	3	0	0.00	12	0	0.00
-	Yes	467	1	0.21	238	0	0.00
Age of pigs	No gilts	23	0	0.00	15	0	0.00
0 10	Mixed age	334	0	0.00	181	0	0.00
	All gilts	113	1	0.88	54	0	0.00
Gender of pigs	Male	25	1	4.00	21	0	0.00
10	Female	237	0	0.00	109	0	0.00
	Mixed	208	0	0.00	120	0	0.00
Production stage	Maiden gilts	4	0	0.00	3	0	0.00
0	Pregnant	72	0	0.00	39	0	0.00
	Farrowing and lactating	110	0	0.00	50	0	0.00
	Service area	149	0	0.00	52	0	0.00
	Mixed	135	1	0.74	106	0	0.00
Floor type	Outdoors in fields or paddocks	0			0		
51	Solid floor other bedding	10	0	0.00	40	0	0.00
	Solid floor with straw	0			0		
	Solid floor without bedding	0			0		
	Partly slatted floor	0			0		
	Slatted floor	0			0		
	Other	460	1	0.22	210	0	0.00
All in/all out	No	0			0		
	Yes	470	1	0.21	250	0	0.00
Type of diet	Cobbs/rolls/nuts/pellets	0			0		
51	Others	10	0	0.00	40	0	0.00
	Meal/mash	460	1	0.22	210	0	0.00
	Porridge/liquids	0			0		
Origin of feed	Commercial compound	460	1	0.22	210	0	0.00
e	Other	10	0	0.00	40	0	0.00
	Feed with maize	0			0		
	Home-mill	0			0		
Feed/water supplement	Not added	2	0	0.00	4	0	0.00
	Organic acid	0			0		
	Organic acid and probiotic	0			0		
	Other	0			0		
	Probiotic	0			0		
	Unknown/other	468	1	0.21	246	0	0.00
Use of antibiotics	No treatment	470	1	0.21	250	0	0.00
	Treatment	0			0		
	Unknown	0			0		

Communa		breeding holding			production holding		
Cyprus		Ν	pos	% pos	Ν	pos	% pos
Number of pigs in pen	0-9	0			0		
	10	38	5	13.16	528	19	3.60
	11-20	2	0	0.00	59	2	3.39
	21-100	0			12	1	8.33
	>100	0			1	0	0.00
Indoor/outdoor	No	40	5	12.50	459	20	4.36
production	Yes	0			141	2	1.42
Individual housing	No	10	1	10.00	320	12	3.75
C	Yes	30	4	13.33	280	10	3.57
Age of pigs	No gilts	33	4	12.12	483	17	3.52
0 10	Mixed age	0			31	2	6.45
	All gilts	7	1	14.29	86	3	3.49
Gender of pigs	Male	6	0	0.00	14	0	0.00
10	Female	34	5	14.71	560	21	3.75
	Mixed	0			26	1	3.85
Production stage	Maiden gilts	7	1	14.29	86	3	3.49
	Pregnant	12	1	8.33	292	11	3.77
	Farrowing and lactating	8	0	0.00	120	3	2.50
	Service area	13	3	23.08	69	3	4.35
	Mixed	0	-		33	2	6.06
Floor type	Outdoors in fields or paddocks	0			5	0	0.00
i toor type	Solid floor other bedding	Ő			13	Ő	0.00
	Solid floor with straw	Ő			1	Ő	0.00
	Solid floor without bedding	3	0	0.00	79	2	2.53
	Partly slatted floor	22	4	18 18	471	20	4 25
	Slatted floor	15	1	6 67	31	_0	0.00
	Other	0	-	0.07	0	Ŭ	0.00
All in/all out	No	14	2	14 29	263	9	3 42
	Yes	26	3	11.54	337	13	3 86
Type of diet	Cobbs/rolls/nuts/pellets	0	5	11.0	40	2	5.00
i ype of alee	Others	Õ			0	-	2.00
	Meal/mash	38	5	13 16	542	20	3 69
	Porridge/liquids	2	0	0.00	18	_0	0.00
Origin of feed	Commercial compound	0	Ŭ	0.00	57	°2	3 51
origin of food	Other	Ő			13	2	15 38
	Feed with maize	Ő			0	2	10.00
	Home-mill	40	5	12 50	530	18	3 40
Feed/water supplement	Not added	30	5	16.67	553	22	3 98
reed water supplement	Organic acid	0	5	10.07	10	0	0.00
	Organic acid and probiotic	0			10	U	0.00
	Other	7	0	0.00	0		
	Prohiotic	0	U	0.00	0		
	Unknown/other	2	Ο	0.00	37	Ο	0.00
Use of antibiotics	No treatment	28 28	5	17.86	/01	1/	0.00 2 85
	Treatment	20 2	5	0.00	104	0	2.03
	i reatment	6	0	0.00	104	8	/.69
	Unknown	6	0	0.00	5	0	0.00

Crach Donublic		breeding holding			production holding		
Czech Republic		Ν	pos	% pos	Ν	pos	% pos
Number of pigs in pen	0-9	0			0		
	10	670	21	3.13	902	30	3.33
	11-20	325	13	4.00	556	39	7.01
	21-100	65	3	4.62	145	18	12.41
	>100	0			7	1	14.29
Indoor/outdoor	No	903	36	3.99	1,520	78	5.13
production	Yes	157	1	0.64	90	10	11.11
Individual housing	No	417	13	3.12	661	44	6.66
C	Yes	643	24	3.73	949	44	4.64
Age of pigs	No gilts	359	17	4.74	613	38	6.20
0 10	Mixed age	406	12	2.96	719	30	4.17
	All gilts	295	8	2.71	278	20	7.19
Gender of pigs	Male	4	1	25.00	6	0	0.00
1.0	Female	876	29	3.31	1,276	75	5.88
	Mixed	180	7	3.89	328	13	3.96
Production stage	Maiden gilts	219	10	4.57	177	10	5.65
U	Pregnant	431	18	4.18	801	52	6.49
	Farrowing and lactating	193	5	2.59	286	7	2.45
	Service area	73	2	2.74	68	3	4.41
	Mixed	144	2	1.39	278	16	5.76
Floor type	Outdoors in fields or paddocks	8	0	0.00	0		
51	Solid floor other bedding	0			0		
	Solid floor with straw	68	4	5.88	87	16	18.39
	Solid floor without bedding	567	20	3.53	470	26	5.53
	Partly slatted floor	329	11	3.34	878	39	4.44
	Slatted floor	88	2	2.27	175	7	4.00
	Other	0			0		
All in/all out	No	272	7	2.57	258	11	4.26
	Yes	788	30	3.81	1,352	77	5.70
Type of diet	Cobbs/rolls/nuts/pellets	265	19	7.17	409	31	7.58
	Others	22	0	0.00	10	0	0.00
	Meal/mash	695	18	2.59	1,034	52	5.03
	Porridge/liquids	78	0	0.00	157	5	3.18
Origin of feed	Commercial compound	637	25	3.92	1,089	64	5.88
C	Other	0			0		
	Feed with maize	0			0		
	Home-mill	423	12	2.84	521	24	4.61
Feed/water supplement	Not added	946	35	3.70	1,438	75	5.22
11	Organic acid	64	2	3.13	103	9	8.74
	Organic acid and probiotic	0			0		
	Other	10	0	0.00	10	0	0.00
	Probiotic	40	0	0.00	59	4	6.78
	Unknown/other	0			0		
Use of antibiotics	No treatment	998	37	3.71	1,524	86	5.64
	Treatment	61	0	0.00	85	2	2.35
	Unknown	1	0	0.00	1	0	0.00

Donmark			eding	holding	production holding		
Denmark		Ν	pos	% pos	Ν	pos	% pos
Number of pigs in pen	0-9	0			0		
	10	450	72	16.00	1,146	132	11.52
	11-20	341	33	9.68	466	54	11.59
	21-100	154	34	22.08	329	55	16.72
	>100	5	2	40.00	39	8	20.51
Indoor/outdoor	No	950	141	14.84	1,955	246	12.58
production	Yes	0			25	3	12.00
Individual housing	No	354	47	13.28	677	81	11.96
-	Yes	596	94	15.77	1,303	168	12.89
Age of pigs	No gilts	375	61	16.27	976	115	11.78
0 10	Mixed age	331	50	15.11	721	95	13.18
	All gilts	244	30	12.30	283	39	13.78
Gender of pigs	Male	5	0	0.00	2	1	50.00
10	Female	909	135	14.85	1,854	235	12.68
	Mixed	36	6	16.67	124	13	10.48
Production stage	Maiden gilts	159	26	16.35	154	18	11.69
Ð	Pregnant	113	10	8.85	177	35	19.77
	Farrowing and lactating	267	51	19.10	651	71	10.91
	Service area	215	29	13.49	562	73	12.99
	Mixed	196	25	12.76	436	52	11.93
Floor type	Outdoors in fields or paddocks	0		, .	16	1	6.25
J.	Solid floor other bedding	14	4	28.57	74	18	24.32
	Solid floor with straw	58	0	0.00	107	7	6.54
	Solid floor without bedding	3	2	66.67	12	1	8.33
	Partly slatted floor	751	117	15.58	1.481	187	12.63
	Slatted floor	121	16	13.22	275	34	12.36
	Other	3	2	66.67	15	1	6.67
All in/all out	No	788	118	14.97	1.579	194	12.29
	Yes	162	23	14.20	401	55	13.72
Type of diet	Cobbs/rolls/nuts/pellets	213	48	22.54	630	107	16.98
51	Others	83	4	4.82	148	17	11.49
	Meal/mash	365	59	16.16	730	86	11.78
	Porridge/liquids	289	30	10.38	472	39	8.26
Origin of feed	Commercial compound	301	52	17.28	822	140	17.03
0	Other	8	0	0.00	24	3	12.50
	Feed with maize	106	12	11.32	154	12	7.79
	Home-mill	535	77	14.39	980	94	9.59
Feed/water supplement	Not added	778	110	14.14	1.766	227	12.85
	Organic acid	91	9	9.89	107	15	14 02
	Organic acid and probiotic	0	-	2.02	0	10	1
	Other	33	16	48 48	78	1	1 28
	Probiotic	27	5	18.52	9	4	44 44
	Unknown/other	21	1	4 76	20	2	10.00
Use of antibiotics	No treatment	574	69	12.02	1 1 5 3	129	11 19
	Treatment	358	6/	17.82	820	118	1/ 30
	Unknown	18	8	44 44	020 7	2	28.57
	UIIKIIOWII	10	0	77.77	/	4	20.57

Fatania		bre	eding	holding	prod	uction	holding
Estonia		Ν	pos	% pos	Ν	pos	% pos
Number of pigs in pen	0-9	0			0	•	
	10	41	0	0.00	160	0	0.00
	11-20	19	0	0.00	92	1	1.09
	21-100	0			28	2	7.14
	>100	0			0		
Indoor/outdoor	No	60	0	0.00	203	3	1.48
production	Yes	0			77	0	0.00
Individual housing	No	35	0	0.00	261	3	1.15
-	Yes	25	0	0.00	19	0	0.00
Age of pigs	No gilts	3	0	0.00	82	0	0.00
	Mixed age	55	0	0.00	124	2	1.61
	All gilts	2	0	0.00	74	1	1.35
Gender of pigs	Male	0			5	0	0.00
	Female	56	0	0.00	244	1	0.41
	Mixed	4	0	0.00	31	2	6.45
Production stage	Maiden gilts	3	0	0.00	45	0	0.00
	Pregnant	9	0	0.00	87	1	1.15
	Farrowing and lactating	17	0	0.00	10	0	0.00
	Service area	11	0	0.00	96	0	0.00
	Mixed	20	0	0.00	42	2	4.76
Floor type	Outdoors in fields or paddocks	0			0		
	Solid floor other bedding	40	0	0.00	170	0	0.00
	Solid floor with straw	0			0		
	Solid floor without bedding	10	0	0.00	43	0	0.00
	Partly slatted floor	10	0	0.00	60	3	5.00
	Slatted floor	0			7	0	0.00
	Other	0			0		
All in/all out	No	3	0	0.00	36	1	2.78
	Yes	57	0	0.00	244	2	0.82
Type of diet	Cobbs/rolls/nuts/pellets	0			50	3	6.00
	Others	10	0	0.00	20	0	0.00
	Meal/mash	40	0	0.00	180	0	0.00
	Porridge/liquids	10	0	0.00	30	0	0.00
Origin of feed	Commercial compound	40	0	0.00	130	3	2.31
	Other	0			0		
	Feed with maize	0			0		
	Home-mill	20	0	0.00	150	0	0.00
Feed/water supplement	Not added	60	0	0.00	268	2	0.75
	Organic acid	0			11	1	9.09
	Organic acid and probiotic	0			0		
	Other	0			0		
	Probiotic	0			1	0	0.00
	Unknown/other	0			0		
Use of antibiotics	No treatment	50	0	0.00	269	2	0.74
	Treatment	10	0	0.00	11	1	9.09
	Unknown	0			0		

Eta la cal		bree	eding	holding	production holding		
Finland		Ν	pos	% pos	N	pos	% pos
Number of pigs in pen	0-9	0			0		.
	10	251	0	0.00	770	0	0.00
	11-20	175	0	0.00	502	0	0.00
	21-100	74	0	0.00	257	0	0.00
	>100	0			41	0	0.00
Indoor/outdoor	No	490	0	0.00	1,549	0	0.00
production	Yes	10	0	0.00	21	0	0.00
Individual housing	No	380	0	0.00	970	0	0.00
-	Yes	120	0	0.00	600	0	0.00
Age of pigs	No gilts	310	0	0.00	1,228	0	0.00
0 10	Mixed age	80	0	0.00	227	0	0.00
	All gilts	110	0	0.00	115	0	0.00
Gender of pigs	Male	2	0	0.00	3	0	0.00
	Female	436	0	0.00	1,407	0	0.00
	Mixed	62	0	0.00	160	0	0.00
Production stage	Maiden gilts	77	0	0.00	96	0	0.00
· ·	Pregnant	216	0	0.00	697	0	0.00
	Farrowing and lactating	83	0	0.00	382	0	0.00
	Service area	22	0	0.00	140	0	0.00
	Mixed	102	0	0.00	255	0	0.00
Floor type	Outdoors in fields or paddocks	0			1	0	0.00
••	Solid floor other bedding	65	0	0.00	244	0	0.00
	Solid floor with straw	171	0	0.00	427	0	0.00
	Solid floor without bedding	3	0	0.00	52	0	0.00
	Partly slatted floor	246	0	0.00	779	0	0.00
	Slatted floor	15	0	0.00	67	0	0.00
	Other	0			0		
All in/all out	No	409	0	0.00	1,339	0	0.00
	Yes	91	0	0.00	231	0	0.00
Type of diet	Cobbs/rolls/nuts/pellets	27	0	0.00	202	0	0.00
	Others	57	0	0.00	132	0	0.00
	Meal/mash	183	0	0.00	678	0	0.00
	Porridge/liquids	233	0	0.00	558	0	0.00
Origin of feed	Commercial compound	67	0	0.00	244	0	0.00
C C	Other	50	0	0.00	261	0	0.00
	Feed with maize	0			0		
	Home-mill	383	0	0.00	1,065	0	0.00
Feed/water supplement	Not added	375	0	0.00	1,273	0	0.00
	Organic acid	85	0	0.00	251	0	0.00
	Organic acid and probiotic	10	0	0.00	0		
	Other	10	0	0.00	0		
	Probiotic	0			1	0	0.00
	Unknown/other	20	0	0.00	45	0	0.00
Use of antibiotics	No treatment	431	0	0.00	1,388	0	0.00
	Treatment	60	0	0.00	151	0	0.00
	Unknown	9	0	0.00	31	0	0.00

Franco			ling h	olding	production holding		
France		Ν	pos	% pos	Ν	pos	% pos
Number of pigs in pen	0-9	119	13	10.92	174	13	7.47
	10	434	46	10.60	641	61	9.52
	11-20	442	45	10.18	446	57	12.78
	21-100	439	63	14.35	461	45	9.76
	>100	136	13	9.56	138	12	8.70
Indoor/outdoor	No	1,557	180	11.56	1,818	176	9.68
production	Yes	13	0	0.00	42	12	28.57
Individual housing	No	337	42	12.46	383	44	11.49
-	Yes	1233	138	11.19	1,477	144	9.75
Age of pigs	No gilts	555	60	10.81	654	62	9.48
0 10	Mixed age	902	105	11.64	1,124	113	10.05
	All gilts	113	15	13.27	82	13	15.85
Gender of pigs	Male	9	0	0.00	6	0	0.00
	Female	1,433	169	11.79	1,677	160	9.54
	Mixed	128	11	8.59	177	28	15.82
Production stage	Maiden gilts	43	4	9.30	24	2	8.33
U	Pregnant	861	101	11.73	1,060	110	10.38
	Farrowing and lactating	347	36	10.37	436	36	8.26
	Service area	231	28	12.12	222	27	12.16
	Mixed	88	11	12.50	118	13	11.02
Floor type	Outdoors in fields or paddocks	12	0	0.00	27	11	40.74
51	Solid floor other bedding	0			8	0	0.00
	Solid floor with straw	99	4	4.04	135	5	3.70
	Solid floor without bedding	0			30	5	16.67
	Partly slatted floor	206	26	12.62	308	17	5.52
	Slatted floor	1,253	150	11.97	1,352	150	11.09
	Other	0			0		
All in/all out	No	1,017	121	11.90	1,210	120	9.92
	Yes	553	59	10.67	650	68	10.46
Type of diet	Cobbs/rolls/nuts/pellets	273	49	17.95	319	46	14.42
51	Others	51	11	21.57	109	19	17.43
	Meal/mash	527	51	9.68	652	61	9.36
	Porridge/liquids	719	69	9.60	780	62	7.95
Origin of feed	Commercial compound	1,178	142	12.05	1,265	144	11.38
8	Other	10	0	0.00	28	0	0.00
	Feed with maize	10	1	10.00	50	4	8.00
	Home-mill	372	37	9.95	517	40	7.74
Feed/water supplement	Not added	1,166	114	9.78	1,369	150	10.96
11	Organic acid	67	2	2.99	77	6	7.79
	Organic acid and probiotic	0			0		
	Other	307	53	17.26	373	32	8.58
	Probiotic	20	11	55.00	21	0	0.00
	Unknown/other	10	0	0.00	20	0	0.00
Use of antibiotics	No treatment	1,233	145	11.76	1,462	144	9.85
	Treatment	321	33	10.28	388	44	11.34
	Unknown	16	2	12.50	10	0	0.00

Commony			breeding holding			production holding		
Germany		Ν	pos	% pos	Ν	pos	% pos	
Number of pigs in pen	0-9	12	0	0.00	27	0	0.00	
	10	137	8	5.84	451	21	4.66	
	11-20	142	11	7.75	529	34	6.43	
	21-100	133	11	8.27	478	28	5.86	
	>100	36	5	13.89	65	7	10.77	
Indoor/outdoor	No	424	34	8.02	1,435	85	5.92	
production	Yes	36	1	2.78	115	5	4.35	
Individual housing	No	255	24	9.41	678	46	6.78	
	Yes	205	11	5.37	872	44	5.05	
Age of pigs	No gilts	99	3	3.03	500	35	7.00	
	Mixed age	237	18	7.59	823	41	4.98	
	All gilts	124	14	11.29	227	14	6.17	
Gender of pigs	Male	4	0	0.00	1	0	0.00	
	Female	395	28	7.09	1,395	83	5.95	
	Mixed	61	7	11.48	154	7	4.55	
Production stage	Maiden gilts	118	13	11.02	178	9	5.06	
	Pregnant	144	10	6.94	546	34	6.23	
	Farrowing and lactating	118	8	6.78	483	25	5.18	
	Service area	78	4	5.13	341	22	6.45	
	Mixed	2	0	0.00	2	0	0.00	
Floor type	Outdoors in fields or paddocks	0			4	0	0.00	
	Solid floor other bedding	3	1	33.33	0			
	Solid floor with straw	45	0	0.00	126	1	0.79	
	Solid floor without bedding	30	2	6.67	72	6	8.33	
	Partly slatted floor	209	14	6.70	777	51	6.56	
	Slatted floor	173	18	10.40	571	32	5.60	
	Other	0			0			
All in/all out	No	188	8	4.26	799	38	4.76	
	Yes	272	27	9.93	751	52	6.92	
Type of diet	Cobbs/rolls/nuts/pellets	125	21	16.80	497	53	10.66	
	Others	4	1	25.00	0			
	Meal/mash	253	13	5.14	891	29	3.25	
	Porridge/liquids	78	0	0.00	162	8	4.94	
Origin of feed	Commercial compound	183	22	12.02	689	69	10.01	
	Other	2	1	50.00	0			
	Feed with maize	0			10	0	0.00	
	Home-mill	275	12	4.36	851	21	2.47	
Feed/water supplement	Not added	97	4	4.12	504	42	8.33	
	Organic acid	114	3	2.63	236	4	1.69	
	Organic acid and probiotic	0			0			
	Other	12	6	50.00	50	0	0.00	
	Probiotic	0			0			
	Unknown/other	237	22	9.28	760	44	5.79	
Use of antibiotics	No treatment	125	5	4.00	500	39	7.80	
	Treatment	63	8	12.70	237	7	2.95	
	Unknown	272	22	8.09	813	44	5.41	

Hungowy		bree	ding	holding	production holding		
Hungary		Ν	pos	% pos	Ν	pos	% pos
Number of pigs in pen	0-9	0			0		
	10	114	10	8.77	358	15	4.19
	11-20	169	11	6.51	618	27	4.37
	21-100	101	6	5.94	394	24	6.09
	>100	16	0	0.00	40	6	15.00
Indoor/outdoor	No	296	24	8.11	942	45	4.78
production	Yes	104	3	2.88	468	27	5.77
Individual housing	No	267	19	7.12	1,024	53	5.18
-	Yes	133	8	6.02	386	19	4.92
Age of pigs	No gilts	171	6	3.51	725	40	5.52
0 10	Mixed age	140	11	7.86	469	16	3.41
	All gilts	89	10	11.24	216	16	7.41
Gender of pigs	Male	36	0	0.00	31	1	3.23
1.6	Female	352	27	7.67	1,302	68	5.22
	Mixed	12	0	0.00	77	3	3.90
Production stage	Maiden gilts	88	9	10.23	214	17	7.94
0	Pregnant	141	8	5.67	731	37	5.06
	Farrowing and lactating	63	3	4.76	234	9	3.85
	Service area	58	0	0.00	72	3	4.17
	Mixed	50	7	14.00	159	6	3.77
Floor type	Outdoors in fields or paddocks	12	0	0.00	10	0	0.00
51	Solid floor other bedding	0			18	2	11.11
	Solid floor with straw	140	9	6.43	304	13	4.28
	Solid floor without bedding	165	7	4.24	852	50	5.87
	Partly slatted floor	5	2	40.00	42	1	2.38
	Slatted floor	37	4	10.81	81	1	1.23
	Other	41	5	12.20	103	5	4.85
All in/all out	No	163	7	4.29	499	22	4.41
	Yes	237	20	8.44	911	50	5.49
Type of diet	Cobbs/rolls/nuts/pellets	30	5	16.67	76	11	14.47
51	Others	147	10	6.80	509	17	3.34
	Meal/mash	223	12	5.38	812	44	5.42
	Porridge/liquids	0			13	0	0.00
Origin of feed	Commercial compound	154	14	9.09	298	11	3.69
8	Other	36	0	0.00	134	6	4.48
	Feed with maize	20	1	5.00	136	2	1.47
	Home-mill	190	12	6.32	842	53	6.29
Feed/water supplement	Not added	251	21	8.37	1,040	55	5.29
11	Organic acid	98	6	6.12	249	16	6.43
	Organic acid and probiotic	0			0		
	Other	1	0	0.00	47	1	2.13
	Probiotic	0			0		
	Unknown/other	50	0	0.00	74	0	0.00
Use of antibiotics	No treatment	315	25	7.94	1,139	48	4.21
	Treatment	85	2	2.35	271	24	8.86
	Unknown	0			0		

Indond		bree	eding	holding	produ	ction	holding
Ireland		Ν	pos	% pos	Ν	pos	% pos
Number of pigs in pen	0-9	0			0		
	10	175	32	18.29	571	63	11.03
	11-20	145	21	14.48	580	76	13.10
	21-100	70	9	12.86	294	44	14.97
	>100	10	2	20.00	45	9	20.00
Indoor/outdoor	No	390	60	15.38	1,469	190	12.93
production	Yes	10	4	40.00	21	2	9.52
Individual housing	No	151	26	17.22	550	75	13.64
	Yes	249	38	15.26	940	117	12.45
Age of pigs	No gilts	198	26	13.13	716	86	12.01
	Mixed age	143	28	19.58	543	72	13.26
	All gilts	59	10	16.95	231	34	14.72
Gender of pigs	Male	1	0	0.00	3	1	33.33
	Female	361	54	14.96	1,393	183	13.14
	Mixed	38	10	26.32	94	8	8.51
Production stage	Maiden gilts	38	6	15.79	137	17	12.41
	Pregnant	200	31	15.50	772	102	13.21
	Farrowing and lactating	107	16	14.95	386	54	13.99
	Service area	22	2	9.09	93	12	12.90
	Mixed	33	9	27.27	102	7	6.86
Floor type	Outdoors in fields or paddocks	0			0		
	Solid floor other bedding	0			3	0	0.00
	Solid floor with straw	14	0	0.00	21	6	28.57
	Solid floor without bedding	27	10	37.04	49	2	4.08
	Partly slatted floor	144	21	14.58	576	64	11.11
	Slatted floor	215	33	15.35	841	120	14.27
	Other	0			0		
All in/all out	No	188	29	15.43	709	88	12.41
	Yes	212	35	16.51	781	104	13.32
Type of diet	Cobbs/rolls/nuts/pellets	180	33	18.33	490	70	14.29
	Others	10	4	40.00	4	0	0.00
	Meal/mash	75	14	18.67	447	50	11.19
	Porridge/liquids	135	13	9.63	549	72	13.11
Origin of feed	Commercial compound	316	58	18.35	1,027	144	14.02
	Other	10	4	40.00	0		
	Feed with maize	0			11	1	9.09
	Home-mill	74	2	2.70	452	47	10.40
Feed/water supplement	Not added	395	64	16.20	1,443	189	13.10
	Organic acid	0			38	3	7.89
	Organic acid and probiotic	0			0		
	Other	5	0	0.00	9	0	0.00
	Probiotic	0			0		
	Unknown/other	0			0		
Use of antibiotics	No treatment	365	60	16.44	1,402	175	12.48
	Treatment	35	4	11.43	88	17	19.32
	Unknown	0			0		

Itala			breeding holding			production holding			
Italy		Ν	pos	% pos	Ν	pos	% pos		
Number of pigs in pen	0-9	5	2	40.00	89	6	6.74		
	10	144	16	11.11	633	87	13.74		
	11-20	184	23	12.50	663	79	11.92		
	21-100	68	17	25.00	227	24	10.57		
	>100	29	4	13.79	98	17	17.35		
Indoor/outdoor	No	317	46	14.51	1,323	150	11.34		
production	Yes	113	16	14.16	387	63	16.28		
Individual housing	No	263	33	12.55	937	119	12.70		
	Yes	167	29	17.37	773	94	12.16		
Age of pigs	No gilts	226	19	8.41	1,085	139	12.81		
	Mixed age	119	20	16.81	382	36	9.42		
	All gilts	85	23	27.06	243	38	15.64		
Gender of pigs	Male	14	2	14.29	9	2	22.22		
	Female	398	52	13.07	1,598	204	12.77		
	Mixed	18	8	44.44	103	7	6.80		
Production stage	Maiden gilts	89	25	28.09	234	35	14.96		
	Pregnant	245	23	9.39	953	126	13.22		
	Farrowing and lactating	34	7	20.59	222	17	7.66		
	Service area	25	1	4.00	112	13	11.61		
	Mixed	37	6	16.22	189	22	11.64		
Floor type	Outdoors in fields or paddocks	0			1	0	0.00		
	Solid floor other bedding	0			1	1	100.00		
	Solid floor with straw	1	0	0.00	14	0	0.00		
	Solid floor without bedding	85	24	28.24	297	58	19.53		
	Partly slatted floor	151	9	5.96	799	94	11.76		
	Slatted floor	192	29	15.10	580	59	10.17		
	Other	1	0	0.00	18	1	5.56		
All in/all out	No	154	16	10.39	730	83	11.37		
	Yes	276	46	16.67	980	130	13.27		
Type of diet	Cobbs/rolls/nuts/pellets	87	15	17.24	270	59	21.85		
	Others	18	12	66.67	161	33	20.50		
	Meal/mash	204	12	5.88	953	80	8.39		
	Porridge/liquids	121	23	19.01	326	41	12.58		
Origin of feed	Commercial compound	165	43	26.06	819	143	17.46		
	Other	20	1	5.00	35	6	17.14		
	Feed with maize	21	1	4.76	115	5	4.35		
	Home-mill	224	17	7.59	741	59	7.96		
Feed/water supplement	Not added	299	46	15.38	1,356	183	13.50		
	Organic acid	32	3	9.38	86	6	6.98		
	Organic acid and probiotic	30	2	6.67	17	0	0.00		
	Other	20	0	0.00	66	5	7.58		
	Probiotic	10	0	0.00	31	0	0.00		
	Unknown/other	39	11	28.21	154	19	12.34		
Use of antibiotics	No treatment	306	43	14.05	1,245	166	13.33		
	Treatment	124	19	15.32	465	47	10.11		
	Unknown	0			0				

T :4h		bre	eeding ho	olding	prod	uction	holding
Litnuania		Ν	pos	% pos	N	pos	% pos
Number of pigs in pen	0-9	0	•	•	0	•	•
	10	41	0	0.00	147	0	0.00
	11-20	54	0	0.00	437	5	1.14
	21-100	5	0	0.00	136	7	5.15
	>100	0			0		
Indoor/outdoor	No	100	0	0.00	713	12	1.68
production	Yes	0			7	0	0.00
Individual housing	No	90	0	0.00	678	12	1.77
	Yes	10	0	0.00	42	0	0.00
Age of pigs	No gilts	0			0		
	Mixed age	71	0	0.00	625	9	1.44
	All gilts	29	0	0.00	95	3	3.16
Gender of pigs	Male	0			0		
	Female	58	0	0.00	141	1	0.71
	Mixed	42	0	0.00	579	11	1.90
Production stage	Maiden gilts	18	0	0.00	126	1	0.79
	Pregnant	9	0	0.00	4	1	25.00
	Farrowing and lactating	0			0		
	Service area	4	0	0.00	20	0	0.00
	Mixed	69	0	0.00	570	10	1.75
Floor type	Outdoors in fields or paddocks	0			0		
	Solid floor other bedding	36	0	0.00	175	1	0.57
	Solid floor with straw	0			9	0	0.00
	Solid floor without bedding	64	0	0.00	526	11	2.09
	Partly slatted floor	0			0		
	Slatted floor	0			0		
	Other	0			10	0	0.00
All in/all out	No	12	0	0.00	73	1	1.37
	Yes	88	0	0.00	647	11	1.70
Type of diet	Cobbs/rolls/nuts/pellets	20	0	0.00	99	0	0.00
	Others	0			9	0	0.00
	Meal/mash	80	0	0.00	602	11	1.83
	Porridge/liquids	0			10	1	10.00
Origin of feed	Commercial compound	60	0	0.00	470	10	2.13
	Other	0			2	0	0.00
	Feed with maize	0			0		
	Home-mill	40	0	0.00	248	2	0.81
Feed/water supplement	Not added	0			30	0	0.00
	Organic acid	40	0	0.00	153	7	4.58
	Organic acid and probiotic	0			39	3	7.69
	Other	60	0	0.00	374	2	0.53
	Probiotic	0			31	0	0.00
	Unknown/other	0			93	0	0.00
Use of antibiotics	No treatment	60	0	0.00	546	5	0.92
	Treatment	20	0	0.00	100	6	6.00
	Unknown	20	0	0.00	74	1	1.35

Latria			breeding holding			production holding		
		Ν	pos	% pos	Ν	pos	% pos	
Number of pigs in pen	0-9	0			0			
	10	10	0	0.00	74	6	8.11	
	11-20	32	2	6.25	193	16	8.29	
	21-100	8	1	12.50	13	1	7.69	
	>100	0			0			
Indoor/outdoor	No	50	3	6.00	272	23	8.46	
production	Yes	0			8	0	0.00	
Individual housing	No	32	1	3.13	201	19	9.45	
	Yes	18	2	11.11	79	4	5.06	
Age of pigs	No gilts	18	1	5.56	172	8	4.65	
	Mixed age	14	1	7.14	38	4	10.53	
	All gilts	18	1	5.56	70	11	15.71	
Gender of pigs	Male	3	0	0.00	2	0	0.00	
	Female	31	2	6.45	202	15	7.43	
	Mixed	16	1	6.25	76	8	10.53	
Production stage	Maiden gilts	22	2	9.09	47	9	19.15	
-	Pregnant	7	0	0.00	108	4	3.70	
	Farrowing and lactating	14	1	7.14	64	4	6.25	
	Service area	2	0	0.00	19	1	5.26	
	Mixed	5	0	0.00	42	5	11.90	
Floor type	Outdoors in fields or paddocks	0			0			
	Solid floor other bedding	10	0	0.00	78	8	10.26	
	Solid floor with straw	2	0	0.00	11	3	27.27	
	Solid floor without bedding	0			24	1	4.17	
	Partly slatted floor	35	3	8.57	122	8	6.56	
	Slatted floor	3	0	0.00	45	3	6.67	
	Other	0			0			
All in/all out	No	1	0	0.00	12	0	0.00	
	Yes	49	3	6.12	268	23	8.58	
Type of diet	Cobbs/rolls/nuts/pellets	20	3	15.00	130	14	10.77	
	Others	10	0	0.00	1	0	0.00	
	Meal/mash	10	0	0.00	140	9	6.43	
	Porridge/liquids	10	0	0.00	9	0	0.00	
Origin of feed	Commercial compound	30	3	10.00	153	14	9.15	
	Other	10	0	0.00	1	0	0.00	
	Feed with maize	0			0			
	Home-mill	10	0	0.00	126	9	7.14	
Feed/water supplement	Not added	30	0	0.00	240	23	9.58	
	Organic acid	20	3	15.00	20	0	0.00	
	Organic acid and probiotic	0			0			
	Other	0			0			
	Probiotic	0			10	0	0.00	
	Unknown/other	0			10	0	0.00	
Use of antibiotics	No treatment	33	2	6.06	224	21	9.38	
	Treatment	17	1	5.88	48	2	4.17	
	Unknown	0			8	0	0.00	

Inverteen		bre	breeding holding			production holding		
Luxembourg		Ν	pos	% pos	Ν	pos	% pos	
Number of pigs in pen	0-9	0			0			
	10	30	2	6.67	408	19	4.66	
	11-20	0			2	0	0.00	
	21-100	0			0			
	>100	0			0			
Indoor/outdoor	No	29	2	6.90	407	18	4.42	
production	Yes	1	0	0.00	3	1	33.33	
Individual housing	No	15	2	13.33	238	11	4.62	
-	Yes	15	0	0.00	172	8	4.65	
Age of pigs	No gilts	0			13	0	0.00	
0 10	Mixed age	18	2	11.11	360	18	5.00	
	All gilts	12	0	0.00	37	1	2.70	
Gender of pigs	Male	0			1	0	0.00	
10	Female	23	0	0.00	404	19	4.70	
	Mixed	7	2	28.57	5	0	0.00	
Production stage	Maiden gilts	14	2	14.29	45	0	0.00	
e	Pregnant	11	0	0.00	217	15	6.91	
	Farrowing and lactating	5	0	0.00	127	2	1.57	
	Service area	0			1	0	0.00	
	Mixed	0			20	2	10.00	
Type of floor	Outdoors in fields or paddocks	0			0			
51	Solid floor other bedding	0			0			
	Solid floor with straw	0			87	1	1.15	
	Solid floor without bedding	0			25	1	4.00	
	Partly slatted floor	20	2	10.00	219	7	3.20	
	Slatted floor	10	0	0.00	79	10	12.66	
	Other	0			0			
All in/all out	No	20	2	10.00	374	15	4.01	
	Yes	10	0	0.00	36	4	11.11	
Type of diet	Cobbs/rolls/nuts/pellets	20	2	10.00	263	15	5.70	
51	Others	0			89	0	0.00	
	Meal/mash	0			49	0	0.00	
	Porridge/liquids	10	0	0.00	9	4	44.44	
Origin of feed	Commercial compound	29	2	6.90	309	19	6.15	
8	Other	0			0			
	Feed with maize	0			0			
	Home-mill	1	0	0.00	101	0	0.00	
Feed/water supplement	Not added	30	2	6.67	399	19	4.76	
11	Organic acid	0			0			
	Organic acid and probiotic	0			0			
	Other	0			11	0	0.00	
	Probiotic	0			0			
	Unknown/other	0			0			
Use of antibiotics	No treatment	30	2	6.67	409	19	4.65	
	Treatment	0			0			
	Unknown	0			1	0	0.00	

Nothonlands		breed	ling h	olding	production holding		
Netherlands		Ν	pos	% pos	Ν	pos	% pos
Number of pigs in pen	0-9	4	1	25.00	0		
	10	173	30	17.34	333	51	15.32
	11-20	216	33	15.28	403	61	15.14
	21-100	500	95	19.00	1,011	208	20.57
	>100	197	45	22.84	373	73	19.57
Indoor/outdoor	No	1,082	204	18.85	2,112	391	18.51
production	Yes	8	0	0.00	8	2	25.00
Individual housing	No	294	72	24.49	503	121	24.06
-	Yes	796	132	16.58	1,617	272	16.82
Age of pigs	No gilts	239	37	15.48	411	70	17.03
0 10	Mixed age	775	147	18.97	1,568	286	18.24
	All gilts	76	20	26.32	141	37	26.24
Gender of pigs	Male	0			0		
	Female	1,079	203	18.81	2,116	393	18.57
	Mixed	11	1	9.09	4	0	0.00
Production stage	Maiden gilts	90	24	26.67	137	32	23.36
U	Pregnant	518	90	17.37	1,005	164	16.32
	Farrowing and lactating	219	32	14.61	431	55	12.76
	Service area	232	49	21.12	490	126	25.71
	Mixed	31	9	29.03	57	16	28.07
Floor type	Outdoors in fields or paddocks	1	0	0.00	0		
51	Solid floor other bedding	0			0		
	Solid floor with straw	24	11	45.83	45	26	57.78
	Solid floor without bedding	0			11	2	18.18
	Partly slatted floor	983	176	17.90	1,912	354	18.51
	Slatted floor	82	17	20.73	152	11	7.24
	Other	0			0		
All in/all out	No	792	151	19.07	1,560	322	20.64
	Yes	298	53	17.79	560	71	12.68
Type of diet	Cobbs/rolls/nuts/pellets	855	151	17.66	1,824	352	19.30
51	Others	0			8	1	12.50
	Meal/mash	0			20	3	15.00
	Porridge/liquids	235	53	22.55	268	37	13.81
Origin of feed	Commercial compound	903	161	17.83	1,904	363	19.07
8	Other	10	0	0.00	10	3	30.00
	Feed with maize	10	2	20.00	1	0	0.00
	Home-mill	167	41	24.55	205	27	13.17
Feed/water supplement	Not added	982	187	19.04	1,886	365	19.35
11	Organic acid	25	2	8.00	120	6	5.00
	Organic acid and probiotic	0			0		
	Other	2	0	0.00	14	9	64.29
	Probiotic	11	2	18.18	0		
	Unknown/other	70	13	18.57	100	13	13.00
Use of antibiotics	No treatment	1,025	197	19.22	1,872	362	19.34
	Treatment	55	7	12.73	228	26	11.40
	Unknown	10	0	0.00	20	5	25.00

Dolond		breed	ling h	olding	production holding			
Poland		Ν	pos	% pos	Ν	pos	% pos	
Number of pigs in pen	0-9	0			0			
	10	746	8	1.07	777	8	1.03	
	11-20	522	5	0.96	649	14	2.16	
	21-100	172	11	6.40	332	18	5.42	
	>100	0			22	1	4.55	
Indoor/outdoor	No	1,353	22	1.63	1,726	40	2.32	
production	Yes	87	2	2.30	54	1	1.85	
Individual housing	No	648	20	3.09	682	5	0.73	
	Yes	792	4	0.51	1,098	36	3.28	
Age of pigs	No gilts	542	5	0.92	778	17	2.19	
	Mixed age	374	4	1.07	492	12	2.44	
	All gilts	524	15	2.86	510	12	2.35	
Gender of pigs	Male	28	0	0.00	13	0	0.00	
	Female	1,112	12	1.08	1,083	20	1.85	
	Mixed	300	12	4.00	684	21	3.07	
Production stage	Maiden gilts	386	4	1.04	291	12	4.12	
	Pregnant	453	5	1.10	595	15	2.52	
	Farrowing and lactating	171	1	0.58	161	0	0.00	
	Service area	25	1	4.00	18	0	0.00	
	Mixed	405	13	3.21	715	14	1.96	
Floor type	Outdoors in fields or paddocks	6	0	0.00	0			
	Solid floor other bedding	10	0	0.00	0			
	Solid floor with straw	903	7	0.78	1,028	15	1.46	
	Solid floor without bedding	65	0	0.00	151	11	7.28	
	Partly slatted floor	307	6	1.95	401	14	3.49	
	Slatted floor	129	11	8.53	153	1	0.65	
	Other	20	0	0.00	47	0	0.00	
All in/all out	No	802	7	0.87	953	14	1.47	
	Yes	638	17	2.66	827	27	3.26	
Type of diet	Cobbs/rolls/nuts/pellets	166	12	7.23	264	22	8.33	
	Others	21	0	0.00	21	4	19.05	
	Meal/mash	761	7	0.92	839	10	1.19	
	Porridge/liquids	492	5	1.02	656	5	0.76	
Origin of feed	Commercial compound	216	15	6.94	485	29	5.98	
	Other	224	0	0.00	248	3	1.21	
	Feed with maize	61	0	0.00	81	0	0.00	
	Home-mill	939	9	0.96	966	9	0.93	
Feed/water supplement	Not added	1,064	23	2.16	1,206	36	2.99	
	Organic acid	129	0	0.00	200	0	0.00	
	Organic acid and probiotic	0			0			
	Other	106	1	0.94	146	2	1.37	
	Probiotic	90	0	0.00	100	0	0.00	
	Unknown/other	51	0	0.00	128	3	2.34	
Use of antibiotics	No treatment	1,307	11	0.84	1,605	27	1.68	
	Treatment	93	11	11.83	129	9	6.98	
	Unknown	40	2	5.00	46	5	10.87	

Dortugal	bree	ding	holding	production holding			
Portugal		Ν	pos	% pos	Ν	pos	% pos
Number of pigs in pen	0-9	0			0		
	10	283	30	10.60	1,133	90	7.94
	11-20	38	6	15.79	156	22	14.10
	21-100	9	2	22.22	48	11	22.92
	>100	0			3	0	0.00
Indoor/outdoor	No	243	23	9.47	1,019	97	9.52
production	Yes	87	15	17.24	321	26	8.10
Individual housing	No	40	7	17.50	295	27	9.15
	Yes	290	31	10.69	1,045	96	9.19
Age of pigs	No gilts	106	18	16.98	573	39	6.81
	Mixed age	208	15	7.21	718	83	11.56
	All gilts	16	5	31.25	49	1	2.04
Gender of pigs	Male	0			1	0	0.00
	Female	327	38	11.62	1,263	112	8.87
	Mixed	3	0	0.00	76	11	14.47
Production stage	Maiden gilts	14	4	28.57	37	3	8.11
	Pregnant	175	20	11.43	702	69	9.83
	Farrowing and lactating	83	5	6.02	332	19	5.72
	Service area	56	9	16.07	188	17	9.04
	Mixed	2	0	0.00	81	15	18.52
Floor type	Outdoors in fields or paddocks	0			55	3	5.45
	Solid floor other bedding	0			10	0	0.00
	Solid floor with straw	0			7	0	0.00
	Solid floor without bedding	0			44	3	6.82
	Partly slatted floor	280	34	12.14	1,122	107	9.54
	Slatted floor	48	3	6.25	100	10	10.00
	Other	2	1	50.00	2	0	0.00
All in/all out	No	181	27	14.92	794	76	9.57
	Yes	149	11	7.38	546	47	8.61
Type of diet	Cobbs/rolls/nuts/pellets	73	4	5.48	191	29	15.18
	Others	10	1	10.00	35	4	11.43
	Meal/mash	247	33	13.36	1,071	87	8.12
	Porridge/liquids	0			43	3	6.98
Origin of feed	Commercial compound	310	36	11.61	1,139	114	10.01
	Other	0			19	0	0.00
	Feed with maize	0			0		
	Home-mill	20	2	10.00	182	9	4.95
Feed/water supplement	Not added	258	34	13.18	830	71	8.55
	Organic acid	13	2	15.38	140	9	6.43
	Organic acid and probiotic	0			46	1	2.17
	Other	0			7	3	42.86
	Probiotic	0			27	3	11.11
	Unknown/other	59	2	3.39	290	36	12.41
Use of antibiotics	No treatment	259	32	12.36	1,139	110	9.66
	51	4	7.84	190	8	4.21	
	Unknown	20	2	10.00	11	5	45.45

Slovelrie	bree	ding	holding	production holding			
Slovakla		Ν	pos	% pos	Ν	pos	% pos
Number of pigs in pen	0-9	0			0		
	10	960	23	2.40	959	39	4.07
	11-20	0			0		
	21-100	0			0		
	>100	0			1	0	0.00
Indoor/outdoor	No	923	22	2.38	940	38	4.04
production	Yes	37	1	2.70	20	1	5.00
Individual housing	No	695	14	2.01	650	32	4.92
	Yes	265	9	3.40	310	7	2.26
Age of pigs	No gilts	51	1	1.96	46	4	8.70
	Mixed age	19	0	0.00	16	2	12.50
	All gilts	890	22	2.47	898	33	3.67
Gender of pigs	Male	49	1	2.04	44	4	9.09
	Female	898	22	2.45	901	33	3.66
	Mixed	13	0	0.00	15	2	13.33
Production stage	Maiden gilts	55	1	1.82	21	0	0.00
	Pregnant	400	7	1.75	306	13	4.25
	Farrowing and lactating	184	8	4.35	204	3	1.47
	Service area	199	6	3.02	256	12	4.69
	Mixed	122	1	0.82	173	11	6.36
Floor type	Outdoors in fields or paddocks	0			0		
	Solid floor other bedding	0			10	0	0.00
	Solid floor with straw	86	1	1.16	102	2	1.96
	Solid floor without bedding	626	11	1.76	644	27	4.19
	Partly slatted floor	214	10	4.67	160	9	5.63
	Slatted floor	34	1	2.94	44	1	2.27
	Other	0			0		
All in/all out	No	1	0	0.00	2	0	0.00
	Yes	959	23	2.40	958	39	4.07
Type of diet	Cobbs/rolls/nuts/pellets	1	0	0.00	1	0	0.00
	Others	28	0	0.00	38	0	0.00
	Meal/mash	931	23	2.47	921	39	4.23
	Porridge/liquids	0			0		
Origin of feed	Commercial compound	932	23	2.47	921	39	4.23
	Other	1	0	0.00	1	0	0.00
	Feed with maize	0			0		
	Home-mill	27	0	0.00	38	0	0.00
Feed/water supplement	Not added	948	23	2.43	960	39	4.06
	Organic acid	10	0	0.00	0		
	Organic acid and probiotic	0			0		
	Other	0			0		
	Probiotic	2	0	0.00	0		
	Unknown/other	0			0		
Use of antibiotics	No treatment	940	23	2.45	960	39	4.06
Treatment		20	0	0.00	0		
	Unknown	0			0		

Clavania		bree	eding	holding	production holding			
Slovenia		Ν	pos	% pos	Ν	pos	% pos	
Number of pigs in pen	0-9	0			0			
	10	151	0	0.00	486	17	3.50	
	11-20	118	0	0.00	357	9	2.52	
	21-100	1	0	0.00	20	0	0.00	
	>100	0			7	0	0.00	
Indoor/outdoor	No	202	0	0.00	806	22	2.73	
production	Yes	68	0	0.00	64	4	6.25	
Individual housing	No	150	0	0.00	373	11	2.95	
	Yes	120	0	0.00	497	15	3.02	
Age of pigs	No gilts	52	0	0.00	281	11	3.91	
	Mixed age	160	0	0.00	532	11	2.07	
	All gilts	58	0	0.00	57	4	7.02	
Gender of pigs	Male	0			0			
	Female	211	0	0.00	727	26	3.58	
	Mixed	59	0	0.00	143	0	0.00	
Production stage	Maiden gilts	35	0	0.00	20	4	20.00	
	Pregnant	87	0	0.00	243	9	3.70	
	Farrowing and lactating	35	0	0.00	183	6	3.28	
	Service area	16	0	0.00	62	1	1.61	
	Mixed	97	0	0.00	362	6	1.66	
Floor type	Outdoors in fields or paddocks	5	0	0.00	1	0	0.00	
	Solid floor other bedding	0			31	2	6.45	
	Solid floor with straw	38	0	0.00	127	5	3.94	
	Solid floor without bedding	14	0	0.00	46	3	6.52	
	Partly slatted floor	207	0	0.00	571	16	2.80	
	Slatted floor	6	0	0.00	94	0	0.00	
	Other	0			0			
All in/all out	No	229	0	0.00	761	20	2.63	
	Yes	41	0	0.00	109	6	5.50	
Type of diet	Cobbs/rolls/nuts/pellets	6	0	0.00	70	5	7.14	
	Others	25	0	0.00	94	2	2.13	
	Meal/mash	239	0	0.00	698	19	2.72	
	Porridge/liquids	0			8	0	0.00	
Origin of feed	Commercial compound	10	0	0.00	83	6	7.23	
	Other	44	0	0.00	98	2	2.04	
	Feed with maize	132	0	0.00	122	9	7.38	
	Home-mill	84	0	0.00	567	9	1.59	
Feed/water supplement	Not added	202	0	0.00	610	25	4.10	
Organic acid		20	0	0.00	20	0	0.00	
	Organic acid and probiotic	0			0			
	Other	40	0	0.00	200	0	0.00	
	Probiotic	8	0	0.00	30	1	3.33	
	Unknown/other	0			10	0	0.00	
Use of antibiotics	No treatment		0	0.00	844	26	3.08	
	Treatment	2	0	0.00	26	0	0.00	
	Unknown	0			0			

Swadan		bree	eding	holding	production holding			
Sweden		Ν	pos	% pos	Ν	pos	% pos	
Number of pigs in pen	0-9	0			0			
	10	222	0	0.00	755	0	0.00	
	11-20	174	0	0.00	337	0	0.00	
	21-100	166	1	0.60	398	0	0.00	
	>100	8	0	0.00	10	0	0.00	
Outdoor production	No	553	1	0.18	1,488	0	0.00	
-	Yes	17	0	0.00	12	0	0.00	
Individual housing	No	389	1	0.26	810	0	0.00	
-	Yes	181	0	0.00	690	0	0.00	
Age of pigs	No gilts	147	0	0.00	437	0	0.00	
• • •	Mixed age	357	1	0.28	1,016	0	0.00	
	All gilts	66	0	0.00	47	0	0.00	
Gender of pigs	Male	0			1	0	0.00	
	Female	499	0	0.00	1,352	0	0.00	
	Mixed	71	1	1.41	147	0	0.00	
Production stage	Maiden gilts	17	0	0.00	13	0	0.00	
C	Pregnant	286	1	0.35	703	0	0.00	
	Farrowing and lactating	152	0	0.00	577	0	0.00	
	Service area	63	0	0.00	149	0	0.00	
	Mixed	52	0	0.00	58	0	0.00	
Floor type	Outdoors in fields or paddocks	0			12	0	0.00	
	Solid floor other bedding	2	0	0.00	27	0	0.00	
	Solid floor with straw	387	1	0.26	846	0	0.00	
	Solid floor without bedding	0			0			
	Partly slatted floor	0			0			
	Slatted floor	0			0			
	Other	181	0	0.00	615	0	0.00	
All in/all out	No	145	1	0.69	430	0	0.00	
	Yes	425	0	0.00	1,070	0	0.00	
Type of diet	Cobbs/rolls/nuts/pellets	133	0	0.00	325	0	0.00	
••	Others	10	0	0.00	4	0	0.00	
	Meal/mash	189	1	0.53	509	0	0.00	
	Porridge/liquids	238	0	0.00	662	0	0.00	
Origin of feed	Commercial compound	245	0	0.00	572	0	0.00	
-	Other	10	0	0.00	34	0	0.00	
	Feed with maize	0			0			
	Home-mill	315	1	0.32	894	0	0.00	
Feed/water supplement	Not added	553	1	0.18	1,388	0	0.00	
	Organic acid	7	0	0.00	43	0	0.00	
	Organic acid and probiotic	0			0			
	Other	10	0	0.00	39	0	0.00	
	Probiotic	0			20	0	0.00	
	Unknown/other	0			10	0	0.00	
	No treatment	457	1	0.22	1,078	0	0.00	
Use of antibiotics	Treatment	107	0	0.00	401	0	0.00	
	Unknown	6	0	0.00	21	0	0.00	

Spain		breed	ling h	olding	production holding			
Spain		Ν	pos	% pos	Ν	pos	% pos	
Number of pigs in pen	0-9	0			0			
	10	818	171	20.90	1,191	173	14.53	
	11-20	319	56	17.55	467	64	13.70	
	21-100	291	48	16.49	385	71	18.44	
	>100	72	19	26.39	47	12	25.53	
Indoor/outdoor	No	1,135	212	18.68	1,538	219	14.24	
production	Yes	365	82	22.47	552	101	18.30	
Individual housing	No	616	116	18.83	947	156	16.47	
	Yes	884	178	20.14	1,143	164	14.35	
Age of pigs	No gilts	519	99	19.08	609	110	18.06	
	Mixed age	770	143	18.57	1,211	155	12.80	
	All gilts	211	52	24.64	270	55	20.37	
Gender of pigs	Male	23	4	17.39	10	0	0.00	
	Female	1,242	260	20.93	1,769	275	15.55	
	Mixed	235	30	12.77	311	45	14.47	
Production stage	Maiden gilts	167	37	22.16	242	42	17.36	
	Pregnant	520	110	21.15	756	136	17.99	
	Farrowing and lactating	362	68	18.78	451	47	10.42	
	Service area	187	44	23.53	266	49	18.42	
	Mixed	264	35	13.26	375	46	12.27	
Floor type	Outdoors in fields or paddocks	153	23	15.03	190	37	19.47	
	Solid floor other bedding	12	2	16.67	44	0	0.00	
	Solid floor with straw	44	11	25.00	101	10	9.90	
	Solid floor without bedding	88	26	29.55	230	34	14.78	
	Partly slatted floor	618	120	19.42	963	172	17.86	
	Slatted floor	583	112	19.21	554	64	11.55	
	Other	2	0	0.00	8	3	37.50	
All in/all out	No	524	83	15.84	785	133	16.94	
	Yes	976	211	21.62	1,305	187	14.33	
Type of diet	Cobbs/rolls/nuts/pellets	793	179	22.57	690	116	16.81	
	Others	5	0	0.00	18	0	0.00	
	Meal/mash	641	107	16.69	1,344	200	14.88	
	Porridge/liquids	61	8	13.11	38	4	10.53	
Origin of feed	Commercial compound	1,176	265	22.53	1,425	260	18.25	
	Other	55	12	21.82	38	0	0.00	
	Feed with maize	40	6	15.00	89	7	7.87	
	Home-mill	229	11	4.80	538	53	9.85	
Feed/water supplement	Not added	161	38	23.60	253	59	23.32	
	Organic acid	252	43	17.06	179	28	15.64	
	Organic acid and probiotic	0			0			
	Other	106	12	11.32	109	27	24.77	
	Probiotic	10	5	50.00	16	1	6.25	
	Unknown/other	971	196	20.19	1,533	205	13.37	
Use of antibiotics	No treatment	1,118	209	18.69	1,715	273	15.92	
	Treatment	328	65	19.82	348	45	12.93	
	Unknown	54	20	37.04	27	2	7.41	

United Vinadom		bree	eding	holding	production holding			
United Kingdom		Ν	pos	% pos	Ν	pos	% pos	
Number of pigs in pen	0-9	0			0	•		
	10	203	37	18.23	517	59	11.41	
	11-20	284	50	17.61	880	133	15.11	
	21-100	169	30	17.75	444	93	20.95	
	>100	14	0	0.00	69	9	13.04	
Indoor/outdoor	No	572	83	14.51	1,328	157	11.82	
production	Yes	98	34	34.69	582	137	23.54	
Individual housing	No	533	93	17.45	1.553	249	16.03	
	Yes	137	24	17.52	357	45	12.61	
Age of pigs	No gilts	335	44	13.13	942	130	13.80	
8 F-8-	Mixed age	236	51	21.61	734	117	15.94	
	All gilts	99	22	22.22	234	47	20.09	
Gender of pigs	Male	8		37.50	6	1	16 67	
o en der of p.85	Female	555	90	16 22	1 465	222	15.15	
	Mixed	107	24	22.43	439	71	16.17	
Production stage	Maiden gilts	61	17	27.87	137	21	15 33	
1 iouuonon suige	Pregnant	394	58	14 72	1 132	177	15.55	
	Farrowing and lactating	118	19	16 10	378	46	12.17	
	Service area	69	15	21 74	150	32	21.33	
	Mixed	28	8	28.57	113	18	15.93	
Floor type	82	27	32.93	487	126	25.87		
r loor type	Solid floor other bedding	4	1	25.00	12	120	8 33	
	Solid floor with straw	435	50	11 49	926	80	8 64	
	Solid floor without bedding	10	10	52.63	73	16	21.92	
	Partly slatted floor	87	16	18 39	237	46	19.41	
	Slatted floor	43	13	30.23	173	25	14 45	
	Other	0	15	50.25	2	25	0.00	
All in/all out	No	326	58	17 79	957	177	18 50	
/ III III/ ull Out	Ves	344	59	17.15	953	117	12.28	
Type of diet	Cobbs/rolls/nuts/nellets	515	99	19.22	1 1 7 8	230	19.52	
rype of diet	Others	10	6	60.00	30	230	23 33	
	Meal/mash	118	11	9.32	544	40	7 35	
	Porridge/liquids	27	1	3 70	158	17	10.76	
Origin of feed	Commercial compound	545	99	18 17	1 1 57	237	20.48	
ongin or reed	Other	11	0	0.00	29	237	0.00	
	Feed with maize	0	U	0.00	2)	U	0.00	
	Home-mill	114	18	15 79	724	57	7 87	
Feed/water supplement	Not added	620	110	17 74	1 709	254	14.86	
r eeu/ water supplement	Organic acid	10	1	10.00	69	17	24 64	
	Organic acid and probiotic	10	1	10.00	0	17	27.07	
	Other	0			50	7	14.00	
	Probiotic	10	0	0.00	20	6	27 27	
	Unknown/other	30	6	20.00	22 60	10	16.67	
Use of antibiotics	No treatment	500	109	18 21	1 625	225	1/ 27	
	Treatment	550	100	16.31	1,033	233	14.3/	
		00	9	15.00	158	30	22.78	
	Unknown	20	0	0.00	117	23	19.66	

Norman	breed	ling h	olding	produ	production holding			
Norway		Ν	pos	% pos	Ν	pos	% pos	
Number of pigs in pen	0-9	0			0			
	10	772	0	0.00	1,018	0	0.00	
	11-20	278	0	0.00	347	0	0.00	
	21-100	30	0	0.00	65	0	0.00	
	>100	0			0			
Indoor/outdoor	No	1,077	0	0.00	1,429	0	0.00	
production	Yes	3	0	0.00	1	0	0.00	
Individual housing	No	879	0	0.00	1,077	0	0.00	
-	Yes	201	0	0.00	353	0	0.00	
Age of pigs	No gilts	350	0	0.00	624	0	0.00	
0 10	Mixed age	405	0	0.00	622	0	0.00	
	All gilts	325	0	0.00	184	0	0.00	
Gender of pigs	Male	3	0	0.00	1	0	0.00	
	Female	986	0	0.00	1,203	0	0.00	
	Mixed	91	0	0.00	226	0	0.00	
Production stage	Maiden gilts	308	0	0.00	150	0	0.00	
U	Pregnant	282	0	0.00	424	0	0.00	
	Farrowing and lactating	204	0	0.00	374	0	0.00	
	Service area	185	0	0.00	203	0	0.00	
	Mixed	101	0	0.00	279	0	0.00	
Floor type	Outdoors in fields or paddocks	0			0			
51	Solid floor other bedding	451	0	0.00	709	0	0.00	
	Solid floor with straw	89	0	0.00	85	0	0.00	
	Solid floor without bedding	3	0	0.00	45	0	0.00	
	Partly slatted floor	71	0	0.00	42	0	0.00	
	Slatted floor	466	0	0.00	544	0	0.00	
	Other	0			5	0	0.00	
All in/all out	No	891	0	0.00	1,215	0	0.00	
	Yes	189	0	0.00	215	0	0.00	
Type of diet	Cobbs/rolls/nuts/pellets	540	0	0.00	711	0	0.00	
51	Others	510	0	0.00	630	0	0.00	
	Meal/mash	0			40	0	0.00	
	Porridge/liquids	30	0	0.00	49	0	0.00	
Origin of feed	Commercial compound	980	0	0.00	1,269	0	0.00	
8	Other	100	0	0.00	133	0	0.00	
	Feed with maize	0			0			
	Home-mill	0			28	0	0.00	
Feed/water supplement	Not added	692	0	0.00	1,109	0	0.00	
11	Organic acid	266	0	0.00	199	0	0.00	
	Organic acid and probiotic	0			1	0	0.00	
	Other	122	0	0.00	121	0	0.00	
	Probiotic	0			0			
	Unknown/other	0			0			
Use of antibiotics	No treatment	1,060	0	0.00	1,393	0	0.00	
Treatment		20	0	0.00	37	0	0.00	
	Unknown	0			0			

Switzenland	bree	eding	holding	production holding			
Switzerland		Ν	pos	% pos	Ν	pos	% pos
Number of pigs in pen	0-9	0			3	0	0.00
	10	373	15	4.02	827	29	3.51
	11-20	199	8	4.02	345	19	5.51
	21-100	127	4	3.15	342	9	2.63
	>100	11	1	9.09	23	4	17.39
Indoor/outdoor	No	400	18	4.50	765	43	5.62
production	Yes	310	10	3.23	775	18	2.32
Individual housing	No	506	18	3.56	1,165	38	3.26
	Yes	204	10	4.90	375	23	6.13
Age of pigs	No gilts	383	15	3.92	849	43	5.06
	Mixed age	234	10	4.27	597	13	2.18
	All gilts	93	3	3.23	94	5	5.32
Gender of pigs	Male	0			0		
	Female	667	27	4.05	1,392	57	4.09
	Mixed	43	1	2.33	148	4	2.70
Production stage	Maiden gilts	64	2	3.13	65	3	4.62
	Pregnant	375	10	2.67	906	37	4.08
	Farrowing and lactating	163	8	4.91	306	9	2.94
	Service area	62	5	8.06	144	11	7.64
	Mixed	46	3	6.52	119	1	0.84
Floor type	Outdoors in fields or paddocks	0			10	0	0.00
	Solid floor other bedding	5	0	0.00	8	0	0.00
	Solid floor with straw	95	3	3.16	318	8	2.52
	Solid floor without bedding	18	1	5.56	51	0	0.00
	Partly slatted floor	588	24	4.08	1,109	53	4.78
	Slatted floor	2	0	0.00	5	0	0.00
	Other	2	0	0.00	39	0	0.00
All in/all out	No	576	21	3.65	1,295	56	4.32
	Yes	134	7	5.22	245	5	2.04
Type of diet	Cobbs/rolls/nuts/pellets	56	2	3.57	198	5	2.53
	Others	72	9	12.50	237	4	1.69
	Meal/mash	174	6	3.45	406	9	2.22
	Porridge/liquids	408	11	2.70	699	43	6.15
Origin of feed	Commercial compound	458	19	4.15	1,247	52	4.17
	Other	60	1	1.67	76	2	2.63
	Feed with maize	74	5	6.76	130	3	2.31
	Home-mill	118	3	2.54	87	4	4.60
Feed/water supplement	Not added	410	16	3.90	1,158	50	4.32
	Organic acid	149	6	4.03	147	4	2.72
	Organic acid and probiotic	0			0		
	Other	71	3	4.23	130	5	3.85
	Probiotic	20	0	0.00	15	0	0.00
	Unknown/other	60	3	5.00	90	2	2.22
Use of antibiotics	No treatment	661	27	4.08	1,437	58	4.04
	Treatment	48	1	2.08	102	3	2.94
	Unknown	1	0	0.00	1	0	0.00

Country	Number of holdings	Number of pens	Number of pooled faecal	Holding	location	Diarr symp obsei	heal toms rved	Days fr antimic treat	om last crobial ment	Salm Enter phag	<i>onella</i> ritidis e type	<i>Salm</i> Typhi phag	o <i>nella</i> murium ze type
Country		P	samples	N ^(a)	% ^(a*)	N ^(b)	% ^(b*)	N ^(c)	% ^(c*)	N ^(c)	% ^(d)	N ^(c)	% (e)
Austria	252	2,520	2,520	252	100	2,520	100	301	11.9	-	-	6	100.0
Belgium	225	1,657	2,250	225	100	1,655	99.9	193	11.6	0	0.0	1	2.3
Bulgaria	72	720	720	67	93.1	690	95.8	0	0.0	-	-	-	-
Cyprus	64	640	640	0	0.0	0	0.0	110	17.2	-	-	-	-
Czech Republic	267	2,670	2,670	262	98.1	2,670	100	0	0.0	0	0.0	0	0.0
Denmark	293	2,930	2,930	7	2.4	1	0.03	0	0.0	2	100.0	82	100.0
Estonia	34	340	340	34	100	0	0.0	21	6.2	-	-	-	-
Finland	207	1,629	2,070	0	0.0	1,604	98.5	121	7.4	-	-	-	-
France	343	3,430	3,430	0	0.0	0	0.0	0	0.0	-	-	0	0.0
Germany	201	2,010	2,010	0	0.0	2,010	100	0	0.0	-	-	0	0.0
Hungary	181	1,809	1,810	181	100	1,809	100	353	19.5	1	100.0	9	100.0
Ireland	189	1,890	1,890	0	0.0	1,890	100	118	6.2	-	-	83	100.0
Italy	214	2,140	2,140	214	100	2,140	100	574	26.8	-	-	7	41.2
Latvia	33	330	330	33	100	330	100	0	0.0	-	-	-	-
Lithuania	82	820	820	82	100	820	100	7	0.9	1	100.0	-	-
Luxembourg	44	440	440	44	100	438	99.5	0	0.0	-	-	0	0.0
Netherlands	321	3,210	3,210	321	100	3,210	100	227	7.1	1	100.0	46	83.6
Poland	322	3,220	3,220	321	99.7	3,180	98.8	136	4.2	0	0.0	0	0.0
Portugal	167	1,592	1,670	167	100	1,592	100	190	11.9	-	-	0	0.0
Slovakia	192	1,920	1,920	190	99.0	1,919	99.9	19	1.0	0	0.0	0	0.0
Slovenia	114	625	1,140	111	97.4	625	100	12	1.9	0	0.0	-	-
Spain	359	3,590	3,590	0	0.0	3,534	98.4	0	0.0	0	0.0	0	0.0
Sweden	207	1,694	2,070	198	95.7	1,692	99.9	429	25.3	-	-	1	100.0
United Kingdom	258	2,365	2,580	258	100	2,365	100	162	6.8	-	-	0	0.0
EU total	4,641	44,191	46,410	2,967	63.9	36,694	83.0	2,973	6.7	5	8.3	235	39.0
Norway	251	2,510	2,510	251	100.0	2,508	99.9	0	0.0	-	-	-	-
Switzerland	225	2,250	2,250	224	99.6	2,250	100	138	6.1	0	0.0	0	0.0

D. OVERVIEW OF THE OPTIONAL DATA REPORTED IN THE FRAMEWORK OF THE BASELINE SURVEY

(a) Number of holdings for which the optional holding level data were reported; (a*) % of holdings (out of the total holdings sampled) for which the optional holding level data were reported

(b) Number of pens for which the optional pen level data were reported; (b*) % of pens (out of the total pens sampled) for which the optional pens level data were reported

(c) Number of routine samples for which the optional sample level data were reported; (c*) % of samples (out of the total samples) for which the optional sample level data were reported;

(d) % of samples (out of the total samples positive for *S*. Enteritidis) for which the optional sample level data were reported;

(e) % of samples (out of the total samples total samples positive for *S*. Typhimurium) for which the optional sample level data were reported.

(-) No positive samples

E. STATISTICAL METHODS USED IN THE RISK FACTOR ANALYSIS

Collinearity diagnostics

As collinearity diagnostics both VIF (variance inflation factors) and the condition index were calculated (using SAS PROC REG), both including and excluding country as a variable.

The VIF is an index that reflects how much the variance of an estimated regression coefficient is increased because of collinearity, compared to a situation were no correlation between independent variables is present (as in a completely balanced study design). The VIF for a particular regression coefficient is calculated by regressing the variable on all other independent variables in the model. The VIF is then calculated as $1/(1-R^2)$, where R^2 is the percentage of variance explained by this model. VIF Values larger than 10 indicate the presence of serious collinearity. The condition index is another measure reflecting that high values may indicate that the inversion of the covariance matrix of the independent variables (part of the regression procedure) is numerically unstable. Values of the condition index above 30 are indication of severe multicollinearity, while values above 15 can be a reason for concern. In that case the condition-matrix can be studied to see which variables contribute to the multicollinearity. Tables 13 summarize the findings of the collinearity analysis.

VIF value	Overall model
9.95	All female pigs
7-9	Sample type Pregnant pigs
5-7	Boar replacement policy (>90% purchased) testing delay of 1 day
Highest condition index	18.9

Table 12: Summary of findings from the collinearity analysis

The most serious collinearity was between production stage and gender of the pigs, which lead to a variance inflation factor of 9.95 in the variable gender of the pigs. Therefore the variable "gender of pigs" was left out of the multivariable analysis. Without this variable, the condition index became 18.1, and the higher VIF was 8.5. Inspection of the condition matrix revealed that this condition index was created by the correlation between country and production stage and age of the pigs.

Some correlations are expected in the data because variables are naturally related: for instance, pregnant pigs are mostly kept in pens with only female pigs. Similarly, maiden gilts (production stage) will only contain gilts (age of pigs). Also there is some correlation in the sense that pigs in fields or paddocks (floor type) almost always have outdoor access, while this is less the case with other pigs. Diet reported as 'cobs/roll/nuts/pellets' was for 95.6% commercial compounds. However, as feed that was commercial compound only consisted for less that 50% of 'cobs/roll/nuts/pellets', this did not cause problematic collinearity.

Statistical models fitted

Multivariable logistic models were fitted using holding as a random intercept, using full integration of the random effects (Sas PROC GLIMMIX with Gaussian quadrature). Such a model assumes that the prevalence rates from holdings are normally distributed on the log-odds scale. In case this assumption would be violated, the sandwich estimates were used (option EMPIRICAL) for calculating confidence intervals of the odds ratio's from these models, as these are robust towards misspecification of the model. We used the bias correction suggested by Morel et al. (2003), (option EMPIRICAL=MBN). Using the (bias corrected) sandwich estimator protects against drawing conclusions that are artefacts

from the assumptions in the model, rather than from the data. In order to fit these models, countries without any *Salmonella*-positive pens were removed from the analysis (Finland and Norway) as fitting such models is not possible when prevalence is 0 in a particular group.

In multivariate logistic regression the number of variables and levels of variables is restricted. As a rule of thumb, the number of cases should be at least 10 times the degrees of freedom of the model (Hosmer and Lemeshow, 2000). As the number of *Salmonella* cases available for overall analysis is around 4000, the above mentioned rule is not restrictive for the fitting of model. Therefore, country was entered in the model as a covariate and not as a random effect. Using a random effect forces a particular distribution of country-specific prevalences on the data, which might not be valid. When modelled as a covariate, country-specific effects are modelled in a non-parametric way, so there is no possibility of misspecifying these effects.

In 3% of sampled holdings, the total number of pens was less than 10. In these holdings pens were resampled in order to reach a total of 10 samples. Observations from the same pen cannot be considered independent observations in the statistical analysis. However, as adjusting for the correlation was not feasible for technical reasons and the number of pens which were resampled was small, this dependency was not considered in the analysis. The size of the effects found will not be biased by this decision, but the confidence intervals might be too small. Therefore a sensitivity analysis was carried out, using only a single sample per pen (randomly sampled from the available samples). This showed that the width of the confidence intervals hardly changed and all effects that were statistically significant remained so.

Given this possibility of fitting large models, first models were fitted simultaneously entering all covariates; then backward selection was used, where the least significant variable was removed until all variables in the model has a *P*-value of less than 0.05. Interactions with holding type were tested, as originally the survey was designed for analysis of breeding holdings and production holdings separately, based on the expectation that different mechanisms might be in operation in those groups. Interaction terms with holding type for all variables were added to the model resulting from backward selection. From this model, backward stepwise selection of the interaction terms was carried out. The only interaction terms with holding type retained in the final model were for floor-type and gilt replacement policy.

Intra-cluster Correlation Coefficient

The intra-cluster correlation coefficient (ICC) is a measure to describe the similarity of the responses on the outcome within a holding (cluster). For a random intercept model, the ICC is considering the variance of the random intercepts and the variance of the standard logistic density (Molenberghs and Verbeke, 2005). The ICC was estimated and approximated as the ratio of the variance of the random effects and the sum of the variance of the random effects and the variance of the standard logistic density. The Intra-cluster Correlation Coefficient (ICC) ranges between 0 and 1 and correspond respectively to scenarios of low (closer to zero) or high (closer to one) proportions of unexplained variance that was due to random effects (holding-specific effects, between-holding variability). Let zbe a matrix of estimable functions and D be the unstructured variance-covariance matrix of the random effects b_i . Thus, the ICC for a logistic regression model can be calculated using the following formula:

$$ICC = \frac{a'Da}{a'Da + \pi^2/8}$$

Calculation of PAF values

In order to estimate the relative quantitative impact of the effects that were found, the Population Attributable Fractions (PAFs) were calculated. The PAF gives the percentage of reduction in *Salmonella* prevalence that would be observed if the population of pens was entirely unexposed (or lower exposed) for a certain risk factor, compared with its current (actual) exposure pattern.

The PAF was calculated based on the final model including significant interaction terms with holding type. The PAF calculation was carried out as follows:

Step 1

The final model to predict the prevalence of *Salmonella* under the existing pattern of exposure (Table 3) was used for the PAF calculation. For every pen, the observed value of the variables (like floor type, country, type of diet, etc.) in the model equation was filled in. This yields the probability that this pen is positive for *Salmonella* according to the model. For instance, for a first pen with 48 pigs per pen, the predicted probability of *Salmonella* is 39.1%, while for another pen from the same holding, with 29 pigs, but further having all the same variables, the predicted probability is 37.7%.

Step 2

By averaging the probabilities from all pens in the survey, the predicted prevalence in the entire baseline survey population of pens was calculated. This yields an overall predicted prevalence of 7.99%. This is slightly different from the observed pen prevalence of 8.6%, as the holding-effect predicted by the random effects model is "shrunken" towards the median value. As the distribution of holding prevalence rates is assumed to be normal on the log-odds scale, the average shrinkage is zero on the log-odds scale, but not on the predicted probability scale, where predictions of holdings above the median are shrunken more than those below the median, resulting in a slightly lower predicted prevalence compared to the observed prevalence.

Step 3

Steps 1 and 2 are repeated, but now for each pen not using the existing pattern of exposure, but a "lower" pattern of exposure. For instance, take the same two pens from step 1. They are from a holding with more than 999 breeding pigs. If having 100-399 breeding pigs would be defined as "unexposed", when filling in the model equation again, "100-399 breeding pigs" instead of "more than 999 breeding pigs" should be used. The new predicted probabilities of positivity for *Salmonella* for these pens then become 15.6% and 15.1%. By summing again these probabilities from all pens in the survey (making the holding size "100-399 breeding pigs" for all pens in the survey from holdings with 400 or more breeding pigs), an overall predicted prevalence for the unexposed situation of 5.55% would result.

Step 4

The PAF is now calculated as the difference between the predicted prevalence for the actual situation (7.99%) and that for the "unexposed" situation (5.55%), as fraction of the predicted prevalence for the actual situation. So the PAF here is equal to: (7.99-5.55)/7.99=18.0.

Confidence intervals for the PAFs are calculated using the fixed effect model parameters from the final model and their covariance matrix. These are used to randomly draw a set of model parameters from them, representing a set of model parameters that is randomly draw from the model parameters that are also likely, given the uncertainty of the fitted model. The procedure above (steps 1 to 4) then is carried out with this set of randomly drawn parameters, yielding a PAF value. This procedure is repeated 500 times, yielding 500 PAF values, which represent the distribution of PAF values stemming from the standard errors of the fixed effects. 95% confidence intervals were calculated from

this set of 500 PAF values by taking the 2.5th and 97.5th percentiles. In this procedure we did not take the uncertainty in the random effects into account, as the random effects will not importantly influence the PAF values. This procedure calculates the confidence interval of the PAF, when changing the exposures as observed into new exposures. The uncertainly on whether this observed exposure distribution is equal to the exposure distribution in the entire EU is not taken into account.

Calculations were carried out both unweighted (as described above) and weighted with the number of holdings with more than 50 breeding pigs in each country. In the latter case, only the holdings with more than 50 breeding pigs in the survey were used, and furthermore excluded Norway and Switzerland (as they are not EU member states). All predicted probabilities for each pen (both in step 2 and step 3 above) were then weighted using a weight corresponding to the inverse of the sampling fraction in the particular country and holding type combination. The sampling fraction was calculated for each holding type / country combination. For example, the sampling fraction for breeding holdings in France is the number of French breeding holdings with more than 50 breeding pigs in the survey, divided by the total number of breeding holdings housing at least 50 breeding pigs in France. The weights used are the same as those used in the report part A, and are discussed in more detail there.

F. CORRELATION BETWEEN THE PREVALENCE OF *SALMONELLA*-POSITIVE BREEDING AND PRODUCTION HOLDINGS

Prevalence (%) of Salmonella Typhimurium-positive breeding holdings

Figure 11: Scatter diagram of the prevalence^(a) of *S*. Typhimurium-positive breeding holdings versus the prevalence of *S*. Typhimurium-positive production holdings, *Salmonella* EU baseline survey, 2008

^(a) Bulgaria, Cyprus, Estonia, Finland, Latvia, Slovenia and Norway did not isolate any *S*. Typhimurium in both breeding and production holdings.

Prevalence (%) of Salmonella Derby-positive breeding holdings

^(a) Bulgaria, Estonia, Finland, Lithuania, Sweden and Norway did not isolate any *S*. Derby in both breeding and production holdings.

Prevalence (%) of other Salmonella serovar-positive breeding holdings

Figure 13: Scatter diagram of the prevalence^(a) of breeding holdings positive to serovars other than *S*. Typhimurium and/or *S*. Derby versus the prevalence of production holdings positive to serovars other than *S*. Typhimurium and/or *S*. Derby , *Salmonella* EU baseline survey, 2008

^(a) Estonia, Finland, Sweden and Norway did not isolate any serovars other than S. Typhimurium and S. Derby in both breeding and production holdings.

G. DESCRIPTIVE ANALYSIS OF FACTORS POTENTIALLY ASSOCIATED WITH *SALMONELLA* POSITIVITY IN BREEDING AND IN PRODUCTION HOLDINGS

Table	13:	Observed	prevalence	of pens	with	breeding	pigs	tested	positive	for	Salmonella	by	risk
factor,	Salı	<i>nonella</i> EU	J baseline su	urvey, 20	800								

Risk factor	Category	Number	Positives	Percentage positive	<i>P</i> -value trend-test	<i>P</i> -value exact-test	<i>P</i> -value chi-square
Testing delay	0	5,871	404	6.88	<.0001	<.0001	<.0001
	1	26,256	1,776	6.76			
	2	10,793	840	7.78			
	3-4	7,395	895	12.10			
	>= 5	855	86	10.06			
Month	JAN08	1,410	80	5.67	<.0001	<.0001	<.0001
	FEB08	3,270	207	6.33			
	MAR08	3,850	267	6.94			
	APR08	4,130	304	7.36			
	MAY08	4,030	338	8.39			
	JUN08	4,660	321	6.89			
	JUL08	3,840	269	7.01			
	AUG08	3,610	211	5.84			
	SEP08	5,010	441	8.80			
	OCT08	5,770	538	9.32			
	NOV08	5,990	566	9.45			
	DEC08	5.600	459	8.20			
Ouarter	January-March	8.530	554	6.49	<.0001	<.0001	<.0001
Z	April-June	12.820	963	7.51			
	July-September	12,460	921	7.39			
	October-December	17.360	1.563	9.00			
Season	Winter	10.280	746	7.26	<.0001	<.0001	<.0001
500000	Spring	12.010	909	7.57	.0001		.0001
	Summer	12,110	801	6.61			
	Autumn	16,770	1.545	9.21			
Breeding/Production	Nucleus	4 020	345	8 58	0 4292	< 0001	< 0001
type	Multiplier or supplier	12.070	959	7.95			
	Farrow to finish	18.860	1.310	6.95			
	Farrow to grower	12,710	1 008	7 93			
	Farrow to weaper	3 510	379	10.80			
Holding size	<100	13 490	388	2.88	< 0001	< 0001	< 0001
	100-399	21,930	1 751	7 98	.0001		.0001
	400-999	9 780	1 227	12.55			
	>999	5 970	635	10.64			
Gilt replacement policy	>90% gilts homebred	25 500	2 019	7 92	0 0884	< 0001	< 0001
FF	10-90% gilts homebred	6.750	382	5.66			
	>90% gilts purchased	18 920	1 600	8 46			
Boar replacement policy	no boars on farm	5 980	454	7 59	< 0001	< 0001	< 0001
Dom reprice ment points	>90% homebred	16 180	1 521	9 40	.0001		.0001
	10-90% purchased	3.730	331	8.87			
	>90% purchased	25 280	1 695	6 70			
Type of sample	Swab	15 743	1 580	10.04	< 0001	< 0001	< 0001
	Composite	35 /27	2 421	6.83	.0001		
Number of pigs in per		133,427	2,421	0.83 8.08	< 0001	< 0001	< 0001
ramber of pigs in pell	10	21 276	1 515	6.00	~.0001	~.0001	~.0001
	11_20	24,370 1/ 7/1	1,515	7.51			
	21-100	0 007	1,107	10.00			
	>100	9,003 1 737	1,000	10.99			
	>100	1,/3/	258	14.85			

Analysis of the baseline survey on *Salmonella* in breeding pigs in the EU, 2008 Part B: factors associated with *Salmonella* pen positivity

Age of pigs No gills 19,983 1,524 7,53 0,8097 0,0817 0,0819 Mixed age 22,439 1,821 8,12 6 0,0807 0,0819 Gender of pigs Male 460 23 5,00 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001	Risk factor	Category	Number	Positives	Percentage	<i>P</i> -value	<i>P</i> -value	<i>P</i> -value
Age of pigs No gains 19,98.5 1,224 1,03 0.3099 0.0877 0.0819 Mixed age 22,439 1,821 8.12 8.12 3.12 3.12 3.12 3.12 3.12 3.12 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.14 3.13 3.13 3.13 3.14 3.13 3.14 3.13 3.14 3.13 3.14 </th <th>A ap of pige</th> <th>No gilta</th> <th>10.092</th> <th>1 524</th> <th></th> <th></th> <th></th> <th></th>	A ap of pige	No gilta	10.092	1 524				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Age of pigs	No gills Mixed age	19,983	1,524	/.03 8.12	0.8099	0.0877	0.0819
		All gilta	22,439	1,021	0.12 7.50			
	Gender of nigs	All glits Male	0,740	030	7.50	< 0001	< 0001	< 0001
Initial $47,926$ $3,030$ 6.09 Production stage Mixed $7,238$ 421 5.82 Maiden gilts $5,149$ 438 8.51 <0001 <0001 Pregnant $21,527$ $1,777$ 8.25 <0001 <0001 <0001 Individual housing No $44,687$ 3.409 7.63 <0001 <0001 <0001 Individual housing No $24,761$ $1,767$ 7.14 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <	Gender of pigs	Famala	400	25	5.00 8.08	<.0001	<.0001	<.0001
Infactu 0,112 0,11 0,11 Production stage Mixed 7,238 421 5.82 Maiden gilts 5,149 438 8.51 <.0001		Mixed	6312	3,367	6.10			
	Production stage	Mixed	7 238	421	5.82			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 Toduction stage	Maiden gilts	5 140	421	9.62 8.51	< 0001	< 0001	< 0001
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		Dregnant	21 527	1 777	8.21	<.0001	<.0001	<.0001
		Farrowing and lactating	11 041	740	6.70			
		Service area	6 215	625	10.70			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Indoor/outdoor	No	0,215	2 400	7.62	< 0001	< 0001	< 0001
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	production	NO	6 492	5,409	0.12	<.0001	<.0001	<.0001
	Individual housing	1 cs	0,405	1 767	9.15	< 0001	< 0001	< 0001
Floor type Outdoors in fields or paddocks 1,104 228 20.65 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <0001 <	murvidual nousing	No	24,701	1,707	/.14 0.16	<.0001	<.0001	<.0001
Proof type Outdoors in fields of paddocks 1,104 228 20.65 <.0001	Electro	i es Outdoors in fields or	20,409	2,234	8.40			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	rioor type	paddocks	1 104	228	20.65	< 0001	< 0001	< 0001
		Solid floor other bedding	2 346	42	1 79	4.0001	0001	0001
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Solid floor with straw	8 165	303	3 71			
bodding 5,699 376 6.60 Partly slatted floor 21,747 2,066 9,50 Slatted floor 10,261 967 9,42 Other 1,848 19 1.03 All in or all out No 27,411 2,216 8.08 0.0163 0.0167 0.0163 Yes 23,759 1,785 7.51 001 <.0001		Solid floor without	0,105	505	5.71			
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		bedding	5.699	376	6.60			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Partly slatted floor	21.747	2.066	9.50			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Slatted floor	10.261	967	9.42			
All in or all out No $27,411$ $2,216$ 8.08 0.0163 0.0167 0.0163 Origin of feed Commercial compound $29,309$ $3,031$ 10.34 $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ <td></td> <td>Other</td> <td>1.848</td> <td>19</td> <td>1.03</td> <td></td> <td></td> <td></td>		Other	1.848	19	1.03			
Yes $23,759$ $1,785$ 7.51 Origin of feedCommercial compound $29,309$ $3,031$ 10.34 $<.0001$ $<.0001$ $<.0001$ Feed with maize $1,919$ 100 5.21 $Home-mill$ $18,001$ 823 4.57 Other $1,941$ 47 2.42 2.42 2.42 2.42 2.42 Type of dietCobbs/rolls/nuts/pellets $14,253$ $1,937$ 13.59 $<.0001$ $<.0001$ $<.0001$ Others $3,642$ 177 4.86 $Meal/mash$ $24,224$ $1,326$ 5.47 Porridge/liquids $9,051$ 561 6.20 0.001 $<.0001$ $<.0001$ $<.0001$ Organic acid added $40,666$ $3,167$ 7.79 $<.0001$ $<.0001$ $<.0001$ Organic acid added 4528 233 5.15 0.0001 $<.0001$ $<.0001$ Organic acid added $45,528$ 233 5.15 0.0001 $<.0001$ $<.0001$ Organic acid added $45,528$ 233 5.15 0.0001 $<.0001$ $<.0001$ Orbor supplementNo probiotic added $45,976$ 601 10.06 0.0001 $<.0001$ $<.0001$ $<.0001$ Other added $3,096$ 216 6.98 0.0001 $<.0001$ $<.0001$ $<.0001$ $<.0001$ Other added $3,096$ 216 6.98 0.0001 $<.0001$ $<.0001$ $<.0001$ $<.0001$ Unknown $5,976$ 601 10.06 <td>All in or all out</td> <td>No</td> <td>27.411</td> <td>2.216</td> <td>8.08</td> <td>0.0163</td> <td>0.0167</td> <td>0.0163</td>	All in or all out	No	27.411	2.216	8.08	0.0163	0.0167	0.0163
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Yes	23,759	1,785	7.51			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Origin of feed	Commercial compound	29.309	3.031	10.34	<.0001	<.0001	<.0001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0	Feed with maize	1.919	100	5.21			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		Home-mill	18.001	823	4.57			
Type of diet Cobbs/rolls/nuts/pellets 14,253 1,937 13.59 <.0001		Other	1.941	47	2.42			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Type of diet	Cobbs/rolls/nuts/pellets	14.253	1.937	13.59	<.0001	<.0001	<.0001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	rype of diet	Others	3 642	177	4 86			
Porridge/liquids9,0515616.20Organic acid supplementNo organic acid added40,6663,1677.79<.0001		Meal/mash	24.224	1.326	5.47			
Organic acid supplementNo organic acid added $40,666$ $3,167$ 7.79 $<.0001$ $<.0001$ $<.0001$ Organic acid added $4,528$ 233 5.15 $.1066$ $.10.06$ $.10.06$ Probiotic supplementNo probiotic added $44,335$ $3,352$ 7.56 $<.0001$ $<.0001$ $<.0001$ Probiotic added 859 48 5.59 $.1066$ $.10.06$ $.0001$ $<.0001$ $<.0001$ Other supplementsNo other added $42,098$ $3,184$ 7.56 $<.0001$ $<.0001$ $<.0001$ Other supplementsNo other added $42,098$ $3,184$ 7.56 $<.0001$ $<.0001$ $<.0001$ Unknown $5,976$ 601 10.06 $.0001$ $<.0001$ $<.0001$ $<.0001$ $<.0001$ Use of antibioticsNo treatment $42,593$ $3,204$ 7.52 $<.0001$ $<.0001$ $<.0001$ Unknown 1690 144 8.48 8.48 8.48 8.48 8.48		Porridge/liquids	9 051	561	6 20			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Organic acid supplement	No organic acid added	40.666	3.167	7.79	<.0001	<.0001	<.0001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	organie dela supplement	Organic acid added	4 528	233	5.15			
Probiotic supplementNo probiotic added $44,335$ $3,352$ 7.56 $<.0001$ $<.0001$ $<.0001$ Probiotic added 859 48 5.59 0.001 $<.0001$ $<.0001$ $<.0001$ $<.0001$ Other supplementsNo other added $42,098$ $3,184$ 7.56 $<.0001$ $<.0001$ $<.0001$ $<.0001$ Other added $3,096$ 216 6.98 0.001 $<.0001$ $<.0001$ $<.0001$ $<.0001$ Use of antibioticsNo treatment $42,593$ $3,204$ 7.52 $<.0001$ $<.0001$ $<.0001$ Unknown 1.600 144 8.48 8.48 8.48 8.48 $<.0001$ $<.0001$		Unknown	5 976	6 01	10.06			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Probiotic supplement	No probiotic added	44 335	3 352	7 56	< 0001	< 0001	< 0001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Probiotic added	859	48	5 59			
Other supplements No other added $42,098$ $3,184$ 7.56 $<.0001$ $<.0001$ $<.0001$ Other added $3,096$ 216 6.98 $ <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001 <.0001$		Unknown	5 976	601	10.06			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Other supplements	No other added	42 098	3 184	7 56	< 0001	< 0001	< 0001
Unknown 5,976 601 10.06 Use of antibiotics No treatment 42,593 3,204 7.52 <.0001	other supplements	Other added	3 096	216	6.98	4.0001	0001	
Use of antibiotics No treatment 42,593 3,204 7.52 <.0001 <.0001 <.0001 <.0001 Unknown 1,699 144 8,48		Unknown	5 976	601	10.06			
Treatment 6,878 653 9.49 Unknown 1,699 144 8,48	Use of antibiotics	No treatment	42 593	3 204	7 57	< 0001	< 0001	< 0001
$\frac{1}{100} \frac{1}{100} \frac{1}$	ese or untioloties	Treatment	6 878	653	9.49	0001	0001	
		Unknown	1 699	144	8 48			

Production pig holding

Figure 14: Proportion of *Salmonella*-positive pens with 95% confidence interval by testing delay in days (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

Figure 15: Proportion of *Salmonella*-positive pens with 95% confidence interval by month of sampling (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

Figure 16: Proportion of *Salmonella*-positive pens with 95% confidence interval by season of sampling (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

Production pig holding

Type of breeding holding

Figure 17: Proportion of Salmonella-positive pens with 95% confidence interval by type of breeding/production holding (number of pens represented inside each bar), Salmonella EU baseline survey, 2008

Figure 18: Proportion of *Salmonella*-positive pens with 95% confidence interval by gilt replacement policy (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

Boar replacement policy

Figure 19: Proportion of *Salmonella*-positive pens with 95% confidence interval by boar replacement policy (number of holdings represented inside each bar), *Salmonella* EU baseline survey, 2008

Figure 20: Proportion of *Salmonella*-positive pens with 95% confidence interval by type of sample (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

Production pig holding

Production pig holding

Figure 21: Proportion of *Salmonella*-positive pens with 95% confidence interval by number of pigs in the pen (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

Figure 22: Proportion of *Salmonella*-positive pens with 95% confidence interval by age category of the pigs (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

Production pig holding

Gender of the pigs

Figure 23: Proportion of *Salmonella*-positive pens with 95% confidence interval by gender of the pigs (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

Production pig holding

Figure 24: Proportion of *Salmonella*-positive pens with 95% confidence interval by production stage (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

Production pig holding

Figure 25: Proportion of *Salmonella*-positive pens with 95% confidence interval by indoor/outdoor production (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

Production pig holding

Figure 26: Proportion of *Salmonella*-positive pens with 95% confidence interval by individual housing (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

Production pig holding

Figure 27: Proportion of *Salmonella*-positive pens with 95% confidence interval by all in/all out and cleaned (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

Organic acid feed/water supplement

Figure 28: Proportion of *Salmonella*-positive pens with 95% confidence interval by use of organic acid as feed/water supplement (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

Probiotic feed/water supplement

Figure 29: Proportion of *Salmonella* positive pens with 95% confidence interval by use of probiotic as feed/water supplement (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

Other leed/water suppleme

Production pig holding

Figure 30: Proportion of *Salmonella* positive pens with 95% confidence interval by use of other^(a) feed/water supplement (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

^(a) "Other feed/water supplement" includes combinations of different feed/water supplements, such as for example: organic acid/probiotic/other, othes, organic acid/probiotic/other, etc.

Figure 31: Proportion of *Salmonella*-positive pens with 95% confidence interval by use of antibiotics (number of pens represented inside each bar), *Salmonella* EU baseline survey, 2008

Production pig holding

Table 14: Bivariable odds ratios of *Salmonella*-positive pens in holdings with breeding pigs, by risk factor, from a model with country as fixed effect and holding as random intercept; EU *Salmonella* baseline survey, 2008

Risk factor	Comparison	OR ^(a)	95%	CI ^(b)	DF	<i>P</i> -value
Delay between sampling	1 vs 0	1.03	0.75	1.42	4	0.6717
and testing	2 vs 0	1.19	0.82	1.73		
	3-4 vs 0	1.15	0.74	1.79		
	>= 5 vs 0	1.51	0.75	3.01		
Season of sampling	Spring vs Winter	0.98	0.73	1.32	3	0.0532
	Summer vs Winter	0.73	0.55	0.98		
	Autumn vs Winter	1.00	0.76	1.30		
Breeding/production type	Nucleus vs Multiplier or supplier	1.05	0.74	1.50	4	0.057
	Farrow to finish vs Multiplier or supplier	0.72	0.56	0.92		
	Farrow to grower vs Multiplier or supplier	1.02	0.77	1.35		
	Farrow to weaner vs Multiplier or supplier	1.24	0.85	1.80		
Size of the holding	100-399 vs 1 <100	1.87	1.36	2.56	3	<.0001
	400-999 vs 1 <100	3.35	2.36	4.76		
	>999 vs 1 <100	5.49	3.67	8.22		
Gilt replacement policy	10-90% Gilts homebred vs >90% Gilts homebred	0.80	0.59	1.08	2	0.3125
	>90% Gilts purchased vs >90% Gilts homebred	1.01	0.82	1.25		
Boar replacement policy	>90% Homebred vs No boars on farm	0.61	0.45	0.84	3	0.0107
	10-90% Purchased vs No boars on farm	0.74	0.48	1.14		
	>90% Purchased vs No boars on farm	0.62	0.46	0.84		
Sample type	Composite vs Swab	0.71	0.56	0.90	1	0.0038
Pigs per pen	0-9 vs 0 10	0.66	0.36	1.23	4	<.0001
	11-20 vs 0 10	1.20	1.03	1.39		
	21-100 vs 0 10	1.54	1.29	1.83		
	>100 vs 0 10	1.59	1.16	2.18		
Pigs per pen (continuous)	Per 10 pigs	1.06	1.03	1.09	1	<.0001
Age group	Mixed age vs No gilts	1.10	0.95	1.26	2	0.0046
	All gilts vs No gilts	1.32	1.12	1.56		
Gender	Male vs Female	0.94	0.56	1.59	2	0.4447
	Mixed vs Female	1.14	0.93	1.40		
Production stage	Pregnant vs Maiden gilts	0.82	0.68	0.98	4	<.0001
	Farrowing and lactating vs Maiden gilts	0.59	0.48	0.72		
	Service area vs Maiden gilts	1.00	0.82	1.23		
	Mixed vs Maiden gilts	0.83	0.65	1.06		
Indoor/outdoor production	Yes vs No	1.35	1.09	1.67	1	0.0067
Individual housing	Yes vs No	0.83	0.73	0.94	1	0.0042
Floor type	Outdoors in fields or paddocks vs Other	1.52	0.64	3.61	6	<.0001
	Partly slatted floor vs Other	0.86	0.40	1.88		
	Slatted floor vs Other	0.64	0.29	1.40		
	Solid floor other bedding vs Other	1.23	0.43	3.52		
	Solid floor with straw vs Other	0.60	0.27	1.35		
	Solid floor without bedding vs Other	1.17	0.52	2.61		
All in all out	Gradual replacement vs All in all out	1.17	1.03	1.34	1	0.0201
Origin of feed	Feed with maize vs Commercial compound	0.45	0.26	0.75	3	<.0001
	Home-mill vs Commercial compound	0.39	0.31	0.48		
	Other vs Commercial compound	0.40	0.21	0.77	-	
Type of diet	Meal/mash vs Cobbs/rolls/nuts/pellets	0.38	0.30	0.47	3	<.0001
	Porridge/liquids vs Cobbs/rolls/nuts/pellets	0.40	0.30	0.52		
	Others vs Cobbs/rolls/nuts/pellets	0.55	0.36	0.83		

^(a) OR: odds ratio

^(b) 95% Confidence Interval

Analysis of the baseline survey on *Salmonella* in breeding pigs in the EU, 2008 Part B: factors associated with *Salmonella* pen positivity

Risk factor	Comparison	OR ^(a)	95%	o CI ^(b)	DF	<i>P</i> -value
Supplements given	Organic acid added vs No organic acid added	0.89	0.63	1.25	1	0.4964
	Probiotic added vs No probiotic added	0.53	0.24	1.19	1	0.1226
	Other added vs No other added	1.01	0.69	1.46	1	0.9677
	Unknown if added vs Known if added	1.23	0.89	1.70	1	0.2143
Antibiotic used	Treatment vs No treatment	0.94	0.79	1.11	2	0.4396
	Unknown vs No treatment	1.27	0.76	2.13		

^(a) OR: odds ratio

^(b) 95% Confidence Interval

H. RISK FACTOR ANALYSIS: FULL MODEL

Table 15: Full logistic mixed model^(a) for factors associated with *Salmonella*-positive pens, *Salmonella* EU baseline survey, 2008

Risk factor	Comparison		95%	CI ^(c)	DF	<i>P</i> -value
Testing delay	1 vs 0	0.96	0.70	1.32	4	0.7254
	2 vs 0	1.09	0.75	1.59		
	3-4 vs 0	1.13	0.73	1.75		
	>= 5 vs 0	1.35	0.70	2.59		
Season	Spring vs Winter	0.92	0.69	1.24	3	0.0689
	Summer vs Winter	0.73	0.55	0.98		
	Autumn vs Winter	0.98	0.75	1.29		
Breeding/production type	Nucleus vs Multiplier or supplier	1.05	0.74	1.51	4	0.5686
	Farrow to finish vs Multiplier or supplier	0.84	0.65	1.07		
	Farrow to grower vs Multiplier or supplier	0.98	0.74	1.30		
	Farrow to weaner vs Multiplier or supplier	0.93	0.64	1.35		
Holding size	100-399 vs <100	1.80	1.30	2.48	3	<.0001
	400-999 vs <100	3.08	2.14	4.43		
	>999 vs <100	4.89	3.23	7.42		
Gilt replacement policy	10-90% Gilts homebred vs >90% Gilts					
	homebred	0.90	0.66	1.23	2	0.8018
	>90% Gilts purchased vs >90% Gilts homebred	0.97	0.78	1.21		
Boar replacement policy	>90% Homebred vs No boars on farm	0.63	0.46	0.87	3	0.0280
	10-90% Purchased vs No boars on farm	0.79	0.51	1.23		
	>90% Purchased vs No boars on farm	0.67	0.49	0.91		
Number of Pigs in Pen	Per 10 pigs	1.03	1.01	1.06	1	0.0174
Age of Pigs	Mixed age vs No gilts	1.08	0.93	1.24	2	0.3643
	All gilts vs No gilts	1.17	0.92	1.48		
Production stage	Pregnant vs Maiden gilts	0.89	0.69	1.15	4	<.0001
	Farrowing and lactating vs Maiden gilts	0.72	0.53	0.96		
	Service area vs Maiden gilts	1.17	0.89	1.53		
	Mixed vs Maiden gilts	0.94	0.70	1.28		
Indoor/outdoor production	Yes vs No	1.09	0.86	1.40	1	0.4689
Individual housing	Yes vs No	1.03	0.88	1.20	1	0.7340
Floor type	Outdoors in fields or paddocks vs Slatted floor	2.22	1.38	3.59	6	<.0001
	Solid floor other bedding vs Slatted floor	2.10	1.04	4.23		
	Solid floor with straw vs Slatted floor	0.91	0.65	1.28		
	Solid floor without bedding vs Slatted floor	1.79	1.32	2.42		
	Partly slatted floor vs Slatted floor	1.27	1.07	1.53		
	Other vs Slatted floor	1.46	0.64	3.31		
All in/all out and cleaned	Yes vs No	1.04	0.90	1.21	1	0.5875
Origin of feed	Other vs Commercial compound	0.52	0.27	0.99	3	0.0002
	Feed with maize vs Commercial compound	0.62	0.37	1.04		
	Home-mill vs Commercial compound	0.58	0.45	0.75		

Risk factor	Comparison	OR ^(b)	95% (CI ^(c)	DF	<i>P</i> -value
Type of diet	Meal/mash vs Cobbs/rolls/nuts/pellets	0.53	0.42	0.68	3	<.0001
	Porridge/liquids vs Cobbs/rolls/nuts/pellets	0.47	0.35	0.64		
	Others vs Cobbs/rolls/nuts/pellets	0.67	0.43	1.04		
Probiotic supplement	Probiotic added vs No probiotic added	0.57	0.26	1.25	1	0.1623
Organic acid supplement	Organic acid added vs No organic acid added	0.86	0.61	1.21	1	0.3811
Other supplement	Other added vs No other added	1.03	0.71	1.50	1	0.8745
Antibiotic	Treatment vs No treatment	1.01	0.84	1.20	2	0.8155
	Unknown vs No treatment	1.17	0.72	1.91		

^(a) Odds ratio estimates and standard errors were assessed using a mixed model with a random effect on the intercept to take account of holding-effects and with the factor 'country' as a fixed effect. The between-holding variance is statistically significant and has a variance of 4.24 [3.82; 4.70] on the log odds scale.

^(b) All odds ratios (OR) were adjusted for the factors 'country' and 'sample type', which were both significant. Although included in the model as fixed effect, the factor "sample type" was not illustrated in this table because it can not be considered a potential risk factor for *Salmonella* pen positivity. Indeed, "sample type" is a factor related to the sensitivity of the sampling method/process. Country effects were not shown.

^(c) 95% Confidence Interval

The sample type resulted to be significantly related to the sensitivity of the sampling and testing process. In particular, the use of composite sample was found to be associated with a lower *Salmonella* positivity compared to the swab sample (OR 0.72; 95%CI: 0.57-0.92; *P*-value <0.0084). The swab sample can be therefore considered a more sensitive sampling method in detecting *Salmonella* positivity than the composite sample.

I. WEIGHTED POPULATION ATTRIBUTABLE FRACTIONS

Table 16: Weighted Population Attributable Fractions estimating the expected reductions (%) in the number of *Salmonella*-positive pens by theoretical elimination of significant risk factors for the EU MSs, *Salmonella* EU baseline survey, 2008^(a)

Variable	Theoretical scenarios of lower risk categories	Theoretical percentage reduction of <i>Salmonella</i> - positive pens ^(b) [95% CL ^(c)]
Holding size (scenario 1)	All holdings would house less than 400 breeding pigs	17.9 [7.0;26.4]
Holding size (scenario 2)	All holdings would house less than 1,000 breeding pigs	4.9 [-5.2;13.2]
Number of pigs per Pen	All Pens would house 10 or less pigs	3.4 [-5.2;9.8]
Floor type (scenario 1)	All floors (except solid floors with straw) would be (fully) slatted floors	13.5 [1.9;21.2]
Floor type (scenario 2)	All floors (except slatted floors) would be solid floors with straw	16.1 [-3.3;31.5]
Origin of Feed	All feed would be home-milled	23.5 [9.7;34.1]
Type of diet	All diet would be porridge/liquid diet	23.3[8.6;34.6]

^(a) 24 MSs and two non-MSs, Norway and Switzerland, conducted the survey. Greece, Malta and Romania did not participate in the survey.

^(b) Population attributable fractions were weighted for the number of holdings in the countries, in order to represent all holdings with more than 50 breeding pigs in the EU (see appendix E)

^(c) The confidence limits (CL) only reflect the uncertainty of investigated factors in the sampled holdings (see Materials and Methods). It was assumed that the risk factor distribution in the total population of holdings with breeding pigs in each country was equal to that in the sampled holdings.

J. DETAILS ON THE ANALYSIS OF THE SALMONELLA SEROVAR DISTRIBUTION IN THE EU

Table 17: Number of tested and positive breeding holdings, positivity percentage and number of serovars reported in breeding holdings by 24 MSs, Norway and Switzerland, *Salmonella* EU baseline survey, 2008

Country	Breed	ling holdin	No. of different	
	Sampled	Positive	Pos %	- serovars reported ^(a)
Austria	79	5	6.3	3
Belgium	16	3	18.8	3
Bulgaria	47	1	2.1	1
Cyprus	4	2	50.0	2
Czech Republic	106	11	10.4	6
Denmark	95	39	41.1	9
Estonia	6	0	0.0	0
Finland	50	0	0.0	0
France	157	79	50.3	21
Germany	46	13	28.3	6
Hungary	40	12	30.0	10
Ireland	40	21	52.5	7
Italy	43	22	51.2	9
Latvia	5	1	20.0	2
Lithuania	10	0	0.0	0
Luxembourg	3	1	33.3	1
Netherlands	109	63	57.8	17
Poland	144	10	6.9	5
Portugal	33	15	45.5	10
Slovakia	96	11	11.5	8
Slovenia	27	0	0.0	0
Spain	150	96	64.0	27
Sweden	57	1	1.8	1
United Kingdom	67	35	52.2	18
EU Total	1,430	441	30.8	54
Norway	108	0	0.0	0
Switzerland	71	11	15.5	8
Total	1,609	452	28.1	54

^(a) Untypeable isolates were not considered

In the EU, 30.8% of breeding holdings were positive for *Salmonella*, while the overall positivity was lower (28.1%), due to the fact that Norway had no positive samples. Highest positivity was observed in Spain (64.0%), followed by the Netherlands (57.8%). Estonia, Finland, Lithuania, Slovenia and Norway had no positive samples.

Table 18: Number of tested and positive production holdings, positivity percentage and number of serovars reported in production holdings with breeding pigs by 24 MSs, Norway and Switzerland, *Salmonella* EU baseline survey, 2008.

Country	Produ	ction holdi	ngs	No. of different
	Sampled	Positive	Pos %	serovars reported ^(*)
Austria	173	10	5.8	7
Belgium	209	76	36.4	26
Bulgaria	25	0	0.0	0
Cyprus	60	11	18.3	5
Czech Republic	161	25	15.5	9
Denmark	198	82	41.4	14
Estonia	28	1	3.6	1
Finland	157	0	0.0	0
France	186	72	38.7	24
Germany	155	32	20.6	15
Hungary	141	39	27.7	14
Ireland	149	71	47.7	19
Italy	171	75	43.9	10
Latvia	28	8	28.6	6
Lithuania	72	6	8.3	5
Luxembourg	41	9	22.0	5
Netherlands	212	118	55.7	26
Poland	178	17	9.6	10
Portugal	134	58	43.3	17
Slovakia	96	18	18.8	8
Slovenia	87	9	10.3	7
Spain	209	111	53.1	29
Sweden	150	0	0.0	0
United Kingdom	191	84	44.0	30
EU Total	3,211	932	29.0	87
Norway	143	0	0.0	0
Switzerland	154	18	11.7	10
Total	3,508	950	27.1	88

^(a) Untypeable isolates were not considered

In the EU, 29.0% of production holdings were positive for *Salmonella*, while the overall percentage including Norway and Switzerland was 27.1%. Highest positivity was observed in the Netherlands (55.7%), followed by Spain (53.1%). Bulgaria, Finland, Sweden and Norway had no positive samples.

Table 19:	Frequency	distribution	of the	top 20) serovars	from	breeding	pig	holdings	in	the	EU,
Norway an	d Switzerla	nd, <i>Salmonel</i>	<i>la</i> EU ł	paseline	e survey, 2	008						

	Isolates (N=1,303)	Holdings	$(N=452^{(a)})$	Countries
Serovars	Ν	%	Ν	%	with serovars
S. Derby	312	23.9	134	29.6	18
S. Typhimurium	233	17.9	115	25.4	17
S. Infantis	65	5.0	35	7.7	7
S. Rissen	59	4.5	33	7.3	5
S. London	83	6.4	29	6.4	8
S. Anatum	49	3.8	25	5.5	5
S. Livingstone	71	5.4	25	5.5	11
S. Kedougou	26	2.0	15	3.3	4
S. Muenchen	30	2.3	14	3.1	6
S. Bredeney	27	2.1	13	2.9	6
S. Goldcoast	29	2.2	13	2.9	3
S. Agona	20	1.5	9	2.0	7
S. Bovismorbificans	25	1.9	9	2.0	5
S. Brandenburg	11	0.8	8	1.8	4
S. Enteritidis	15	1.2	8	1.8	4
S. Panama	16	1.2	8	1.8	4
S. Reading	25	1.9	8	1.8	2
S. Wien	11	0.8	8	1.8	1
S. Meleagridis	17	1.3	7	1.5	1
S. 4,5,12:i:- ^(b)	13	1.0	6	1.3	4
Others	130	10.1	66	14.3	-
Salmonella untypeable	36	2.8	21	4.6	6

 $^{(a)}$ Holdings may have more than one serovar isolated, so the total for this column is larger than 452 and 100%

(b) According to EFSA's BIOHAZ panel scientific opinion on monitoring and assessment of the public health risk of "Salmonella Typhimurium-like" strains (EFSA, 2010d), this Salmonella antigenic formula is recommended to be reported as 'monophasic Salmonella Typhimurium'. However, to ensure consistency with the previously published Part A report (EFSA, 2010a), the Salmonella antigenic formula is kept here

Serovars	Isolates (N	=2,699)	Holdings	s (N=950 ^(a))	Countries with
_	Ν	%	Ν	%	serovars
S. Derby	641	23.7	271	21.6	20
S. Typhimurium	369	13.7	191	15.2	16
S. London	229	8.5	90	7.2	15
S. Infantis	132	4.9	58	4.6	13
S. Rissen	82	3.0	56	4.5	6
S. Livingstone	89	3.3	50	4.0	13
S. Anatum	117	4.3	43	3.4	10
S. Bredeney	76	2.8	40	3.2	13
S. Goldcoast	108	4.0	39	3.1	10
S. Bovismorbificans	56	2.1	31	2.5	9
S. Brandenburg	75	2.8	27	2.2	9
S. Agona	59	2.2	24	1.9	7
S. Enteritidis	45	1.7	21	1.7	10
S. Give	29	1.1	18	1.4	8
S. Reading	38	1.4	18	1.4	2
S. Panama	39	1.4	16	1.3	6
<i>S</i> . 4,5,12:i:- ^(b)	25	0.9	15	1.2	7
S. Kedougou	26	1.0	11	0.9	3
S. Meleagridis	29	1.1	11	0.9	3
S. Mbandaka	14	0.5	9	0.7	8
Others	302	11.2	150	12.0	-
Salmonella untypeable	119	4.4	64	5.1	11

Table 20: Frequency distribution of the top 20 serovars from production holdings with breeding pigs in the EU, Norway and Switzerland, *Salmonella* EU baseline survey, 2008

^(a) Holdings may have more than one serovar isolated, so the total for this column is larger than 950 and 100%

(b) According to EFSA's BIOHAZ panel scientific opinion on monitoring and assessment of the public health risk of "Salmonella Typhimurium-like" strains (EFSA, 2010d), this Salmonella antigenic formula is recommended to be reported as 'monophasic Salmonella Typhimurium'. However, to ensure consistency with the previously published Part A report (EFSA, 2010a), the Salmonella antigenic formula is kept here

The relative percentage of *S*. Typhimurium, *S*. Derby, *S*. Enteritidis, *S*. Infantis, *S*. Rissen, *S*. Livingstone, *S*. London, *S*. Anatum, *S*. Goldcoast and *S*. Bredeney in countries with positive breeding and/or production holdings can be observed in Figure 32. Data on serovars not included in the top-20 list can be found in the part A report (EFSA, 2009b).

Figure 32: Relative frequency distribution (%) of *S*. Typhimurium, *S*. Derby, *S*. Enteritidis, *S*. Infantis, *S*. Rissen, *S*. Livingstone, *S*. London, *S*. Anatum, *S*. Goldcoast and *S*. Bredeney in breeding (B) and in production (P) holdings in EU MSs and Switzerland, *Salmonella* EU baseline survey, $2008^{(a)}$

^(a) The numbers on top of the bars show the total number of positive samples, corresponding to 100% for each bar

K. PREVALENCE MAPS OF THE TOP-TEN SALMONELLA SEROVARS DETECTED IN THE SURVEY

Figure 33: Prevalence of *Salmonella*-positive breeding holdings, *Salmonella* EU baseline survey, 2008

Figure 34: Prevalence of *Salmonella*-positive production holdings, *Salmonella* EU baseline survey, 2008

Figure 35: Prevalence of S. Typhimurium-positive breeding holdings, Salmonella EU baseline survey, 2008

Figure 36: Prevalence of S. Typhimurium-positive production holdings, Salmonella EU baseline survey, 2008

Figure 37: Prevalence of S. Derby-positive breeding holdings, Salmonella EU baseline survey, 2008

Figure 38: Prevalence of S. Derby-positive production holdings, Salmonella EU baseline survey, 2008

Figure 40: Prevalence of S. Enteritidis-positive production holdings, Salmonella EU baseline survey, 2008

Figure 42: Prevalence of *S*. Infantis-positive production holdings, *Salmonella* EU baseline survey, 2008

Figure 43: Prevalence of S. Rissen-positive breeding holdings, Salmonella EU baseline survey, 2008

Figure 44: Prevalence of *S*. Rissen-positive production holdings, *Salmonella* EU baseline survey, 2008

Figure 45: Prevalence of *S*. Livingstone-positive breeding holdings, *Salmonella* EU baseline survey, 2008

Figure 46: Prevalence of S. Livingstone-positive production holdings, Salmonella EU baseline survey, 2008

Figure 47: Prevalence of S. London-positive breeding holdings, Salmonella EU baseline survey, 2008

Figure 48: Prevalence of S. London-positive production holdings, Salmonella EU baseline survey, 2008

Figure 49: Prevalence of S. Anatum-positive breeding holdings, Salmonella EU baseline survey, 2008

Figure 50: Prevalence of *S*. Anatum-positive production holdings, *Salmonella* EU baseline survey, 2008

Figure 52: Prevalence of *S*. Goldcoast-positive production holdings, *Salmonella* EU baseline survey, 2008

Figure 54: Prevalence of *S*. Bredeney-positive production holdings, *Salmonella* EU baseline survey, 2008

L. COMPARISON BETWEEN SALMONELLA SEROVAR DISTRIBUTIONS IN DIFFERENT SOURCES

Figure 55: Relative distribution of *S*. Typhimurium, *S*. Derby, *S*. Enteritidis, *S*. Infantis, *S*. Rissen, *S*. Livingstone, *S*. London, *S*. Anatum, *S*. Goldcoast and *S*. Bredeney in breeding holdings (B), production holdings (P), carcass lymph nodes (L) and carcass swabs (C) in 10 MSs, *Salmonella* EU baseline survey, 2008

	Year								
C	200	5	200	6	200	7	200	8	
Serovar	(N=23 M	(N=23 MSs + 2)		(N=24 MSs + 4)		Ss + 3)	(N=26 MSs + 3		
	Ν	%	Ν	%	Ν	%	Ν	%	
S. Enteritidis	86,536	53.7	90,362	71.0	81,472	64.5	70,091	58.0	
S. Typhimurium	15,058	9.3	18,685	14.7	20,781	16.5	26,423	21.9	
S. Infantis	1,354	0.8	1,246	1.0	1,310	1.0	1,317	1.1	
S. Bovismorbificans	621	0.4	-	-	-	-	501	0.4	
S. Hadar	577	0.4	713	0.6	479	0.4	-	-	
S. Virchow	535	0.3	1,056	0.8	1,068	0.8	860	0.7	
S. Derby	259	0.2	477	0.4	469	0.4	624	0.5	
S. Newport	245	0.2	730	0.6	733	0.6	787	0.7	
S. Stanley	-	-	522	0.4	589	0.5	529	0.4	
S. Agona	-	-	367	0.3	387	0.3	636	0.5	
S. Anatum	179	0.1	-	-	-	-	-	-	
S. Goldcoast	173	0.1	-	-	-	-	-	-	
S. Kentucky	-	-	357	0.3	431	0.3	497	0.4	
Other	55,619	34.5	12,790	10.0	18,562	14.7	18,495	15.3	
Total	161,156		127,305		126,281		120,760		
Unknown	56,619		17,359		9,814		6,636		

Table 21: Salmonella serovars reported in humans in the EU, EUSR, 2005-2008

M. CORRELATION BETWEEN *SALMONELLA* PREVALENCE IN THE BREEDING AND SLAUGHTER PIG EU-WIDE BASELINE SURVEYS

Figure 56: Comparison between the prevalence of *Salmonella*-positive lymph nodes of slaughter pigs in the 2006-2007 EU baseline survey and the prevalence of *Salmonella*-positive breeding holdings observed in the 2008 EU baseline survey

Figure 57: Comparison between the prevalence of *Salmonella*-positive lymph nodes of slaughter pigs in the 2006-2007 EU baseline survey and the prevalence of *Salmonella*-positive production holdings observed in the 2008 EU baseline survey

Figure 58: Comparison between the prevalence of *S*. Typhimurium-positive lymph nodes of slaughter pigs in the 2006-2007 EU baseline survey and the prevalence of *S*. Typhimurium-positive breeding holdings observed in the 2008 EU baseline survey

Figure 59: Comparison between the prevalence of *S*. Typhimurium-positive lymph nodes of slaughter pigs in the 2006-2007 EU baseline survey and the prevalence of *S*. Typhimurium-positive production holdings observed in the 2008 EU baseline survey

N. WITHIN-HOLDING PREVALENCE STUDY

Bayesian model of within-holding prevalence study data ("first step" model)

From each pen *i* within holding *j* and country *k*, ten individual faecal samples were tested for *Salmonella*, with the number of positive samples, x_{ijk} , assumed to be binomially distributed,

xijk | $\pi i j k$, $\eta i n d \sim Bin(10, \pi i j k \eta i n d)$,

where π_{ijk} represents the prevalence of *Salmonella* within holding *j* and pen *i*, and η_{ind} the sensitivity of an individual test in detecting *Salmonella*. From these ten samples, a single artificial pool was created. The binary *Salmonella* status of this artificially pooled sample, y_{ijk} , is assumed to follow a Bernoulli distribution,

yijk |
$$\eta_{ap} \sim \text{Bernoulli}(\eta_{ap})$$
,

where η_{ap} denotes the sensitivity of the test on the artificially pooled sample, which will be constructed so that it depends on π_{ijk} .

A further routine sample was taken from each pen, and the binary test result of this sample, *zijk*, was also assumed to follow a Bernoulli distribution,

zijk | η *routine* ~Bernoulli(η *routine*),

where $\eta_{routine}$ denotes the sensitivity of the routine test, which will be constructed so that it depends on π_{ijk} .

Prevalence estimation

A previous study (Arnold and Cook, 2009) has shown that the clustering of infection within pens is very important when estimating within-pen and within-holding prevalence of *Salmonella* in pigs. A similar approach to that used by Arnold and Cook (2009) was adopted here, which allows the proportion of positive pens and the degree of variability of the prevalence in affected pens to be included in the analysis. It is assumed that the probability that a pen within a particular holding contained infected pigs, τ_{jk} , was given by

$$\tau_{jk} = \mu_{jk} \exp(\alpha \left(1 - \mu_{jk}\right))$$

where α is a parameter that determines the relationship between the within-holding prevalence and the proportion of infected pens, and where μ_{jk} denotes the within-holding prevalence (i.e. μ_{jk} is the prevalence of *Salmonella*-infected pigs). This satisfies the necessary conditions that $\tau_{jk} = 0$ if $\mu_{jk} = 0$ (i.e. no pens positive if within-holding prevalence is 0), and $\tau_{jk} = 1$ if $\mu_{jk} = 1$ (i.e. all pens positive if within holding prevalence =1). To ensure that τ_{jk} could never be greater than 1, α was constrained to be less than or equal to 1.

The within-pen prevalence (i.e. the prevalence of infected pigs within a pen), π_{ijk} , will naturally depend on the prevalence within the holding, μ_{jk} . The quantity π_{ijk} was assumed to follow a beta distribution, with parameters calculated as in Branscum et al. (2004), such that

 $\pi_{ijk} \sim \text{Beta}(a_{jk}, b_{jk})$ with probability $\tau_{jk}\lambda_k$;

$$\pi_{ijk}=0$$
 with probability $(1 - \tau_{jk}\lambda_k)$,

where the parameters τ_{jk} and λ_k allow the pen and holding to be free from *Salmonella*, respectively. Following the methods implemented in (Arnold and Cook, 2009; Branscum et al., 2004), the

parameters a_{jk} and b_{jk} were assumed to be related to the within-holding prevalence, μ_{jk} , and to a measure of variance, ψ , such that

$$a_{jk} = \mu_{jk} \psi / \tau_{jk}$$
$$b_{jk} = (1 - \mu_{jk} / \tau_{jk}) \psi.$$

Estimation of the sensitivity of faecal sampling for Salmonella.

For an individual sample of a fixed weight using the culture methods defined for this survey, the sensitivity of faecal culture depends upon the number of *Salmonella* bacteria in the sample. Indeed, these bacteria are not uniformly distributed through the faecal mass but are present in clumps or clusters of bacterial cells. Therefore, individual sample sensitivity depends on the number of clusters of bacteria per gram of faeces.

For the sensitivity of routine and artificially pooled samples, the parametric form discussed in (Arnold et al., 2005; Arnold and Cook, 2009) was employed, linking sensitivity to pen-level prevalence, the weight of the sample (w), and the concentration of *Salmonella* in pig faeces (C),

 $\eta = \eta_{outine} = \eta_{ap} = 1 - \exp(-Cw\pi_{ijk}(1 - \exp(-\rho/w))).$ (Eq 1)

Here, ρ is a parameter relating the probability of successful culture to the concentration of *Salmonella* clusters in the sample. Priors for C and ρ were taken from a previous study (Arnold et al., 2005).

These formulae take into account that test sensitivity for artificially pooled and routine samples will vary between pens as π_{ijk} varies. It was assumed that the culture method to detect *Salmonella* was 100% specific.

The sensitivities of the artificially pooled and routine samples are treated as though equal. An analysis using separate values for C and rho for each of the artificially pooled and routine sample sensitivity was investigated. However, results showed that the difference between the two was marginal, supported by Table 22 below which shows that only 30 out of 490 pens showed discordant results between the "routine" and the artificial pools. On applying McNemar's nonparametric test, a *P*-value of 0.58 was obtained, which supports the null hypothesis that there was no important difference between the test results for artificial pooled and routine samples. It was therefore deemed appropriate to use the same sensitivity formula for both routine and artificially pooled samples.

Table 22: Results of testing artificially pooled samples and routine pooled faecal samples from a study of the sensitivity of pooled sampling for detection of *Salmonella* in holdings of breeding pigs in five MSs, *Salmonella* EU baseline survey, 2008

Artificial pooled samples -	Routine pooled samples			
Artificial pooled samples —	Positive	Negative		
Positive	37 (8%)	17 (3.5%)		
Negative	13 (2.5%)	423 (86%)		

Estimates of all unknown parameters were produced using WinBUGS 3.1, which uses a method known as Markov Chain Monte Carlo (MCMC) to produce random samples of each unknown parameter from the estimated "true" distribution. From these random samples, a credible interval (the Bayesian equivalent of a confidence interval) was derived from the 2.5 and 97.5 percentiles of each parameter. In order for the MCMC method to reach a stable point before parameter estimates were made, 5,000 iterations of the model were performed before using a further 10,000 iterations to derive credible intervals for each parameter. Convergence was checked using Gelman-Rubin convergence statistic applied to multiple chains with varying starting values, as implemented in WinBUGS 3.1, which showed convergence of each of the chains after 5,000 iterations. As is usual with Bayesian models, the median value was used as the best point estimate of each parameter.

Priors for within-holding prevalence study ("first step" model)

Priors are listed in Table 23 below. Where applicable, priors were taken from the results of previous studies. Non-informative priors (implemented as uniform distributions via a beta (1,1) prior) were used for pen, holding and MS level prevalence estimates. The between-pen variance of the infection prevalence, Ψ , was investigated in Arnold et al. (2009), and found to follow a gamma distribution with a mean of 2.68, which is consistent with relatively high variability of prevalence within pens. The parameter α , which determines the proportion of pens infected from the within-holding prevalence, was found to be 0.95 in Arnold et al. (2009), which indicates that the proportion of pens with infected pigs is generally higher than the proportion of individual pigs infected e.g. a 50% individual pig prevalence was predicted to result in 75% of pens containing infected pigs. The prior on the sensitivity of an individual 25g faecal sample was taken from a study by Arnold et al. (2005) where this sensitivity was estimated to be 81% i.e. faecal culture was found to give a positive result from an infected pig 81% of the time. The study by Arnold et al. (2005) also estimated values for the two factors that influence the sensitivity of pooled sampling: the Salmonella abundance in the pig faeces being tested (mean of 7.3) and the ability of the diagnostic method to detect the Salmonella (determine by parameter ρ with value 0.55). While these parameters have a biological interpretation, it is their effect on the sensitivity of pooled sampling that is of primary importance; with C=0.73 and ρ =0.55 the predicted sensitivity of a pooled sample of which 10%, 50% or 100% of samples in the pool were from infected pigs was 33%. 86% and 98% respectively.

The within-holding prevalence study data provided, for each positive pen, the observed number of positive samples, and whether the artificial and/or routine sample was positive i.e. three data points per positive pen. From this the Bayesian model estimates the following unknown parameters: the penand within-holding prevalence, the sensitivity of each faecal sample type (via the parameters C, ρ and η_{ind}).

Table 23: Priors used in the "first step" of the Bayesian model to estimate the within-holding prevalence of *Salmonella* in holdings with breeding pigs sampled in five MSs in the framework of the within-holding prevalence study, *Salmonella* EU baseline survey, 2008

Parameter	Description	Prior ^a	Source
Ψ	Between-pen variance of <i>Salmonella</i> prevalence (i.e. how does the prevalence vary between infected pens).	Gamma (134, 50)	Output from model described in Hill et al. (2008) and Arnold et al. (2009).
α	Parameter determining the relationship between μ and proportion of positive pens. Given within-herd prevalence, α enables the proportion of infected pens to be predicted.	N (0.95, 0.006)	Arnold et al. (2009)
η_{ind}	Sensitivity of individual samples	N (0.81, 0.0013)	Arnold et al. (2005)
С	Salmonella concentration in pig faeces	N (6.7, 1.3)	Arnold et al. (2005)
ρ	Parameter determining how test sensitivity of artificially pooled samples varies with C	N (0.59, 0.12)	Arnold et al. (2005)

^(a) Gamma(a,b)= $b^a x^{a-1} e^{-bx} / \Gamma(a)$, where Γ denotes the gamma function. N(a,b) denotes the normal distribution with mean a and standard deviation b.

Parameter	Description	Median	2.5 percentile	97.5 percentile
Ψ	Between-pen variance of Salmonella prevalence	2.40	2.03	2.8
α	Determines relationship between within-holding prevalence and proportion of pens infected	1.0	0.91	1.0

Table 24: Additional posterior estimates of the parameters used in the "first step" of the Bayesian model for the within-holding prevalence study, *Salmonella* EU baseline survey, 2008

Bayesian model estimating the true prevalence of Salmonella-positive holdings in 24 MSs and two non-MSs ("second step" model)

Since the mandatory survey in 24 MSs and two non-MSs only required pooled faecal samples, no individual samples were collected from the selected holdings. Consequently, fewer data were available to estimate within-holding prevalence and the likelihood that the holding was positive. This lack of holding level information was partially offset by exploiting the posterior estimates from the within-holding prevalence study, allowing maximal information from the limited holding level sampling data. Using the estimates of the prevalence of positive samples within pens, together with the estimates of the concentration of *Salmonella* in pig faeces (C) and a term (ρ) describing how test sensitivity of the artificially pooled samples varies with the *Salmonella* concentration in pig faeces, an approximation of the test sensitivity of the routine survey and the artificially pooled samples was made using the equation (Eq 1).

A single routine sample was taken from each of ten pens (i=1,...,10), within holding *j*, and tested for *Salmonella*. The test result, *zijk*, was assumed to follow a Bernoulli distribution,

zijk | η *routine* ~ Bernoulli(η *routine*),

where η routine denotes the sensitivity of the routine test, and is defined as before. Note that the definition of η routine in (Eq 1) depends on the pen-level prevalence, π ijk.

Priors for the true prevalence of Salmonella-positive holdings in 24 MSs and two non-MSs

The priors used for the Bayesian model to estimate the true prevalence of *Salmonella*-positive holdings in 24 MSs and two non-MSs were taken from the posterior estimates of the first part of the analysis for the parameters determining routine pool sensitivity and the clustering of prevalence within-pens. Specifically, the following four priors were used, and a normal distribution was used for each of them: C (mean 5.36, standard deviation 0.85), ρ (mean 0.49, standard deviation 0.088), ψ (mean 2.4, standard deviation 0.20), and α (mean 0.96, standard deviation 0.025).

Non-informative priors (implemented as uniform distributions via beta distribution with both parameters set to 1) were used for within-pen, within-holding and MS level prevalence estimates.

Comparison of models

In order to test whether there was any significant difference between the sensitivity of faecal sampling between MSs a more complex model, where C and ρ were permitted to vary between MSs was also fitted to the within-holding prevalence study data. In order to compare these models, the Deviance Information Criterion (DIC) was used (Spiegelhalter et al., 2002), with the convention that the model with the lowest DIC value was 'better'. Since DIC values can be difficult to interpret, the DIC weight method was implemented, as in Spiegelhalter et al. (2002). This gives the probability that a particular model is the best for the available data. Such an analysis showed no important difference in the fit of the model when allowing the parameters C and ρ to vary between member states, and in fact showed

that a model assuming common values of C and ρ between member states was slightly favoured by the DIC (p=0.61), as seen in Table 25 below.

Table 25: DIC values and DIC weights for each model fitted to the within-holding prevalence study data, *Salmonella* EU baseline survey, 2008

	Deviance	Dhat	DIC	DIC weight
C and ρ same for each country	490.2	433.88	546.5	0.61
C and ρ allowed to vary between countries	487.8	428.24	547.4	0.39

True prevalence of Salmonella-positive holdings in 24 MSs and two non-MSs

For each country, the posterior estimate of the true prevalence of *Salmonella*-positive holdings is given in Table 26. For comparison, the MS 'observed prevalence' column is calculated as the proportion of holdings with at least one sample testing positive for *Salmonella* (from Report A, EFSA, 2009b).

Table 26: Posterior estimates of the true prevalence of *Salmonella*-positive holdings with breeding pigs in 24 MSs and two non-MSs, along with credible intervals (CrI) and a comparison with the observed prevalence, *Salmonella* EU baseline survey, 2008

Country	Number of holdings	MS true prevalence (median)	95% CrI		MS observed prevalence ^(a)
Austria	252	7%	4%	11%	6%
Belgium	225	41%	34%	49%	35%
Bulgaria	72	3%	0.4%	9%	1%
Cyprus	64	25%	15%	38%	20%
Czech Republic	267	16%	12%	21%	13%
Denmark	293	49%	42%	55%	41%
Estonia	34	6%	0.8%	18%	3%
Finland	207	0.4%	0.01%	2%	0%
France	343	51%	45%	57%	44%
Germany	201	27%	21%	34%	22%
Hungary	181	33%	26%	41%	28%
Ireland	189	57%	49%	66%	49%
Italy	214	53%	46%	61%	45%
Latvia	33	33%	18%	56%	27%
Lithuania	82	9%	4%	18%	7%
Luxembourg	44	28%	15%	44%	23%
Netherlands	321	66%	60%	73%	56%
Poland	322	10%	7%	14%	8%
Portugal	167	51%	43%	60%	44%
Slovakia	192	18%	13%	24%	15%
Slovenia	114	10%	5%	17%	8%
Spain	359	68%	62%	74%	58%
Sweden	207	1%	0.1%	3%	0.5%
United Kingdom	258	54%	47%	62%	46%
Norway	251	0.3%	0.01%	2%	0%
Switzerland	225	15%	11%	21%	13%

^(a) The MS observed prevalence figures were calculated combining the MS *Salmonella* figures (number of positive holdings out of the number of tested holdings) that were presented separately for breeding and production holdings in the Report part A (EFSA, 2009b)

O. ADDITIONAL RESULTS OF THE WITHIN-HOLDING PREVALENCE STUDY

The results presented in this Appendix are to be considered as intermediate results of within-holding prevalence study. It should be noted that these results are not representative of MS situation since they were obtained using only data from the ten holdings sampled in each of the five countries as part of the within-holding prevalence study.

Table 27 shows the estimated median prevalence of *Salmonella*-positive holdings obtained using the Bayesian model based on the data from the within-holding prevalence study (as shown in Table 8). The estimated prevalence of *Salmonella*-positive holdings ranged from 16% in Sweden to 71% in the UK, and though the 95% credible interval for each MS was wide it was compatible with the results reported in Part A.

Table 27: Estimates of the true MS-level prevalence of *Salmonella*-positive holdings for the five Member States that participated in the within-holding prevalence study, *Salmonella* EU baseline survey, 2008

Country	Median true MS-level prevalence	95% CrI ^(a) (%)
Czech Republic	37%	(13, 69)
Denmark	61%	(32, 87)
Sweden	16%	(2, 43)
Slovenia	25%	(7, 54)
United Kingdom	71%	(41, 93)

^(a) CrI represents the 95% credible interval from the Bayesian analysis of these data

The full results from the five countries participating in the within-holding prevalence study are given at holding level in Table 28, where the estimated within-holding prevalence for each holding included in the study is also presented.

Table 28: Observed holding level *Salmonella* results together with Bayesian estimates of the median within-holding prevalence and its 95% credible interval (CrI), for each holding sampled in the five countries that carried out the within-holding prevalence study, *Salmonella* EU baseline survey, 2008

Country ^(a)	Unique holding number	Number of positive individual samples	Number of positive routine samples	Number of positive artificially pooled samples	Number of positive pens	Median within-holding prevalence (%)	95%	ó CrI
CZ	1	0	0	0	0	0	0	0.8
CZ	2	8	1	2	3	15	5	32
CZ	3	0	0	0	0	0	0	0
CZ	4	0	0	0	0	0	0	1
CZ	5	2	0	0	1	7	1	21
CZ	6	48	6	4	8	53	31	76
CZ	7	0	0	0	0	0	0	0.8
CZ	8	0	0	0	0	0	0	1
CZ	9	0	0	0	0	0	0	2
DK	1	19	4	5	5	30	14	50
DK	2	13	1	2	2	12	3	31
DK	3	0	0	0	0	0	0	4
DK	4	0	0	0	0	0	0	5
DK	5	6	0	1	1	7	1	22

Analysis of the baseline survey on *Salmonella* in breeding pigs in the EU, 2008 Part B: factors associated with *Salmonella* pen positivity

Country ^(a)	Unique holding number	Number of positive individual samples	Number of positive routine samples	Number of positive artificially pooled samples	Number of positive pens	Median within-holding prevalence (%)	95%	ő CrI
DK	6	0	0	0	0	0	0	4
DK	7	37	6	4	7	44	25	65
DK	8	0	0	0	0	0	0	4
DK	9	5	1	0	2	11	2	26
DK	10	3	0	2	2	11	3	26
SE	1	0	0	0	0	0	0	0
SE	2	0	0	0	0	0	0	0
SE	3	1	0	0	1	7	1	21
SE	4	0	0	0	0	0	0	0
SE	5	0	0	0	0	0	0	0
SE	6	0	0	0	0	0	0	0
SE	7	0	0	0	0	0	0	0
SE	8	0	0	0	0	0	0	0
SE	9	0	0	0	0	0	0	0
SE	10	0	0	0	0	0	0	0
SI	1	9	1	4	4	22	9	41
SI	2	0	0	0	0	0	0	0
SI	3	0	0	0	0	0	0	0
SI	4	0	0	0	0	0	0	0
SI	5	0	0	0	0	0	0	0
SI	6	0	0	0	0	0	0	0
SI	7	0	0	0	0	0	0	0
SI	8	0	0	0	0	0	0	0
SI	9	0	0	0	0	0	0	0
SI	10	1	0	0	1	6	1	20
UK	1	0	0	0	0	0	0	6
UK	2	29	4	2	6	36	19	57
UK	3	0	0	0	0	0	0	7
UK	4	59	8	10	10	78	51	99
UK	5	10	2	2	3	16	5	34
UK	6	0	0	0	0	0	0	5
UK	7	11	3	2	6	20	7	38
UK	8	31	4	4	8	40	21	60
UK	9	31	3	4	4	31	14	54
UK	10	36	6	6	8	45	25	66

^(a) CZ: Czech Republic; DK: Denmark; SE: Sweden; SI: Slovenia; UK: United Kingdom.

The distribution of the median estimated within-holding prevalence of each holding sampled in the framework of the within-holding prevalence study is illustrated in Figure 60 for each of the five MSs that carried out this study.

Figure 60: Histograms showing the distribution of the median estimated within-holding prevalence by participating MS^(a) for those holdings that were sampled during the within-holding prevalence study, *Salmonella* EU baseline survey, 2008

^(a) CZ: Czech Republic; DK: Denmark; SE: Sweden; SI: Slovenia; UK: United Kingdom.

The box-plots in Figure 61 show the variability of the median within-holding prevalence of *Salmonella* for each of the five MS that participated in the within-holding prevalence study. Whiskers denote the range of within-holding prevalences, while dots above the plots represent 'outliers', defined as being greater than the sum of the upper quartile and 1.5 times the inter-quartile range. All Swedish samples were negative, with the exception of one individual faecal sample, accounting for the single positive value for the within-holding prevalence in Sweden.

Figure 61: Boxplots of the estimated within-holding prevalence of *Salmonella* derived from the output of the Bayesian model, by participating MS^(a) for those holdings that were sampled during the within-holding prevalence study, *Salmonella* EU baseline survey, 2008

^(a) CZ: Czech Republic; DK: Denmark; SE: Sweden; SI: Slovenia; UK: United Kingdom.

The histograms in Figure 62 represent the estimated distribution of median within-holding prevalence for each of the 24 countries where the within-holding prevalence was greater than zero. No positive samples were received from two countries, namely Finland and Norway, and therefore these are not represented in Figure 62 below.

Figure 62: Histograms showing the distribution of median within-holding prevalence for each of the 23 MSs^(a) and Switzerland with at least one positive holding, *Salmonella* EU baseline survey, 2008

^(a) AT: Austria, BE: Belgium, BG: Bulgaria, CH: Switzerland, CY: Cyprus, CZ: Czech Republic; DE: Germany; DK: Denmark; EE: Estonia, ES: Spain, FI: Finland, FR: France, HU: Hungary, IE: Ireland, IT: Italy, LT: Lithuania, LV: Latvia, LU: Luxembourg, NL: Netherlands, PL: Poland, PT: Portugal, SE: Sweden; SI: Slovenia, SK: Slovakia, UK: United Kingdom.

Calculation of the EU true prevalence

The EU true prevalence was 40.6% (95% CrI: 35.0-46.8). This EU level prevalence was estimated by weighting each MS' true prevalence with the fraction of its total number of holdings housing at least 50 breeding pigs out of the total number of holdings (\geq 50 breeding pigs) in the EU (Table 29).

Table 29: Calculation of EU true prevalence of Salmonella-positive holdings, Salmonella EUbaseline survey, 2008

Country	Estimate prevalence (median)	95% CrI		EstimateTotal holdingsprevalence95% CrI(≥50 breeding(median)pigs)		Total holdings (≥50 breeding pigs)	Prevalence contribution ^(a)	95%CrI contribution ^(a)	
Austria	7.0%	4.0%	11.0%	2856	0.3%	0.2%	0.5%		
Belgium	41.0%	34.0%	49.0%	4,017	2.8%	2.3%	3.3%		
Bulgaria	3.0%	0.4%	9.0%	427	0.0%	0.0%	0.1%		
Cyprus	25.0%	15.0%	38.0%	91	0.0%	0.0%	0.1%		
Czech Republic	16.0%	12.0%	21.0%	2,168	0.6%	0.4%	0.8%		
Denmark	49.0%	42.0%	55.0%	2,593	2.2%	1.8%	2.4%		
Estonia	6.0%	0.8%	18.0%	35	0.0%	0.0%	0.0%		
Finland	0.4%	0.0%	2.0%	601	0.0%	0.0%	0.0%		
France	51.0%	45.0%	57.0%	6,198	5.4%	4.7%	6.0%		
Germany	27.0%	21.0%	34.0%	12,490	5.7%	4.5%	7.2%		
Hungary	33.0%	26.0%	41.0%	524	0.3%	0.2%	0.4%		
Ireland	57.0%	49.0%	66.0%	329	0.3%	0.3%	0.4%		
Italy	53.0%	46.0%	61.0%	1,204	1.1%	0.9%	1.2%		
Latvia	33.0%	18.0%	56.0%	46	0.0%	0.0%	0.0%		
Lithuania	9.0%	4.0%	18.0%	96	0.0%	0.0%	0.0%		
Luxembourg	28.0%	15.0%	44.0%	30	0.0%	0.0%	0.0%		
Netherlands	66.0%	60.0%	73.0%	3,239	3.6%	3.3%	4.0%		
Poland	10.0%	7.0%	14.0%	5,325	0.9%	0.6%	1.3%		
Portugal	51.0%	43.0%	60.0%	875	0.8%	0.6%	0.9%		
Slovakia	18.0%	13.0%	24.0%	300	0.1%	0.1%	0.1%		
Slovenia	10.0%	5.0%	17.0%	70	0.0%	0.0%	0.0%		
Spain	68.0%	62.0%	74.0%	12,864	14.9%	13.5%	16.2%		
Sweden	1.0%	0.1%	3.0%	837	0.0%	0.0%	0.0%		
United Kingdom	54.0%	47.0%	62.0%	1,669	1.5%	1.3%	1.8%		
EU total				58,884	40.6% ^(b)	35.0 ^(c)	46.8% ^(c)		

^(a) MS-specific contribution to the EU true prevalence, calculated as: MS estimated true prevalence (or 95%CrI bounds) multiplied by the ratio of the MS total number of holdings housing at least 50 breeding pigs and the EU total number of holdings (≥50 breeding pigs)

^(b) EU weighted true prevalence calculated as the sum of the MS prevalence contributions.

^(c) Lower and upper bounds of the 95%CrI of the EU weighted true prevalence. These are calculated as the sum of the MS 95%CrI contributions.

LIST OF ABBREVIATIONS

CI	Confidence Interval
CrI	Credibility Interval
EC	European Commission
EFSA	European Food Safety Authority
EU	European Union
EUSR	European Union Summary Report
MS(s)	Member State(s)
OR	Odds Ratio
PAF	Population Attributable Fraction
VIF	Variance Inflation Factor