

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Guiding Programmers to Higher Memory Performance

Jensen, Nicklas Bo; Larsen, Per; Ladelsky, Razya; Zaks, Ayal; Karlsson, Sven

Published in:
Proceedings of 5th Workshop on Programmability Issues for Heterogeneous Multicores (MULTIPROG-12)

Publication date:
2012

Link back to DTU Orbit

Citation (APA):
Jensen, N. B., Larsen, P., Ladelsky, R., Zaks, A., & Karlsson, S. (2012). Guiding Programmers to Higher
Memory Performance. In Proceedings of 5th Workshop on Programmability Issues for Heterogeneous
Multicores (MULTIPROG-12)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13802551?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/guiding-programmers-to-higher-memory-performance(c11f0d5c-75a0-49e3-b7ed-d3c063d80a3a).html

Guiding Programmers to Higher Memory
Performance

Nicklas Bo Jensen1, Per Larsen1, Razya Ladelsky2, Ayal Zaks2, and Sven
Karlsson1

1 DTU Informatics, Technical University of Denmark
s082973@student.dtu.dk

{pl,ska}@imm.dtu.dk
2 IBM Haifa Research Labs

razya@il.ibm.com

Abstract. Modern compilers use complex optimizations. It is often a
problem for programmers to understand how source code should be writ-
ten to enable optimizations. Interactive tools which guide programmers
to higher performance are very important. We have developed such a
tool that helps programmers modify their code to allow for aggressive
optimization. In this paper, we extend it to support high level memory
optimizations such as matrix reorganization. We evaluate the tool using
two benchmarks and four different compilers. We show that it can guide
the programmer to 22.9% higher performance.

1 Introduction

Optimizing compilers are complex and difficult for programmers to understand.
Programmers often do not know how to write code that the compilers can opti-
mize well. We have developed a tool that helps non expert programmers write
code that the compiler can better understand [1] in an interactive way. It uses
feedback generated by a production compiler, gcc from the GNU Compiler Col-
lection [2]. We modified gcc to improve the quality and precision of the feedback.
Our tool then interprets the feedback and presents it in a human readable form
directly into the Eclipse integrated development environment, the Eclipse IDE.
In principle, the techniques could have been applied to any compiler and IDE.

In this paper, we extend our tool to support high level memory optimizations
such as matrix reorganization. These optimizations change the way matrixes are
accessed resulting in improved memory hierarchy performance. We perform an
performance evaluation using two benchmarks from SPEC2000 and four different
compilers. We show that our enhanced tool can guide the programmer to 22.9%
higher performance.

Although one can argue that compilers should be better at optimizing code,
programmers required to write performance sensitive code often cannot wait for a
more advanced compiler to be released. Our tool helps non expert programmers
change their code to fully utilize all the optimizations an existing production

2

compiler can offer. Our work is thus complementary to the work on more precise
analysis methods and aggressive compiler optimization passes.

In short, we make the following contributions:

– We have extended our tool significantly. It can now handle the matrix reor-
ganization memory optimization.

– We have developed a code refactoring wizard which helps programmers apply
changes directly to their code.

– We evaluate the extended tool and show substantial performance improve-
ments on two SPEC2000 benchmarks and with several compilers.

The paper is laid out as follows. We will discuss related work next in Sect. 2.
The tool is presented in Sect. 3. Experimental results are analyzed in Sect. 4
and we conclude the paper in Sect. 5.

2 Related Work

Compiler memory optimizations includes matrix-reorg [3] where matrixes can
be automatically flattened and transposed based on profiling data. Other data
layout transformations include structure layout optimizations [4,5]. They opti-
mizes structures by decompositioning them into separate fields, substructures
or reordering the fields in a structure. Other compiler optimizations focus on
improved data locality through loop restructuring [6]. All these optimizations
are part of the normal compiler optimization flow. Our tool provides feedback
to the programmers so that they can change their most performance sensitive
code to take full advantage of compiler optimizations.

Leung and Zahorjan have presented their implementation of array restruc-
turing at run time [7]. They compare it with common forms of loop restructuring
and find that it has comparable performance and in some cases even superior
performance.

Most compilers include options to generate optimization reports. Both gcc

and xlc includes optimization reports for matrix reorganization. These mostly
state only what was done, and not what could have been done. gcc reports often
refer to intermediary representation and without any explanations. In contrast,
our tool provides human readable feedback directly into the integrated develop-
ment environment.

This paper extends our previous work [1] in that we have significantly ex-
panded the tool to provide feedback on high level memory optimizations.

3 Memory Optimization

Compilers have to generate correct code. To this end, compilers often conser-
vatively decide not to apply optimizations in ambiguous cases where the intent
of the programmer is not clear. The general idea behind our tool is to help
programmers fully utilize modern advanced compiler optimizations. We pro-
pose that programmers will work actively with the performance critical sections

3

of their code. Our tool interactively provides the programmers with hints and
suggestions for changing the code so that source code ambiguities are removed
thereby facilitating the application of additional compiler optimizations. The
tool consists of several parts. First, we link gcc [2] with a special library that we
have developed. The library will augment gcc’s diagnostic dump files with infor-
mation on the optimizations performed but also on optimizations not performed.
These dump files are then read by an Eclipse plug-in that we have developed
as well. The plug-in interprets and displays the information. The plug-in also
suggests refactoring changes based on the extracted information [1]. Refactoring
is a technique for modifying source code in a structured way, without changing
the program’s external behavior [8].

In this paper, we have extended our work to support gcc’s matrix reorga-
nization [3] framework which applies to dynamically allocated matrixes. The
framework consists of two optimizations: matrix flattening and matrix transpos-
ing. When a matrix is flattened an m-dimensional matrix is replaced with an
n-dimensional matrix where n < m. This leads to fewer levels of indirection for
matrix accesses. Part of such an optimization can be seen in Fig. 1. The matrix
transposing optimization swaps rows and columns resulting in better cache lo-
cality depending on access patterns. Profiling is used by gcc to make decisions
on what matrixes to transpose.

a = (int**) malloc (N)

for (i=0; i<N; i++)

a[i] = (int *) malloc (M)

a[i][j]++

(a) Dynamically allocated non flat-
tened two-dimensional C array.

−→

a = (int*) malloc (N * M)

a[i*M+j]++;

(b) Dynamically allocated flattened
one dimensional C array.

Fig. 1: Dynamically allocated arrays in C showing both non flattened and flat-
tened versions.

Reorganizing matrixes is an intrusive operation: declarations, allocation, ma-
trix access and deallocation sites have to be updated. The gcc compiler will
therefore refrain from using the optimization unless it can analyze exactly how
the matrix is used. In many cases, the compiler cannot fully analyze how a ma-
trix is accessed. The matrix escapes analysis. This may happen if the matrix
is an argument to a function, even if it would be safe to optimize. Here the
analysis is conservative and chooses not to analyze even local functions. Only
global dynamically allocated arrays are optimized. Manual vector expressions
could lead to errors. Therefore, matrixes are not reorganized when vector or
assembler operations exists. Additional restrictions exist. For example, gcc as-
sumes only one matrix allocation and one or more accesses, therefore matrixes
with multiple allocation sites will not be optimized. In general, many matrices
are not optimized.

4

Our tool can help the programmer when the compiler refrains from optimiz-
ing. It does so by giving reasons why the compiler did not optimize and suggests
changes if applicable. There exist many reasons why the optimizations do not
apply so our tool prioritizes the information so that the most useful hints are
shown first. One example is missing compiler options. If the correct options are
not used, it will present a hint in the Eclipse IDE suggesting the programmer to
change options.

As mentioned, if the matrix escapes the analysis it will often not be optimized.
One common scenario is when a matrix is an argument to an external function
or some other function for which the source code cannot be analyzed. Here our
tool points out all escaping matrixes to the programmer. It will also describe
why each matrix escapes as well as suggestions for how code can be rewritten.
This may include using annotations to get the compiler to inline functions. More
invasive refactorings can also be attempted. Instead of passing the matrix to a
function, it might be possible to pass a temporary variable if individual matrix
elements or their addresses are passed. This will often help the compiler analysis
understand the source code better. Another solution, not implemented, is to use
data copying in places where it is known where a matrix escapes and where it
returns. In the escaping region the original version of the matrix can be used.
This adds some overhead synchronizing data.

Many programmers have issues using the profiling features of gcc used by
the matrix reorganization framework to determine whether matrixes should be
transposed and how. It is easy to detect in the compiler whether profile guided
optimization are disabled. Our tool shows messages to the programmer explain-
ing the required steps to use profile guided optimization. This is seen in Fig. 2.

GCC cannot run the matrix-reorg
transposing optimization as no
profiling information is available.
Compile and link with -fprofile-
generate, run application with
benchmark data and compile again with
-fprofile-use.

Fig. 2: Marker helping the programmer use profiling.

5

We have developed an automatically refactoring wizard. The wizard helps the
programmer apply matrix flattening and transposing directly to the source code.
This makes it possible for the programmer to turn off matrix reorganization in
the compiler. This is sometimes necessary. For example, we have discovered at
least one bug in gcc which forced us to manually rewrite the code. The wizard
also allows us to apply code transformations using other compilers. This might
be useful as many compilers do not have matrix reorganization optimizations.
The wizard is implemented using Eclipse’s refactoring framework and so have a
familiar look and feel. The wizard will be offered to the programmer if the com-
piler found that the matrix could be optimized. Both full and partial flattening
and transposing are supported. An example of the wizard can be seen in Fig. 3.

Fig. 3: The refactoring as it appears in the Eclipse IDE.

4 Experimental Results

We have applied our tool on two kernel benchmarks from the SPEC2000 bench-
mark suite: 179.art [9] and 183.equake [10]. The benchmarks have previously

6

been used to evaluate the matrix reorganization capabilities in gcc [3]. Good re-
sults were shown. A total of 35% improvement on 179.art and 9% on 183.equake.
This indicates that the standard optimizations in gcc already are effective.

We will use our tool to further optimize the benchmarks. First by mitigating
issues preventing optimizations and then by applying the optimization directly
at the source code.

We have run experiments on two machines. We have used a Dell Poweredge
1900, with one Quad-core Intel Xeon E5320 processor at 1.86GHz and a level
two cache of 2x4MB. The machine, called xeonserver, runs Debian 6.0.2.1. The
second machine is an iMac G5 with a 1.8GHz PowerPC 970fx processor. It is
called g5server and runs Red Hat Enterprise Linux 5.5.

We have used four different compilers. An overview of compilers, versions and
host systems is shown in Table 1. The compiler flags used are shown in Table 2.
All experiments have been run 50 times and the average benchmark execution
time has been used.

Table 1: Name, version and host machine of used compilers.
Compiler Version Host

gcc [2] The GNU Compiler Collection 4.5.1 xeonserver

icc [11] Intel C++ Composer XE 2011 for Linux 12.0.4 xeonserver

suncc [12] Oracle Solaris Studio 12.2 Linux xeonserver

xlc [13] IBM XL C/C++ for Linux 11.1 g5server

Table 2: Compiler options used.
Compiler options

gcc -O3 -fipa-matrix-reorg -fwhole-program -std=c99

icc -fast -ipo

suncc -fast -xc99

xlc -O2 -qhot -qipa=level=2

4.1 Case study: 179.art

The 179.art kernel benchmark is using neural networks to recognize objects in
thermal images. It consists of a training process where the neural network learns
from test images and an analysis process where it is matching a thermal image
against the training images [9]. The training process is short. We will only use
the execution time for the analysis process when evaluating performance.

The program consists of 1042 lines of C code as measured using SLOC-
Count [14]. It contains a number of matrixes but only three global multidimen-
sional dynamically allocated matrixes are candidates for optimization.

7

gcc can optimize two of them, the tds and bus matrixes, automatically
but the cimage matrix escapes. The matrix is not an argument to a function
and therefore it should have been optimized by gcc. We found that the escape
analysis in gcc has problems with char arrays. This issue is due to an internal
limitation in the compiler’s analysis which could be overcome by changing the
datatype, e.g. to an integer.

When profiling the program, the bus matrix was transposed meaning that
the dimensions of the matrix were swapped.

We also used the IBM XL C/C++ compiler, xlc, to compile the kernel. Here
all three matrixes were flattened and two were chosen for transposing. xlc does
not need profiling data to determine whether transposing is useful and statically
evaluates this.

The optimizations each compiler performed automatically are shown in Ta-
ble 3. One thing that stands out from this experiment is that xlc has a more
precise program analysis. It will probably optimize more aggressively.

Table 3: Global multidimensional dynamically allocated matrixes in 179.art and
whether they are optimized automatically by gcc and xlc.
Declaration gcc xlc

unsigned char **cimage Not optimized, matrix escapes Flattened

double **tds Flattened Flattened and transposed

double **bus Flattened and transposed Flattened and transposed

Our tool could not guide the programmer to a version where the cimage
matrix in 179.art is optimized by the gcc compiler. Therefore results are only
presented for the unmodified original program and a version where two of the
matrixes are optimized at the source code level obtained using the wizard. The
wizard optimizes the matrixes that gcc can automatically optimize as seen in
Table 3.

This, however, did not give any significant speedup over gcc’s own optimiza-
tion. In Fig. 4 it can be seen that using gcc a speedup of 1.16 was possible.
This is only due to the wizard utilizing the profiling data to transpose a matrix.
Using profile guided optimization the compiler does an equally good job.

We also have made experiments with multiple compilers. The performance re-
sults for 179.art on xeonserver are summarized in Fig. 4. Using suncc a speedup
factor of 1.36x was achieved over the original version. icc produced the fastest
program but did not benefit from the optimization with a speedup of one. The
last compiler is xlc. It has the matrix reordering optimization. However, it per-
formed worse with the optimization as seen in Fig. 4 with a speedup of 0.8. One
reason might be that gcc chooses only to transpose one of the matrixes and xlc

transposes two of them. As the wizard applies optimization at the source code
it prevents xlc from further optimizing matrixes.

8

gcc icc suncc xlc
1.16Wizard speedup w.r.t. original

43.486 23.4586 28.4572

0

10

20

30

40

50

60

Ru
nn

in
g

tim
e

[s
]

Compiler

Original

Wizard

1.00 1.36 0.80

Fig. 4: Execution time and speedup of original and wizard optimized 179.art
compiled with gcc, icc and suncc. Speedups obtained when using xlc are in-
cluded. The most aggressive optimization options have been used but not profile
guided optimization.

4.2 Case study: 183.equake

The 183.equake kernel is a program that simulates seismic waves propagation [10].
It contains ten global multidimensional dynamically allocated matrixes. All are
candidates for optimization. Six out of the ten are automatically recognized as
optimizable and the refactoring wizard is offered.

Two matrixes ARCHcoord and ARCHvertex escape as they are input to a
function. If a matrix escapes we cannot always analyze all access sites. The
compiler tends to choose to be conservative and back off when meeting a matrix
passed as an argument to a function. However, it may be possible to inline the
functions which will solve the problem. Using our tool it was identified that the
fscanf C library function was the problem. Functions from the C library cannot
be inlined using annotations. However, only the address of a single element in
the matrix was passed as an argument. We chose to handle this situation by
inserting a temporary variable as seen in Fig. 5. This is possible as only a single
element of the matrix is passed as an argument. This allowed the compiler to
optimize both ARCHvertex and ARCHcoord matrixes.

The matrixes K and disp also escape. Using our tool, which shows the func-
tion calls causing the matrixes to escape, it was possible to identify the function
smvp as the main problem. In Fig. 6, we show how information is presented
in the IDE. To resolve the problem, our tool proposes to inline the function if
possible. We did that by using the attribute ((always inline)) annota-
tion which we applied to the function prototype. If only inline was used, the
compiler determined that it is not advantageous to inline the function. However,
with always inline the compiler is forced to inline it. After the function was

9

fscanf(packfile, "%d",

&ARCHvertex[i][j]);

(a) Original source.

int tmp;

fscanf(packfile, "%d", &tmp);

ARCHvertex[i][j] = tmp;

(b) Modified source.

Fig. 5: Modifications needed for gcc to optimize ARCHvertex. In (a) the compiler
backs off but in (b) it is clear to the compiler that the matrix can be optimized.

inlined the matrixes are now chosen for optimization and it was thus possible to
help the compiler when its analysis is too primitive or conservative.

Fig. 6: IDE output showing which function call makes the matrix escape and
suggested changes.

All global matrixes can be optimized after applying the aforementioned
changes suggested by our tool. We changed three source code lines and added
four lines. The modifications are minor and do not affect readability.

Unfortunately, we found a bug in gcc when using the optimized source code.
Under certain circumstances the matrix reorganization optimization might intro-
duce a wrong malloc allocation size. This means that the generated executable
will return with an error and stop execution. This is not a bug in our tool,

10

but purely in the optimization pass of the gcc compiler. When flattening the
matrix allocation sites, it will not include the allocation statement for all dimen-
sions. This bug has been reported to the GCC Bugzilla [15]. We changed the
benchmark so that the affected matrix, disp, is not optimized. Therefore in the
presented results, the disp matrix has not been flattened.

The 183.equake kernel was also optimized using xlc. It can optimize local
matrixes and not just global. In our case, it could optimize two matrixes which
gcc could not. Both gcc and xlc could optimize the same global dynamically
allocated matrixes in the original source code. However after our tool has been
used, gcc performs better. Now eight out of the ten matrixes are optimized. The
reason for xlc not optimizing the last matrixes, like gcc did, appears to be that
the compiler will only optimize two dimensional matrixes. gcc chooses not to
transpose any matrixes with profile guide optimization. However, xlc chose to
transpose some of the matrixes. Table 4 shows how each matrix were optimized
by each compiler.

Table 4: Global multidimensional dynamically allocated matrixes in 183.equake
and whether they are optimized automatically by gcc and xlc.

Matrix declaration gcc xlc

double **ARCHcoord Flattened with help Flattened with help

int **ARCHvertex Flattened with help Flattened with help

double **M Flattened Flattened and transposed

double **C Flattened Flattened and transposed

double **M23 Flattened Flattened and transposed

double **C23 Flattened Flattened and transposed

double **V23 Flattened Flattened and transposed

double **vel Flattened Flattened and transposed

double ***disp Flattened with help Not flattened

double ***K Flattened with help Not flattened

Our tool could guide the programmer using code comments to rewrite the
code in a simple way which led to more matrixes being optimized. We saw a
speedup of 1.30 when gcc was used. A speedup of 1.6 was achieved, using gcc,
if the optimizations were applied on the source code level using the wizard. This
speedup is not only the result of the compiler optimizing more matrixes. In this
case, the changes to the source code made it possible for the compiler to apply
more aggressive optimizations. The results, seen in Fig. 7, show that with minor
programming effort significant improvements in performance are possible.

We also tried the modified code with multiple compilers. The speedups are
shown in Fig. 7. Only gcc could benefit from the code changes suggested by our
tool and they did not affect the other compilers. All compilers did benefit from
the changes made by the wizard with improvements in performance.

11

gcc icc suncc
Comments speedup w.r.t. original 1.30 1.00 1.00
Wizard speedup w.r.t. original 1.60 1.36 1.54

0
10
20
30
40
50
60
70
80
90

Ru
nn

in
g

m
e

[s
]

Compiler

Original

Comments

Wizard

xlc
1.00
1.37

Fig. 7: Execution time and speedup of original, comments and wizard optimized
183.equake compiled with gcc, icc and suncc. Speedups obtained when using
xlc are included. The most aggressive optimization options have been used but
not profile guided optimization.

5 Conclusions

We have extended an interactive compilation tool to support high level mem-
ory optimizations – matrix reorganization. The tool presents information in the
Eclipse IDE guiding programmers to write source code which can be aggres-
sively optimized. The tool uses feedback generated by the gcc compiler. We
have complemented the tool with a refactoring wizard which applies the com-
piler optimization directly into the source code. This allows for optimized source
code to be used with multiple compilers.

We have evaluated our tool using two SPEC2000 benchmarks. Our results
show that it is not always possible to present good hints to the programmer. This
was noticed for the 179.art benchmark, where the compiler has issues with a code
pattern and no good solution is available. Modified source code was evaluated
with four different compilers. We could show that two compilers benefited from
the optimized source and two did not.

Better results were possible for the second benchmark 183.equake. Here the
tool helped us rewrite the code, in a very simple manner, to allow all possible
matrixes to be optimized. The modified source code yield a speedup of 1.3 using
gcc. Using the refactoring wizard to make more invasive changes resulted in
a larger speedup of 1.6. The refactored code was also compiled with multiple
compilers resulting in speedups for the executable code of 1.36 to 1.6.

Acknowledgment

The research leading to these results has received funding from the ARTEMIS
Joint Undertaking under grant agreement number 100230 and from the national

12

programmes / funding authorities. The authors acknowledge the HiPEAC2 Eu-
ropean Network of Excellence, and thank Gadi Haber for initial discussions and
motivation.

References

1. Larsen, P., Ladelsky, R., Karlsson, S., Zaks, A.: Compiler Driven Code Comments
and Refactoring. In: Proc. of Fourth Workshop on Programmability Issues for
Multi-Core Computers. (2011)

2. Free Software Foundation: GNU Compiler Collection. http://gcc.gnu.org. Ac-
cessed on 22/7/2011.

3. Ladelsky, R.: Matrix flattening and transposing in GCC. In: Proc. of GCC Devel-
oper’s Summit. (2006)

4. Kistler, T., Franz, M.: Automated data-member layout of heap objects to improve
memory-hierarchy performance. ACM Transactions on Programming Languages
and Systems 22 (2000) 490–505.

5. Golovanevsky, O., Ladelsky, R.: Struct-reorg: Current status and future perspec-
tives. In: Proc. of GCC Developer’s Summit. (2007)

6. Berlin, D., Edelsohn, D.: High-level loop optimizations for gcc. In: Proc. of GCC
Developers Summit. (2004)

7. Leung, S., Zahorjan, J.: Optimizing data locality by array restructuring. Tech-
nical report, University of Washington - Department of Computer Science and
Engineering. (1995)

8. Fowler, M.: Refactoring: improving the design of existing code. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA. (1999)

9. Roberson, C., Domeika, M.: 179.art SPEC CPU2000 Benchmark Description File.
http://www.spec.org/cpu2000/CFP2000/179.art/docs/179.art.html. Accessed
on 14/6/2011.

10. O’Hallaron, D.R., Kallivokas, L.F.: 183.equake spec cpu2000 benchmark de-
scription file. http://www.spec.org/cpu2000/CFP2000/183.equake/docs/183.

equake.html. Accessed on 14/6/2011.
11. Intel: Composer XE 2011 for Linux. http://software.intel.com/en-us/

articles/intel-composer-xe/. Accessed on 22/7/2011.
12. Oracle: Oracle solaris studio. http://www.oracle.com/technetwork/

server-storage/solarisstudio/overview/. Accessed on 22/7/2011.
13. IBM: XL C/C++ for Linux. http://www-01.ibm.com/software/awdtools/

xlcpp/linux/. Accessed on 28/7/2011.
14. Wheeler, D.A.: Sloccount. http://www.dwheeler.com/sloccount/. Accessed on

14/6/2011.
15. Jensen, N.B.: Gcc bugzilla bug 49916. http://gcc.gnu.org/bugzilla/show_bug.

cgi?id=49916. Accessed on 31/7/2011.

