
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

A Bayesian Analysis of the Radioactive Releases of Fukushima

Tomioka, Ryota; Mørup, Morten

Published in:
Proceedings of the 15th International Conference on Artificial Intelligence and Statistics (AISTATS) 2012

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Tomioka, R., & Mørup, M. (2012). A Bayesian Analysis of the Radioactive Releases of Fukushima. In
Proceedings of the 15th International Conference on Artificial Intelligence and Statistics (AISTATS) 2012:
AISTATS 2012 Proceedings (Vol. 22, pp. 1243-1251). Microtome Publishing.  (JMLR: Workshop and
Conference Proceedings, Vol. 22).

http://orbit.dtu.dk/en/publications/a-bayesian-analysis-of-the-radioactive-releases-of-fukushima(237bceca-ce7c-4a89-af3e-3771fb6be319).html


A Bayesian Analysis of the Radioactive Releases of Fukushima

Ryota Tomioka Morten Mørup
Department of Mathematical Informatics

University of Tokyo
Section for Cognitive Systems

Technical University of Denmark

Abstract

The Fukushima Daiichi disaster 11 March,
2011 is considered the largest nuclear acci-
dent since the 1986 Chernobyl disaster and
has been rated at level 7 on the Interna-
tional Nuclear Event Scale. As different ra-
dioactive materials have different effects to
human body, it is important to know the
types of nuclides and their levels of con-
centration from the recorded mixture of ra-
diations to take necessary measures. We
presently formulate a Bayesian generative
model for the data available on radioactive
releases from the Fukushima Daiichi disas-
ter across Japan. From the sparsely sam-
pled measurements the model infers what nu-
clides are present as well as their concentra-
tion levels. An important property of the
proposed model is that it admits unique re-
covery of the parameters. On synthetic data
we demonstrate that our model is able to in-
fer the underlying components and on data
from the Fukushima Daiichi plant we estab-
lish that the model is able to account for
the data. We further demonstrate how the
model extends to include all the available
measurements recorded throughout Japan.
The model can be considered a first attempt
to apply Bayesian learning unsupervised in
order to give a more detailed account also of
the latent structure present in the data of the
Fukushima Daiichi disaster.

1 Introduction

Following the Tohoku earthquake and the 15 meter
tsunami wave on 11 March, 2011 the Fukushima Dai-

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume XX of JMLR:
W&CP XX. Copyright 2012 by the authors.

ichi nuclear disaster was caused by a series of equip-
ment failures. The disaster is considered the largest
nuclear accident since the 1986 Chernobyl disaster and
has been rated at level 7 on the International Nuclear
Event Scale. Radioactive materials were released from
the Fukushima containment vessels as a result of ac-
cidental or uncontrolled events as well as deliberate
venting to reduce gaseous pressure [14]. Very quickly
people living in Japan became worried about the var-
ious health risks that may result from exposure to
excessive amounts of radioactivity. As a result, the
Tokyo Electronic Power Company (TEPCO) and au-
thorities started to release radioactive dose measure-
ments across Japan, these measurements are ongoing.

Unfortunately, these measurements do not directly
answer what nuclides the measured radioactivity is
caused by as the measurements are formed from mix-
ture of radiations from various types of radionuclides
(unstable atoms that emit radiation), such as, iodine-
131 (131I) and cesium-134/137 (134Cs/137Cs) [8, 6, 5].
Since different radionuclides have different effects to
human body, it is important to know which type of
radionuclides are located where in what concentrations
in order to take necessary measures.

The standard approach for doing this is either localized
in space or time. The in-situ gamma-ray spectrome-
try [10] can be useful in separating different radionu-
clides, but requires expensive equipment and long mea-
surement time; therefore it is spatially localized. On
the other hand, an airplane or a helicopter can be used
to measure the radioactive dose rate of a large area.
However, instantaneous dose rates do not directly give
concentrations of different types of radionuclides as the
measured dose rate is a mixture of various radionu-
clides. Recently, Yasunari et al. [15] analyzed the ra-
dioactivity levels in deposition combined with a atmo-
spheric transport model called FLEXPART. Although
this is a promising direction, their focus was to reveal
the concentration of a single nuclide 137Cs.

Figure 2 shows some of the measurements from the
Fukushima Daiichi nuclear plant for the one month pe-
riod following the earthquake. From a machine learn-
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Figure 1: A map showing the 48 regions that we con-
sider in our modeling. The first region consists of nine
measurement points at the Fukushima Daiichi nuclear
power plant (blue circle). The other 47 regions each
consist of one measurement point located at the pre-
fectural capital cities.

ing point of view, this is a massively missing de-mixing
(i.e. blind source separation) problem.

Our goal is to provide a tool that combines both the
spatial and temporal dimensions of the data and esti-
mates the types of radionuclides as well as their spatio-
temporal distribution. In order to overcome the mas-
sively missing measurements, we employ natural but
strong modeling assumptions. Our basic assumption
is that the radiations from different radionuclides con-
tribute additively to the measured dose rate, and each
nuclide has its own decay curve with a fixed but un-
known decay constant. As we show, these assumptions
are in theory sufficient to make the identification of nu-
clides and their concentrations possible. Furthermore
the proposed model also takes local and global struc-
ture of the measurement into account. On the local
side, we define groups of nearby measurement points,
in which the radionuclide concentrations are assumed
to be shared. On the other hand, only the set of decay
constants for different radionuclides are shared across
groups, which allows us to estimate region specific nu-
clide concentrations and aggregate samples from dif-
ferent regions to improve the estimation of decay con-
stants.

We hope our modeling framework will turn useful
in order to predict the level of radioactivity between
measurements as well as estimate which radionuclides
are present in what concentrations. This will hope-
fully improve our understanding of the extent of the
Fukushima Daiichi disaster and its impact on both na-
ture and humans in the exposed environments.
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Figure 2: Raw data from the Fukushima Daiichi nu-
clear plant. The time period from March 11th to April
10th is plotted.

2 Methods

We will consider a total of R different regions in-
dexed by r. Within each region there are L(r) mea-
surement locations indexed by l and a total of E(r)

radioactive incidence events indexed by e each oc-

curring at time τ̃
(r)
e . We will assume the events in

all regions are known a priori or can be directly in-
ferred from the observed data defined by a signifi-
cant increase in the radioactive level between sam-
ples. We will consider a total of C radioactive nu-
clides indexed by c. The Fukushima data is sampled
both inhomogeneous and sparsely across regions and
locations. For each location and region there is a to-
tal of T (r,l) observed measurements over time indexed
by t such that the tth observation of the radiation

level in region r at location l denoted x
(r,l)
t occurs at

time τ
(r,l)
t . We will let N+ denote the normal dis-

tribution truncated to the non-negative orthant and

exp+(−τ) =

{
exp(−τ) if τ ≥ 0
0 otherwise

be the exponen-

tial function truncated to zero such that radioactive
events can not influence the radioactivity level back in
time.

2.1 A generative model of the Fukushima
data

For each region r we are provided with the

following measurements {x(r,1), x(r,2), . . . x(r,L(r))},

{τ (r,1), τ (r,2), . . . τ (r,L(r))} as well as the time of the

radioactive incidence events τ̃ (r). For the measured
radioactivity level x

(r,l)
t , in region r at location l at
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Draw nuclide decay constants λc ∼ Gamma(αλ, βλ)
Draw variance of nuclide concentrations γc ∼ InvGamma(αγ , βγ)

Draw region and event specific nuclide concentrations a
(r)
ce ∼ N+(0, γc)

Draw region specific variance of concentrations ψ(r) ∼ InvGamma(αψ, βψ)

Draw region, location and event specific concentrations b
(r)
el ∼ N+(0, ψ(r))

Define the average radioactive activity level as µ
(r,l)
t =

∑
e,c a

(r)
ce b

(r)
el exp+(−λc(τ

(r,l)
t − τ̃

(r)
e ))

Draw region and location specific noise level φ
(r)
l ∼ InvGamma(αφ, βφ)

Draw the observed radioactive level x
(r,l)
t ∼ N (µ

(r,l)
t , φ

(r)
l )

Table 1: Generative process for the Fukushima Daiichi data.R L ( r ) CE ( r ) T ( r , l )
Figure 3: Illustration of the generative model for the
Fukushima data. Light gray circles denote predefined
priors, and dark shaded circles the observed data.

time τ
(r,l)
t we define the generative process given in

Table 1. A graphical model of the generative process
is given in Figure 3 and examples of data generated
according to the process is illustrated in Figure 4.

We are particularly interested in establishing what nu-
clides are in the data as well as their concentration
level. We therefore treat the decay constants λc as
stochastic variables in order to infer which nuclides ac-
count for the data unsupervised. We further specify in
the generative model the variance of each nuclide con-
centration γc separately. Inference on the prior vari-
ances typically results in a sparse solution, i.e., most
prior variances tend to zero. This process, known as
automatic relevance determination [1], enables us to
effectively estimate the number of nuclides. Notice
also, that across regions the prior over nuclide concen-
trations and decay constants are shared, hence, these
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Figure 4: Three random draws from the generative
model with R = 1, L = 3, and C = 5. The time
of events τ̃e are sampled from a poisson point process
with the average waiting time 50.

parameters are supported by all the available data.

2.2 Model limitations

Let z
(r)
lec denote the concentration of the radioactive

nuclide c at event e and location l in region r. The
model proposed assumes the following decomposition

z
(r)
lec = b

(r)
el a

(r)
ce . That is, the relative concentrations of

each nuclide for each event is the same within a region

given by a
(r)
ce but can differ in proportion across lo-

cations by b
(r)
el . This assumption significantly reduces

the number of model parameters from L(r)E(r)C to
E(r)(C + L(r)).

The data is based on count data which can be as-
sumed to be distributed according to a Poisson dis-
tribution. For computational convenience we use the
Normal distribution instead as likelihood function for
the data. We note however that for sufficiently large

values of count occurrences (x
(r,l)
t > 103) the Poisson

distribution can well be approximated by a Normal
distribution.

In the generative model the timing of each radioactive

incidence events τ̃
(r)
e is assumed to be known a priori

as these events are available from official records and
can also be well estimated from the data, i.e. if x

(r,l)
t−1 <

x
(r,l)
t we will create the event e given by τ̃

(r)
e = τ

(r,l)
t .
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Defining events from data has however its limitations.
The actual timing of the event can occur anywhere

between τ
(r,l)
t−1 and τ

(r,l)
t but from a modeling point of

view a change in the timing of the event from τ̃
(r)
e

to τ̂
(r)
e ∈ (τ

(r,l)
t−1 , τ

(r,l)
t ) can be absorbed by an equiva-

lent change in the concentration level of the nuclides

a
(r)
ce to â

(r)
ce such that a

(r)
ce exp+(−λc(τ

(r,l)
t − τ̃

(r)
e )) =

â
(r)
ce exp+(−λc(τ

(r,l)
t − τ̂

(r)
e )). Furthermore, if multiple

events occur between τ
(r,l)
t−1 and τ

(r,l)
t these events can

similarly be collapsed into a single event that combines
the contributions to the radioactivity of the multiple
events. Thus, the timing of the events and number of
events detected is limited to the temporal resolution
of the data. However, as events are shared across lo-
cations events only need to be detected within one of
the measured locations within a region.

The model does not account for potential correlations
across regions for instance caused by weather patterns
or regions relative proximity to each other. It is how-
ever very challenging to share information across re-
gions as the correlation structure is non-stationary, i.e.
weather patterns can change and the spatial propaga-
tion can be nuclide specific and non-linear.

Finally, nuclide decay constants for which λc is very
small (i.e. in the order of years) can be difficult to
detect as this requires samples that are separated far
in time. Furthermore, nuclides that have similar decay
constants can be difficult to separate. The model is
also unable to determine how the nuclides are bound to
the measurement environment and there can be issues
of measurements being inconsistently recorded. This
is not accounted for in the model beyond the region

and location specific noise variance parameter φ
(r)
l .

2.3 Inference

Let θ = {αλ, βλ, αψ, βψ, αφ, βφ} denote fixed hyper-
parameters. Let X denote the complete available data.
From the generative model we can define the following
joint distribution

P (X , λ, γ, ψ(1:R), φ(1:R), A(1:R),B(1:R)|θ) =
( ∏

r

[ ∏

l,t

p(x
(r,l)
t |µ(r,l)

t , φ
(r)
l )

]
·
[ ∏

l,e

p(b
(r)
el |0, ψ(r)

e )

]

·
[ ∏

e,c

p(a(r)
ce |0, γc)

]
·
[ ∏

l

p(φ
(r)
l |αφ, βφ)

]

·p(ψ(r)|αψ, βψ)

)
·
[ ∏

c

p(λc|αλ, βλ) · p(γc|αα, βα)

]
.

We will use Markov chain Monte Carlo (MCMC) to
estimate the model parameters from the above joint

posterior. We will exploit conjugacy of the Gamma
and the truncated normal distribution in order to de-
rive Gibbs updates for γc, ψ(r), φ

(r)
l , a

(r)
ec , b

(r)
le . These

posterior distributions are given by

γc ∼ InvGamma(αγ +
∑

r,l

E(r)

2 , βγ +
∑

r,e

(a(r)
ce )2

2 ),

ψ(r) ∼ InvGamma(αψ + E(r)L(r)

2 , βψ +
|B(r)|2F

2 ),

φ
(r)
l ∼ InvGamma(αφ + T (r,l)

2 , βφ +
∑

t

(x
(r,l)
t −µ

(r,l)
t )2

2 ),

a(r)
e ∼ N+(µa(r)

e ,Σa(r)
e ),

b
(r)
l ∼ N+(µb

(r)
l ,Σb

(r)
l ), where

Σa(r)
e =

((∑

l

1

φ
(r)
l

P (r,e,l)⊤
P (r,e,l)

)
+ diag(γ−1

c )

)−1

,

µa(r)
e = Σa(r)

e (
∑

l

P (r,e,l)ξ(r,e,l)/φ
(r)
l ),

Σb
(r)
l =

(
1

φ
(r)
l

R(r,l)⊤
R(r,l) + (1/ψ(r))I

)−1

,

µb
(r)
l = Σb

(r)
l (R(r,l)⊤

x
(r)
l /φ

(r)
l ).

In the expressions above the T (r,l) dimensional vector
ξ(r,l), the T (r,l)×C matrix P (r,e,l), and the T (r,l)×E(r)

matrix R(r,l) are defined as follows:

ξ(r,e,l)=
(
x

(r)
t −

∑

e′ ̸=e

∑

c

a
(r)
ce′b

(r)
e′l e

−λc(τ
(r,l)
t −τ̃

(r)

e′ )

+

)
t
,

P (r,e,l) =
(
b
(r)
el exp+(−λc(τ

(r,l)
t − τ̃ (r)

e ))
)

t,c
,

R(r,l) =
(∑

c

a(r)
ce exp+(−λc(τ

(r,l)
t − τ̃ (r)

e ))
)

t,e
.

In order to sample from N+ we used the slice-sampler
proposed in [12].

Since λc is constrained to be non-negative we will
re-parametrize λc = exp(υc) and sample υc by a
random-walk using a normal distribution as proposal
distribution with mean given by the current value
of υc and variance defined by the inverse Hessian
of the re-parametrized negative log-likelihood func-

tion, i.e. Q(υ∗
c |υ) ∼ N (υc, (−∂2 log P (υc|θ\υc )

∂υ2
c

)−1). For

the log-likelihood function and the Hessian of the re-
parametrized problem we have

− log P (υc|Θ\υc
) =(αλ − 1)υc − exp(υc)/βλ

−
∑

r

P

t,l(x
(r)
tl −µ

(r)
tl )2

2φ
(r)
l

+ const.,

−∂2 log P (υc|Θ\υc )

∂υ2
c

=exp(υc)/βλ

−
[ ∑

r

∑

lt

(
∑

e

q
(r,l)
tec λc(τ

(r,l)
t − τ̃ (r)

e )
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·(1+λc(τ
(r,l)
t − τ̃ (r)

e )))(x
(r)
lt − µ

(r)
lt )2/φ

(r)
l

]

+

[ ∑

r

∑

lte

(q
(r,l)
tec λc(τ

(r,l)
t − τ̃ (r)

e ))2/φ
(r)
l

]
,

where Θ\υc
is used to denote all parameters of the

model except υc and q
(r,l)
tec = a

(r)
ce b

(r)
el exp+(−λc(τ

(r,l)
t −

τ̃
(r)
e )). The accept rate is given by the Metropolis-

Hastings ratio min{1,
P (υ∗

c |θ\υ∗
c
)Q(υc|υ∗

c )

P (υc|θ\υc )Q(υ∗
c |υc)

}.

Accounting for background radiation: We include a lo-
cation and region dependent bias term denoting the
level of background radiation. This is trivially im-
plemented by introducing an additional (background)

event (e = 0) with τ̃
(r)
0 = 0 and additional (back-

ground) component (c = 0) defined by λ0 = 0 such

that a
(r)
0e =

{
1 if e = 0
0 otherwise

. The background radia-

tion level is estimated by sampling the parameter b
(r)
l0

in the Gibbs update of b
(r)
l .

2.4 Parameter Identifiability

We will in this section derive two important proper-
ties of the proposed model; the components are unique
up to permutation and scaling and the initial relative
nuclide concentrations can be estimated from A(r).

2.4.1 Identifiability of the model

The estimated value of the radiation level given by

µ
(r,l)
t =

∑
e,c a

(r)
ce b

(r)
el exp+(−λc(τ

(r,l)
t − τ̃

(r)
e )) can be

considered a non-linear factor analytic type decom-
position into the nuclide concentration matrix A(r),
location specific concentrations B(r) and a third or-
der tensor of time courses with elements given by

vtec = exp+(−λc(τ
(r,l)
t − τ̃

(r)
e )).

Now, for simplicity omitting the index r for a re-
gion, we can write the reconstructed data for the
lth location as a simple linear system as follows:
µ(l) =

∑C
c=1 V c diag(ac)b

(l). If we define an alter-
native solution given by an invertible matrix M we

have µ(l) =
∑C

c=1 Ṽ c diag(ãc)b̃
(l)

, where

C∑

c=1

Ṽ c diag(ãc) =
C∑

c=1

V c diag(ac)M , b̃
(l)

= M−1b(l).

Since there is no restriction on b̃
(l)

, the above second
equation is automatically satisfied for any M . How-
ever, we can see that in the first equation, we have ET
equations but only EC degrees of freedom for Ã, C de-
grees of freedom for λ̃c (c = 1, . . . , C), and E2 degrees
of freedom for M . Therefore, if ET > EC +C+E2, it

is unlikely that the solution of the nonlinear equation
exists.

2.5 Estimating the nuclide concentrations
from A(r)

Consider a single event at τ̃ = 0 such that the observed
radiation dose xt is composed of C nuclides decaying
at different decay constants λc (c = 1, . . . , C). Denote
the concentration of the cth radionuclide at time t as
zc(τt). The observed radiation dose xt can be written
as xt =

∑
c χczc(τt), where χc is a nuclide specific

constant that can be found in physics literature.

Note that although our model predicts as xt =∑
c ace

−λcτt , ignoring the indices for region and loca-
tion, the latent nuclide concentration zc(τt) does not
simply decay as zc(τ) = zc(0)e−λcτ , in which case we
would have ac = χczc(0). This is because some ra-
dionuclides decay into other nuclides.

However, if we know additionally which nuclides decay
into which other nuclides, we can recover the initial
nuclide concentration zc(0) from the estimated “effec-
tive” nuclide concentration a1, . . . , aC . This is pos-
sible because the decay process can be described by
the linear differential equation ż(τ) = Mz(τ), where
z(τ) = (z1(τ), . . . , zc(τ))⊤ and M is an upper trian-
gular matrix that describes the decay chain. For ex-
ample if the jth nuclide decays into the ith nuclide
(i < j) at rate λ, the jth column vector of M has λ
and −λ in the ith and the jth element, respectively.
The matrix M is upper triangular because the decay
chain is a DAG. By assuming that the decay constants
are distinct, the characteristic polynomial of M has C
distinct roots and M can be diagonalized by a regu-
lar matrix P . In this case, the solution of the above
differential equation can be written as follows:

z(τ) = P diag
(
e−λ1τ , . . . , e−λCτ

)
P −1z(0).

Thus the estimated coefficient ac can be written as
ac = χ̃cz̃c(0), where χ̃ = P ⊤χ and z̃(0) = P −1z(0).
Since χ and P are known, we can recover the initial
nuclide concentration z(0) from a1, . . . , aC .

3 Results

In this section we first demonstrate that our sampling
method described in Section 2 can recover global ra-
diation dose from largely missing observations on syn-
thetic data. Next, we apply our method to the sur-
vey meter recordings from Fukushima Daiichi nuclear
power plant. Finally we apply our method to combine
the data from the Fukushima Daiichi power plant and
regional measurements across Japan.

1247



A Bayesian Analysis of the Radioactive Releases of Fukushima

Figure 5: The negative log joint probability function is
plotted against the number of MCMC iterations. The
shaded area from 500 to 1000 iterations are used to
compute the posterior mean for the missing elements.

3.1 Synthetic data

We generate synthetic hourly data corresponding to
a period of one month with five locations (L = 5)1.
We assume three underlying radionuclides having fixed
decay constants corresponding to half lives 8.8, 0.88,
and 0.088 days.

We split the generated data into training and test sets
by randomly holding out certain fraction of data points
as missing. We run the sampler described in the pre-
vious section only with the training set and report the
reconstruction error on the test set.

The following error metric is used to measure the mean
squared error of the posterior prediction relative to the
signal power:

relerr =

∑
l

1
T (l,test)

∑
t∈T (l,test)(x

(l)
t − 〈µ(l)

t 〉)2
∑

l
1

T (l)

∑
t(x

(l)
t )2

, (1)

where T (l,test) is the set of indices corresponding to the
missing data and T (l,test) = |T (l,test)| is the number
of missing data for the lth location. The posterior

average 〈µ(l)
t 〉 is computed by sampling for a certain

number of iterations after the burn-in period.

Figure 5 shows the time course of
the negative log joint probability (i.e.,

− log(P (X , λ, γ,ψ(1:R),φ(1:R), A(1:R), B(1:R)|θ)))
against the sampling steps. From the plot, we can
see that the negative log probability decreases until
400 iterations and become more flat after that point.
Therefore, we used the samples from 500 to 1000
iterations to compute the posterior mean prediction.

1In the simulation we only have a single region, i.e. R =
1 and the r index is therefore ignored.
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Figure 6: The relative reconstruction error (1) is plot-
ted against the fraction of observed elements.

Figure 7: The half lives of the radionuclides estimated
by the proposed sampler on the synthetic data. The
sampler assumed ten nuclide candidates (C = 10),
while the data was generated with three nuclides with
half lives 8.8, 0.88, and 0.088 (days) indicated by the
short black lines in the right side of the plot.

Figure 7 shows the half lives of the estimated ra-
dionuclides against the number of iterations. The
decay constant λc is converted into the half life by
thalf = log(2)/λc, where log is the natural logarithm.
The solid curve shows the half lives against the num-
ber of iterations, and the shaded area around each
curve indicates the relative degree of support of the
corresponding radionuclide from the data (given by
the standard deviation of the estimated nuclide con-
centration variance

√
γc.) We can see that after 200

iterations, three nuclides that have half lives close to
the truth are constantly supported (wide area around
the curves). The not so well supported components
are heavily fluctuating as they are poorly supported
by the data and have very little influence on the model
prediction.

Figure 8 visualizes the prediction results for a partic-
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Figure 8: Prediction result on a synthetic data set.
The dashed magenta curves show the true radioactiv-
ity. The blue crosses indicate the observed data points.
The solid green curves show the mean posterior predic-
tion, and the red dashed curves show the one standard
deviation around the mean.

ular data. Although we only use 10% of the data for
training (90% missing), the prediction results agree
well with the true curves.

3.2 Fukushima Daiichi data set

The Fukushima Daiichi data set is originally released
from Tokyo Electronic Power Company (TEPCO) [13]
and collected in a machine readable format by a com-
munity effort.[4] The original data set contains 24
unique location tags. After removing locations with
less than 10 samples, we analyze dose rate measure-
ments from nine locations, namely “MP-1, around”,
“MP-2, around”, “MP-3, around”, “MP-4, around”,
MP-8, around”, “Office building, north”, “Front gate”,
“Front gate, around”, “West gate”. These locations
are indicated in the blue circle in Figure 1.

Figure 9 shows the half lives of the estimated radionu-
clides against the number of iterations for a 10 com-
ponent analysis of the Fukushima Daiichi data. The
decay constant λc is converted into the half life by
thalf = log(2)/λc. The solid curve shows the half
lives against the number of iterations, and the shaded
area around each curve indicates again the relative
degree of support of the corresponding radionuclide
from the data. We can see that after about 300 it-

Figure 9: The half lives of the radionuclides estimated
by the proposed model for the Fukushima Daiichi data
set.

erations 3 prominent components emerge; two promi-
nent quickly decaying components that could pertain
to 131Te, 132mI, 132I, or 135I, and a relatively slow com-
ponents that could correspond to 133Xe or 131I.

Figure 10 visualizes the prediction results by the es-
timated model. While the measured data is well ac-
counted for by the model we see that the model at-
tempts to predict regions that are not supported by
measurements by aggregating information across the
locations. The standard deviations for the predictions
are indicated by the red dashed lines.
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Figure 10: Prediction result on the Fukushima Daiichi
data set. The green solid curve shows the posterior
mean prediction. The red dashed curves show the one
standard deviation around the mean.
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3.3 Joint analysis of Fukushima Daiichi and
MEXT data

The MEXT data set is originally released from Min-
istry of Education, Culture, Sports, Science, and Tech-
nology (MEXT), Japan [7]. We use the CSV format
data maintained by Haruhiko Okumura [9]. The data
set contains hourly radiation dose from 47 prefectural
capital cities across Japan. Most cities use NaI scin-
tillation detectors, but some cities transportable mon-
itoring posts. In addition, each measuring station is
located at a different height from the ground. In that
sense, the data set is rather noisy and heterogeneous.
We assume 1 µGy/h = 1 µSv/h. For this analysis we
assume that there are in total 48 regions. The first
region contains the nine locations we analyzed in the
previous subsection from the Fukushima Daiichi plant.
The 2nd to the 48th regions correspond to the 47 pre-
fectural capital cities (see also Figure 1) and contains
a single measurement site.

Figure 11 visualize the predictive mean dose rates for
Utsunomiya city in Tochigi prefecture and Shinjuku-
ward in Tokyo prefecture for the range of March 11th
to April 10th. We can see that while the radioactivity
from the Utsunomiya city mainly caused by the sin-
gle event on March 15th, that for Tokyo is caused by
events on March 15th, March 16th, 21st, and 22nd.
This is natural because Tokyo is at least 200 km away
from the Fukushima power plant, whereas Utsunomiya
city is much closer to the plant. The predictions for the
Fukushima Daiichi plant is very similar to Figure 10
and therefore not shown.
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Figure 11: The predictive mean dose rate (green curve)
for Utsunomiya city in Tochigi prefecture (top panel)
and for Shinjuku-ward in Tokyo prefecture (bottom
panel) are plotted in the range of March 11th to April
10th. The blue crosses are measurements.

4 Discussion

We have derived a generative model for the measure-
ments of radioactive releases of the Fukushima Daiichi
disaster. From very sparsely sampled measurements
the model can estimate the presence and concentra-
tion levels of the underlying nuclides. In particular,
our parametrizations is identifiable and in theory en-
able recovery of the initial relative concentration levels
of the nuclides.

The Bayesian formulation naturally admits to impose
additional structure into the problem. In the future we
envision that information such as weather patterns can
be used to inform about spatio-temporal correlation
that can be modelled for instance by imposing Gaus-
sian Process priors [11] on B(1:R). We further envision
that events can be inferred in the model by introducing
birth-death processes that are able to propose and re-
move events during sampling based on reversible-jump
MCMC [2, 3].

The model we have derived can be considered a first
attempt at aggregating the sparse data available on
the Fukushima Daiichi disaster, and we believe as more
data will be available model estimation will improve.
In particular, the model is not currently able to well
infer slow decaying nuclides such as 134Cs/137Cs as
these decay constants are poorly determined from the
short period of time data has been recorded compared
to the half-lives of these nuclides that are in the order
of years. The model is further challenged by the very
sparsely sampled data considered, thus in the future
we will try to include data from other sources.

It will take long before the full extent of the Fukushima
Daiichi disaster will be understood but there is no
doubt that Bayesian methods for inferring latent struc-
ture in the sparse information available is a powerful
tool in order to improve our understanding of the dis-
aster. In this effort this can be considered a perhaps
näıve but tractable first step.
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