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SUMMARY

Cancer progresses through distinct stages, and
mouse models recapitulating traits of this progres-
sion are frequently used to explore genetic, morpho-
logical, and pharmacological aspects of tumor devel-
opment. To complement genomic investigations of
this process, we here quantify phosphoproteomic
changes in skin cancer development using the SILAC
mouse technology coupled to high-resolution mass
spectrometry. We distill protein expression signa-
tures from our data that distinguish between skin
cancer stages. A distinct phosphoproteome of the
two stages of cancer progression is identified that
correlates with perturbed cell growth and implicates
cell adhesion as a major driver of malignancy. Impor-
tantly, integrated analysis of phosphoproteomic data
and prediction of kinase activity revealed PAK4-
PKC/SRC network to be highly deregulated in SCC
but not in papilloma. This detailed molecular picture,
both at the proteome and phosphoproteome level,
will prove useful for the study of mechanisms of
tumor progression.

INTRODUCTION

Mouse models of cancer are a resource of great potential in

cancer research and they have provided important insights into

tumor biology (Marcotte and Muller, 2008; Walrath et al.,

2010). They have helped in confirming gene function, identifying

tumor markers, and contributing to a better understanding of the

cellular and molecular mechanisms of tumor initiation and the

multistage processes of tumorigenesis. In addition to detailed

functional studies, these models have been investigated with

large-scale and unbiased ‘‘omics’’ technologies—usually in

the form of measuring gene expression changes with microar-

rays (Hummerich et al., 2006; Landis et al., 2005). However,

messenger RNA (mRNA) levels do not correlate well with protein

levels (Tian et al., 2004) or provide information on protein activity.

Therefore, more advanced large-scale analyses of proteins and

their posttranslational modifications (PTMs) are needed to

understand the complex processes involved in cancer develop-

ment. While this has been a central aim of the proteomics

community, daunting technological challenges have so far pre-

vented proteomics from complementing the ubiquitous genomic

technologies at a similar level of comprehensiveness (Hanash

and Taguchi, 2010; Harsha and Pandey, 2010; Pawson and

Scott, 2005).

Cancer is intimately associated with somatic alterations (Strat-

ton et al., 2009). Mutations that initiate the tumor process often

occur in protein kinase pathways. A prominent example is

a single base mutation of HRas, which strongly impinges on

the Mapk pathways, or the kinase BRaf, which are associated

with a large fraction of epithelial tumors (Davies et al., 2002;

Reddy et al., 1982). Such mutations have direct effects on the

activity of specific signaling pathways, which can in principle

be detected by large-scale analysis of the phosphorylation

status of proteins in tumors (‘‘phosphoproteomics’’). Alterations
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in signaling pathways drive cellular changes, including changes

in gene expression, ultimately resulting in altered protein levels,

which can be measured by quantitative proteomics. Therefore,

proteomics can complement genomic studies that are well

suited to determine alterations in the cancer genome and gene

expression levels.

A well-established system to study tumor progression in mice

is the chemical induced multistage skin carcinogenesis model

(Abel et al., 2009). Beyond the generic advantages of mouse

models, such as reduced genetic variability, this model offers

three distinct stages for proteomic investigation, representing

precancerous, benign and malignant tumors. Here, we use an

advanced proteomic workflow employing high-resolution mass

spectrometry (MS) in combination with stable isotope labeling

by amino acids in cell culture (SILAC) (Mann, 2006; Ong et al.,

2002) to quantify the proteome and the phosphoproteome of

tumor tissues. For phosphoproteomics, we employed an estab-

lished enrichment protocol, which has been used successfully

with SILAC to analyze cell signaling (Olsen et al., 2006). However,

it is still challenging to perform quantitative proteomics studies

in vivo and, to our knowledge, there are to date no quantitative

in-depth studies of the phosphoproteome in vivo in cancer. We

have previously set the stage for such studies by establishing

SILAC labeled mice as a powerful tool to perform in vivo quanti-

tative proteomic studies of organs, tissues, and cells (Krüger

et al., 2008; Ostasiewicz et al., 2010). Additionally, we and others

have shown that phosphorylations can be studied in vivo (Mon-

etti et al., 2011; Rikova et al., 2007; Villén et al., 2007; Zanivan

et al., 2008).

In the present paper, we combined the SILAC mouse tech-

nology in a ‘‘spike-in’’ fashion (Geiger et al., 2011) with a chemi-

cal-induced carcinogenesis tumor model. A single treatment of

the skin with the carcinogen DMBA initiates skin carcinogenesis

by inducing an activating mutation of HRas. Further repeated

applications of the tumor promoter 12-O-tetradecanoylphor-

bol-13-acetate (TPA) provoke thedevelopment of a premalignant

lesion, papilloma (Pap). Papilloma mirrors human actinic kera-

tosis (AK) and can progress to the malignant tumor, squamous

cell carcinoma (SCC) (Roberts et al., 2007). We accurately iden-

tified and quantified a considerable part of the proteome and

phosphoproteome of TPA-treated skin (referred to as TPA),

Pap, and SCC. With this approach, we provide evidence that

distinct parts of the proteome and phosphoproteome are regu-

lated during the different steps of carcinogenesis and identify

specific processes that become deregulated. Illustrating the

relevance of this approach to human tumors, we validated

altered expression levels of specific candidates for cancer

progression in human tumor tissues and confirmed their invasive

potential.

RESULTS

SILAC Mouse Model to Quantify Phosphoproteome
in Cancer Progression
We isolated tissue samples from four defined stages of mouse

skin cancer development: (1) non-TPA-treated control skin

(Ctl), (2) TPA-treated skin, (3) lesions that have progressed to

the papilloma stage and finally to the (4) carcinoma stage.

Tumors were classified as Pap or SCC according to histological

analysis and further validated by laminin 332 staining performed

on tissue. As expected, the basement membrane (BM) was well

organized in TPA and Pap, but not in the SCC where the BM

accumulated at the interface between stroma and invading

tumor cells (Figure 1A).

The skin is an elastic tissue rich in collagens and keratins,

making in-depth proteomic analysis very difficult with standard

MS protocols. Indeed, use of lysis buffers containing urea, which

is compatible with MS, resulted in low yields of extracted

proteins and incomplete protease cleavage. Therefore we used

a lysis buffer containing 4% SDS. We separated the proteome

by 1D SDS-PAGE followed by in-gel digestion. For the phospho-

proteome, we also solubilized proteins in SDS, but digested

them on filter (Wisniewski et al., 2009), fractionated by strong

cation exchange chromatography (SCX) and subsequently en-

riched for phosphorylated peptides using titanium dioxide

(TiO2) (Larsen et al., 2005). Peptides were then analyzed with

high-resolution liquid chromatography-tandem mass spectrom-

etry (nLCMS/MS) on a hybrid linear ion trap Orbitrap instrument.

To accurately assign to each protein the expression and phos-

phorylation level, we used a spike-in SILAC approach (Geiger

et al., 2011). For this, a labeled proteome standard with a protein

composition and abundance as similar as possible to the skin

tissue samples to be analyzed was required, and we tested the

suitability of the skin from SILAC mice. We mixed an equal

amount of the SILAC standard lysate to each tissue lysate at

a ratio of 1:1 and processed the samples forMS analysis (Figures

1B and 1C). A comparable number of proteins and phosphoryla-

tion sites were quantified in all the analyzed samples (Figures

S1A and S1B). Additionally, on average, more than 95% of the

quantified proteins and phosphorylation sites in the skin, Ctl or

TPA, were within a 4-fold ratio compared to the SILAC skin. In

the tumors, the percentage was higher than 90% (Figures S1C

and S1D). By ensuring that the large majority of proteins were

in an easily quantified range, these results validate the SILAC

skin as an excellent spike-in standard for accurate proteome

quantification.

From three measurements, which comprised a total of more

than 400 MS runs, we identified 6,536 proteins (Table S1) and

14,985 class I phosphorylation sites (sites with high phospholoc-

alization probability for a single amino acid) (Table S2) with a 0.87

and 0.37 ppm average absolute peptide mass error, respec-

tively. Phosphorylation sites were localized with single amino

acid resolution (median localization probability 0.999) and

comprised 13,173 Ser, 1,708 Thr, and 104 Tyr sites, of which

40% have not been previously reported.

To evaluate the reproducibility of our quantitative approachwe

measured the correlation of the normalized SILAC ratio for

proteins and phosphorylation sites between measurements.

While TPA, Pap, and SCC showed high similarity (average R2

of 0.9 for proteome and 0.8 for phosphoproteome), the correla-

tion was only 0.5 for the control skin (Figures S1E and S1F and

Table S3). This low correlation was attributed to the nonreprodu-

cible isolation of the samples that occurred in the skin samples

alone. Although we included the proteome and phosphopro-

teome of the control skin as a resource of proteins and phos-

phorylation sites identified in themouse skin, we did not consider
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those samples any further for our study, and we estimated pro-

teomic changes in tumors by comparison to TPA.

A total of 3,457 proteins and 5,249 phosphorylation sites were

accurately quantified and used for further bioinformatic analysis

(Tables S4 and S5). This set includes proteins with a large

variety of functions. According to gene ontology (GO) annotation

reported in the UniProt database, 116 proteins and 59 phosphor-

ylated proteins are involved in cell adhesion, 92 proteins and

85 phosphorylated proteins in protein kinase activity, and 38

proteins and 41 phosphorylated proteins in transcription

cofactor activity.

Together, these data show that our screen on TPA-treated

skin and tumor tissues was accurate and reproducible and that

it quantitatively probed the proteome and phosphoproteome to

considerable depths in vivo.

Large-Scale Phosphoproteomics Faithfully
Recapitulates Known Molecular Mechanisms
in Tumorigenesis
The state of dedifferentiation of a tumor is often used to evaluate

its malignancy (Ehrenreiter et al., 2009). As expected, the differ-

entiation markers Krt10 and Krt1 were expressed at substantially

lower levels in SCC compared to TPA and Pap (Tables S1 and

S4). Additionally the expression levels of 25 proteins involved

in skin differentiation (Table S6) (Meves et al., 2011) were signif-

icantly downregulated in SCC (Figure 2A). These included the

desmosomal proteins Dsg1 and Dsg2. Immunofluorescence

staining of mouse tissues with antibody against Dsg1/2 con-

firmed the decreased expression of these proteins in SCC

(Figures 2B and S2A). Interestingly, we found Dsg1/2 downregu-

lated also in tissues from SCC patients (Figures 2C and S2B),

which has been previously observed for SCC of different origin

(Wong et al., 2008). Likewise, a number of other proteins that

showed altered expression levels are known to be regulated in

tumor development (Kurzen et al., 2003), providing a positive

control for our screen.

One of the fundamental traits of cancer cells is their sustained

growth and proliferation often reflected by the deregulation of

cyclin-dependent kinase (CDK), mTOR, and ERK/MAPK path-

ways (Hanahan and Weinberg, 2011). Such alterations are

generally driven by modified phosphorylation levels, of proteins

involved in these pathways. Our phosphoproteome data recapit-

ulate these alterations. Notably, the cell cycle regulator Rb1 can

be inactivated by phosphorylation at Ser800 (pRb1) by Cdk

(Roesch et al., 2005) and thereby promote mitosis. Rb1 has

previously been reported to be highly phosphorylated in SCC

of the DMBA-TPA mouse model and in human SCC (Nilsson

et al., 2004). Our MS analysis found significantly higher levels

A

Pap SCCTPA

Laminin 332

B

Mixed lysate
1:1

SILAC mouse
(13C6 lysine)

Ctl TPA Pap SCC

C

10-12 mg 150 µg

Separated
proteins

Digested
peptides

(18 fractions)

SCX - TiO2

Phosphorylated
peptides

(10 fractions)

FASP 1D SDS gel

nLC-MS/MS
(LTQ-Orbitrap, HCD fragmentation)

Data analysis
(MaxQuant/Andromeda)

Digested
peptides

Phosphorylation

MW S

6,536
identified
proteins

14,985
identified class I
phosphorylation

sites 

Figure 1. SILAC Mouse Skin as Standard for In Vivo Quantitative Phosphoproteomics

(A) Confocal images of frozen sections of TPA, Pap, and SCC stained for laminin 332. Nuclei are stainedwith DAPI (blue). Images are representative of the staining

from three mice. Scale bar, 100mm.

(B) SILAC-based workflow.

(C) MS analysis workflow. Results represent three to five MS measurements. MW, standard molecular weight; S, mixed lysate.

See also Tables S1, S2, and Figure S1.
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Figure 2. Known Processes in Cancer Development Recapitulated by Quantitative Proteomics In Vivo

(A) Whiskers plot (minimum and maximum value) of normalized SILAC ratio of 25 proteins involved in keratinocytes differentiation (see Table S6). 1–3 indicates

the MS measurements. p values were calculated between TPA and SCC of the same set of MS measurement.

(B and C) Quantification of Dsg1/2 immunofluorescence in mouse tissues (B) TPA (n = 5), Pap (n = 5), and SCC (n = 6) and human tissues (C) normal skin (n = 5),

SCC (n = 5). n = number of mice/patients. FI, fluorescence intensity.

(D) Normalized SILAC ratios of phosphorylation sites (substrate) involved in processes deregulated in cancer. For each site, the kinase is indicated. Bars = SD

(n > 2, n = number of quantifications). p values were calculated between Pap/SCC and TPA.

(legend continued on next page)
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of pRb1 in Pap and SCC compared to TPA-treated skin

(Figure 2D), which we confirmed by immunofluorescence

analysis of tissue sections (Figures 2E and 2F). Importantly, we

observed similar results by immunostaining of human skin and

SCC tissue samples (Figures 2G and 2H). Phosphorylation of

Akt1s1 at Ser184 (pAkt1s1) indicates mTOR activity (Wang

et al., 2008). Here, we found pAkt1ts1 levels to increase signifi-

cantly in tumors compared to TPA (Figure 2D). Finally, increased

phosphorylation levels of BRaf at Ser135 were measured,

pointing to elevated activity of the Erk/Mapk pathway (Ritt

et al., 2010) (Figure 2D). These specific examples are only a small

fraction of the several thousand sites quantified. Their validity

serves as a clear indicator of the relevance of our phosphopro-

teomic data set.

Phosphoproteomic Alteration in Skin Carcinogenesis
The SILAC ratios of quantified proteins and phosphorylation

sites were clustered using correlation distances between aver-

ages and this revealed a close similarity between Pap (P) and

SCC (S) but striking differences between TPA (T) and tumor.

Nevertheless, there was a small but distinct subset of proteins

regulated only in SCC (Figures 3A and 3B).

We thus investigated the phosphoproteomic changes during

skin carcinogenesis in more detail. Bymeans of ANOVA test cor-

rected for permutation based false discovery rate (FDR), we

identified proteins and phosphorylation sites significantly regu-

lated in tumors compared to TPA (Tables S4 and S5). Of the

3,457 quantified proteins, 483 and 332 were upregulated in

Pap and SCC, respectively, representing the 10%–14% of the

proteome. Furthermore, 660 and 720 proteins were downregu-

lated, representing the 19%–21% of the proteome (Figure 3C).

Of the 5,249 phosphorylation sites, 825 and 970 were upregu-

lated in Pap and SCC, respectively, while 720 and 1,017 were

downregulated (Figure 3D). This indicated that 14%–16% of

the phosphoproteome was upregulated, whereas 18%–19%

downregulated. As anticipated by the hierarchical clustering,

5% of the proteins and phosphorylation sites were regulated

only in the SCC (Figures 3C and 3D).

When we combined the phosphoproteome and proteome

data sets, we found that we could measure the corresponding

protein abundance for 45% of the quantified phosphorylation

sites (Figure 3E). For half of these sites, protein and phosphory-

lation levels were regulated accordingly, while for the other half

significant regulation occurred only at the level of phosphoryla-

tion (Figure 3F). Only 1% of the phosphorylation sites showed

opposite regulation at the protein and phosphorylation levels.

This subset included the tumor-regulated pyruvate kinase

(Pkm2), which was found upregulated at the protein level, but

with decreased phosphorylation level of Ser127.

Altogether these data show that one-third of the proteome and

phosphoproteome of the skin and tumor tissues are expressed

at different levels, that there are detectable proteomic differ-

ences between benign and malignant tumor tissues, and that

a complementary analysis of proteome and phosphoproteome

in our study is necessary for a more comprehensive under-

standing of the molecular mechanisms in carcinogenesis.

Functional Portrait of Skin Carcinogenesis
To gain insights on the processes regulated in skin cancer

progression, we identified the GO categories (Figures 4A and

4B and Table S7) overrepresented in proteins regulated in Pap

and SCC compared to TPA. Most of the categories covered

major pathways deregulated in cancer such as cell cycle, tran-

scription, translation, apoptosis, cell adhesion, and metabolic

process. Additionally, this analysis revealed a prominent fraction

of proteins with catalytic, binding, and structural activities. This

suggested that functional and physical protein-protein interac-

tions are highly regulated during cancer development and we

therefore visualized this information in a systematic way in the

STRING environment (Szklarczyk et al., 2011). Since cell adhe-

sion is a prominent process involved in cancer development,

and overrepresented in SCC (Figure 4A), we integrated detailed

information from the literature (Table S8) into the STRING

analysis and visualized the results in Cytoscape. We built up

color-coded networks with stage-related information (Figures

S3A and S3B). As expected, tightly connected subnetworks

emerged, where most of the proteins were already regulated in

the Pap stage (Figure 4C). Downregulated subnetworks clearly

highlighted altered metabolism. Notably, tumor cells switch their

metabolism to anaerobic glycolysis (Ohlrogge et al., 2009).

Accordingly, the pyruvate dehydrogenases (Pdha1, Pdhb)

reduced expression levels in Pap and SCC compared to TPA.

Conversely, Ldha and Pkm2, key enzymes for the synthesis of

lactate, increased expression levels (Table S4). Also glutathione,

retinol and lipid metabolisms were found downregulated.

Interestingly, components of the latter were downregulated

specifically in the SCC. Finally, a major subnetwork included

cell adhesion proteins. The subnetworks extracted from up-

regulated proteins and phosphorylation sites revealed a clear

difference between benign and malignant tumor and distinct

connections between phosphorylation and proteome changes.

For example, the cell cycle-related subnetwork involved more

phosphorylation than protein expression changes that occurred

already in the Pap, while the DNA replication complex Mcm 2-7

was upregulated only in the SCC stage. Also proteins involved in

nuclear transport were found regulated at phosphorylation level

already in the Pap. Similarly, RNA binding proteins were regu-

lated at the phosphorylation level but formed a cluster with ribo-

somal subunits, which were regulated at the expression level. In

contrast, apoptosis was regulated only at the protein level, like-

wise for proteins involved in the immune system. As for the

downregulated proteins, some changes were found in metabolic

pathways, including glutathione and nucleotide metabolism.

Finally, cell adhesion proteins formed a predominant subnet-

work. Itgb1, Itga1, Rac2, Vasp, Src, and fibronectin (Fn1) were

identified as cell adhesion hubs with higher number of edges

(E and G) Representative immunofluorescence of pRB1 in mouse (E) and human (G) Ker14+ cells. Scale bar, 50 mm.

(F and H) Quantification of immunofluorescence of pRB1 in TPA, Pap and SCC mouse (E), and skin and SCC human (G) tissue sections. The quantification is

based on the number of positive nuclei per 100 Krt14+ cells (y axis). * = p < 0.05 (n = 5).

See also Figure S2.
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(Figure S3C) and therefore used to extract the cell adhesion

subnetwork (Figure 4C). Strikingly, with the exception of Fn1,

all of them, as well as most of their first neighbors, were signifi-

cantly regulated only in the SCC stage. A detailed investigation

of the protein identity of this highly connected adhesion

subnetwork unveiled proteins tightly associated to the actin
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Figure 3. Proteomic and Phosphoproteomic Differences between Skin and Tumor Tissues

(A and B) Heatmaps and hierarchical clustering of quantified proteins (A) and phosphorylation sites (B). Some clusters of proteins and phosphorylation sites

expressed at higher (red) or lower (blue) levels in SCC compared to Pap are highlighted, and a zoom is provided. Heatmap colors represent themedian (proteome

n R 2; phosphoproteome n R 3) of the SILAC ratio.

(C and D) Number of proteins (C) and phosphorylation sites (D) significantly up (Upreg) or downregulated (Downreg) in Pap and SCC compared to TPA. ‘‘Only

SCC’’ indicates proteins and phosphorylations sites regulated in SCC but not in Pap.

(E) Percentage and number (in brackets) of phosphorylation sites with protein expression level quantified or not.

(F) Comparison between protein expression and phosphorylation levels for the 45% phosphorylation sites in (E). Proteins and phosphorylation sites were

considered regulated according to ANOVA test.

See also Tables S4 and S5.
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cytoskeleton, for example, Vcl, Vasp, Lasp1, Tes, Lima1, and the

kinases Src, Pak1, Pak2, and Pak4. Confirming these results,

immunofluorescence staining for Vasp and Lima1 on mouse

tissues gave stronger staining in SCC compared to Pap and

TPA (Figure 5A). Likewise, we observed more intense staining

for VASP and LIMA1 in human SCC compared to skin and AK

(Figure 5B). Interestingly, Pak4 showed increased phosphoryla-

tion levels of the phosphorylation site Ser181, which we have

previously identified in melanoma tissue samples (Zanivan

et al., 2008). Ser181 is located within the linker region of Pak4,

suggesting a regulatory function that might be interesting to

explore in the future.

Apart from providing a systems level analysis of tumor devel-

opment, the combined evidence from significantly altered

protein and phosphorylation levels highlights a prominent role

of cell adhesion mechanisms in the progression of skin carci-

noma. Although the concept is not novel (Yu et al., 2011), we

identify here a specific subset of highly connected adhesion

proteins that potentially contribute to tumor malignancy.

Similarity between Proteomic Changes in Mouse
and Gene Expression in Human SCC
Gene expression changes at the mRNA level have been previ-

ously measured in two independent studies where normal skin

(n = 6) was compared to cutaneous SCC (n = 5) biopsies (Nindl

et al., 2006), and normal skin (n = 4) to SCC (n = 11) tissue

samples from patients (Riker et al., 2008). We analyzed the

concordance of message level changes in human SCC

compared to normal skin and the mouse proteomic changes in

SCC compared to TPA. We matched the significant mRNA

changes against the corresponding protein changes (Table

S9), and Figures 5C and 5D show a positive correlation between

the two analyses. As specific examples, GPDL1 and ACACB

were downregulated at the protein and gene expression levels,

in both microarray data sets, while, the intermediate filament

KRT16 and the actin-binding protein fascin (FSCN1) were upre-

gulated. Interestingly, FSCN1 has been shown to be involved in

several types of SCC (Alam et al., 2012), but not yet skin SCC.

Immunofluorescence on mouse and human tissues confirmed

high levels of FSCN1 in SCC (Figures 5E–5H).

These results show significant molecular similarities between

cutaneous SCC in human patients and in the mouse model

used in our study and corroborate the relevance of our proteomic

study to provide hints in skin cancer progression in humans.

Predicted Kinase Activities in Skin Carcinogenesis
Phosphoproteomic data are a unique resource to determine

kinase activity in biological samples, and we interrogated the

825 and 720 phosphorylation sites upregulated in Pap and

SCC, respectively, to identify potential deregulated kinases

during skin carcinogenesis. By using Motif-X (Schwartz and

Gygi, 2005), we identified 13 linear kinase motifs significantly

enriched in the Pap and 12 in the SCC. Proline-directed phos-

phorylations were the major regulated class in both tumors.

Also motifs containing acidic amino acids were common to

Pap and SCC. Conversely, some motifs were stage specific,

such as an additional acidic motif in Pap and motifs containing

arginine and lysine in SCC (Figure 6A). To predict the kinases

responsible for the phosphorylation of these motifs, we used

a prepublication version of the NetworKIN algorithm, where

we included the analysis of the 163 kinases identified in our

phosphoproteomic study (Jørgensen et al., 2009). Of those,

29 were inferred with significant activity (Figure 6B). For

comparison, we included the predicted substrates for a data

set containing more than 60,000 observed phosphorylation sites

(MegaPhospho). Several proline-directed kinases of the ERK/

MAPK, CDK, and GSK3 families and CK2, whose phosphoryla-

tion motif contains acidic amino acids, were identified as major

tumor-regulated classes. Additionally, as expected, PKC, which

is activated upon TPA treatment (DiGiovanni, 1992), was pre-

dicted to be highly active in the tumors. Similar predictions

were found for PKA and PKD. Interestingly, all of them showed

higher predicted activity in SCC compared to Pap, supporting

the finding that the arginine-containing motif (PKs motifs may

contain an arginine at position �2 or �3) was enriched in SCC

but not in Pap (Figure 6A). These results confirmed the patterns

observed with Motif-X and pinpointed the likely kinases involved

based on cellular context information. Furthermore, the Networ-

KIN algorithm predicted Pak1, Pak2, and Pak4 to be active

in tumors. PAK proteins regulate cell adhesion and are

involved in the development of several tumors (Molli et al.,

2009), and we investigated them further. The autophosphoryla-

tion sites of Pak1 and Pak2, Ser144 and Ser141, respectively,

which contribute to Pak kinase activation (Chong et al., 2001),

increased phosphorylation level during tumor progression (Table

S5). In contrast, Ser181 of Pak4, which is a not yet functionally

characterized site, conserved in human, showed similar phos-

phorylation levels in Pap and SCC, and we investigated PAK4

predicted activity in more detail. Based on observed phospho-

proteomic data and kinase activity predictions, we isolated the

PAK4 subnetwork (Figure 6C), which unveiled that PAK4 phos-

phorylates RAF1 (Ser43) and SRC (Ser17) in SCC but not in

Pap. Intriguingly the network predicted that also PKCalpha

and PKCdelta phosphorylate SRC (Ser12) only in the SCC.

While phosphorylation of RAF1 at Ser43 has been suggested

as feedback phosphorylation that negatively regulate RAF1

(Dougherty et al., 2005), phosphorylation at Ser17 and Ser12 acti-

vate SRC tyrosine kinase activity (Gould and Hunter, 1988). All

together, these observations support that SRC activity is

increased in skin SCC compared to benign tumor and that this

may be triggered by augmented activity of the protein kinases

PAK4 and PKC.

Figure 4. Functional and Physical Interaction in Skin Carcinogenesis

(A and B) GO biological processes (A) and molecular functions (B) overrepresented in up- and downregulated proteins in Pap and SCC.

(C) STRING subnetworks of proteins and phosphorylated proteins down (downregulation) and upregulated (upregulation) in SCC. For downregulation, apart for

the cell adhesion subnetwork, all the others are related to metabolic processes indicated in brackets. The node color represents regulation at the protein

expression level (Prot), while the node border color represents the regulation at the phosphorylation level (Phos) in the Pap and SCC stages.

See also Tables S7, S8, and Figure S3.
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Invasive Role of Phosphoproteins Regulated in Skin
Carcinogenesis
To explore the functional relevance of our phosphoproteomic

study, we performed invasion assays using the human carci-

noma cell lines A431 and SCC9. We chose three cell adhesion

proteins for validation: VASP and FSCN1 as they are upregulated

in skin SCC (Figure 5), and PAK4, as it is predicted to promote

SRC activity in skin SCC. Cells were efficiently silenced for

FSCN1, VASP, and PAK4 (Figure S4) and their invasiveness

was assessed in a 3D collagen-based invasion assay and a 3D

organotypic invasion assay. Strikingly, the silencing of FSCN1,

VASP, or PAK4 significantly reduced invasion of A431 (Figures

7A and 7B) and SCC9 (Figures 7C and 7D) compared to cells

silenced with the nontargeting small interfering RNA (siRNA)

(Figures 7 and S4), indicating that these proteins are part of the

invasive machinery of SCC cells.

These results show the functional relevance of our proteomic

study in unraveling the proteins, which regulate tumor cell inva-

sion, and that further exploration of our data set might identify

potential drug targets for therapies.

DISCUSSION

Here, we have investigated proteome changes in defined stages

of skin cancer development. Following upon previous large-

scale studies of tumor development at the level of the genome

and the transcriptome, the expression levels and phosphoryla-

tion status of thousands of proteins have now been accurately

quantified throughout cancer progression in a challenging in vivo

system. Apart from the SILACmouse technology, this wasmade

possible by enormous improvements in all aspects of the high-

resolution quantitative proteomics pipeline over the last few

years. Many protein and phosphorylation changes contained in

our data set have already been described in the literature, and

thus provide an excellent validation of our screen. These addi-

tional regulated protein and phosphorylation changes represent

a valuable resource for the cancer research community.

Systems-level analysis of our phosphoproteomic data clearly

showed that the depth of coverage and quantitative accuracy

were sufficient to generate a functional portrait and infer kinase

activities of the carcinogenesis process.

The accurate quantification of the proteome of the skin and

tumor tissues highlightedmajor differences in protein expression

levels. This may be partly due to the diverse composition of the

tissues, such as a higher proportion of dermis in the skin, as

suggested by collagen I and skeletal muscle proteins expression

levels (Table S3). Such differences were not found between

Pap and SCC and therefore were irrelevant for the com-

parison between tumors. Additionally, the higher expression

levels of the integrin heterodimer amb2, fibrinogen, and several

complement components suggested the presence of inflamma-

tory and blood cells in the tumor tissue. Nevertheless, our

proteomic analysis identified clear and distinct differences in

protein expression levels between normal keratinocytes and

tumor cells (Figures 2 and 5), validating the suitability of our

data sets for unveiling molecular mechanisms associated with

skin carcinogenesis.

Deregulated Processes in Skin Carcinogenesis
Dedifferentiation is a key feature of cancer development, often

used to classify tumors. In our study, we found several compo-

nents of desmosomes, which are multiprotein complexes that

maintain tissue integrity and cell-cell adherence in epithelial

tissue, with altered expression levels at the stage of malignancy.

By extension, other proteins in our data set that are downregu-

lated specifically in the SCC stage may be novel markers of

dedifferentiation and cancer progression.

A key characteristic of cancer is deregulated cell growth and

our data revealed broad upregulation of the protein translation

machinery already at the Pap stage. Instead, increased phos-

phorylation levels were associated with regulators of translation

and gene expression. Interestingly, the Mcm 2-7 complex,

involved in DNA replication initiation and elongation during cell

cycle, was highly expressed only in the SCC, indicating further

deregulation in malignancy. Metabolism was another major

regulated cellular function and changes were already character-

istic in benign tumors. In particular, our proteomic data recapit-

ulate the well-knownmetabolic shift to anaerobic glycolysis, also

known as the Warburg effect (Ohlrogge et al., 2009), which we

found with different levels of regulation in cancer. For instance,

we found upregulation of Pkm2 expression level but downregu-

lation of a specific phosphorylation site. Additionally, we

observed changes in the retinol metabolism pathway. Retinol

has been shown to be crucial in regulating cell differentiation

and induction of antiproliferative genes and retinoid therapy

has proven successful to suppress tumor formation in the two

stage skin cancer mouse model and several solid tumors in

human (Cheepala et al., 2009; Njar et al., 2006). Changes in the

redox capacity of cancer cells are well known, and we found

that proteins involved in glutathione metabolism changed

expression levels already in the Pap.

The BMsurrounding the tumor cells is remodeled during tumor

progression, and BM components can drive tumor malignancy.

Laminin 332 is the major BM component expressed in SCC

where it regulates cancer cell motility, and its expression level

correlates with tumor invasion and patient prognosis (Marinko-

vich, 2007). In our DMBA-TPA skin carcinogenesis model, lami-

nin 332 had increased expression levels and aberrant deposition

in SCC compared to TPA and Pap (Figure 1). Likewise, the major

laminin 332 receptor integrin b1 was upregulated specifically in

SCC as most of the proteins of the cell adhesion subnetwork.

Intriguingly, most of these proteins, including Fscn1, are

(C and D) From two independent microarray studies, Nindl et al. (2006) (C) and Riker et al. (2008) (D), the ratios of mRNAs significantly regulated in SCC compared

to normal skin in patients are plotted against the ratio calculated in our proteomic study. The percentage in each quadrant indicates the fraction of mRNA

significantly regulated also at the protein level. Red, upregulated in SCC; blue, downregulated in SCC, S, Spearman rank correlation.

(E and G) Confocal images of mouse (E) and human (G) tissue sections stained for FSCN1. Scale bar, 78.3 mm (E) and 50 mm (G).

(F and H) Quantification of (E) and (G).

See also Figure S3 and Table S9.
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Figure 6. Kinase Activities in Tumors

(A) Heatmap of the linear kinase motifs enriched in Pap and SCC according to Motif-X. Motifs are divided into categories based on the amino acidic composition:

proline-directed (yellow), acidic (blue), basic (red), and other (gray).

(B) Kinases predicted to be active in Pap and SCC (p value according to Mann-Whitney Wilcoxon test). On the y axis is represented the percentage of phos-

phorylated substrates predicted for each kinase.

(C) Extended PAK4 subnetwork, including phosphorylation sites annotation, in Pap and SCC.
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functionally and physically connected to the actin cytoskeleton

that is a critical regulator of cancer cell motility and invasion.

We provide functional evidence that at least Fscn1, Vasp, and

Pak4 can regulate SCC cell invasion. These proteins have previ-

ously been shown to regulate tumor cell migration and invasion.

It is therefore tempting to speculate that laminin 332, through

integrin b1, can activate a specific module of adhesion proteins

that regulates the cytoskeletal remodeling needed for cell

invasion.

Phosphoproteome Dynamics in Skin Carcinogenesis
Our combined phosphoproteomic data provided a unique

opportunity to assess the signaling status of different tumor

stages. Because uncontrolled activity of protein kinases is

amajor tumor-driving cause, we focused our analysis on upregu-

lated phosphorylation sites. Enrichment analysis of substrate

motifs together with prediction of kinase activity revealed that

specific kinases were associated to the different stages of skin

cancer development. MAPK, CDK, and GSK3 activity was

common to Pap and SCC, CK1/2 was higher in Pap, whereas

PKA, PKC, PKD, and PAK activity was higher in the malignant

SCC stage. In depth investigation of the predicted PAK4 and

PKC kinase activity discovered that PAK4, PKCalpha, and

PKCdelta may promote SRC activity only in SCC. We and others

have previously shown that increased Src expression levels in

the DMBA-TPA mouse model increases tumor incidence and

burden (Matsumoto et al., 2003; Meves et al., 2011). Our current

phosphoproteomic study sheds light on the molecular mecha-

nisms that might be causative to increased SRC activity,

whereby PAK4 and PKCs play prominent roles. Furthermore,

PAK4 has already been shown to regulate ovarian cancer cell

proliferation through a PAK4/SRC/EGFR pathway and that

expression levels contribute to poor prognosis in cancer (Siu

et al., 2010). We show here that PAK4 regulates SCC cell inva-

sion and our results thus open an exciting perspective to inves-

tigate PAK4 in invasion and as a target for anticancer therapies in

skin SCC.

In summary, the experimental setup and the mouse model

used in this study provides important advantages for the proteo-

mics quantification and interpretation of the results. Applications

of the ‘‘spike-in’’ SILAC technology used here (Geiger et al.,

2011) should help to extend this approach to other mouse tumor

models and human tumors. Moreover, proteomic findings from

the mouse model can be verified in human samples using stan-

dard techniques (as shown in this study). In particular, it will be

interesting to verify the functional importance of the cell adhe-

sion proteins and the PAK4-PKC/SRC subnetwork, which

our proteomic data strongly highlighted, in human samples.

Likewise, it will be attractive to assess if our findings of specific

phosphoproteomic signaling patterns associated with particular

stages of tumor development can be generalized to other

tumors. Our results clearly imply that it will be fruitful to
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Figure 7. Cell Invasion Inhibition by Gene Silencing of FSCN1, VASP, and PAK4

(A) Phase contrast of the invading front of collagen-embedded spheroids composed by A431 cells transfected with nontargeting siRNA (siCTL) or siRNA targeting

FSCN1, VASP, and PAK4. The red line indicates where cells start to invade. Error bars = SEM (n = 3). Scale bar, 100mm.

(B) Quantification of (A).

(C) Immunofluorescence of the invading front of SCC9 cells into skin tissue (3D organotypic invasion assay). SCC9 cells were transfected with siCTL or siRNA

targeting FSCN1, VASP, and PAK4.

(D) Quantification of (C). Error bars = SEM (n = 3).

p value is according to Mann-Whitney test, single tail. **p = < 0.0001, *p = 0.05. See also Figure S4.
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interrogate the signaling status of tumors using advanced pro-

teomic technologies.

EXPERIMENTAL PROCEDURES

Tumor Generation and SILAC Mice

Cutaneous two stage chemical carcinogenesis was performed in FVB/N mice

as previously described (Roberts et al., 2007). The SILAC mouse colony was

generated by fully labeling C57BL/6 mice with 13C6 lysine (lysine 6) containing

diet (SILANTES) as previously described (Krüger et al., 2008; Zanivan et al.,

2012). See also Extended Experimental Procedures.

Mice were housed under the approval and the institutional guidelines gov-

erning the care of laboratory mice of the local government of upper Bavaria

and in compliance with National and International laws and policies.

Sample Preparation and MS Analysis

Non-TPA-treated and TPA-treated skin, Pap and SCC tumor tissue samples

were collected from FVB/N mice of two independent DMBA-TPA experi-

ments. Dissected tissues were homogenized, lysed in 4% SDS, 100 mM

DTT, 100 mM Tris HCl lysis buffer. and mixed 1:1 with SILAC skin lysate.

For each MS measurement, we pooled tissues collected from 3-6 different

mice. Digested peptides were identified on a LTQ-Orbitrap Velos (Thermo

Scientific), experiment 1 and 2, or LTQ-Orbitrap Elite (Thermo Scientific),

experiment 3. The MS data were processed using the MaxQuant software

(Cox and Mann, 2008) and searched with the Andromeda search engine

(Cox et al., 2011) against the mouse UniProt database. Only proteins with at

least one peptide uniquely assigned to the respective sequence were consid-

ered identified. Phosphorylations were assigned as previously described

(Olsen et al., 2006). The relative quantification of the peptides and proteins

against their SILAC-labeled counterparts was performed by MaxQuant.

Quantified proteins (3,457) and phosphorylation sites (5,249) used for the bio-

informatic analysis included (1) proteins with a maximum of one missing

quantification value within the three MS measurements; (2) phosphorylation

sites quantified in at least three MS measurements (Tables S4 and S5). MS

RAW data are available on the public repository Tranche. See also Extended

Experimental Procedures.

Significantly Regulated Proteins and Phosphorylation Sites

For ANOVA analysis, MS measurements of the same tissues, TPA, Pap, and

SCC, were grouped together and the statistical test corrected with permuta-

tion based FDR was done with FDR < 0.05 and S0 = 1 as previously described

(Tusher et al., 2001). Regulated proteins and phosphorylation sites were

considered upregulated or downregulated if the effect size was a positive or

negative number, respectively.

Functional and Physical Connections for the Skin Carcinogenesis

Portrait

The Uniprot IDs of proteins and phosphorylated proteins regulated in the SCC

stage were used to query STRING (Szklarczyk et al., 2011). Two different

queries were performed, one for down and one for upregulated proteins. In

the latter query, we included actin interactions according to literature data

and annotated to the integrin adhesome (Zaidel-Bar and Geiger, 2010), where

we assigned to each ITGA and ITGB the specific integrin subunit according to

the reference given in the integrin adhesome table (Table S8). The following

parameters were used: active prediction methods: experiments, databases,

and neighborhood; required confidence (score): high confidence. STRING-

determined interactions were visualized in Cytoscape (Cline et al., 2007),

and proteins colored according to the stage (Figures S3A and S3B). Cytoscape

was also used to generate the connection map where nodes were colored

according to the number of edges (Figure S3C). The cell adhesion subnetwork

was generated by extracting the nodes with highest number of edges (>12)

among the adhesion-related proteins and their first neighbor nodes.

Category Enrichment and Kinase Analysis

GO (Ashburner et al., 2000) analysis has been performed using PantherDB

(Mi et al., 2010).

Significantly overrepresented linear kinase motifs were determined by

querying the sequence motifs (Table S4) of the phosphorylation sites upregu-

lated in Pap and SCC with Motif-X (Schwartz and Gygi, 2005) against the IPI

mouse database, using a p value of E-6 and a minimum number of occur-

rences of 20.

To predict the kinase activity in the two tumor stages, we used NetworKIN

(version 3.0) (see Linding et al., 2007 and R.L. and E.M.S., unpublished

data), which can predict substrates for 222 kinases, based on both the linear

motifs of the kinase catalytic domain (NetPhorest algorithm [Miller et al.,

2008]) and the network context of the kinases. The mouse sequences were

matched to the homologous human sequences, and predictions on the up-

and downregulated phosphorylation sites in Pap and SCC were generated in

the human background. The analysis was performed only on kinases with

experimentally identified peptides. The kinase activity enrichment was calcu-

lated as ratio between the number of sites predicted by specific kinase and the

number of sites identified and quantified in the sample.

To determine significance, the Mann-Whitney Wilcoxon test (p < 0.05) was

applied. The MegaPhospho contains 64,232 manually curated phosphoryla-

tion sites, integrating (Dinkel et al., 2011) and PhosphositePlus (Hornbeck

et al., 2012).

Extended PAK4-centric subnetworks were constructed using the identified

and quantified phosphorylation sites in the Pap and SCC samples, for which

the regulating kinases were predicted using NetworKIN v3.0. Kinases pre-

dicted to interact directly were used in the analysis, including their predicted

substrates. A score threshold of 0.1 was applied, and the top 30% of predic-

tions were used. The signaling networks were visualized in Cytoscape.

Microarray Analysis and Comparison with the Proteome

Affymetrix Cel files were normalized and analyzed in Partek Genomics

Suite Software, version 6.5. Multiarray Averaging (RMA) method of microarray

normalization and summarization was followed by log2 and quantile transfor-

mations of the data. Multiway ANOVA was used to identify significantly

regulated genes from one of the experimental groups and linear contrasts

performed between all pairs of experimental conditions. Multiple test correc-

tions were performed for all calculated p values. Less conservative step

up p value was used for further selection of significantly differentially ex-

pressed genes.

Chi square and Spearman rank correlation were calculated based on the

logarithmized ratio between the median of SCC and skin samples.

Collagen Invasion Assay

3D collagen gel invasion assay was set up as previously described (Lu et al.,

2010) with minor modifications (see Extended Experimental Procedures).

3D Organotypic Invasion Assay

The 3D organotypic invasion assays were performed essentially as previously

described (Ridky et al., 2010) with modifications (see Extended Experimental

Procedures).

Immunofluorescence

Immunostainings have been performed according to standard protocols.

Details are reported in the Extended Experimental Procedures.

Statistical Analysis

Unless indicated otherwise, p values have been calculated using a two tail

Mann-Whitney test using GraphPad Prism. *p < 0.05; **p < 0.01.

SUPPLEMENTAL INFORMATION
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