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Optimal switching using coherent control

Philip Tr�st Kristensen, Mikkel Heuck, and Jesper M�rk
DTU Fotonik, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

(Received 3 August 2012; accepted 10 January 2013; published online 28 January 2013)

We introduce a general framework for the analysis of coherent control in coupled optical cavity-

waveguide systems. Within this framework, we use an analytically solvable model, which is validated

by independent numerical calculations, to investigate switching in a micro cavity and demonstrate that

the switching time, in general, is not limited by the cavity lifetime. Therefore, the total energy

required for switching is a more relevant figure of merit than the switching speed, and for a particular

two-pulse switching scheme we use calculus of variations to optimize the switching in terms of input

energy. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4789372]

The high energy density in optical micro cavities may

lead to pronounced non-linear material responses.1–3 This in

turn provides a mechanism for time-domain all-optical

switching in which a control pulse shifts the resonance of an

optical cavity to regulate the transmission of a signal pulse.

Design and operation of such switches have been based on

different non-linear effects, including carrier dispersion

induced by two-photon absorption in GaAs1 and both linear

and two-photon absorption in InGaAsP.2 Central to any such

cavity enhanced approach is the need for fast switching of

the optical control energy in the cavity between the values

corresponding to the “on” and “off” states of the switch,

since residual energy may lead to unwanted patterning

effects.4 The energy dynamics are intimately linked with the

cavity quality factor, or Q-value, which sets the intrinsic

time scale at which light enters and exits the (undriven)

cavity. In particular, if the field in the cavity is excited by a

short pulse, the field amplitude subsequently decays expo-

nentially with a rate c ¼ xC=2Q, where xC is the (angular)

cavity resonance frequency. In addition to the amplitude,

however, optical fields carry a phase which can be used for

additional engineering of the coupling in and out of the cav-

ity. This kind of coherent control is well known in the optical

manipulation of atomic and molecular systems,5–7 where it is

used to enhance transitions between specific atomic or mo-

lecular states while suppressing other (unwanted) transitions.

Recently, coherent control was applied to improve the cou-

pling of energy into an optical cavity,8 and in Ref. 9, two

consecutive pulses with a p phase difference were used to

excite and deexcite the field in an optical cavity at timescales

much faster than the cavity lifetime.

In this letter, we introduce a general framework for the

analysis of coherent control in coupled cavity-waveguide

systems and use it to find the optimal switching scheme. We

first show that within the limits of our model, it is possible to

switch the energy in the cavity arbitrarily fast. Next, we vali-

date the model with independent numerical calculations and

thus demonstrate clearly that the switching time, in general,

is not limited by the cavity lifetime, consistent with Ref. 9.

Therefore, from an optimization point of view, the total

energy required for a given switching action is a more rele-

vant figure of merit than the switching speed. Last, we solve

the optimization problem analytically using calculus

of variations and show that the optimal scheme is slightly

different from our initial and more intuitive (constant power)

approach. In this work, we focus on the energy dynamics of

the control pulses. In practical realizations of cavity-

enhanced all-optical switching, the signal will typically be

centered at a different optical frequency (possibly employing

a different cavity resonance) and will have a lower power

than the control. In such systems, the energy dynamics of the

control pulses represent an inherent limiting factor for the

performance. For a given energy threshold, our analysis pro-

vides a quite general and systematic approach for calculating

the optimal operation of the control pulses. In particular, it

directly allows us to calculate the generally time-dependent

phase required for the fastest possible switching action, even

in the non-linear case.

We consider a model system consisting of a cavity with

a Kerr non-linearity coupled to two waveguides in an in-line

configuration as illustrated in Fig. 1. We assume that the sys-

tem is driven by an input field in the left waveguide of the

form SinðtÞ ¼ sinðtÞexpð�ixLtÞ and calculate the resulting

fields in the cavity AðtÞ ¼ aðtÞexpð�ixLtÞ and the right

waveguide SoutðtÞ ¼ soutðtÞexpð�ixLtÞ using coupled mode

theory (CMT).10 The slowly varying complex envelopes a(t)
and soutðtÞ solve the equations

d

dt
aðtÞ ¼ �iDxaðtÞ � caðtÞ þ ffiffiffi

c
p

sinðtÞ; (1)

soutðtÞ ¼
ffiffiffi
c
p

aðtÞ; (2)

in which Dx¼xC�xL�FNLjaðtÞj2, and FNL is the effective

Kerr coefficient that accounts for the material non-linearity

as well as the field distribution in the cavity.11 The fields are

normalized so that Pin=out¼jsin=outðtÞj2 and UC¼jaðtÞj2 rep-

resent the instantaneous input/output power and the energy

in the cavity, respectively. In order to analyze coherently

FIG. 1. Diagram of typical waveguide-cavity-waveguide system with input/

output powers Pin=outðtÞ indicated along with the cavity energy UCðtÞ.
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controlled switching, we set aðtÞ¼ jaðtÞjexpfiuðtÞg and

sðtÞ¼ jsðtÞjexpfiuSðtÞg and rewrite Eq. (1) as two real equa-

tions for the energy and the phase of the field in the cavity as

d

dt
UCðtÞ ¼ �2cUCðtÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
UCðtÞcPinðtÞ

p
cos Duf g; (3)

d

dt
uðtÞ ¼ �Dx�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
cPinðtÞ
UCðtÞ

s
sin Duf g; (4)

where Du ¼ uðtÞ � uSðtÞ, and we have assumed that FNL is

real (but non-zero, in general). From Eq. (3), the largest positive

(negative) instantaneous rate of change of the cavity energy is

found when Du ¼ p p and p is even (odd). This explicitly

shows how coherent control can improve the switching, and we

note that given any uðtÞ, one can set uSðtÞ ¼ uðtÞ � p p.

Therefore, we first solve Eqs. (3) and (4) assuming the phase

relation to hold, and subsequently send in light with the correct

phase. This procedure guarantees the fastest possible switching

of the energy for a given PinðtÞ. Incidentally, it also renders Eq.

(3) independent of uðtÞ, and one can solve this first and insert

the solution in Eq. (4). This approach suggests a two-pulse

scheme in which the first (second) pulse serves to increase

(decrease) the cavity energy. We first consider a scheme in

which the input power in each pulse is constant and we vary

only the phase. We refer to this as the constant power approach.

For switching on, we set UCð0Þ ¼ 0 and solve Eq. (3) with

Pin ¼ Pon and Du ¼ 0 to find

UCðtÞ ¼
Pon

c
ðe�ct � 1Þ2: (5)

The energy in the cavity thus increases, at a rate set by c,

towards the maximum energy of Pon=c, as illustrated in Fig.

2(a). For any t > 0 and any UCðtÞ > 0, one can solve Eq. (5)

to find the required input power Pon, illustrating explicitly

that the transition time can be made arbitrarily short. Simi-

larly, for switching off, we set UCð0Þ ¼ Uon; Pin ¼ Poff , and

Du ¼ p to find

UCðtÞ ¼
Poff

c

 � ffiffiffiffiffiffiffiffiffiffi
cUon

Poff

r
þ 1

�
e�ct � 1

!2

: (6)

For the switch-off, interference effects act to decrease the

energy in the cavity by coupling to the two waveguides at a

rate that may be faster than the cavity decay rate. In this

case, it is important to turn off the input driving field at the

correct time lest the energy starts increasing again, as shown

in Fig. 2(b). Equations (5) and (6) provide the cavity energy

variation in the constant power approach. For linear prob-

lems at resonance (Dx ¼ 0), the right hand side of Eq. (4)

vanishes, leading to a piecewise constant phase, and we set

uoff
S ¼ uon

S þ p, where uon
S and uoff

S represent the (constant)

phases of the pulses used for switching on and off, respec-

tively. In the general case, integration of Eq. (4) provides the

required change in input phase.

The above analysis shows that within the validity of the

model, there is no upper bound on the switching speed. The

model is limited mainly by the single-mode assumption of

the cavity which breaks down for very short pulses because

of their large bandwidth. The example calculations below

serve to validate the model for the choices of parameters in

this letter. We consider a cavity in a finite sized one-

dimensional photonic crystal with lattice constant K made

from barriers of thickness 0:2 K and relative permittivity

�r ¼ 13. As shown in Fig. 3, the cavity supports a cavity

mode, ~f C, at the frequency ~xK=2pc ¼ 0:2925� 0:0009i,

where ~x ¼ xC � ic, and c is the speed of light. The (quasinor-

mal) cavity mode12 was calculated as a solution to the Helm-

holtz equation with outgoing wave boundary conditions using

a Fredholm-type integral equation13 and a one-dimensional

version of the discretization in Ref. 14. This material system is

immediately compatible with the CMT model in Eqs. (1) and

(2). For reference, we use a time-dependent finite element

(FEM) based model15 to provide completely independent cal-

culations by direct solution of Maxwell’s equations. From con-

vergence studies, we estimate the maximum absolute error in

the FEM calculations below to be less than 0:01 P0=c. For sim-

plicity as well as computational transparency, we have chosen

FIG. 2. Cavity energy variation UCðtÞ in Eqs. (5) and (6), respectively, for

switching up (a) and down (b) at different constant input powers Pon and

Poff , which in general can be controlled independently. Circle in (a) indi-

cates the improvement in switching time for reaching Uon ¼ P0=c when

doubling the input power from Pon ¼ P0 to Pon ¼ 2P0. Circles in (b) indi-

cate the critical times at which the input power should be turned off in order

to empty the energy from the cavity. Dashed lines indicate the cavity energy

evolution if the input power is not turned off at the critical times.

FIG. 3. Example cavity system in a finite one-dimensional photonic crystal

with lattice constant K. Gray areas indicate the barriers and blue curve

shows the absolute value of the cavity mode. Vertical dashed lines indicate

the extent of non-linear material.
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a one-dimensional model system for validation of the CMT

results. The CMT itself as well as the typical layouts of many

technologically interesting systems,1,2 however, are effectively

one-dimensional, and therefore the essential dynamics are fully

captured by our model.

As an initial (linear) example, we set FNL ¼ 0 and cal-

culate the energy dynamics in the model cavity when driven

by the two-pulse scheme in the constant power approach.

We choose a model switch-on/switch-off action with initial

conditions given by Uoff ¼ 0 and Uon ¼ P0=c, respectively,

and use two input pulses of width T ¼ 1=2c with the second

(switch-off) following directly after the first (switch-on). The

required input powers are derived from Eqs. (5) and (6), and

for this practical example we use super Gaussian pulses

Pin ¼ Pon=off expf�cðt� t0Þg4N; (7)

where N¼ 10 and t0 is the time offset. Fig. 4 shows the input

pulses as well as the CMT solution and the direct FEM cal-

culation of the time dependent cavity energy. We note that

the finite value of the steepness parameter N leads to a maxi-

mum energy which is slightly below target. Nevertheless,

there is a very good agreement between the two solutions

which clearly shows the validity of CMT for analyzing this

kind of coupled waveguide-cavity systems. In the absence of

the second input pulse, the energy leaks from the cavity at a

rate C ¼ 2c as shown by the dotted curve in the figure.

Clearly, this is slower than in the case of coherent control

using an “off” pulse. Overall, the analysis shows that the

two-pulse scheme works as intended.

Next, for a non-linear example, we consider the model

in Fig. 3 with an additional barrier at the center of the cavity.

This barrier has a non-linear permittivity of the form D�NL

¼ vð3ÞEðx; tÞ2 with vð3ÞP0=c�0 ¼ 5� 10�4, where E(x, t) is

the electric field and c and �0 denote the speed of light and

the permittivity of free space, respectively. Material non-

linearities are typically introduced in CMT using perturba-

tion theory, and this has been shown to provide good agree-

ment with full numerical calculations.8,10,16,17 We note,

however, that due to the finite Q-value of any real cavity the

perturbation theory should be performed in the framework of

non-Hermitian eigenvalue analysis12,18 as we do here.

Although this seems to be largely ignored in the literature,

we emphasize that the absolute value of the field in Fig. 3 is

non-zero at all positions outside the cavity and diverges in

the limit x! 61,13 underscoring the need for a non-

Hermitian perturbation theory approach. Choosing the outer-

most edge of the photonic crystal as the boundaries of the

cavity, we find P0FNL=c2 ¼ 2:8þ 0:016i.11 Although FNL is

complex, the real part is two orders of magnitude larger than

the imaginary part (which leads to a small change in decay

rate), and neglecting the imaginary part leads to an absolute

error of less than 5� 10�3P0=c for the calculated energy dy-

namics below. This justifies our earlier assumption that FNL

is real and leads to the simple form for the energy dynamics

in Eqs. (5) and (6). Fig. 5 shows results for both the piece-

wise constant input phase and a tailored input phase which

takes the finite non-linear parameter into account. In both

cases, we find a convincing correspondence between the two

calculation methods, but only the tailored input phase results

in the fast switch-off action of Eq. (6), clearly illustrating the

importance of carefully adjusting the phase according to Eq.

(4) with Du ¼ 0. The example calculations show the validity

of the CMT and motivate direct use of the model for

optimization.

Since (in the CMT) the switching can be made arbitra-

rily fast, the relevant quantity to optimize is not the switch-

ing time but rather the time-integrated input power required

to perform the switching action in a certain time. Thus, for a

given switching time Dt ¼ t2 � t1 and given initial and final

cavity energies, UCðt1Þ and UCðt2Þ, respectively, we seek the

function PinðtÞ that minimizes the integral

USwitch ¼
ðt2

t1

PinðtÞdt; (8)

while maintaining the correct phase relation at all times. In

practice, the boundary conditions UCðt1Þ and UCðt2Þ are

given by the required energy in the cavity to switch between

FIG. 4. Example of the switching scheme based on two input pulses (black

dashed-dotted) with different phases as indicated. The CMT calculations

(red dashed) compare well to independent FEM calculations (blue solid),

confirming the applicability of the switching scheme. Dotted line shows the

CMT solution in the absence of the second input pulse.

FIG. 5. Cavity energy dynamics (a) and input phase (b) for a two-pulse

switching action in a cavity with a non-linear material response. Results are

shown for both the cases of a piecewise constant (PWC) input phase (red

dashed) and a tailored (green dashed-dotted) input phase. In both cases, in-

dependent FEM calculations of the cavity energy (blue solid) confirm the

results.
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the “on” and “off” states, as discussed in the introduction.

From Eq. (3) with Du ¼ 0, we find that

PinðtÞ ¼
1

4cUCðtÞ
d

dt
UCðtÞ þ 2cUCðtÞ

� �2

; (9)

and Eq. (8) takes the form of a classical optimization prob-

lem that we can solve using calculus of variations19 to find

the optimum cavity energy variation Uopt
C ðtÞ. For both the

switch-on and the switch-off transitions, the optimum cavity

energy variation is given as

Uopt
C ðtÞ ¼

P0

2c
e2ctþc2 þ 1

4
c2

1e�2ct�c2 � c1

� �
; (10)

where the constants c1 and c2 are chosen to meet the appro-

priate boundary conditions. Equations (9) and (4) subse-

quently provide the appropriate input power and phase as a

function of time. For the example switching problem, as pre-

viously stated the optimal cavity energy variation and input

power variation are shown in Fig. 6. Within the validity of

CMT, this represents the optimal way of switching the cavity

energy via the two-pulse scheme. In the optimal approach,

both the input power and the phase (not shown) vary non-

trivially as a function of time. Nevertheless, comparing to

the constant power scheme we find a relatively small differ-

ence in integrated power (areas under the black dashed-

dotted and dotted curves in Fig. 6) of approximately 2%,

which shows that for this particular choice of material sys-

tem and switching requirements the constant power approach

is close to optimal.

In conclusion, we have analyzed a two-pulse scheme for

fast switching by coherent control. The applicability of the

switching scheme as well as the underlying model has been

validated by direct numerical evaluation of the wave equa-

tion, and we found a convincing agreement between the ana-

lytical and numerical results. Based on the model, we have

subsequently analyzed the two-pulse approach using calculus

of variations to find the optimal switching scheme. In this

work, we have focused on Kerr non-linearities in which an

intuitive constant power approach is close to optimal. For

other types of non-linear interactions, a suitably modified

version of the CMT provides a convenient equation system

for similar optimizations, although this may not be analyti-

cally solvable in general. For a particular material system,

the optimal solution may serve as an important tool in assess-

ing the performance of a given switching scheme.
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3M. Soljačić, M. Ibanescu, S. G. Johnson, Y. Fink, and J. D. Joannopoulos,

Phys. Rev. E 66, 055601 (2002).
4M. Heuck, P. T. Kristensen, and J. M�rk, Opt. Express 19, 18410 (2011).
5W. S. Warren, H. Rabitz, and M. Dahleh, Science 259, 1581 (1993).
6N. Dudovich, D. Oron, and Y. Silberberg, Phys. Rev. Lett. 88, 123004

(2002).
7H. Rabitz, New J. Phys. 11, 105030 (2009).
8S. Sandhu, M. L. Povinelli, and S. Fan, Appl. Phys. Lett. 96, 231108

(2010).
9M. Ferrera, Y. Park, L. Razzari, B. E. Little, S. T. Chu, R. Morandotti,

D. J. Moss, and J. Aza~na, Nat. Commun. 1, 29 (2010).
10J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic

Crystals—Molding the Flow of Light, 2nd ed. (Princeton University Press,

2008).
11M. Heuck, P. T. Kristensen, and J. M�rk, in Proceedings of CLEO/QELS

(2012), p. JW4A.6.
12H. M. Lai, P. T. Leung, K. Young, P. W. Barber, and S. C. Hill, Phys.

Rev. A 41, 5187 (1990).
13P. T. Kristensen, C. Van Vlack, and S. Hughes, Opt. Lett. 37, 1649

(2012).
14P. T. Kristensen, P. Lodahl, and J. M�rk, J. Opt. Soc. Am. B 27, 228

(2010).
15We used COMSOL MULTIPHYSICS 4.2.
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