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We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse
propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear
wave equation in the frequency domain, includes quadratic and cubic nonlinearities, delayed Raman effects, and
anisotropic nonlinearities. The full potential of this wave equation is demonstrated by investigating simulations of
solitons generated in the process of ultrafast cascaded second-harmonic generation. We show that a balance in the
soliton delay can be achieved due to competition between self-steepening, Raman effects, and self-steepening-like
effects from cascading originating in the group-velocity mismatch between the pump and the second harmonic.
We analyze the first-order contributions, and show that this balance can be broken to create fast or slow pulses.
Through further simulations we demonstrate few-cycle compressed solitons in extremely short crystals, where
spectral phenomena, such as blue/red shifting, nonstationary radiation in accordance with the nonlocal
phase-matching condition, and dispersive-wave generation are observed and marked, which helps improve the
experimental knowledge of cascading nonlinear soliton pulse compression. © 2013 Optical Society of America

OCIS codes: 190.2620, 190.5650, 190.7110.

1. INTRODUCTION
Cascading nonlinearities are known to be produced accompa-
nied with harmonic generation in the limit of large phase mis-
match. As an example, phase-mismatched second-harmonic
generation (SHG) gives rise to a well-known cascaded quad-
ratic nonlinearity that is Kerr-like and can be written as a
nonlinear refractive index n�2�

casc [1]; i.e., it induces a nonlinear
index change that is proportional to the pump intensity. While
the energy conversion to the second harmonic (SH) is weak, a
Kerr-like nonlinear phase shift is induced on the fundamental
wave (FW), which can be large, and its sign can be tuned by the
phase mismatch; importantly a negative-sign self-defocusing
nonlinearity is accessible. In this case, soliton pulse com-
pression can be fulfilled by combining the self-defocusing
cascading nonlinearity with normal dispersion: this so-called
cascading nonlinear soliton pulse compressor operates within
the visible and near-infrared region and without a power
limit compared with the self-focusing pulse compression.
Hence, few-cycle and high-energy soliton pulses can be
generated [2–4].

Nonlinear crystals with low dispersion, such as beta-barium
borate (BBO), potassium titanyl phosphate (KTP) and lithium
niobate (LN), are good candidates for cascading nonlinear
soliton pulse compression as they have a decent second-order
nonlinear susceptibility, and large cascading nonlinearities can
be achieved through tuning the crystal close to phase matching
either by exploiting the birefringent (type I) interaction between

the FW and the second-harmonic [5], or by exploiting quasi-
phase-matching (QPM) technology. The goal is to overcome
the material self-focusing Kerr nonlinearity of the crystal by
the self-defocusing cascading nonlinearity, and it can usually
be done if the phase mismatch is taken low enough. Noncritical
(type 0) interactions, where FW and SH are polarized along
the crystal axes, is desirable because it exploits the largest
second-order tensor component, but since the process is not
phase matchable at all, QPM has historically been used to re-
duce the residual phase mismatch and thereby increase the cas-
cading strength [6–10]. In general these nonlinear crystals also
promise a stable and compact pulse compressor as they have a
short soliton length and a large energy threshold.

Theoretical analysis and experimental demonstrations have
been widely reported on cascading nonlinear soliton pulse
compression. An elegant theory is that, in the limit of large
phase mismatch, harmonics are all considered as perturba-
tions on the FW. Therefore, the multiple coupled-wave equa-
tions (CWEs) can be reduced to a single one governing the
FW, which is similar to the nonlinear Schröodinger equation
(NLSE) [11–13]. In the NLS-like equation of the SHG process,
the cascading quadratic nonlinearity is scaled by both the
quadratic nonlinearity squared and the inverse of the phase
mismatch. Its properties are revealed through a noninstanta-
neous (“nonlocal”) cascading response that has a Lorentzian
shape in the frequency domain. This nonlocal response re-
veals that there are two different characteristic regimes for
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the response function, known as stationary and nonstationary
regimes, and the transition between the two regimes is deter-
mined largely by the phase-mismatch parameter and the
group-velocity mismatch (GVM) parameter [14]. A detailed
explanation was made by Bache et al. to help understanding
of most experiments [15,16]. For example, the few-cycle high-
energy pulse compression in type I BBO crystal at 1250 nm
reported by Moses and Wise [3] was conducted in a regime
in which the phase-mismatch configuration was in the station-
ary region so that the cascaded response is broadband [14]
and allows for few-cycle compressed pulses to form. On the
other hand, Ashihara et al. reported the moderate pulse com-
pression also using type I BBO crystal but launching a pump at
800 nm [2], which is actually in the nonstationary region [15]
and the input pulses contained a low soliton order. In both
of their experiments, slow pulses with shock fronts are
observed, which is induced by the GVM as the first-order cas-
cading response. In a latter report by Ashihara et al., type I
periodically poled magnesium-oxide-doped lithium niobate
(PPMgOLN) was used to compress the pulse at 1560 nm
where the GVM between the FW and the SH is suppressed
[8]. Therefore, there is no GVM-related cascading response
and the compressed pulse is symmetrical. Recently, the first
type 0 few-cycle pulse compression experiment was demon-
strated by Zhou et al., which used a type 0 LN bulk crystal
pumped at 1300 nm [4], in which the phase mismatch is
located well into the stationary region; see Fig. 1(b). The com-
pression was accomplished within an extremely short length
of 1 mm as the pulses contained a high soliton order caused
by the high intensity and because the FW group-velocity

dispersion (GVD) in LN is very large. As LN has a dominant
delayed Raman response (caused by a strong IR phonon cou-
pling) that continuously transfers energy from high-frequency
(blue) components to low-frequency (red) components, ten-
dencies of early pulse splitting were observed.

In this paper, we investigate theoretically and numerically
the self-steepening performance and fast/slow pulse tenden-
cies in cascading nonlinear soliton pulse compression induced
by both the nonlocal cascading response and the material
Raman effects. We do that by directly solving the purely spec-
tral forward Maxwell equation (FME), and a counterbalance of
fast/slow pulses is demonstrated. First, we interpret the FME
to third-order induced polarizations to describe the electric-
field interaction in a birefringent material, and model the elec-
tric field of the optical wave by directly solving a group of
nonlinear wave equations in the frequency domain (NWEFs),
in which both the second- and third-order nonlinear-induced
polarizations are included (see Section 2). From the NWEFs,
we present the NLS-like equation, which includes the system
intrinsic self-steepening, a full-edition nonlocal cascading
response, and the material Raman effects; see Section 3. Then,
we give a review on the conditions of cascading nonlinear
soliton pulse compression (Section 4), and based on them
we discuss the consequences of employing QPM technology.
Self-steepening performance and the counterbalance of fast/
slow pulses are highlighted as they are greatly dependent
on the phase-mismatch parameter; see Section 5. In Section 6,
we give realistic and convincing simulations to show the self-
steepening performance and fast/slow pulses dominated by
both the nonlocal cascading response and the material Raman

Fig. 1. (Color online) Compression window of MgOLN cut for type 0 interaction. (a) Cascading quadratic nonlinearity (using d33 � 25 pm∕V at
1064 nm and Miller scaling to other wavelengths) and the native electronic Kerr nonlinearity from the so-called two-band model [4,30]. (b) Critical
boundary of producing an overall self-defocusing nonlinearity and the stationary/nonstationary threshold of the cascading nonlocal response func-
tion. (c) Radiation in the nonstationary region, showing the resonant wavelength as a function of the effective phase mismatch, with the pump
located at 1560 nm. (d) Degradation on the compression window when using a first-order QPM on MgOLN.
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effects. Since the NWEFs are generalized, typical phenomena,
such as the self-phase modulation (SPM)-induced broadening
in the spectrum, the generation of dispersive waves, and the
resonant SH radiation in the nonstationary regime are still
observed. These phenomena can be marked in spectrum,
which helps improve the spectral knowledge of cascading
nonlinear soliton pulse compression. Finally, we present our
conclusions in Section 7.

2. NONLINEAR WAVE EQUATIONS IN
FREQUENCY DOMAIN
In this section, we will present our master equation, which
directly deals with the electric field. Starting from the 1�
1D wave equation of the electric field and making the slowly
varying spectral amplitude approximation [17], we obtain the
purely spectral FME [18–20]:

∂ ~E
∂z

� ik�ω� ~E � −i
ω2μ0
2k�ω�

~PNL: (1)

The equation is adaptable to uniaxial, biaxial, and cubic/
isotropic materials. The “∼” mark indicates that both the elec-
tric field E and the nonlinear induced polarization PNL are
written in the frequency domain (we use the Fourier trans-
form F � f �t�� � R�∞

−∞
f �t�e−iωtdt and the forward definition as

∂

∂z
~E ≈ −ik�ω� ~E). In a uniaxial crystal, ordinary and extraordin-

ary waves, Eo and Ee, are two separate components of the
electric-field vector, and the propagation constant, k�ω� �
�ω∕c��1� ~χ�ω��1∕2, is a function of the linear electric suscept-
ibility ~χ�ω�, which is a diagonal matrix containing only the self-
response elements [21].

Among all types of nonlinear induced polarizations, second-
and third-order nonlinear polarization are the most relevant.
Normally, the second-order nonlinear polarization, which
appears only in noncentrosymmetric media, is considered
instantaneous and, in the frequency domain, its component
can be written as [22]

~P�2�
j � ε0

X
α1 ;α2

�χ̄�2�j;α1α2
F �Eα1Eα2 ��; (2)

where j, a1, a2 � o or e, χ̄�2�j;α1α2
is the effective second-order

nonlinear susceptibility (with unit m∕V), which is actually
the element of a three-rank tensor. The third-order nonlinear
polarization consists of both the instantaneous cubic response
(such as the electronic Kerr response) and the delayed vibra-
tional Raman response. Its component can be written as [23]

~P�3�
j � ε0

X
α1;α2 ;α3

n
χ̄�3�j;α1α2α3

��1 − f R�F �Eα1Eα2Eα3 �

� f RF �F−1� ~hR�ω�F �Eα1Eα2 � ~Eα3 ��
o
: (3)

χ̄�3�j;α1α2α3
is the effective third-order nonlinear susceptibility

(with unit m2∕V2) coming from a four-rank tensor. f R indi-
cates the relative fraction of the material Raman effects,
~hR�ω� is the normalized Raman frequency response function,
typically modeled as a complex Lorentzian. Note that if there
is no Raman fraction in the material (which is the case for a
noble gas), the third-order nonlinear polarization will be
completely instantaneous.

Thus, the FME can be expanded to two equations corre-
sponding to the ordinary and extraordinary waves, named
NWEFs:

∂ ~Eo

∂z
� iko�ω� ~Eo � −i

ω2

2c2ko�ω�

�X
α1 ;α2

�χ̄�2�o;α1α2F �Eα1Eα2 ��

�
X

α1;α2 ;α3

�χ̄�3�o;α1α2α3��1 − f R�F �Eα1Eα2Eα3 �

� f R · F �F−1� ~hR�ω�F �Eα1Eα2 � ~Eα3 ���
�
; (4)

∂ ~Ee

∂z
� ike�ω� ~Ee � −i

ω2

2c2ke�ω�

�X
α1 ;α2

�χ̄�2�e;α1α2F �Eα1Eα2 ��

�
X

α1;α2;α3

�χ̄�3�e;α1α2α3��1 − f R�F �Eα1Eα2Eα3 �

� f R · F �F−1� ~hR�ω�F �Eα1Eα2 � ~Eα3 ���
�
: (5)

We note that in order to solve the above equations, the
contents of propagation constants in negative frequencies
should be known. According to the causality and reality of the
material response, kj�ω� � k�j �−ω� shows a property of conju-
gate symmetry [21]. The contents in negative frequencies are
therefore linked to those in positive frequencies. Besides,
parameters, such as k�ω�, χ̄�2�, and χ̄�3� are dependent on the
rotation angle �θ;φ� of the crystal reference frame [24–26].

Obviously, NWEFs are quite general in physical concept as
well as mathematical expression. They describe the dynamics
of the electric field rather than the field’s envelope. They were
directly solved by Husakou and Herrmann with only instanta-
neous cubic nonlinearities [19] and by Conforti et al.with only
quadratic nonlinearities [22]. In this work, NWEFs are for the
first time, to the best of our knowledge, extended to third-
order induced polarization including both instantaneous cubic
nonlinearities and delayed Raman effects. By simply including
the anisotropy of the nonlinearities, the different wave-mixing
possibilities (three- and four-wave mixing, including third-
harmonic generation (THG) and parametric upconversion
and downconversion) under possible phase-matching condi-
tions (types 0, I, and II) are automatically modeled properly
in the NWEF model.

3. NLS-LIKE EQUATION
From our NWEFs, an NLS-like equation governing the FW
envelope can also be derived. First, we degrade the NWEFs
to the common CWEs by employing more approximations,
such as slowly varying envelope approximation, assumption
of constant refractive index around the carrier frequency,
and assumption of no overlap between the harmonics. Then,
in the strong cascading limit ΔkL ≫ 1 (Δk � k2 − 2k1 is the
phase mismatch, subscripts 1 and 2 correspond to the FW
and the SH, respectively, and L is the interaction length)
and in the assumption of an undepleted FW (i.e., only the non-
linear phase shift is accumulated as cascading nonlinearity),
the ansatz U2�z; t� � A2�t� exp�−iΔkz� is used and the cross-
phase modulation (XPM) is neglected. Thus, in the FW refer-
ence frame we get the NLS-like equation that is more complete
compared with what Moses and Wise [11], Ilday et al. [12],
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Menyuk et al. [13], Bache et al. [14,15], and Valiulis et al. [27]
and got because the equation includes a full-edition nonlocal
cascading response as well as the material Raman effects and
intrinsic self-steepening. The dimensionless form [16] of the
complete NLS-like equation is

�
i
∂

∂ξ
− D1

�
U1 � sgn�Δk�N2

casc

�
1 −

i
ω̂1

∂

∂τ

�
U�

1�τ�
�
1 −

i
ω̂2

∂

∂τ

�

×
Z

∞

−∞

dτ0hc�τ0�U2
1�τ − τ0�

− N2
cubic

�
1 −

i
ω̂1

∂

∂τ

�h
�1 − f R�jU1�τ�j2U1�τ�

� f RU1�τ�
Z

∞

−∞

dτ0hR�τ0�jU1�τ − τ0�j2
i
� 0; (6)

where ξ � z∕LD;1 and τ � t∕T1;in are the dimensionless propa-
gation axis and the temporal delay (in the frame of reference
traveling with the FW group velocity), respectively, LD;1

is the dispersion length of the FW, and T1;in is the input
pulse duration. U1 is the dimensionless envelope amplitude,
D1 �

P
∞
m�2��−i�mk�m�

1 �ω̂1�∕m!��LD;1∕Tm
1;in��∂∕∂τ�m indicates

the dimensionless dispersion operator for the FW, in which
k�m�
j �ω̂j� is the m-order derivative of kj at ω̂j and ω̂j �

ωjT1;in represents the dimensionless frequencies. hc�τ� is
the nonlocal cascading response function whose normalized
spectral function is ~hc�Ω� � Δk�ω1�∕Δknonlocal�Ω�, and
Δknonlocal is called nonlocal phase mismatch, which will be dis-
cussed later. hR�τ� is the material Raman response function.
The dimensionless soliton numbers, Ncasc and Ncubic, are
linked to the nonlinear refractive indices, i.e., N2

casc �
LD;1I inω1∕cjn�2�

cascj and N2
cubic � LD;1I inω1∕cncubic, where I in is

the peak intensity of the launched pump pulse. ncubic is the
nonlinear refractive index induced by material cubic nonli-
nearity, which consists of electronic Kerr response nKerr;el �
�1 − f R�ncubic and vibrational Raman response. Compared
with the NWEF, the missing effects in the NLS-like equation
are (1) XPM effects and the XPM-induced compression degra-
dation [15,16]; (2) divergent cascading response (known as
the nonstationary regime, discussed later), which causes
FW depletion; and (3) modulated growth of the cascading
nonlinearity, which stems from an amplitude modulation of
the SH that is neglected in deriving Eq. (6) [28,29].

4. CONDITIONS OF CASCADING
NONLINEAR SOLITON PULSE
COMPRESSION
In the limit of large phase mismatch, cascading nonlinearities
are produced through the coupling between the FW and
the harmonics. Normally, n�2�

casc dominates the cascading
nonlinearity and, particularly in the SHG process, it can be
expressed in the form of the nonlinear refractive index [1]
(in units of m2∕W)

n�2�
casc � −

2ω1d2eff
ε0c2n2

1n2Δk
; (7)

where ω1 is the angular frequency of the FW, deff � χ̄�2�∕2,
and n1 and n2 are refractive indices of the FW and the SH,
respectively. Equation (7) means that an equivalent Kerr
nonlinearity is generated by the quadratic nonlinearity, and

the negative sign indicates that this nonlinearity shows an
effect of self-defocusing with a positive Δk and vice versa.
We recall the corresponding electronic Kerr nonlinearity
nKerr;el in the material; if the FW photon energy is sufficiently
far away from the bandgap in the material, this nonlinearity is
positive (self-focusing) [30] and therefore forms a competing
nonlinearity. The self-defocusing cascading nonlinear soliton
pulse compression is therefore only supported if the Kerr-like
cascading nonlinearity can counterbalance and exceed the
material Kerr nonlinearity and form an overall effect of
self-defocusing in the crystal.

Hence, we get the basic condition of our pulse compres-
sion, i.e., jn�2�

cascj > jnKerr;elj, and from this arises a critical
boundary of the phase mismatch, Δkc, for which n�2�

casc �
nKerr;el � 0. An example is shown in Figs. 1(a) and 1(b), using
the MgOLN cut for type 0 interaction. Within a broad wave-
length region (950∼1920 nm), the self-defocusing n�2�

casc

is stronger than the self-focusing nKerr;el while the dispersion
remains normal. In this range an overall effective self-
defocusing nonlinearity can be found.

Besides the basic condition of an effective self-defocusing
nonlinearity, another condition, determined greatly by the
nonlocal phase mismatch Δknonlocal�Ω�, is necessary if ultrafast
interaction is desired, as it has a significant influence on the
quality of pulse compression. One can namely derive a certain
threshold of the phase mismatch, Δksr, below which the re-
sponse of the nonlocal cascading response is resonant (non-
stationary), thus making it unsuitable for few-cycle pulse
generation, while above it is nonresonant and ultrabroadband
(stationary); i.e., it is ideal for few-cycle interaction. Mathema-
tically, when including complete dispersion, the nonlocal
phase mismatch can be written as [16]

Δknonlocal�Ω� � k2�ω2 �Ω� − 2k1�ω1� −Ωk�1�1 �ω1�

�
X∞
m�2

Ωm · k�m�
2 �ω2�
m!

− d12Ω� Δk; (8)

where ω2 is the frequency of the SH. k�1�j is the group velocity
and d12 is the GVM between the FW and the SH, i.e.,
d12 � k�1�1 �ω1� − k�1�2 �2ω1�. Essentially this equation describes
the dispersion of the harmonic as observed from the pump
reference frame and the term Ωk�1�1 �ω1� is physically included
to change the moving coordinate system from the the labora-
tory frame to the FW comoving frame. A nonresonant cascad-
ing response is obtained when Δknonlocal�Ω� ≠ 0 for any
(physical) frequency. The threshold phase-mismatch value
Δksr marks the boundary where some particular frequency in-
side the FW spectrum starts to experience nonlocal phase
matching according to this condition. This threshold can be
analytically obtained as d212∕2k

�2�
2 if the higher order of the

SH dispersion is neglected [14,15], or, like here, it can be nu-
merically found. In Fig. 1(b) we show that in type 0 MgOLN,
the intrinsic Δk of the material is well within the stationary
region. Therefore a clean pulse compression is expected,
which can be explained as follows.

Physically, in the nonstationary region, a nonlocal phase-
matching condition will be fulfilled between a frequency in
the side band of the generated harmonic and the FW center
frequency. Due to the narrow bandwidth and large gain of this
resonance, a strong oscillation occurs in the temporal profile
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of the harmonic pulse, resulting in degradation on the com-
pression quality. On the other hand, if Δk stays above thresh-
old in the stationary region, such a phase-matching condition
will not be fulfilled and therefore the harmonic is merely
slaved to the FW in the usual manner through ~A2 ∝ ~hcF �U2

1�
(as a part of the cascading channel necessary for generating
an FW nonlinear phase shift). In this case the bandwidth of the
cascading can be extremely high, even octave-spanning if the
phase-mismatch is not too close to the resonance threshold
[4], and in this condition few-cycle soliton formation with a
clean temporal profile of the pulse is possible.

When short and broadband pulses interact through
(slightly) phase-mismatched harmonic generation, it is the
common consensus to interpret any resonances in the
sidebands of the harmonic spectrum as simply being phase-
matching points to a sideband of the FW spectrum, whose
frequency detuning is such that the basic harmonic frequency
locking is kept, in SHG, i.e., k2�ω2� ≠ 2k1�ω1�, but
k2�ω2 �Ω� � 2k1�ω1 � Ω∕2�. However, this phase-matched
sideband theory is clearly in contradiction with the nonlocal
phase-matching theory here [Eq. (8)], which dictates that a
resonance might occur if a sideband of the SH spectrum
can become phase matched with the FW spectrum taken at
its center frequency. We now show that the nonlocal interpre-
tation is the correct one by investigating the spectral behavior
of harmonic generation in the nonstationary regime. To do
that the phase mismatch is reduced to below the resonant
threshold, which can be achieved in the type I interaction
scheme by employing birefringent angle tuning close to the
phase-matching point, or as we do here by employing QPM
technology in the type 0 interaction scheme. Several simula-
tions are done with different phase mismatches and the reso-
nant wavelengths are detected. Figure 1(c) shows the good
agreement between the nonlocal theoretical prediction and
the simulation results. Instead the phase-matched sideband
theory does not give the correct description except very far
from the resonant threshold predicted by the nonlocal theory.

5. QPM-INDUCED INFLUENCE AND SELF-
STEEPENING PERFORMANCES
QPM technology is well known as a tool to adjust phase mis-
match or even achieve an effective phase matching. However,
the price of using QPM technology is a reduced second-order
nonlinear constant due to the prefactor in the modulation
function. For example, deff is a factor 2∕π smaller if the
first-order QPM is employed in the material. A graphical repre-
sentation of this is that Δkc is reduced as shown in Fig. 1(d),
while the benefit is that the phase mismatch can be flexibly
tailored rather than being fixed (in the type 0 interaction
scheme). We should therefore rewrite the cascading quadratic
nonlinearity in a material with first-order QPM structure as

n�2�
casc;QPM � −

2ω1

�
2
π deff

�
2

ε0c2n2
1n2Δkeff

; (9)

where Δkeff � Δk� 2π∕Λ and Λ is the poling period.
Since the reduction of deff is inevitable in the QPM structure,

one needs to reduce Δkeff to a level low enough so as to benefit
from an increased cascading strength. However, doing this
will have some other consequences. (1) The reduced Δkeff will
run the risk of getting into the resonant region. As is shown in

Fig. 1(d), a break-even phase-mismatch value Δkbalance lies
where n�2�

casc;QPM � n�2�
casc and it is mostly in the nonstationary

region. Therefore in the particular case studied here, type 0
LN, QPM comes with the price of having a nonstationary
cascading nonlinearity except for longer wavelengths close
to the zero-dispersion point. (2) The GVM-induced self-
steepening effect of cascading will be enhanced as it is scaled
byΔk−1eff . It will add to the system intrinsic self-steepening term
and therefore give rise to a stronger shock front on FW pulses.
Moreover, with normal dispersion, self-steepening-induced
slow pulses will have a chance to balance the Raman-induced
fast pulses.

To analytically prove the latter consequence, we make use
of the NLS-like equation. Besides the system’s intrinsic self-
steepening factor, the self-steepening induced by the cascad-
ing is revealed through the first-order response. In the weakly
nonlocal limit, i.e., U2

1�τ − τ0� is assumed slowly varying
compared with the response function. Hence, it can be Taylor
expanded as U2

1�τ − τ0� ≈ U2
1�τ� − τ0�∂∕∂τ�U2

1�τ�. The nonlocal
cascading response (the second term) in Eq. (6) therefore has

N2
casc

�
1 −

i
ω̂1

∂

∂τ

�
U�

1�τ�
�
1 −

i
ω̂2

∂

∂τ

�Z
∞

−∞

dτ0hc�τ0�U2
1�τ − τ0�

� N2
casc

�
1 −

i
ω̂1

∂

∂τ

�
U�

1

�
1 −

i
ω̂2

∂

∂τ

��
U2

1 − iτc
∂

∂τ
U2

1

�

� N2
casc

�
jU1j2U1 −

3i
ω̂1

jU1j2
∂

∂τ
U1

− 2iτcjU1j2
∂

∂τ
U1 −

i
ω̂1

U2
1
∂

∂τ
U�

1
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where τc � ~h0c�0� � d12∕Δk�ω1�T1;in is defined as the response
time of the cascading first perturbation and iτc �R
dτ · τ · hc�τ�. It is obvious that a GVM-induced self-steepening

term is produced, is scaled by τc, and will directly change the
amplitude of the field envelope, resulting in a shock front on
the pulses [11].

On the other hand, the case of the material Raman effects is
quite different. Physically, material Raman effects are well
understood to work only on the phase of the field envelope,
chirping pulses, transferring energy from the high-frequency
components to the low-frequency components and resulting
in red shifting in the spectrum. Mathematically, if we analo-
gously expand the field intensity jU1�τ − τ0�j2 to the first order,
the third term in Eq. (6) has
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where τR � f R
R
dτ · τ · hR�τ� is Raman response time. Note

that the definitions of τc and τR are different as the response
time should be physically real valued. Then, a real part is
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produced as the first order of the material Raman effects that
directly works on the phase of the field envelope.

Furthermore, the field envelope can be separated into a
real-valued amplitude multiplying a phase term [12], i.e.,
U1 � A�ξ; τ�eiφ�ξ;τ�. In the dispersionless approximation,
where the propagation length is much smaller than the disper-
sion length, the change on the amplitude and phase can be
approximately obtained as

∂A
∂ξ

�
�
4N2

casc − 3N2
cubic

ω̂1
� 2τcN2

casc

�
A2 ∂A

∂τ
; (12)
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2N2
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cubic

ω̂1
� 2τcN2
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�
A2 ∂φ
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where the effective soliton number, Neff �
																														
N2

casc − N2
cubic

q
,

is defined to quantify the overall self-defocusing nonlinearity.

It is obvious that the cascading response time gives con-
tributions to both the amplitude and the phase change
while the Raman response time only influences the phase
change.

The self-steepening-induced shock front on pulses is
therefore understood to happen when the prefactor on the
right part of the amplitude equation [Eq. (12)] is not zero;
see Fig. 2(a), in which τc and Ncasc play a role as tuning para-
meters. A similar conclusion was reported by Moses and
Wise [11], but they did not get further into the amplitude
and phase dynamics. Moreover, the shock front also causes
asymmetry in the pulse spectrum and, in the existence of
the material dispersion, therefore generates fast/slow pulses.
Figure 2(a) also shows that for lower (effective) phase mis-
match, slower pulses are generated.

For the phase equation [Eq. (13)], we note that if a stable
soliton is formed during the propagation, the phase chirp
becomes negligible (the third term can be eliminated as
�∂φ∕∂t� � 0 for a stable soliton) and the Raman term turns

Fig. 2. (Color online) Simulations of NLS-like equation on the balance of the fast/slow pulses. Dispersion properties are chosen from an LN crystal.
The cascading nonlinearity isNcasc � 2.60 and the material electronic Kerr nonlinearity isNKerr;el � 1.96; the input pulse has a FWHM � 50 fs and a
peak intensity Ipeak � 100 GW∕cm2, located at 1560 nm. (a) Shock front on pulses and slow pulses driven by dispersion. (b) Slow pulses in QPM
crystal without Raman effects, in which Δkeff � 129.5 mm−1. (c) Fast pulses driven by 50% Raman effects in a bulk crystal with Δk � 319.5 mm−1.
(d) Balanced pulses generated in a QPM crystal with 50% Raman effects. The inset figures correspond to the spectrum evolutions, the temporal
profiles, and the spectra at the first compression point of the pulses (position marked by the white dashed line).
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to dominate (the second term), which continuously gives
rise to red shifting in the pulse spectrum. Then, with normal
dispersion, fast pulses are generated due to the faster GV at
the red-shifted wavelengths.

Hence, we could expect a balance of the fast/slow pulses
with the competing interaction of the cascading effects and
the material Raman effects. Convincing numerical results
are shown in Figs. 2(b)–2(d) through direct simulations of

Table 1. Nonlinear Parameters Used for Simulations

Material BBO (1.03 μm) MgOLN (1.3 μm) PPMgOLN (1.3 μm)

Second-order nonlinear
tensor elements (pm∕V)

d22 2.20 [5] / /
d31 −0.04 [5] / /
d33 −0.04 [5] −23.50 −23.50

Third-order nonlinear
tensor elements (pm2∕V2)

c11 550.00 [26] / /
c33 −1400.00 [26] 7300 7300
c16 120.00 [26] / /
c10 −22.00 [26] / /
f R 0 50% 50%

Interaction type: Type I, Type II Type 0 Type 0, QPM

6.5 fs

(a)

(b)

(c)

(d)

D-wave
THFW

SH

Fig. 3. (Color online) Simulation of cascading nonlinear soliton pulse compression in BBO cut for type I interaction at 1030 nm. The rotation
�θ;φ� � �20.5°;−90.0°�, under which Δkc � 78.1 mm−1 and Δksr � 46.1 mm−1. Native phase mismatch Δk � 55.4 mm−1. The launched pulse
has FWHM � 200 fs, peak intensity I in � 100 GW∕cm2, n�2�

casc � −7.86 × 10−20 m2∕W, nKerr;eljo:ooo � 5.67 × 10−20 m2∕W,Neff � 6.00. (a) Electric field
of the first stage soliton (position marked by the white dashed line). (b) Temporal evolution of the FW. (c), (d) Spectral evolutions of both o-pol and
e-pol pulses.
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Eq. (6), in which the cascading nonlinearity and the material
electronic Kerr nonlinearity are always kept identical. Without
Raman effects, the cascading response time will be tuned by
the phase-mismatch parameter and generates slow pulses; see
Fig. 2(b): when the Raman term is switched on as 50% of the
total cubic nonlinearity, fast pulses are driven as a counterba-
lance to the cascading effects. In a bulk crystal where the
cascading response time is quite short due to the large Δk,
eventually fast pulses are generated; see Fig. 2(c). When using
a QPM crystal, however, the cascading response is enhanced
and may form a balance with the Raman effects, which
keeps the pulses around the zero-delay position; see Fig. 2(d).
The oscillations split out of the pulses are dispersive waves
(D-wave, also called Cherenkov wave), which are the results
of a phase-matching condition of the linear part of the spec-
trum (the anomalous dispersion regime at longer wave-
lengths) to the soliton residing in the normal dispersion
regime.

6. SIMULATIONS AND DISCUSSIONS
In this part, realistic simulation examples based on our master
equations are shown. Few-cycle soliton pulses are generated
within a short crystal length from multicycle pump pulses.

Such a compressor therefore has great potential for improving
the performance of femtosecond laser systems.

The samples we take into consideration are BBO, MgOLN,
and PPMgOLN, which are all uniaxial crystals within the point
group 3 m. If these crystals are operated far from the band
gap resonance, they are assumed to be under the Kleinman
symmetry. Thus there are only a few nonzero elements in
the nonlinear tensors, e.g., only three independent elements
in the second-order nonlinear tensor and four in the third-
order nonlinear tensor. The nonlinear parameters used in
the simulations here are listed in Table 1. The cubic nonlinear
parameters of BBO were taken from a recent literature study
[26], while those for MgOLN were taken from [4]. Note that
the large Raman fraction of LN was found there by com-
paring simulations with experimental data, as no reliable
absolute Raman nonlinear coefficients could be found in
the literature.

A. Type I BBO at 1030 nm: A Clean Few-Cycle Soliton
Pulse Compressor
A BBO crystal cut for type I interaction has a compression
window (950–1450 nm [26], where the two compression
conditions are both satisfied) for longer near-IR wavelengths
[14], which can be accessed by tuning the crystal rotation

D-wave
FHSH

(a)

(d)

(c)

3-cycle

(b)

Fig. 4. (Color online) Simulation of cascading nonlinear soliton pulse compression in MgOLN cut for type 0 interaction at 1300 nm. The
rotation �θ;φ� � �90°; 90°�, i.e., X-cut, under which Δkc � 890.4 mm−1 and Δksr � 283.3 mm−1. Native phase mismatch Δk � 501.5 mm−1.
The launched pulse has FWHM � 50 fs, peak intensity I in � 100 GW∕cm2, n�2�

casc � −40.05 × 10−20 m2∕W, nKerr;el � 22.56 × 10−20 m2∕W,																																
N2

casc − N2
Kerr;el

q
� 2.05. (a) Electric field of the first stage soliton (position marked by the white dashed line). (b) Temporal evolution of the

FW. (c) Spectrum of the first stage soliton. (d) Spectral evolution of the e-pol pulse with obvious red shifting of the FW and blue shifting of
the D-wave.
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angle θ. Unfortunately, the most concerned Ti:sapphire laser
wavelength, 800 nm, is not included in such a window and
therefore only moderate compression under a nonstationary
regime could be achieved [2]. Within this window, clean pulse
compression is expected. In fact the successful generation of
few-cycle compressed pulses at 1260 nm by Moses and Wise
was done at such conditions. In Fig. 3 we investigate a similar
scenario at 1030 nm where high-energy subpicosecond pulses
can be generated by a ytterbium-doped laser system. While
the phonon response of BBO has been measured [31], its
strength is generally believed to be very weak, so in the simu-
lations we take f R � 0. Moreover, it is relevant to mention that
BBO has normal FW dispersion below 1450 nm.

The electric field of the compressed pulse is shown in
Fig. 3(a). After few centimeters propagation, clean and
sub-three-cycle pulses are generated. Besides, the cascading
response causes a shock front on the pulses and generates
slow pulses through normal dispersion [see Fig. 3(b)],
showing the temporal evolution. In the spectral evolution
[Figs. 3(c) and 3(d)], the FW and several harmonics are
marked and cascading nonlinearities are produced among
them. A weak SH is generated through the phase-mismatched
SHG process (type I, o� o:e) while a weaker third harmonic
(TH) is generated through the phase-mismatched sum-
frequency generation (SFG) process (type-II, o� e:o) as well
as the phase-mismatched THG process (o� o� o:o). Since

the SHG process has the smallest phase mismatch
(∼55 mm−1) and moderate conversion efficiency compared
with other processes, the cascading quadratic nonlinearity
dominates the total self-defocusing nonlinearities.

It is to our knowledge the first time that such purely
spectral NWEF(s) are used to model the few-cycle soliton
pulse generation based on a total self-defocusing nonlinearity
originating from the competition between the cascading
nonlinearity and the material intrinsic Kerr nonlinearity.
Moreover, we performed a comparison between the results
of the NWEFs and the usual CWEs and found only a slight
difference in the pulse’s pedestal; this difference is caused
by the THG that is included in the NWEFs, but since the
TH is weak here only a slight difference is observed. Thus,
the type I simulations in BBO traditionally done with the usual
CWEs based on the slowly evolving wave approximation
(SEWA) [2,3,11,12,14–16] turn out to give a fairly accurate
description of the dynamics in cascaded soliton compression.
Nonetheless, the advantage of the NWEF is that it automati-
cally takes into account any type of multistep wave mixing
and harmonic conversion, which cannot a priori be excluded.

B. Type 0 MgOLN: Few-Cycle, Fast Pulses Dominated by
the Material Raman Effects
MgOLN cut for type 0 interaction is also a good candidate
for cascading nonlinear pulse compression due to its large

Fig. 5. (Color online) Simulation of cascading nonlinear soliton pulse compression in PPMgOLN cut for type 0 interaction at 1300 nm. The poling
period is 26 μm. The rotation �θ;φ� � �90°; 90°�, under which Δkc;QPM � 360.9 mm−1 and Δksr � 283.3 mm−1. The effective phase mismatch
Δkeff � 259.8 mm−1. The launched pulse has FWHM � 50 fs, peak intensity I in � 100 GW∕cm2, n�2�

casc;QPM � −31.32 × 10−20 m2∕W,

nKerr;el � 22.56 × 10−20 m2∕W,
																																								
N2

casc;QPM −N2
Kerr;el

q
� 1.45. (a) Electric field of the pulse (position marked by the white dash line). (b) Temporal

evolution of the FW. (c) Spectrum of the pulse. (d) Spectral evolution of the pulse with resonant SH radiation and strong dispersive wave.
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d33 element. The compression window has already been
shown in Fig. 1. However, in MgOLN, it seems that the Raman
effect is quite dominant [4], giving a large relative fraction f R,
which causes fast pulses in the time domain and red-shifting in
spectruml see Fig. 4.

By launching a short 50 fs pump, three-cycle pulses are gen-
erated within a short propagation length of around 4 mm
[Figs. 4(a) and 4(b)] because MgOLN has a large GVD. It is
highlighted that fast pulses are dramatically driven after the
soliton formation in which the Raman chirping term starts
to dominate the phase dynamics [Eq. (13)]. Correspondingly,
obvious red shifting in spectral evolution is observed and the
D-wave becomes more blue shifted [see Fig. 4(d)], a conse-
quence of the phase-matching law between them. Compared
with Zhou et al.’s experiment [4], the pulse splitting is not
prominent here as we use a lower soliton order and therefore
reduce the effect of Raman-induced soliton fission.

C. Type 0 PPMgOLN: Few-Cycle, Zero-Delay Pulse
Generation with Enhanced D-Wave
To make a comparison with the bulk MgOLN crystal, pulse
compression in a PPMgOLN with an effective phase mismatch
in the nonstationary region is shown in Fig. 5. Using the same
pump, the compressed soliton has a single-cycle spike, but
overall the soliton is not as clean as Fig. 5 and has a stronger
shock front. With a great reduction in the phase mismatch,
from 501.5 mm−1 to 259.8 mm−1 through a 26 μm QPM pitch,
the first-order response of the cascading (scaled by τc) is en-
hanced, which pulls the pulses back to the zero-delay position
[see Fig. 5(b)], showing the temporal evolution. In the spectral
evolution [Fig. 5(d)], Raman-induced red shifting is well sup-
pressed and the D-wave is evoked and enhanced around
4.5 μm. Besides, the self-steepening prefactor is also enlarged,
resulting in the strong shock front on the pulses; see Fig. 5(a).
Meanwhile, in the nonstationary region, nonlocal phase
matching is fulfilled so that a strong resonant peak emerges
in the spectrum [see Figs. 5(c) and 5(d)], which generates
strong temporal oscillations and degrades the compression
quality.

7. CONCLUSIONS
In conclusion, in this paper we presented the generalized
NWEFs, which are for the first time, to the best of our knowl-
edge, extended to third-order induced polarization including
both instantaneous cubic nonlinearities and delayed Raman
effects. Any of the possible phase-matching conditions (types
0, I, and II) are easily modeled, and by including the anisotro-
py of the nonlinearities, the different wave-mixing possibilities
(three- and four-wave mixing, including THG and parametric
upconversion and downconversion) are automatically in-
cluded properly. We then used the NWEFs as a platform for
investigating ultrafast cascaded SGH, in which soliton com-
pression to few-cycle duration is possible in short nonlinear
frequency conversion crystals.

We first reduced the NWEFs to a single NLS-like equation,
which highlights self-steepening effects as well as the compe-
tition between cascaded nonlocal effects and cubic SPM and
Raman effects. Using this reduced equation, we discussed the
conditions for observing optimal pulse compression. It is com-
mon to interpret the resonant SH peak, which can be observed
in cascading when the phase mismatch is small, as phase

matching of the spectral sidebands. We showed that this is
wrong and that it can instead be accurately described by
the nonlocal theory as a phase matching between an offset
SH frequency with the FW center frequency.

The reduced NLS-like equation was also used to investigate
the competition between self-steepening, Kerr self-focusing
SPM, and Raman effects on one side, and on the other side
cascaded contributions. Besides the self-defocusing SPM
term, these cascading terms to first order contribute both
to self-steepening-like terms (creating a pulse front shock)
and also to higher-order phase contributions similar to the
Raman effect. Since the cascading terms are tunable through
the sizes and signs of the phase-mismatch and the GVM para-
meters, we showed that the slow/fast pulses usually associated
with self-steepening and Raman effects could be balanced out
by cascading: the Raman red-shift of the pulse gave fast soli-
tons due to the faster GV at red-shifted wavelengths (normal
dispersion), while GVM-induced cascading tends to slow
pulses down. Therefore, pulses where the two delay effects
are balanced are expected and we showed simulations where
these effects appeared. In fact, we even found cases where the
strong spectral red shift from Raman was completely sup-
pressed by strong cascading contributions.

Finally, we showed a series of full simulations of the
NWEFs, where few-cycle, clean soliton pulse compression
was demonstrated. In BBO the type I simulations showed
spectral components related to THG and sum-frequency mix-
ing, but we found that the results agreed well with previous
simulations of the coupled SEWA equations. In MgOLN a
strong Raman contribution was investigated in the type 0 con-
figuration, and we showed that in a bulk crystal a few-cycle
soliton forms after a few millimeters, but also that due to the
dominating Raman effect the soliton is accelerated. We also
performed the same simulation with the same pump but in
a QPM (through periodic poling) MgOLN, where the phase
mismatch was greatly reduced. In this case the cascading
response is no longer optimal as it becomes spectrally reso-
nant. The QPM case gave more characteristic phenomena in
the spectrum but the temporal profile was not so clean. In
addition, the soliton was no longer accelerated by Raman
effects, and spectrally the Raman red-shifting was cancelled.
This is a consequence of the increased cascading self-
steepening from QPM.
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