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23Carassius carassius responds to hypoxic conditions by conversion of lactate into ethanol, which is excreted
24over the gills. However, a closely related species, Cyprinus carpio, does not possess the ability to produce eth-
25anol and would be expected to accumulate lactate during hypoxic exposure. While the increase in oxygen
26consumption in fish required following strenuous exercise or low environmental oxygen availability has
27been frequently considered, the primary contributing mechanism remains unknown. This study utilized
28the close relationship but strongly divergent physiology between C. carpio and C. carassius to examine the
29possible correlation between excess post-hypoxic oxygen consumption (EPHOC) and lactate accumulation.
30No difference in the EPHOC:O2 deficit ratio was observed between the two species after 2.5 h anoxia, with
31ratios of 2.0±0.6 (C. carpio) and 1.3±0.3 (C. carassius). As predicted, lactate accumulation dynamics did sig-
32nificantly differ between the species in both plasma and white muscle following anoxic exposure. Significant
33lactate accumulation was seen in both plasma and muscle in C. carpio, but there was no accumulation of lac-
34tate in white muscle tissue of C. carassius. These findings indicate that lactate accumulated as a consequence
35of 2.5 h anoxic exposure is not a major determinant of the resulting EPHOC.
36© 2013 Published by Elsevier Inc.

3738

39

40

41 1. Introduction

42 Three cyprinid teleosts, the crucian carp (Carassius carassius (L)),
43 goldfish (Carassius auratus (L)), and bitterling (Cyprinus amarus
44 (Bloch)), are unique among vertebrates for their ability to convert lac-
45 tate into ethanol as the end product of anaerobic metabolism
46 (Shoubridge and Hochachka, 1980; Johnston and Bernard, 1983;
47 Wissing and Zebe, 1988). The produced ethanol is freely diffusible
48 over the cell membrane and is excreted from the fish via the gills
49 (Shoubridge and Hochachka, 1980; van den Thillart et al., 1983;
50 Stecyk et al., 2004). This rare adaptation is instrumental in a greatly en-
51 hanced tolerance to hypoxic conditions. Indeed, C. carassius can survive
52 more than 24 h of anoxia at room temperature, and at least 4.5 months

53at near-zero temperatures (Holopainen and Hyvärinen, 1985; Piironen
54and Holopainen, 1986; Nilsson and Renshaw, 2004). In contrast, the
55common carp (Cyprinus carpio), a cyprinid species closely related to C.
56carassius, does not possess the ability to produce ethanol (Nilsson,
571988), yet is regarded as a good anaerobe tolerating anoxic exposure
58of at least 1 h at 20 °C (van Waarde et al., 1990; van Raaij et al.,
591996), and surviving less severe hypoxia (0.5 mg O2 L−1) for at least
607 days at 22–23 °C (Zhou et al., 2000).
61The comparison of the hypoxia tolerance strategies between these
62two species is based on the distinct differences in metabolic responses
63to oxygen limitation each species employs. Standard metabolic rate
64(MO2std) is the minimum oxygen requirement for the maintenance of
65unimpaired physiological reactions in postprandial unstressed animals
66at rest. When the oxygen saturation (O2sat (%)) in the water is too low
67to support these basal requirements by aerobic metabolism, phospho-
68creatine (PCr) acts as an “energy buffer”, stabilizing the [ATP] by rapidly
69regenerating ATP from ADP. The capacity to maintain the [ATP] by PCr
70hydrolysis is limited (van Ginneken et al., 1995; Dalla Via et al., 1997)
71and anaerobic glycolysis is therefore the principal ATP-generating path-
72way that can function during long periods of anoxia (Bickler and Buck,
732007). Due to the lowATP yield fromanaerobic glycolysis, cells compen-
74sate for the diminished aerobic energy production by a substantial
75rise in glucose consumption rates resulting in lactate accumulation
76(Hochachka, 1986). For every mole of glucosyl-units used to support
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77 anaerobic glycolysis, 2 mol of lactate is produced; deviations from a 2:1
78 ratio therefore indicate sources additional to glycogen depletion. This is
79 the response to low oxygen saturation observed in most teleost fish
80 species, including C. carpio. In conjunction with this process, C. carassius
81 converts lactate into ethanol, which addresses the problem of
82 acidification by ATP hydrolysis associated with lactate production
83 (Hochachka and Mommsen, 1983) and, combined with one of the larg-
84 est known glycogen stores of any vertebrate (Hyvärinen et al., 1985) al-
85 lows C. carassius to maintain a relatively high glycolytic rate for
86 extended periods (Nilsson, 1990). The conversion of lactate to ethanol
87 in C. carassiushappens exclusively inmuscle tissue and lactate produced
88 in tissues other than themuscle is transported via the blood to themus-
89 cle tissue for fermentation (Johnston and Bernard, 1983; Nilsson, 1988).
90 Fish can increase their oxygen consumption rate by several folds
91 compared to MO2std until reaching their maximum capacity (MO2max)
92 wherein all aerobic activities are undertaken. During recovery from an-
93 oxia, oxygen consumption increases aboveMO2std for an extended peri-
94 od of time, but studies that quantify the total metabolic cost of recovery
95 from severe hypoxia are rare (van den Thillart and Verbeek, 1991;
96 Maxime et al., 2000; Svendsen et al., 2012). The accumulated excess
97 post hypoxic oxygen consumption (EPHOC,mg O2 kg−1) has classically
98 been attributed to the lactate load, but evidence suggests that EPHOC is
99 only partially related to the lactate load, and that resynthesis of glyco-
100 gen from lactate during recovery is not the major component of the in-
101 creased O2 consumption. Instead, the EPHOC has been attributed to
102 re-synthesis of ATP and PCr in addition to glycogen, and also the buffer-
103 ing of protons generated from ATP utilization (van den Thillart and
104 Verbeek, 1991; Virani and Rees, 2000; Mandic et al., 2008). However,
105 the relative contributions of these processes to EPHOC in fish, and in
106 particular the role of lactate, remain an area of ongoing investigation.
107 The present study examines the hypothesis that EPHOC associated
108 with acute exposure to anoxia (≤1% O2sat) is positively correlated to lac-
109 tate accumulation. Utilizing the close phylogenetic relationship, yet dis-
110 tinct difference in hypoxia tolerance physiology between C. carpio and
111 C. carassius this study investigates the link between lactate load and
112 EPHOC. Because lactate is converted to ethanol in C. carassius, but not
113 in C. carpio, it was hypothesized that 1) acute exposure to anoxia
114 would cause substantial lactate accumulation in C. carpio, while it
115 would be limited in C. carassius; and 2) the lactate accumulation would
116 result in greater EPHOC relative to the produced O2 deficit in C. carpio,
117 compared to C. carassius. In this study, we therefore quantified 1) con-
118 centration of lactate in muscle and plasma during exposure to anoxia
119 in juvenile C. carassius and C. carpio, and 2) EPHOC (mg O2 kg−1) after
120 exposure to 2.5 h anoxia.

121 2. Materials and methods

122 2.1. Experimental animals

123 A total of 34 juvenile C. carpio and 33 C. carassius (110–130 mm)
124 were collected from a pond near Slagelse, Denmark (55°17′58 N
125 11°27′47 E) in April 2009. At capture water temperature was
126 12.5–14.0 °C. Fish were transferred to the University of Copenhagen,
127 Marine Biological Laboratory, Helsingør, Denmark and kept indoors in
128 a 400 L tank supplied with a continuous flow of unchlorinated tap
129 water. Water was filtered using a mechanical filter pump (1100 L h−1)
130 connected to the tank, and water temperature was kept at 15±0.1 °C
131 and continually aerated to maintain normoxic conditions. The fish
132 were kept in a 12L:12D light regime and were fed to satiation 2–4
133 times per week with commercial fish pellets (Ecolife 3 mm, Biomar,
134 Denmark). Prior to experimentation, fish were acclimated to these
135 conditions for 4 months. No fish was used more than once. All
136 methods applied in the present study were in agreement with
137 current Danish regulations for the treatment and welfare of experi-
138 mental animals.

1392.2. Respirometry

1402.2.1. Equipment setup
141The setup consisted of a static respirometer and amixing pump sub-
142merged in a 50 L opaque tank on a wet table, filled with unchlorinated
143tap water maintained at 15±0.1 °C. The respirometer was made of
144transparent Perspex tubing and was fitted with two outlet and two
145inlet ports. The mouth of the outlet tube, through which water left the
146respirometer,was elevated slightly above thewater surface level to pre-
147vent the ambient water from entering the respirometer. Inside the res-
148pirometer, a plate positioned 5 mm from the ports propagated water
149mixing and prevented the fish from disturbing the inflow and outflow.
150A perforated tubewas inserted into the respirometer tominimize spon-
151taneous activity associated with exposure to decreased O2sat levels, a
152behavior that has been previously observed in C. carpio (Vianen et al.,
1532001). The tank was positioned behind a black curtain to minimize
154stressful stimuli.
155Measurements of O2 consumption rate (MO2;mg O2 kg−1 h−1)were
156carried out every 7 min 50 s using computerized intermittent-flow respi-
157rometry allowing long term (>48 h) repeated measurements as previ-
158ously described (Steffensen et al., 1984; Steffensen, 1989). The repeated
159respirometric loops consisted of a 3 min 20 s flushing phase during
160which a pump flushed the respirometer with ambient water through
161one set of ports. The second set of ports and a pump allowed the water
162in the respirometer to be re-circulated in a closed circuit phase for
1634 min 30 s, divided into awaiting period (2 min) and ameasurement pe-
164riod (2 min 30 s).
165Oxygen partial pressure was measured at 1 s−1 by a fiber optic
166sensor (Fibox 3 connected to a dipping probe; PreSens, Regensburg,
167Germany) located in the recirculated loop. The flush pump was con-
168trolled by AutoResp software (Loligo Systems Aps, Tjele, Denmark)
169that also calculated the oxygen consumption rate in the measuring
170phase using the oxygen partial pressure and standard equations
171(Schurmann and Steffensen, 1997). Preliminary testing demonstrated
172that the duration of the measurement period (2 min 30 s) in combi-
173nation with the mass of the experimental fish (19.5±0.7 g) and the
174volume of the respirometer and re-circulated loop (0.335 L) ensured
175that the coefficient of determination (r2) associated with the MO2

176measurements was always >0.90 as in previous studies (Behrens
177and Steffensen, 2007; Campbell et al., 2008). Moreover, in normoxia
178the respiration of the fish never reduced the O2sat to less than 84%
179(approx. 17.5 kPa).
180Water for the flush pump was supplied from one of two different
181tanks containing either normoxic or hypoxic water maintained at
18215±0.1 °C. Adequate water quality in the system was maintained
183by an internal filter pump and an ultraviolet light sterilizer running
184continually. Prior to initiation of an experiment the adjustable tank
185was reduced to ≤2.5% O2sat (approx. 0.5 kPa) by circulating water
186from the tank through a vertical cylinder (0.25 m in diameter, 1 m
187high) where the water was exposed to a stream of nitrogen bubbles
188(Behrens and Steffensen, 2007). To minimize diffusion of O2 from
189the ambient air, water surfaces were covered by floating bubblewrap.
190The O2sat in the adjustable tank was measured using a Mini DO probe
191(Loligo Systems Aps., Tjele, Denmark) connected to a relay that con-
192trolled the O2sat in the tank via a solenoid valve regulating nitrogen
193gas delivery to the cylinder similar to the procedure described by
194(Jordan and Steffensen, 2007). The O2sat in the normoxic tank was
195maintained at a constant high normoxic level (≥95% O2sat, approx.
19619.8 kPa) using air stones. The desired O2sat in the hypoxic tank was
197adjusted and stabilized before the flush pump started supplying
198water from this tank. In this way, the experiment was not influenced
199by any delays caused by the time required to reduce the O2sat in the
200hypoxic tank. The shift from normoxic to hypoxic water was made
201by manually closing the valve regulating outflow from the normoxic
202tank and opening the valve from the adjustable tank, which had
203been previously brought to ≤2.5% O2sat as described above. Both
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204 valves were situated outside the tank to eliminate disturbance of the
205 fish, and preliminary tests confirmed that the procedure did not influ-
206 ence the metabolic rate of the fish. During the flush phase, the flush
207 pump exchanged greater than 8 times the volume of water in the res-
208 pirometer, which is sufficient to replace >99% of the water
209 (Steffensen, 1989). Using this arrangement, the O2sat inside the respi-
210 rometer reached the designated O2sat level in b3.5 min and was im-
211 mediately followed by MO2 measurements.

212 2.2.2. Experimental protocol of MO2 measurements
213 EPHOC following anoxia was determined in two size-matched
214 groups of 9 C. carpio (19.5±1.1 g) and 8 C. carassius (19.5±0.7 g).
215 Fish were fasted for 24 h prior to experimentation. Individual
216 MO2max was tested in normoxia by transfer of the fish from the hold-
217 ing tank to a bucket and chasing to exhaustion, according to Richards
218 et al. (2002). This protocol has been used to induce MO2max in several
219 teleost species as an alternative to swimming the fish in the respi-
220 rometer (Peake and Farrell, 2006; Jordan and Steffensen, 2007;
221 Killen et al., 2007). Upon exhaustion, identified by no further re-
222 sponse to manual stimulation (after 5–6 min), fish were transferred
223 to the respirometer where MO2 measurements were started immedi-
224 ately. After the MO2 max measurements, fish were acclimated to the
225 respirometer for 24–48 h.
226 Preliminary testing confirmed previous work that indicated the
227 maximum survival time for C. carpio exposed to anoxia at 15 °C was
228 approx. 2.5 h (Stecyk and Farrell, 2002), and 2.5 h was consequently
229 used as the duration of anoxic exposure. Tests with the two different
230 species were carried out in random order. It was not possible to reduce
231 the O2sat in the hypoxic tank to less than 2.5% (0.5 kPa). Therefore, to in-
232 duce anoxia in the respirometer, theflush pumpwas turned off after the
233 first flush period of the experiment. Shutting off the water exchange
234 caused the fish to induce anoxia (≤1% O2sat, approx. 0.2 kPa) in the res-
235 pirometer in ≤15 min. After the anoxic exposure the flush pump was
236 engaged and the respirometer flushed with normoxic water. Due to
237 the lag time of the fiber optic sensor adjusting from ≤0.1 to >95%
238 O2sat, the flush period of the first respirometric loop was extended by
239 3 min and the measurement discarded. Collection of MO2 data every
240 7 min and 50 s continued for >12 h after the exposure to anoxia.

241 2.2.3. Acquisition and analysis of respirometry data
242 Because of the rapid turnover of water, both the exact rate of change
243 of the O2sat and the response time of the O2 consumption rate of the fish
244 were unknown during the flush periods; because of these uncertainties
245 the flush periods used to modify the O2sat inside the respirometer were
246 not included in the calculations. MO2std was defined as the mean of the
247 last sevenmeasurements (54 min 50 s) (Fig. 1) before onset of hypoxia,
248 similar to previously employed procedures (Scarabello et al., 1991;
249 Svendsen et al., 2010). The EPHOC protocol involved rapid changes of

250the O2sat inside the respirometer during single flush periods (from
251normoxia to anoxia and vice versa). The oxygen deficit (mg O2 kg−1)
252accumulated during the anoxic periodwas quantified as theMO2std dur-
253ing the 2.5 h. Individual recovery periods were regarded as completed
254when the first MO2 datum in the post anoxia recovery period (MO2-

255post-anoxia) was within a 95% confidence interval (CI) of the MO2std

256(Fig. 2) as previously described (Bushnell et al., 1994; Svendsen et al.,
2572010). The metabolic cost of recovery (mg O2 kg−1) was determined
258by subtracting the MO2std from MO2 post-anoxia, following Jordan and
259Steffensen (2007). Aerobic metabolic scopewas calculated as the differ-
260ence between MO2max and MO2 std, following Farrell and Richards
261(2009).

2622.3. Measurements of plasma and muscle lactate

2632.3.1. Equipment setup
264Twogroups of 25 sizematchedC. carpio and C. carassius (20.9±0.5 g)
265were used for the time series measurements of lactate development in
266plasma andwhitemuscle. A 180 L aquariumwas fittedwith black plastic
267on all sides to prevent visual disturbance, filled with unchlorinated tap
268water, and fittedwith an internal filter pump to ensure adequatemixing.
269The temperature was kept at 15±0.1 °C and the water was maintained
270normoxic by continuous aeration by air stones. The O2sat was monitored
271using a Mini DO probe (Oxyguard International, Birkerød, Denmark)
272connected to a relay controlling the O2sat in the tank via a solenoid
273valve that regulated nitrogen gas delivery to multiple air stones on the
274bottom of the aquarium. All holes around tubes and cables into the
275aquariumwere coveredwith plastic film. The sealed container facilitated
276precise regulation of O2sat from≥95% to 1%. To allow individual sampling
277with a minimum of disturbance of the remaining fish in the aquarium,
278each fish was inserted in a small cage made from plastic mesh tube
279(40 mm diameter). A nylon string was fitted to each cage and a small
280weight kept the cage on the bottom and made it impossible for the fish
281to move the cage.

2822.3.2. Experimental protocol of lactate sampling
283Fish were starved for 24 h before being transferred from the hold-
284ing tank to the aquarium and inserted in the cages. Acclimation to the
285aquarium under normoxia lasted for 36 h, and fish were not fed dur-
286ing this time. Five fish of each species were sampled immediately be-
287fore the onset of hypoxia as a normoxic baseline. Within 1 h anoxia
288was reached (1±0.2% O2sat, approx. 0.2 kPa) by nitrogen bubbling.
289Subsequently, a fish was sampled every 4 min. Alternating between
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was used as the marker indicating completion of the recovery period.
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290 each species, a total of 20 C. carpio and 20 C. carassius were sampled,
291 giving a total anoxic exposure period of 2 h 40 min.
292 At sampling, the lid was lifted slightly and a cage retracted from
293 the tank by the nylon string. The cage was immediately transferred
294 to a 2.5% benzocaine solution (Sigma-Aldrich Chemicals, USA) made
295 from a 4% ethanol stock solution. At complete anesthesia (≤1 min),
296 the fish were removed from the cages, patted dry and weighed to
297 the nearest 0.1 g. Blood samples were collected by severing the tail
298 from the body and collecting the blood flowing from the caudal vein
299 with a heparinized 1 mL syringe (LEO Pharma A/S, Ballerup, Den-
300 mark). The blood sample was transferred to a 0.5 mL centrifuge
301 tube and centrifuged at 2000 g for 30 s to isolate the plasma. A tissue
302 sample was taken as a cross section of the trunk musculature posteri-
303 or to the dorsal fin and wrapped in an aluminum foil. Both the tissue
304 and plasma sampleswere flash frozen in liquid N2 and stored at−80 °C
305 until analysis.

306 2.3.3. Determination of lactate concentration
307 Extraction of lactate from the tissue samples was carried out fol-
308 lowing procedures previously described (Viant et al., 2003; Lin et
309 al., 2007). The frozen muscle samples were ground to a fine powder
310 in a N2-cooled mortar. The frozen, powdered tissue (100 mg) was
311 weighed in a N2-cooled 1.5 mL centrifuge tube and extracted using
312 5 mL g−1 (wet mass) ice cold 6% perchloric acid. Samples were
313 kept on ice throughout the extraction procedure. Samples were
314 vortexed for 15 s three times, centrifuged (10,000 g, 10 min, 4 °C),
315 and the supernatant was removed and neutralized to pH 7.5 with
316 2 M K2CO3, testing pH using small drops of sample on pH paper (pH
317 paper range: 5.5–9.0). Samples were kept on ice for an additional
318 30 min to facilitate complete precipitation. Following centrifugation
319 (10,000 g, 10 min, 4 °C), the supernatant was removed and stored
320 at −80 °C. Muscle extracts and plasma were analyzed for lactate
321 using a commercial kit (Biomedical Research Service, NY, USA). The
322 measurements were corrected using internal lactate standards in
323 samples from fish of both species sampled in normoxic conditions.

324 2.4. Statistical analysis

325 All values are reported as mean±standard error of the mean
326 (SEM). Means were compared using Student's t-test (two-tailed)
327 after testing the assumptions of normal distribution of data and ho-
328 mogeneity of variance. Means of data found not to be normally dis-
329 tributed were compared using the Mann–Whitney test. Least square
330 linear regression analysis was performed using SigmaPlot 10.0 (Systat
331 Software Inc. San Jose, CA, USA), and regression line slopes were com-
332 pared using analysis of covariance. Statistical analyses were carried
333 out using SPSS 15.0 (IBM SPSS, Armonk, NY, USA). Means were con-
334 sidered significantly different when Pb0.05.

335 3. Results

336 3.1. Oxygen consumption rates

337 MO2 std differed significantly between C. carassius and C. carpio
338 (Table 1, Pb0.02). Similarly, MO2max in C. carassius was significantly
339 lower than the MO2max measured in C. carpio (Pb0.0001). Despite
340 the overall greater oxygen consumption seen in C. carpio, aerobic
341 metabolic scope (AMS, MO2max/MO2std) did not differ between
342 these two species (P>0.8). As a consequence of the different MO2std

343 the accumulated O2 deficit during the anoxic period was greater in
344 C. carpio than C. carassius (Pb0.02), and there was also a significant
345 difference in EPHOC (Pb0.02). Although both EPHOC and O2 deficit
346 were lower in C. carassius than C. carpio, the ratio of EPHOC:O2 deficit
347 did not differ between species (P>0.48). The average time to com-
348 plete metabolic recovery was longer for C. carpio (7.0±1.4 h) than
349 for C. carassius (3.8±0.7 h) (Pb0.034). As was the case with the

350AMS, the utilized metabolic scope was similar for the two species,
351and during the recovery phase neither of the species utilized their
352full metabolic scope, with the highest measurements of MO2

353representing 65.4±8.3% of MO2max in C. carassius and 61.6±7.6% in
354C. carpio (P>0.7).

3553.2. Lactate accumulation

356Parameters describing the production and accumulation of lactate
357during anoxic exposure are summarized in Table 2. Concentrations of lac-
358tate prior to anoxic exposure did not differ between species in plasma
359(3.8±0.5 in C. carassius vs. 3.3±0.4 mM in C. carpio, P>0.48) normuscle
360(2.1±0.1 vs. 1.7±0.3 μmol g−1; P>0.26). While the lactate concentra-
361tion in the plasma rose significantly in both species, in the muscle tissue
362the concentration of lactate increased only in C. carpio (Fig. 3). In conse-
363quence the accumulation of lactate in C. carassiuswas significantly higher
364in plasma than in muscle (Pb0.0001), with plasma [lactate] increasing 3
365fold to 12 mmol L−1 (Table 2, Fig. 3A).C. carpioplasma [lactate] increased
3666 fold to 21 mmol L−1, and in contrast to C. carassius the lactate accumu-
367lation in plasma was significantly higher than in muscle (Pb0.0001;
368Table 2), with muscle [lactate] increasing 5 fold to a final concentration
369of 8.97 μmol g−1 (Table 2, Fig. 3B). The lactate accumulation was faster
370in C. carpio than in C. carassius in both plasma (mmol L−1 h−1, Pb0.01)
371and muscle (μmol g−1 h−1, Pb0.01).

3724. Discussion

3734.1. Respirometry

3744.1.1. Extent of EPHOC in various species
375To our knowledge, EPHOC following exposure to oxygen levels below
376Scrit has been quantified for only three other fish species: C. auratus (van
377den Thillart and Verbeek, 1991) Scophthalmus maximus (Maxime et al.,
3782000), and Oncorhynchus mykiss (Svendsen et al., 2012). Several species
379of flatfish are moderately hypoxia tolerant (Dalla Via et al., 1994;
380Pichavant et al., 2002), and in hypoxia trials on S. maximus, a benthic flat-
381fish found in temperate seas, the EPHOC:O2 deficit ratio was 16:1
382(Maxime et al., 2000), which is only half of the ratio of up to 35:1 ob-
383served in the hypoxia intolerant rainbow trout (O. mykiss) (Svendsen et

Table 1 t1:1

t1:2Observations of metabolic parameters in normoxia and during recovery from 2.5 h acute
t1:3anoxic exposure in crucian carp (Carassius carassius, n=8, 19.5±0.6 g) and common
t1:4carp (Cyprinus carpio, n=9, 19.5±1.1 g) at 15 °C. Asterisks indicate significant differences
t1:5between species using two tailed Student's t-test, * Pb0.05; and *** Pb0.0001; NS, not
t1:6significant.

t1:7C. carassius C. carpio P

t1:8MO2standard (mg O2 kg−1 h−1) 43.7±5.3 66.5±6.2 *
t1:9MO2max (mg O2 kg−1 h−1) 213.7±7.3 329.5±10.3 ***
t1:10AMS (MO2max/MO2std) 5.2±0.4 5.4±0.6 NS
t1:11O2 deficit (mg O2 kg−1) 108.5±13.1 164.9±15.5 *
t1:12EPHOC (mg O2 kg−1) 124.4±18.9 281.1±53.5 *
t1:13EPHOC:O2 deficit 1.3±0.3 2.0±0.6 NS
t1:14Time to recovery (h) 3.8±0.7 7.0±1.4 *
t1:15% of MO2max 65.4±8.3 61.6±7.6 NS

Table 2 t2:1

t2:2Lactate development during 2.7 h acute anoxic exposure at 15 °C in crucian carp
t2:3(Carassius carassius) and common carp (Cyprinus carpio) (20.8±0.5 g combined mean
t2:4body mass). Concentrations at 2.5 h anoxia were calculated from the linear regression
t2:5(see Fig. 3). Asterisks (*) indicate statistical differences between species (Pb0.01).

t2:6Lactate parameters Plasma (mmol L−1) Muscle (μmol g−1)

t2:7C. carassius C. carpio P C. carassius C. carpio P

t2:8Normoxia 3.8±0.5 3.3±0.4 NS 2.1±0.1 1.7±0.3 NS
t2:92.5 h anoxia 12.0 20.9 – 2.6 9.0 –

t2:10Increase (fold) 3.16 6.33 – 1.23 5.28 –

t2:11Slope (h−1) 1.45±0.45 3.92±0.82 * 0.05±0.18 1.20±0.41 *
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384 al., 2012), but still an EPHOC:O2 deficit ratio far greater than the ratios de-
385 termined for bothC. carassius and C. carpio in the present study (1.3:1 and
386 2.0:1, respectively), and of approximately 1.5:1 observed in C. auratus
387 (van den Thillart and Verbeek, 1991). Of the fish species so far investigat-
388 ed for EPHOC, it is interesting to note that the species that accumulate
389 only minimal oxygen debt are all members of the Cyprinidae. Of even
390 greater interest, this capability does not seem to depend entirely on the
391 ability to produce ethanol, as C. carpio demonstrates substantially lower
392 EPHOC:O2 deficit than other non-ethanol-producing species, but an
393 approximately equivalent deficit to ethanol-producing C. carassius and
394 C. auratus.
395 The observed EPHOC:O2 debt ratio in C. carassius of 1.3:1 following
396 2.5 h anoxia at 15 °C (Table 1) is quite similar to the results obtained
397 for the closely related species C. auratus (van den Thillart and Verbeek,
398 1991), which showed an EPHOC:O2 deficit ratio of 1.5:1 after 12 h of an-
399 oxia at 20 °C. However EPHOC in the goldfish (C. auratus) was not ob-
400 served following 3 h of anoxia, (van den Thillart and Verbeek, 1991)
401 requiring greater time and temperature than those needed for EPHOC
402 to be recorded in C. carassius. The fact that we did observe an EPHOC
403 in C. carassius after the relatively short 2.5 h anoxia exposure could be
404 attributed to the following factors: 1) species-specific physiological dif-
405 ferences, despite the fish belonging to the same genus, 2) difference in
406 the timescale of changing O2sat levels and hence time for adjusting ven-
407 tilatory and cardiac response as well as for the initiation of metabolic

408depression, 3) an overestimate of the resting metabolic rate in the pre-
409vious study, thereby “hiding” the EPHOC, or 4) metabolic suppression
410continuing after reestablishment of normoxia. In addition to the conver-
411sion of lactate to ethanol, C. carassius, unlike C. carpio, can also depress
412its metabolism; van Ginneken and van den Thillart (2009) demonstrat-
413ed that metabolic depression in C. auratus was initiated within
41420–30 min after reduction of environmental O2sat, and additionally
415that 1–2 h was needed to accomplish the full metabolic depression
416(by approximately 70% from MO2std). In van den Thillart and
417Verbeek's (1991) study discussed above, in which EPHOC did not
418occur following 3 h anoxia, complete anoxia was not reached until
419after approximately 2.5 h, giving the goldfish sufficient time to reach
420full metabolic depression before anoxia was reached. In the present
421study, anoxia was reached in b30 min, and in consequence, C. carassius
422would only have been able to take full advantage of the ability to depress
423metabolism for approximately the last hour of the exposure. Regardless
424of the reason for this difference between our results and the observa-
425tions by Q2van den Thillart and Verbeek (1991), a very small EPHOC in C.
426carassius was observed in the present study, indicating comparatively
427higher hypoxia tolerance than is observed in C. carpio and other fish
428species.

4294.1.2. Small and uniform EPHOC in Cyprinidae
430The oxygen deprivation utilized in this study was at a near lethal
431level for C. carpio (Johnston and Bernard, 1983; van der Linden et
432al., 2001; Stecyk and Farrell, 2002) but should be easily tolerated by
433C. carassius, yet no difference in the ratio of EPHOC:O2 was found be-
434tween the two species (Table 1). Interestingly, both species only in-
435creased metabolic rate to approximately 60% of their MO2max in the
436recovery period and for a relatively short period of time (4–7 h),
437given the length of the exposure.
438During anoxia, ATP levels in the brain of C. carpio slowly decrease
439(van Ginneken et al., 1996) and a significant swelling of the brain is
440seen over time due to the inactivation of the ATP dependent pumps
441regulating cell volume (Nilsson, 2001; van der Linden et al., 2001).
442These physiological responses to anoxia cause C. carpio to in essence
443slowly die during anoxia, while C. carassius is protected from such ef-
444fects. Hallman et al. (2008) showed that C. carpio have a fairly large
445capacity for maintaining ATP levels using PCr as a buffer during O2

446levels below Scrit (approx. 13% O2sat or 2.7 kPa). During this exposure
447it took approximately 2 h to reduce the [PCr] by half. Over the same
448timespan only a minor rise in plasma lactate took place in white mus-
449cle, indicating that C. carpio preferentially uses its PCr reserves before
450initiating the fermentation pathway for ATP resynthesis, presumably
451as an attempt to reduce metabolic acidification (Hochachka and
452Mommsen, 1983; van den Thillart and van Waarde, 1993).
453In C. carpio (Hallman et al., 2008) as well as C. auratus (Mandic et al.,
4542008) both pH and PCr are completely recovered before lactate recovers.
455Despite high lactate loads remaining during recovery from exercise, fish
456can perform strenuous exercise at pre-fatigue levels when excess
457post-exercise oxygen consumption is repaid (Brett, 1964). This suggests
458that the acidification from the fermentation of glucose is likely of greater
459importance for the EPHOC than the lactate load itself. Indeed, inC. auratus
460(van den Thillart and Verbeek, 1991) and C. carassius (present study) the
461accumulation of lactate per se does not appear to burden the fish, and
462seems only to have a limited impact on the EPHOC in the two species
463at shorter timescales. A lactate-independent EPHOC could also indicate
464that C. carpio may have evolved to be able to cope with high lactate
465loads through residence in eutrophic habitats that experience regular
466hypoxic events (e.g. during the night). High amounts of stored lactate
467could subsequently be converted to glucose for aerobic respiration. Lac-
468tate is an excellent substrate for oxidation, and lactate in the blood can
469be metabolized by the heart, kidney and gills during period of high oxy-
470gen levels, or used for glyconeogenesis in situ. By not having to produce
471glycogen from the accumulated lactate, C. carpio would only have to
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Fig. 3. Linear accumulation of lactate in plasma (mmol L−1, black) and muscle (μmol g−1,
white) in A: crucian carp (Carassius carassius, 20.3±0.6 g) and B: common carp (Cyprinus
carpio, 21.4±0.8 g)prior to andduring 2.5 hof anoxia. Thewhite bar indicates thenormoxia
(>95%O2sat) period, thehatchedbar indicates theperiodwithdecreasingO2sat, and the black
bar indicates the anoxia period (≤1% O2sat), beginning at 0 h. Each datum represents amea-
surement on onefish in the anoxia period, except at t=−1,which is themean±SEMof fish
sampled in normoxia (n=5). Linear regressions are represented by the following equations:
C. carassius plasma y=1.4499x+8.3973, andmuscle y=0.0511x+2.4467; C. carpio plasma
y=3.9176x+11.0967, and muscle y=1.2026x+5.9680.
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472 repay an EPHOC corresponding to the required regeneration of ATP, PCr
473 and internal O2 stores (Scarabello et al., 1991).
474 Unique to ethanol producing species is the extensive loss of carbonic
475 molecules due to anaerobic metabolism. C. auratus excrete 80% of the
476 ethanol produced (van den Thillart and Verbeek, 1991) during anoxia,
477 and continues to excrete significant amounts of ethanol for several
478 hours after return to normoxic conditions (Mandic et al., 2008), indicat-
479 ing that lactate is preferentially converted to ethanol, even under
480 normoxic conditions. If similar processes occur inC. carassius, accumulat-
481 ed lactatewould have aminor influence on the EPHOC and it follows that
482 the observed EPHOC from the duration of anoxia examined here (2.5 h)
483 would mainly consist of regeneration of ATP, PCr and internal O2 stores
484 in a similar way as C. carpio, with limited remaining substrate for either
485 Cori cycle or in situ glyconeogenesis. This may, at least in part, explain
486 the observed similarity of the EPHOC despite significantly different lac-
487 tate loads and diverse physiology between C. carpio and C. carassius. Fur-
488 ther investigation of pH, lactate, ethanol, PCr and ATP dynamics during
489 anoxia and recovery is needed, in combinationwithMO2measurements,
490 to shed light on the cause of this unexpected observation of small and
491 uniform EPHOC:O2 deficit in C. carassius and C. carpio.

492 4.2. Lactate

493 4.2.1. Diverse lactate accumulation
494 As predicted, there was a difference in the pattern of lactate accumu-
495 lation betweenC. carpio andC. carassius. Bothplasmaandmuscle [lactate]
496 rose significantly in C. carpio, but in C. carassius only plasma [lactate] in-
497 creased (Table 2). Our measurements in muscle of C. carassius (Table 2)
498 indicate no accumulation over normoxic values, which can be attributed
499 to the short duration of anoxic exposure. In this species [lactate] themus-
500 cle increases approximately 4 fold following 6 h anoxia, yet no accumula-
501 tion is seen following 3 h progressive hypoxia (Johnston and Bernard,
502 1983). Themagnitude of lactate accumulation in the plasma also differed
503 between species, with C. carpio accumulating almost twice as much lac-
504 tate in plasma (Table 2), indicating a larger glycolytic flux in C. carpio.

505 4.2.2. High plasma lactate concentrations
506 C. carpio exerting moderate levels of exercise maintain levels of
507 plasma [lactate] of approximately 1.5 mmol L−1 (van Ginneken et al.,
508 2004a), which is similar to that measured in the present study
509 (Table 2). However, both C. carpio and C. carassius completely at rest
510 in normoxia have only 0.2–0.5 mmol L−1 lactate in the plasma
511 (Holopainen et al., 1986; Vianen et al., 2001) at 20 °C and 18 °C, respec-
512 tively, indicating that the fish in this study (at 15 °C) were most likely
513 exhibiting some spontaneous activity prior to sacrifice for lactate quanti-
514 fication, despite efforts to limit this activity. Following anoxic exposure,
515 the accumulated plasma [lactate] in C. carpio (20.9 mmol L−1) is also
516 higher than reported in other studies of carp exposed to hypoxia.
517 Vianen et al. (2001) measured 6–13 mmol L−1 in plasma of cannulated
518 C. carpio after 6 h progressive severe hypoxia. In C. carassius, plasma [lac-
519 tate] increased approximately 3-fold to 12 mmol L−1, demonstrating a
520 similar qualitative response to anoxia as in previous studies where plas-
521 ma [lactate] doubled following anoxic exposure (Holopainen et al., 1986).
522 There are two probable explanations for the high plasma [lactate]
523 after exposure to anoxia. Firstly, the quick entry into anoxia (~1 h) di-
524 rectly from normoxia, compared to a gradual transition that allows
525 for metabolic depression before entry into hypoxia. Change in O2sat

526 over only 1 h might be too fast to ensure sufficient time to initiate
527 metabolic depression (van Ginneken and van den Thillart, 2009) or
528 adequate ventilatory and cardiac responses (van Ginneken et al.,
529 2004b; Wilkie et al., 2008), creating a higher Scrit, and forcing initia-
530 tion of anaerobic metabolism earlier than if extraction capacity was
531 able to be adjusted during the O2sat decrease. Second, the metabolic
532 stress during anoxia caused by relying exclusively on anaerobic me-
533 tabolism may produce additional lactate accumulation, compared to
534 the scenario in hypoxia where some aerobic metabolism can be

535maintained. In an Amazonian cichlid, Astronotus ocellatus, the lactate
536accumulation was 5 fold higher at 6% O2sat than at 10% O2sat

537(Muusze et al., 1998) and in Solea solea a 4–5 fold higher accumula-
538tion at 6% O2sat than at 12% O2sat was observed (Dalla Via et al.,
5391994). This illustrates how the shift to complete reliance on anaerobic
540metabolism happens relatively swiftly when anoxia is approached,
541and why data obtained in different levels of hypoxia remain difficult
542to compare.
543Both species considered in this study demonstrated higher [lac-
544tate] in plasma compared to muscle. This may be a distinguishing fac-
545tor for lactate accumulation due to hypoxia. For example the response
546of S. solea to severe hypoxia is qualitatively similar to our observa-
547tions in C. carpio (Dalla Via et al., 1994), however, during exercise in
548S. solea the pattern is quite different, with the majority of lactate
549being produced and subsequently retained in the working muscles,
550resulting in lactate concentrations in muscle that are several folds
551higher in muscle than in plasma (Dalla Via et al., 1997). This is an ad-
552vantage in normoxia due to the higher buffer capacity of the muscle
553tissue and because any acidification of the blood will lead to lowering
554of the hemoglobin binding affinity reducing O2 extraction capacity,
555which is likely to prolong the duration of recovery. Indeed, accumula-
556tion of lactate in both the plasma and muscle tissue of C. carpio, but
557not C. carassius, coincides with significantly longer metabolic recov-
558ery (Table 1).

5594.2.3. Impact of ethanol production on lactate accumulation
560The ethanol production in C. carassius is well described (Johnston
561and Bernard, 1983) and is evident in the present study by the complete
562absence of accumulation of lactate in muscle tissue of C. carassius. Un-
563like in C. carpio, ATP levels in C. carassius are not primarily maintained
564by PCr stores. Mandic et al. (2008) measured a significant excretion of
565ethanol by C. auratus to the surrounding water within 2 h of initiation
566of anoxia but found only a 50% reduction in [PCr] after 10 h of anoxia
567at 15 °C. These results, considering the time needed for lactate produc-
568tion, conversion to ethanol and diffusion into the water, and the ab-
569sence of any initial rise in lactate concentration, suggest an immediate
570activation of ethanol production.
571When C. carassius is exposed to anoxia, lactate is shuttled to themus-
572cles for conversion to ethanol. The continuous rise in plasma [lactate] but
573constant low muscle concentration indicates either that 1) the lactate
574shuttling fromblood tomuscle is quite slow, or 2) that the lactate shuttle
575is tightly regulated in away that nomore than the lactate that can be in-
576stantly converted to ethanol is transported into the tissue. The first op-
577tion seems most plausible since Mandic et al. (2008) measured 7 μmol
578lactate g−1 in white muscle of C. auratus after 10 h anoxia, indicating
579higher transport of lactate into the tissue than can be quickly converted.
580The presence of lactate accumulation in the study by Mandic et al.
581(2008) but not in the present study is potentially a species-specific dif-
582ference, but a slow shuttling mechanism combined with the relatively
583short exposure periodmayhave prevented detection of any lactate accu-
584mulation in the muscle tissue in the present study.

5855. Conclusions

586Despite the significant difference in lactate accumulation, no differ-
587ence in EPHOC:O2 deficit ratio could be detected between C. carassius
588and C. carpio. As discussed above, the measured EPHOC for C. carassius
589is in agreement with previous studies by being small compared to less
590hypoxia tolerant and non-ethanol-producing species, but how C. carpio
591achieves such a small EPHOC after near lethal anoxia exposure, without
592depressing its metabolism or converting lactate into ethanol, is not eas-
593ily explained. Despite its inability to produce ethanol in response to ox-
594ygen deprivation, themetabolic profile of C. carpio ismore similar to the
595ethanol-producing members of Cyprinidae than other taxa that cannot
596produce ethanol. C. carpio accumulates a greater EPHOC and requires
597longer recovery time than C. carassius, but this is likely related to the

6 J. Genz et al. / Comparative Biochemistry and Physiology, Part A xxx (2013) xxx–xxx

Please cite this article as: Genz, J., et al., Excess post-hypoxic oxygen consumption is independent from lactate accumulation in two cyprinid fish-
es, Comp. Biochem. Physiol., A (2013), http://dx.doi.org/10.1016/j.cbpa.2013.02.002

http://dx.doi.org/10.1016/j.cbpa.2013.02.002


U
N
C
O

R
R
E
C
T
E
D
 P

R
O

O
F

598 severity of the anoxic exposure used in this study relative to the overall
599 anoxia survival capability of each species. No lactate accumulation in
600 white muscle of C. carassius and less severe accumulation in plasma,
601 in comparison to C. carpio, probably indicates rapid implementation of
602 the ethanol production pathway upon exposure to anoxia, but a slow
603 shuttling mechanism from plasma to muscle. The results of the present
604 study emphasize the importance of metabolic depression to C. carassius
605 and PCr buffering capacity to C. carpio, and thus factors other than abil-
606 ity to produce ethanol are suggested to contribute in large part to
607 EPHOC development in fishes.
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