
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 20, 2017

Assessment of Automated Analyses of Cell Migration on Flat and Nanostructured
Surfaces

Gradinaru, Cristian; Lopacinska, Joanna M.; Huth, Johannes; Kestler, Hans A. ; Flyvbjerg, Henrik;
Mølhave, Kristian
Published in:
Computational and Structural Biotechnology Journal

Publication date:
2012

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Gradinaru, C., Lopacinska, J. M., Huth, J., Kestler, H. A., Flyvbjerg, H., & Mølhave, K. (2012). Assessment of
Automated Analyses of Cell Migration on Flat and Nanostructured Surfaces. Computational and Structural
Biotechnology Journal, 1(2).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13802285?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/assessment-of-automated-analyses-of-cell-migration-on-flat-and-nanostructured-surfaces(b1b6ef77-944d-4ab5-adb0-b03255e4a62a).html


 

  

 

 

 

 

 

 

 

 
 
 
 
Introduction 
 

Cell migration plays an essential role in many biological processes: 
e.g. wound healing, embryogenesis, inflammation, and metastasis 
where uncontrolled cell migration can lead to tumor spreading and 
hence can cause cancer progression.  Studying these processes 
frequently require cell tracking, and most motility studies of 
monolayer cultures involve fluorescent labeling of cells, which allows 
for fluorescence microscopy studies [1] [2]. This technique either 
requires extensive mutagenesis to have fluorescent protein expressed 
by the cell type under study, or is limited by the fact that membrane-
attached or permeable fluorescent drugs often alter cell behavior [3]. 
In sparse cultures, cells can have sufficiently good contrast against the 
background that their boundaries can be identified with bright field 
microscopy without labeling [4a][4b]. This can be done manually 
with point-and-click methods at great expense of time and labor 
[5][6][7][8][9][10]. When cells in only a few images have to be 
tracked, this is not a challenge. However, when long time-lapse 
sequences of motile cells need to be analyzed, this approach is 
impractical, raising the need for a reliable automated cell tracking 
program and assessment of the robustness of the method of analysis. 

Representative programs for sparse cell culture analysis are listed 
in Table 1. The majority of such programs (not included in Table 1) 
are designed for tracking fluorescently labeled cells [1][2] 
[15][16][17][18].  The   programs   designed   for   use   with   light  

 
 
 
 
 
 

 
 

 
  

 
 
 

microscopy images track either the cell nucleus [19][20] or the entire 
cell [21][11][22][12].  The cell position can be defined as: (i) the 
center of the nucleus [6]; (ii) the centroid of the cell’s perimeter as 
seen in the light microscope [23]; (iii) the centroid of the cell’s 
footprint as seen in the light microscope [4]; and (iv) the centroid of 
the actin cytoskeleton of fluorescently labeled cells [24]. Most of 
these programs are not open source, and may be difficult to adapt to 
the specific purposes of a given experiment. In other cases the 
complexity of the mathematical procedures used for boundary 
identification may be a hurdle to adapting the code to a specific 
purpose [2][20][17]).  

There are two main approaches to cell tracking in the current 
state-of-the-art [25][21][16][20][26][18]. One approach is frame-
by-frame image segmentation and tracking [15][27]. In the first step, 
the object candidates are detected in a given frame on the basis of 
their specific properties (border, texture, color). This approach is 
efficient when object borders are sharp, and it is commonly used with 
fluorescently labeled cells and other high-contrast images. The other 
approach consists in optimizing a parameterized model shape to fit 
the model to the cells in a frame. Instead of tracking all objects in the 
frame, this method focuses on those candidates which correspond to 
the chosen model shape [28][29]. As with the first approach, detected 
objects are paired between consecutive frames in order to produce 
tracks. 

In order to address the issue of background removal, and to 
compare the performance of different programs on real data against a 
baseline which we fully understand and control, we here introduce a 
new cell tracking program, which we call PACT (Program for 
Automated Cell Tracking).  PACT is suitable for tracking motile cells 
on flat and nanostructured surfaces, and is simple enough for users to 
freely modify it according to their experimental needs.  Since 
nanostructured surfaces are currently of great interest as cell culture 
substrates and can appear as a highly non-uniform background in the 
image, we emphasize the use of a reliable spatial image filter here – see 
details in the materials and methods section, and SuppInfo.zip file for 
the Matlab code. 
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Abstract: Motility studies of cells often rely on computer software that analyzes time-lapse recorded movies and establishes cell 
trajectories fully automatically.  This raises the question of reproducibility of results, since different programs could yield 
significantly different results of such automated analysis. The fact that the segmentation routines of such programs are often 
challenged by nanostructured surfaces makes the question more pertinent. Here we illustrate how it is possible to track cells on 
bright field microscopy images with image analysis routines implemented in an open-source cell tracking program, PACT (Program 
for Automated Cell Tracking). We compare the automated motility analysis of three cell tracking programs, PACT, Autozell, and 
TLA, using the same movies as input for all three programs. We find that different programs track overlapping, but different 
subsets of cells due to different segmentation methods. Unfortunately, population averages based on such different cell 
populations, differ significantly in some cases. Thus, results obtained with one software package are not necessarily reproducible by 
other software.  
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Table 1. Overview of representative programs for cell tracking by time-lapse light microscopy. 
 

Program Publisher/Seller Commercial Open source Coordinate output format 

Volocity Improvision Yes No Text 

Imaris Bitplane Yes No Excel 

Autozell [11] Universität Bremen Yes No Text 

TLA  [12] University of Ulm  No Yes Excel/Text 

CellTrack [13] Ohio State University No Yes Text 

ImageJ plugins [14] ETH & UCSF No Yes Text 

 
Test results are presented for the performance of PACT, which is 

also compared to the performances of other programs (TLA [12] and 
Autozell [11]): efficiency with regard to object detection, accuracy of 
centroid positioning, and segmentation performance in the context of 
time-lapse analysis. A statistical analysis is then performed on the 
ensemble of individual tracks of cells to determine the overall cell 
population motility statistics in a movie of NIH 3T3 fibroblasts on 
glass. From the tracks, the auto-covariance function of the velocity is 
estimated (Equation S1 in supp. info.).  It is well described by a 
simple exponential function with characteristic time, P, the persistence 
time of the motility (data shown in supp. info sect. 4). We also 
determine the amplitude of the velocity auto-covariance function, φ0, 
which is approximately equal to the mean squared velocity of the cells. 
Results of this analysis obtained with PACT, TLA and Autozell are 
compared. 

Despite the need for cell tracking programs and algorithms, we 
found few studies evaluating their performance [11][12][26]. To our 
knowledge, this paper is the first comparative analysis of tracking 
programs with the scope of providing reliable data acquisition 
routines for developing motility models. We find considerable 
sensitivity of results to the specific algorithm/software employed.  
Thus, the tracking algorithm and its effect on results should be well 
documented in future studies, for instance as described in this study.   
 
Materials and Methods 
 
Cell Culture and Substrate Nanofabrication 

We have imaged HeLa and NIH 3T3 cells on a microscope glass 
slide (Thermo Scientific, Menzel-Gläser), and NIH 3T3 cells on flat 
silicon and silicon black [4b]. Silicon black samples were fabricated 
by reactive ion etching of silicon substrates [30][31].  

The cell lines were obtained from Risø National Laboratory, 
Denmark.  The cells were grown in Dulbecco's Modified Eagle 
Medium: Nutrient Mixture F-12 (DMEM/F12) + GlutaMAX 
(Invitrogen) supplemented with either 10% fetal bovine serum – FBS 
(Sigma) in the case of HeLa cells, or 10% of newborn calf serum for 
NIH3T3 cells, 2 mM L-glutamine (Sigma), 100 U/mL

 

penicillin 
(Sigma), 100 μg/mL

 

streptomycin (Sigma) and grown until 
confluency. Cells were harvested by a standard trypsinization method, 
then seeded at a concentration of 5 x 104 cells per each well of 24-
well plate and cultured on the tested materials (1cmx1cm) for 1 or 3 
days. The time-lapse microscopy experiments were performed in a 
home-made cell culture chamber equipped with a bubble trap and 
adjustable medium flow, mounted on a temperature-controlled 
microscope stage.  

For the fluorescence microscopy experiments performed to 
compare brightfield images with  fluorescence microscopy images of 
the actin cytoskeleton of the cells, the cells were treated with 2% 
glutaraldehyde in 0.05M cacodylate buffer for 15-20 minutes at the 

room temperature, washed in 1xPBS containing 0.05% Tween-20, 
and permeabilized with 0.1% Triton X-100 in 1xPBS for 1-5 
minutes at room temperature. After being washed three times with 
1xPBS containing 0.05% Tween-20, the cells were incubated in 
TRITC-conjugated phalloidin (Sigma-Aldrich) for 30 minutes, and 
rinsed three times with 1xPBS containing 0.05% Tween-20. 

 
Data and Image Sequence Acquisition 

The videos contain 8-bit grayscale images recorded with a 
temporal resolution of 2-10 minutes. Each image pixel has a size of 
0.977 x 0.977 μm and the resolution of the images was 1024 x 768. 
The recording device was a Zeiss Axiotech microscope equipped with 
a 10x Zeiss objective with a 19 mm working distance and a field of 
view of 1000 x 750 μm2 and a Labview-controlled microscope stage. 
The acquisition technique was bright field microscopy, and reflected 
light microscopy was used as many of the substrates were not 
transparent to light. The fluorescence and bright field microscopy 
experiments with fixed cells were performed on an Olympus BX51 
upright microscope. Analysis of bright field images was performed 
using the TLA setup file provided by its authors.  It may be found in 
the SuppData.zip file.  By default, TLA tracks cells imaged in bright 
field microscopy by first applying a low-pass Gaussian filter of size 
25x25 pixels and standard deviation 11 pixels. A Wiener low-pass 
filter in a 15x15 pixel mask around each pixel is applied to remove 
the pixel noise in the image, and this is followed by the actual 
segmentation process. 

 
PACT Program Implementation and Functionality 

PACT was implemented using MATLAB (ver. 2008a) and is a 
text-based, interactive, open source application for the analysis of cell 
motility data with  methods described by Selmeczi et al. [6]. This 
analysis requires accurate measurements of cell centroid coordinates 
throughout the duration of their observation.  

Processing a time lapse movie in PACT consists of the following 
workflow: Tracking the individual moving objects through a sequence 
of images, where the objects have been localized by an image 
segmentation routine on images after a suitable image filtering process 
for optimal segmentation results. PACT employs a combination of 
two of the simplest and fastest segmentation methods: thresholding 
and edge detection. The result of a PACT processing is a time-
ordered list of centroid coordinates for each object that is tracked. 
Root mean square deviation filtering (RMSD-filtering, see point (v) 
below) is an optional last step of processing and removes tracks of 
objects whose displacement is below a user-defined threshold. This 
option automatically removes tracks of non-motile cells, such as cells 
immobilized on the surface and lysed cells.  

Post-processing is the manual screening of the processed data 
using criteria of biological relevance, which results in final 
identification of biologically relevant cells amongst the objects 
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tracked.  Human judgment is needed to decide which tracks are of 
sufficient quality for inclusion in the data analysis.  This involves 
discarding segments of tracks where cells either: (a) undergo division; 
(b) come into contact with one another; (c) carry foreign objects; (d) 
and optionally cells that do not display normal motility patterns (i.e. 
those that do not extend lamellipodia or filopodia).  

The source code of PACT is provided in Supporting Information 
2. The program takes the recorded movie frames as input and outputs 
the cell centroid coordinates. The frames must be located in the same 
folder as the source code of the program and a new folder 
("processed") is created where overlay images of original frames and 
the contours and cell centroids are stored. The section "working 
parameters" in the main program may be used to change the name of 
the input files and to invert the images if needed. The frame may be 
color or gray-scale; PACT will remove the color component if 
present. 8-bit depth is sufficient if the contrast is good, else 16-, 24-, 
etc. may be needed. 

For image filtering, a band-pass filter that is part of ‘IDL 
(Interactive Data Language) Particle Tracking’ package [32] is first 
applied to remove pixel noise and non-uniform background 
illumination effects (Figure S1). This is done by convolving (○ 
operator) the image array I in two steps with a Gaussian function G 
and a boxcar function B and subtracting the result: 
 

( ) ( ) TTTTTTTT BBIGGIIFiltered  −=  
 

In Fourier space this amounts to applying a radially symmetric 
mask function which features a Gaussian decline at high frequencies 
and an abrupt fall at low frequencies.  The limits of this band-pass 
filter are also set up in the working parameters section: the high-
frequency limit by the standard deviation of G, and the low-frequency 
limit by the width of B.  We found that a high-frequency limit of 2-3 
pixels works well for most flat surfaces, and that as much as eight 
pixels may be required for the highly noisy backgrounds that we have 
encountered when imaging cells on silicon black. We typically set the 
low frequency limit to 30-50 pixels as this corresponds approximately 
to the size of an average cell in our microscopy setup and efficiently 
filters inhomogeneous background illumination. 

For the segmentation, PACT has a text-based, interactive user 
interface, which iteratively requests two parameters until the user is 
satisfied with the selection. The first parameter is the peak exclusion 
threshold which defines the minimal brightness of a spot in the band-
pass filtered image required for inclusion on the object list. The peak 
(brightest pixel) of the object is marked as a red cross on the image. 
The cell contour shown as a blue line in the image is defined as the 
isohypse located at a user-defined percentage (the contour cutoff) of 
the peak level (See supp. info. Fig S1). The segmentation is done 
manually for the first and last frames in the movie, and all intervening 
frames are processed automatically with an average of the contour 
cutoffs and linear interpolation of the peak exclusion thresholds set 
for these two frames. The linear interpolation is especially useful for 
long movies where the background and/or object brightness may 
change slowly in time due to factors external to the experiment (see 
section (ii) below). 

Further selection includes restrictions on minimal and maximal 
cell area (to remove unwanted objects such as small pieces of dust or 
large air bubbles and cell conglomerates from the analysis) and 
minimal distance between cells to ensure that only independent cells 
are detected.  These parameters may also be set in the working 
parameters section. 

The tracking process entails sorting this independent list of 
coordinates (determined at discrete times as the centroid of the cell 

footprint) into particle tracks using a routine part of ‘IDL Particle 
Tracking’ package [32].  If desired, it is possible to add a last 
exclusion criterion for removing the non-moving cells on the basis of 
an RMSD filter (see RMSD-filtering section (v) below.  

 
Assessment of Reliability  

To assess the reliability of automated tracking and the relative 
performance of PACT to some other programs available, we have first 
evaluated the cell segmentation performance at the single-frame level. 
To that end we have done the following: 
(i) Tested the segmentation efficiency of our code, namely how 

well it locates individual cells in comparison to the other 
programs available. 

(ii) Assessed how changes in focus can affect the accuracy of cell 
centroid positioning.  

(iii) Compared PACT’s accuracy of centroid positioning in bright-
field imaging and fluorescence imaging. 

(iv) Evaluated the background removal efficiency on nanostructured 
surfaces by comparing segmentation and centroid position 
results from bright-field and fluorescence microscopy of the 
same sample. 

 
We have also tested the performance of PACT and other 

programs at tracking motile cells by performing a statistical analysis of 
tracks: 
(v) We study the effect of the RMSD-filtering procedure used to 

remove non-motile cells and its effect on the cell motility 
parameters.  

(vi) We compare pair-wise the statistics obtained by tracking with 
different programs. 

(vii) We compare the positional noise as function of software. 
(viii) We assess the reproducibility of our method by comparing cell 

track statistics determined from different movies of the same 
cell type/substrate-pair with PACT. 

(ix) We compare the velocity autocovariance functions calculated 
from tracks obtained with different programs 

 
Below, these points are elaborated, and the ensuing discussion 

section deals with how these observations relate to each other and lead 
to the conclusions.  
 
Results 
 
(i) Segmentation efficiency 

We tested segmentation on a movie frame of HeLa cells on a 
glass substrate, NIH 3T3 on a flat silicon substrate, and NIH 3T3 
on a silicon black substrate with PACT, TimeLapseAnalyzer 
(TLA)[12], Autozell[11], and CellTrack[13]. A comparison of the 
number of objects identified by each program vs. the actual number, 
as determined by manual counting i.e. segmentation efficiency, is 
shown in Table 2. 

PACT has a cell segmentation efficiency comparable to that of 
TLA, and both are better than  Autozell and CellTrack for 
HeLa/glass, while CellTrack performs better for 3T3/Si. The cell 
selection efficiency is very dependent on the software used and on the 
settings used in the segmentation. With training in how to use 
software, users can achieve 80-90% count rates compared to manual 
counting. 

The tracking efficiency was assessed by counting the objects 
picked in the representative images used in Table 2. A section of such 
a frame processed in the different programs is shown in Figure 1 for 
visual comparison. 
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Table 2. Number of objects segmented by the various cell tracking programs in bright field images (see the SuppInfo.zip file “HeLa-
glass.tif”   for HeLa/glass, “Si BF.jpg” for 3T3/Si, “Si black BF.jpg” for 3T3/Si black), before manual post-processing 
 

  PACT Autozell TLA CellTrack Manual count 

HeLa/glass 199 124 197 157 206 

NIH 3T3/flat Si 1071 104 1322 1601 158 

NIH 3T3/Si black 40 0 753 0 48 
 
1The cell count for NIH 3T3/flat Si by PACT is underestimated due to this data being cumulated from five different images, as the band -pass filter of PACT removes 
the edge of the image prior to processing. This effect makes the cells on the edge inaccessible to segmentation. This is less obvious in the case of the HeLa/glass or 
NIH 3T3/Si black samples where the count was performed on a single image. 
2TLA occasionally assigns multiple centroids to one cell, and we have counted such instances as just one object in Table 2. 
3Wiener-filter noise-parameter lowered to 0.03 from the default of 0.05 for non-uniform background removal. 

 
(ii) Focus Influence on Centroid Positioning 

PACT was able to identify cell boundaries even when the cells 
were imaged slightly out of focus.  Imaging out of focus in bright 
field microscopy has the advantage of enhancing the contrast between 
cells and background.  This is due to light interference effects and 
blurring of details of cell organelles, which are visible in focus and can 
interfere with cell identification. We did not employ a blurring 
method (such as a Gaussian blur) to remove the fine-structure of cells, 
as that procedure would also negatively affect the sharpness of 
contrast between cell and background. 
 

 
 
 
 
 
 
 
 
 
 
 

Long-term time-lapse recordings may lead to drift and variable 
focus. Another source of noise can be the light conditions and also 
variations in threshold and filter settings for the image processing 
which in PACT also can influence the cell centroid measurement. The 
following experiment estimates the combined effect of these 
influences by varying focus, which changes the cell contour and light 
levels. 
 

 
 
 
 
 
 
 
 

 
We imaged NIH 3T3 fibroblasts fixed on a glass slide (see 

GradinaruSuppInfo.zip file) in overfocus at 2, 4, 6, 8, 10, 15, and 20 
μm, respectively, as well as in focus (z=0 μm), which we consider a 
fairly wide range of focus fluctuations for a time lapse experiment. 
After segmentation and post-processing, 92 cells were found in all 
frames. We calculated the individual cell centroids throughout the 
stack. From these positions we subtracted average centroid value of 
each frame to remove stage drift, and then evaluated the average root- 
mean-square displacements of all 92 cells segmented, as a function of 
z (Figure 2). Typical samples of segmented cells are shown in Figure 
2 next to the corresponding points: z=0, 4, and 20 μm, respectively. 
The overall average root mean square displacement from the z-stack 
mean was 1.0 ± 0.1 µm. 

Figure 1. Section of a typical frame of HeLa/glass after segmentation  in 
Autozell,  CellTrack, TLA and PACT. Autozell shows red contours around 
the tracked objects, CellTrack shows blue contours around the tracked 
objects, TLA marks the centroid of the object with a yellow marker, and 
PACT shows blue contours around the tracked object and a red cross at 
the brightest spot in the image. The settings for each program were 
optimized so as to reach a balance between minimizing the number of 
cells missed by the tracking process and the number of false positives 
(segmented objects that were not cells). 
 

Figure 2. NIH3T3 fibroblasts fixed on glass. Plot of the root mean square 
displacement of the centroids from their mean in the stack of images of 
NIH 3T3 imaged increasingly out of focus shows the effect of defocusing 
on the centroid tracking accuracy. For illustration, a representative cell as 
viewed in the light microscope is shown at z=0 (in focus), z=4 μm and z=20 
μm. 
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(iii) Precison of Centroid Positioning 
In order to test the precision of the method, we compared the 

performance of our program with bright field images to images of 
dyed cells visualized by fluorescence microscopy. We have recorded 
images of fluorescently dyed NIH 3T3 fibroblasts fixed on glass and 
flat Si in both the bright field and fluorescence mode, Fig. 4. 22 cells 
on flat Si were identified in both bright-field and fluorescence images 
after post-processing (see SuppInfo.zip file). A pair-wise comparison 
of centroids between the two imaging modes was done by 
translational alignment (applying a constant offset to all centroids 
from one imaging mode such that the mean of all centroids common 
to both imagining modes is exactly the same). This procedure was 
necessary to account for the slight light path offset due to inserting 
the fluorescence filter, and was followed by calculating the pair-wise 
RMSD of all centroids common to both imaging modes. This yielded 
an RMSD of 2.8 µm for the flat Si substrate (Table 3). We tested 
whether the orientations of the segments that connect the centroid 
pairs are random by plotting a histogram of the distribution of their 
polar angles (data not shown) which was indeed uniform within error 
bars. We thus conclude that the source of this discrepancy is random 
(white) noise.  

 
Table 3. Fixed cell results. The columns PACT and Manual 
Count show the fraction of objects tracked after/before post-
processing in bright-field images. Co-identified shows pairs of cells 
that were co-identified in fluorescence and bright field post-
processed data and their corresponding RMSD 
 

  Brightfield cells tracked                 
After/Before post processing 

Co-identified in 
fluorescence 

  PACT Manual Pairs RMSD 

NIH 3T3/flat 
Si 26 / 32 = 81% 35 / 42 =83% 22 2.8 μm 

NIH 3T3/Si 
black 21 / 40 = 52% 40 / 48 =83% 14 4.3 μm 

 
(iv) Nanostructure Background Removal 

To process images with grainy backgrounds, such as images 
recorded on a substrate of silicon black, the band-pass filter used by 
PACT (see materials and methods) to process images is of critical 
importance. By setting the high-frequency limit to 5-10 pixels, i.e., 
higher than the recommended value of 1-3 pixels that is appropriate 
for removal of pixel noise, grainy images can be analyzed. On this 
substrate, cells appear as shadows on a very noisy background and we 
were unable to detect cells with other cell tracking programs (Table 
1), with the exception of TLA, which can employ a Wiener filter as a 
pre-processing step to cell detection.  

To assess the deviation in cell count and position between 
fluorescence and brightfield imaging, we compared the fluorescence 
image with the bright-field images of individual NIH 3T3 fibroblasts 
fixed on silicon black; see Figure 3 and Table 3. We found 14 cells 
co-localized after post-processing in both the bright-field and 
fluorescence out of 21 cells in bright-field and 25 cells in fluorescence 
image. The mismatch of centroid pairs was randomly oriented with 
uniform distribution of directions within errors due to finite statistics 
(data not shown). The mismatch of 4.3 µm RMSD for silicon black 
was larger than what was found on flat substrates 2.8 µm RMSD, as 
expected on these highly grainy images. 

 
 
 
 
 
 
 

 
(v) Effect of RMSD filtering 

In order to remove all fixed objects automatically, an additional, 
RMSD-based filter is applied to the tracks prior to their analysis. For 
each track, the program calculates the root-mean-squared deviation of 
the tracked point from its mean (i.e., time averaged) value: 
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                                       Equation 1 
 

This is a small quantity if a cell does not move. In our 
experience, an RMSD threshold of approximately half a typical cell 
diameter (15 pixels in our images) is optimal for the exclusion of 
non-moving cells. This ensures that only cells that move at least one 
cell diameter over the course of a time-lapse experiment are used for 
further analyses. Most of the cells discarded this way (~30% of all 
tracked immobilized objects) appear to be mechanically immobilized, 
attached permanently to the surface, or dead/lysed, and they should 
not be included in the motility analysis.  The few cells that are not 
lysed or immobile, but simply happen to move very little for the 
duration of the observation, are also removed by this filter.  This 
causes negligible error because their contribution to the velocity 
autocovariance function would be nearly zero if they were allowed to 
contribute to its statistics, while inclusion of a large number of non-
moving cells and other objects would skew the statistics. 
Consequently, the RMSD-filter’s elimination of these cells has 
minimal effect on our estimates for persistence times. Specifically, in 
our movies the RMSD filter only discarded two to three biologically 
relevant cells out of a full dataset of 70. We find that the convenience 
of having all fixed objects removed automatically greatly outweighs 
the negligible effect of their exclusion on statistics. In general, 
however, since the parameter φ0 is nearly equal to the mean squared 
velocity of the cells,one should clearly state the use of the RMSD 
filter and estimate its effect, since its elimination of the slow-moving 
cells has the potential of artificially inflating φ0. 
 
(vi) Pair-wise Comparison of Tracks 

Following the post-processing step, for the purpose of 
assessing the relative performance of the various programs with 
regards to centroid positioning error, we have pair-wise compared the 
tracks of cells tracked by each of the three programs (forming 3 
datasets), TLA, Autozell, and PACT, so as to avoid cell selection bias 
due to the differing tracking methods implemented. The difference 
between the tracks of the same cell obtained with two different 
tracking programs is due to a conglomerate of errors arising from of 

Figure 3. Fixed NIH 3T3 cells on silicon black. Left: Bright field image of 
NIH3T3/Si black after tracking in PACT and SEM image of the Si black 
substrate used viewed at a 30º angle (inset). Right: Fluorescence image of 
the same sample imaged in the exact same position, showing the actin 
cytoskeleton, also processed in PACT. 
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differences in the spatial filtering, thresholding and tracking algorithm 
employed by each program. To remove systematic error, the tracks 
common to all three datasets (the subsets) were first translationally 
aligned to minimize the pair-wise RMSD (Eq. 3) of the three subsets. 
This minimal pair-wise RMDS was used as a measure of the 
mismatch between the coordinates output by each program. 
 

( )
N

xx
RMSD N..1i

2k_PROGRAM
i

j_PROGRAM
i

k,j

∑
=

−
=

            Equation 2 
 

The magnitude of pair-wise mismatches between the three 
programs may be found in Table 4 (off-diagonal elements). We 
attribute the higher RMSD between the Autozell subset and the 
subsets generated by the other two programs to the fact that Autozell 
rounds the coordinates of centroids to the nearest integer, which 
necessarily introduces an additional random error. Also note that the 
default settings of TLA, which have been used in this and the 
following section unless explicitly stated otherwise, involve a special 
smoothing procedure of the tracks which slightly alters centroid 
coordinates (see section vii below). 
 
(vii) Centroid Positional Error 

We have also evaluated the mean square displacements of cell 
centroids as a function of time for each of the three subsets to assess 
the centroid positional error for each of the three cell tracking 
programs. By fitting to the extended Fürth’s formula (Supporting 
information Sect. 7), we determined the centroid positional 
measurement error, σpos. These values are listed in Table 4.  

 
Table 4. Positional error effects. The diagonal elements show the 
centroid positional measurement error as determined from a fit to 
Fürth’s formula. The off-diagonal elements show the pair-wise 
RMSD between the programs. All values in μm. 
 

Positional error/µm PACT TLA Autozell 

PACT 1.40 ± 0.05 1.9 2.6 

TLA - 0.36 ± 0.03 2.7 

Autozell - - 1.36 ± 0.04 

 
The results in Table 4 are interpretable in light of Equation 3 

which relates each tracking algorithm’s intrinsic noise (denoted as the 
white noise term ξi with variance 2σpos,i2 ) with the measured centroid 
coordinate value ri. The i subscript refers to the algorithm/program 
used: 
 

𝑟𝑖 = 𝑟𝑖𝑡𝑟𝑢𝑒 + 𝜉i                                        Equation 3 
 

In the limit of large N, the measured value of the centroid is 
biased by the choice of algorithm due to positional noise (random 
error, variance 2σpos,i

2 ), as well as any systematic, algorithm-specific, 
centroid positioning error. Thus the pair-wise RMSD is: 
 

RMSDi,j
2  

= 〈�𝑟𝑖 − 𝑟𝑗�
2〉 

= 〈�𝑟𝑖𝑡𝑟𝑢𝑒 − 𝑟𝑗𝑡𝑟𝑢𝑒�
2〉 + 2𝜎𝑝𝑜𝑠,𝑖

2 + 2𝜎𝑝𝑜𝑠,𝑗
2 + (𝑐𝑟𝑜𝑠𝑠 𝑡𝑒𝑟𝑚𝑠) 

Equation 4 

Indeed, the difference (-0.6 to 3.3 μm2) between the mean 
squared pair-wise displacement (square of RMSD from Table 4) and 
the corresponding sum of the variances (2σpos,i

2 + 2σpos,j
2 ) is very 

similar to the variances themselves. Thus, the relative centroid 
tracking accuracy of the different programs does not differ 
significantly from the positional noise level itself.  

While Autozell and PACT appear to track cells with similar 
positional noise levels, the TLA dataset has a much lower positional 
noise. We attribute this effect to the Kalman filter employed for noise 
reduction and subsequent smoothing of cell tracks using a moving 
average filter as provided in the standard procedure for processing 
bright field images in TLA[33]. Indeed, reprocessing this movie in 
TLA with the moving average filter switched off and the Kalman 
filter adjusted so that no prediction is made, yields σpos = 0.61 ± 0.07 
μm, nearly twice that determined with this program’s standard 
procedure, but still lower than PACT and Autozell’s.  
 
(viii) Reproducibility of Statistical Data Analysis 

Before testing whether different cell tracking programs yield the 
same velocity autocovariance statistics for the tracks that they find for 
a given movie of motile cells, we assessed the reproducibility of the 
results obtained using PACT. Five movies were recorded on five 
different positions on the same sample and each movie and the 
combined dataset were statistically analyzed. PACT found 8 to 15 
tracks per movie, each movie (Supporting info. Sect 4) recording ~12 
hours of NIH 3T3 motility on glass, with ∆t=2 min between 
successive frames. Results are shown in Figure 4 below and in Table 
S1.  
 

 
 
 
 
 
 
 
 
 
 

 
The 5 pairs of (P, φ0) parameters were determined from a 

weighted least-squares fit to velocity autocovariance function data 
points. We note that the error bars of the autocovariance data points, 
shown in Supp. info. Figure S2, become increasingly underestimated 
as recording time goes by, due to data redundancy in the method used 
to calculate them (Supp. info. Eq. S1). This leads to artificially low 
weighing factors in the least-squares algorithm, which lowers the error 

Figure 4. Motility parameters for NIH 3T3 cells on glass analyzed with 
PACT. Each of the 5 movies is depicted as a point in the associated φ0-P 
space. The black error bars show the overdispersion-uncorrected 1σ (i.e. 
original fit results), while the corrected 1σ levels are shown as color-
matched ellipsoids around each point. Color code: blue - movie 1 (9 tracks 
after post-processing); purple - movie 2 (12 tracks); orange - movie 3 (15 
tracks); green - movie 4 (8 tracks); and red - movie 5 (14 tracks). The black 
point shows the weighted mean of parameters from the 5 movies and 
corresponding overdispersion-corrected 1σ error bars.  
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bars of the fit parameters P and especially φ0. Additionally, the 
autocovariance data points themselves are correlated (i.e. not 
statistically independent) as they are calculated from the same set of 
cell centroid coordinates. This artificially deflates the error bars of the 
fit parameters P and φ0 (fit results reported in Figure 4 and Supp. 
info. Table S1). To account for these data overdispersion effects 
while assessing the reproducibility of our results, we quantitated the 
degree of this artifact in our data (see Supp. info. Sect. 6). This 
procedure allows the estimation of the motility parameters from all 5 
movies as a weighted average of the parameters measured from 

individual movies: P = 35 ± 4 min and 0ϕ = 0.18 ± 0.02 

μm2/min2. This matches nearly exactly the parameters determined by 
combining the 5 sets of centroid coordinates and analyzing those 
coordinates as one set (“combined dataset,” Table S1, Supporting 
information): P = 36 ± 4 min and φ0 = 0.18 ± 0.02 μm2/min2. We 
conclude that the observed discrepancy between the motility 
parameters determined from the five movies is statistically 
insignificant: 4/5 parameter pairs match within 1σ (68.3% expected 
to match) after correction. This shows that this method of analysis is 
reproducible. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
(ix) Comparing Velocity Autocovariance Functions 

We have compared the accuracy of various cell tracking programs 
by testing them on NIH 3T3 cells recorded on a glass substrate 
(movie in Gradinaru.zip). The cells in this movie were tracked by 
Autozell, MATLAB, and TLA, and following post-processing, the 
tracks found by each of the three programs (the original datasets) 
were analyzed. We have named the resulting tracks the original 
datasets: fifteen tracks identified by PACT following post-processing, 
nine tracks identified by Autozell, and fourteen tracks identified by 
TLA using the default settings. We have also included the motility 
parameters obtained from TLA with the moving average smoothing 
option turned off and adjusted to prevent any Kalman filter 
prediction (“TLA/raw”) such that the position measurement is 

accepted as the true object position (fifteen tracks). The results are 
shown in Figure 5 and in  Supp. info. Sec. 5. 
 

 
 
 
 
 
 
 
 
 
 
 

The motility parameters thus determined with Autozell and/or 
TLA differ substantially (φ0 nearly halved, P nearly doubled) from 
the results obtained using PACT. The Autozell and PACT results are 
statistically equivalent as there is a clear overlap between the blue 
(Autozell, uncorrected 1σ) and light red ellipsoid (PACT, corrected 
2σ), and a possible overlap within 1σ between the two programs if 
the Autozell results were data overdispersion-corrected. However, 
both TLA ellipsoids (1σ)  remain well outside the range of overlap 
with the other two programs. We speculated that the Kalman filter or 
the moving average filter was the culprit; however, the results do not 
change much upon removal of these effects. This is perhaps the best 
illustration of the increase in fit imprecision due to the correlation of 
the velocity autocovariance data points. Indeed, the velocity 
autocovariance functions determined using the TLA datasets show 
significant structure (Supp. info. Fig S3,), which would indeed lead to 
significant underestimation of the error bars, manifested as the 
substantially smaller green ellipsoids in Figure 5. We are uncertain of 
the cause of the high correlation of the velocity autocovariance values 
as determined with TLA. 

To account for the possible effects of not having used the tracks 
of the exact same cells in this analysis, we have also separately 
analyzed the common subset of tracks of the cells detected by all three 
programs (hereafter referred to as the subset). The results are shown 
in Figure 6 below and in Supp. info. Sec. 5. 

Only three of the tracks correspond to cells that were identified 
and tracked by all three programs. A comparison of cell motility 
parameters determined from raw data (i.e. without any 
filtering/smoothing procedure applied to the data) in Fig. 6 shows 
that there is no significant variation in the motility parameters, φ0 and 
P.  We conclude that the observed discrepancy between the motility 
parameters determined with the three programs is statistically 
insignificant: 2/3 persistence times match within 1σ and all (3/3) φ0 
parameters do as well (at most 68% expected to match), despite the 
shown error bars being underestimates of the real error bar levels.  

Figure 5. Comparison of results obtained, respectively, with PACT, 
Autozell, and TLA for two parameters of a typical analysis of cell motility.  
Each of the datasets is depicted as a point in the associated φ0-P space. 
The black error bars show the overdispersion-uncorrected 1σ (i.e. original 
fit results). Both the corrected 1σ (red ellipsoid) and 2σ levels (light red 
ellipsoid) are shown around the PACT point. In the absence of 
overdispersion information, the uncorrected 1σ levels are shown as color-
matched ellipsoids around the Autozell (blue) and TLA (green) points. The 
Kalman-filtered and moving-average smoothed P-φ0 point is shown as a 
green hollow circle, to distinguish it from the unfiltered, unsmoothed 
result, shown as a green square. 
 

Figure 6. Comparison of PACT, Autozell, and TLA for the purpose of 
assessing cell motility analysis on identical tracks. Each of the subsets is 
depicted as a point in the associated φ0-P space. The black error bars show 
the overdispersion-uncorrected 1σ (i.e. original fit results). In the absence 
of overdispersion information, the uncorrected 1σ levels are shown as 
color-matched ellipsoids around the PACT (red), Autozell (blue), and TLA 
(green) points. The Kalman-filtered and moving-average smoothed P-φ0 
point is shown as a green hollow circle, to distinguish it from the 
unfiltered, unsmoothed result, shown as a green square. 
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We note, however, that the Kalman filtered- and moving average 
smoothed-subset yields a very different P-φ0 set of results. This is at 
least in part due to the substantial underestimation of the respective 
error bars, owing to the highly structured velocity autocovariance 
functions (Supp. Info. Fig. S3).  Finally, to test the the possible effect 
of Autozell’s tracking method, which involved truncating the centroid 
coordinate to the nearest pixel, we have similarly rounded the 
coordinates generated by PACT to the nearest pixel to generate the 
PACT/cut common dataset (Supp. Info. Table S2).  We found that 
the motility parameters determined from this subset had not changed, 
and conclude that the systematic centroid truncation performed by 
Autozell is unlikely to affect the motility analysis results. 

These observations raise the point of the importance of the 
definition of the cell centroid and the effect that this definition has on 
motility data.  We elaborate on this below. 
 
Discussion and conclusion 

 
The segmentation efficiency tested in (i) was performed by four 

programs listed in Table 2.  These programs perform reasonably well 
on flat substrates with some detection efficiencies being above 90% of 
the manual count. These values were obtained by one user optimizing 
settings and may vary between uses and time lapse movies. Image 
filtering routines were shown to be essential for efficient detection of 
cells on structured backgrounds (iv), and these routines are not 
available with all programs (Table 1). Additionally, settings may need 
to be optimized over time in a movie (ii) due to variations in imaging 
conditions.  This may be aided by the linear interpolation possible in 
PACT.  

Different programs select somewhat different cells and hence do 
their respective measurements and statistics for somewhat different 
overlapping subpopulations.  This amounts to filtering the original 
cell population with somewhat different filters, with the preferences 
of the segmentation algorithm of each program providing a different 
filter.  The variations in segmentation combined with track formation 
algorithms such as the RMSD filter (v) can result in very different 
subpopulations of tracks from the same data set. This is borne out by 
the fact that only three trajectories were selected by all tracking 
programs.  A single program may be prone to biased selection of 
subpopulations of cells with specific features, such as proximity to 
other cells and specific morphology features, all depending on the 
algorithms being used, sample details and users choice of settings.  For 
these reasons, we recommend that before performing automated time-
lapse analysis on a specific movie, the user should assess how well the 
program performs compared to manual counting and consider 
carefully if the undetected cells might result in a bias in the cell 
subpopulation tracked by the software. 

We have developed PACT for tracking cells on non-uniform 
backgrounds.  To that end, we tested PACT on silicon black 
substrates. Cells on such substrates are often difficult to distinguish 
from the background even by eye. TLA and PACT are the only 
programs that successfully tracked cells in these images. The Wiener 
filter that TLA employs in its bright field tracking method, is 
comparable to the convolution filter implemented in PACT with 
regard to cell recognition. However, we have specifically designed 
PACT to reduce operator effort at the post-processing step, which is 
the most time-consuming step of the analysis. We accomplished this 
by implementing additional automated post-processing features: 
restrictions on the area of the object and minimal inter-cell distance. 
These features make PACT less likely to find false positives and this 
is reflected in the percentage of objects that pass the post-processing 
step of PACT in comparison with TLA: 81% versus 72% for flat Si 

and 52% versus 31% for silicon black. We conclude that  PACT is 
more useful for the sparse cell culture motility analyses that we 
perform in this paper.  PACT can, however, be less efficient for other 
applications such as dense cell cultures.  

The positional error was shown in Section (vii) to be of the order 
1-2µm.  Compared to this noise level, the cell centroids appear to be 
fairly reliably determined: They are not strongly influenced by 
variations in focus and threshold settings, but scatter with an RMSD 
of 1µm for a 20 µm focus variation in the test performed in Section 
(ii). The brightfield image centroid position correlates with the 
fluorescence microscopy results with an RMSD on flat surfaces of 
2.8µm as shown in (iii), while nanostructured substrates increase the 
RMSD to 4.3µm. This indicates that bright field microscopy can be 
used for motility analysis with precision comparable to that of 
fluorescence microscopy and that the overall process is not strongly 
influenced by variations in the experimental procedure and image 
segmentation. 

After removal of positional noise effects, the pair-wise RMSD of 
the tracks compared in Section (vi) are similar to the positional noise 
level itself. That is also supported by our experiments introduced in 
sections (iii and iv), which show that the PACT centroids measured 
from bright-field images are comparable to a “golden standard” of 
fluorescence images of the same samples. These results indicate that 
the different programs can be used to assess cell centroids reliably 
(accurately and precisely) from bright-field images.  

We tested the internal consistency of the velocity auto-covariance 
function measurements on cell motility in Section (viii) and found 
that the results are consistent, especially when accounting the artificial 
underestimation of the motility parameters’ error bars due to data 
overdispersion. Comparing the motility parameters obtained with 
different programs in (ix), Figures 5 and 6, we find that the different 
programs give statistically consistent results when used on the same 
tracks in Figure 5.  PACT and Autozell provide motility parameters 
that agree well within their respective uncertainty, when data 
overdispersion effects are accounted for.  However, TLA displays 
unusually high correlations in the velocity autocovariance function 
values and subsequent under- or over-estimation of motility 
parameters. 

The motility parameters obtained from different programs in Fig 
5 scatter to not achieve full mutual agreement within error bars. This 
is even with due consideration of the data overdispersion effects in 
Section (viii) that provide larger error bars. Given the agreement in 
Fig 6, this deviation must originate in the way the programs vary in 
segmentation. This result indicates that one must always include 
careful documentation of the way that a program segments an image 
into cells that will be used for motility analysis.  

Finally, we have implemented the features present in PACT 
(RMSD filter, track screening) in TLA. 

In conclusion, our study shows that cell tracking can be done with 
different programs, often with reasonable segmentation efficiency and 
precision: the pair-wise RMSD of tracks output by two different 
programs is 2-3µm, consistent with a positional noise per dataset of 
~1µm. Our analysis of results for the velocity auto-covariance 
function demonstrates that different programs provide comparable 
precision in the motility parameters P and φ0 in a statistically 
significant manner when all sources of errors are accounted for, but 
comparison between data obtained with different programs should be 
done with caution, since different programs well may select different 
cell subpopulations based on their segmentation algorithm. For 
nanostructured substrates this is can be important, as they appear to 
make cells display a wide phenotypic variability [35]. Comparison of 
data obtained with different programs doing automated analysis is 
hence difficult, unless detailed tests have been done for how each 
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program performs in segmentation and how its results compare to 
those of other programs.  
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