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ABSTRACT

Hydrological models are widely used by water mana@s a decision support
tool for both real-time and long-term applicatio®ame examples of real-time
management issues are the optimal management efvoas releases, flood
forecasting or water allocation in drought condito Long term-applications
include the impact analysis of planned hydraulradtres or land use changes
and the predicted impact of climate change on watailability.

One of the obstacles hydrologists face in settipgiver basin models is data
availability, whether because the datasets neededod exist or because of
political unwillingness to share data which is ancoon problem in particular in
transboundary settings. In this context, remotesisgn(RS) datasets provide an
appealing alternative to traditional in-situ datal anuch research effort has gone
into the use of these datasets for hydrologicaliegmons. Many types of RS are
now routinely used to set up and drive river basodels.

One of the key hydrological state variables isrigischarge. It is typically the
output of interest for water allocation applicagsoand is also widely used as a
source of calibration data as it presents the rated response of a catchment to
meteorological forcing. While river discharge canhe directly measured from
space, radar altimetry (RA) can measure water leaahtions in rivers at the
locations where the satellite ground track andrrimetwork intersect called
virtual stations or VS.

In this PhD study, the potential for the use of Byer rivers for hydrological
applications in data sparse environments is ingatdd. The research focused on
discharge estimation from RA as well as the us&Affor data assimilation to
routing models with the objective of improving maischarge forecasts.

In the first paper included in this PhD study, gwgential for using altimetry for
level and discharge monitoring in the Zambezi Rib@&sin was assessed.
Altimetric levels were extracted using a detailaegr mask at 31 VS located on
rivers down to 80 m wide. Root mean square ermegive to in-situ levels were
found to be between 0.32 and 0.72 m. Discharge @&ssgnated from the
altimetric levels for three different data availdpiscenarios: availability of an
in-situ rating curve at the VS, availability of ongair of simultaneous
measurement of cross-section and discharge andalalisy of historical
discharge data. For the few VS where in-situ dada available for comparison,



the discharge estimates were found to be withintd.13.8% of mean annual
gauged amplitude.

One of the main obstacles to the use of RA in hydjoal applications is the
low temporal resolution of the data which has bleetween 10 and 35 days for
altimetry missions until now. The location of th&\s also not necessarily the
point at which measurements are needed. On the btrel, one of the main
strengths of the dataset is its availability in me=al time. These characteristics
make radar altimetry ideally suited for use in degaimilation frameworks which
combine the information content from models andremir observations to
produce improved forecasts and reduce predicticentainty.

The focus of the second and third papers of thesishwas therefore the use of
radar altimetry as update data in a data assimnidtiamework. The approach
chosen was to simulate reach storages using aesivypskingum routing scheme
driven by the output of a rainfall-runoff model atw carry out state updates
using the Extended Kalman Filter.

The data assimilation approach developed was appligdwo case studies: the
Brahmaputra and Zambezi River basins. In the Bratutna, data from 6 Envisat
VS located along the main reach was assimilate@ d$similation improved
model performance with Nash-Sutcliffe model effirg increasing from 0.78 to
0.84 at the outlet of the basin.

In the Zambezi River basin, data from 9 Envisat [g&ted within 2 distinct

watersheds was assimilated. Because of the preseindbe large Barotse
floodplain in the area, the routing scheme was Emlpo a simple floodplain

model. Overall model performance was improved tghoassimilation with

Nash-Sutcliffe model efficiencies increasing frol2Dto 0.65 and 0.82 to 0.88
at the outlets of the 2 watersheds.

The results from both the Zambezi and the Brahmapstiowed that the low
temporal resolution of the data could be compedsatepart by the use of
multiple VS which will acquire data on differentydaover the 35-day repeat
period. This highlights the benefits which coulddieained from radar altimeter
missions with denser spatial resolution allowing fwore, narrower rivers to be
monitored. In both case studies, the simple errodehspecification used was
found to be one of the weak points of our approant further research is
suggested in this direction.
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DANSK SAMMENFATNING

Hydrologiske modeller bruges i vid udstraekning soeslutningsveerktgj under
forvaltningen af vandressourcer i bade realtid dangsigtet planleegning. Som
eksempler pa anvendelse i realtid kan naevnes dpstgeng af reservoirer,
forudsigelse af oversvgmmelser og allokering afdvander tagrke. Til langsigtet
planleegning bruges hydrologiske modeller blandt eandil at vurdere
pavirkninger af planlagte hydrauliske anlaeg og #agdr i arealanvendelse samt
til at forudsige effekter fra klimasendringer pa dessourcerne.

En af hydrologernes udfordringer under udfeerdigelsteafstramningsmodeller
er tilgaengeligheden af data. Manglen pa data kgfdek, at data simpelthen
ikke eksisterer, eller at der fra politisk side ekér vilje til at dele denne, hvilket
ofte ses ved graenseoverskridende problemstilliniger. viser teledetektion sig
ofte som et attraktivt alternativ til traditionel situ data og der er forsket meget |
brugen af disse dataseet i hydrologiske sammenhaekigage typer af
teledetektion bruges nu regelmaessigt i afstrammiogeller.

Afstreamningen af vand er et af de centrale elemerde hydrologiske modeller.
Den er typisk den mest styrende parameter i foddgadmed allokering af vand,
og bruges ofte til kalibrering, da den repraesentaieandingsomradets samlede
respons pa det aktuelle klima. Afstramning kan ikkekte males fra rummet,
men radar altimetri (RA) kan vise variationen idéwss vandstand pa virtuelle
stationer (VS), som er de lokaliteter, hvor sateli krydser henover den
pagaeldende flod. | dette PhD projekt blev poteetifdr at bruge RA over floder
i hydrologiske sammenhaenge i omrader med mangeldgia undersggt.
Forskningen fokuserede pa at estimere afstramninfjauRA, ligesom RA blev
brugt i data assimilering til routing modeller mett formal at forbedre
forudsigeler af floders afstramning.

| den fagrste artikel inkluderet i dette PhD stubdiev potentialet for at anvende
RA hgjdemalinger til overvagning af vandstanden adgtramningen i floden
Zambezi vurderet. Med et detaljeret kort over flpdalev RA hgjdemalinger for
31 VS med en flodbredde pa mindst 80 m identificeMindste kvadraters
metode (RMSE) relativt til in situ vandstanden bfewmdet til at veere mellem
0,32 og 0,72 m. Afstrgmningen blev estimeret fra Réjdemalingerne for tre
forskellige scenarier med varierende datagrundiBayst med en in situ
afstramningshydrograf ved den virtuelle statiorpeest med en samtidig in situ

Vil



maling af flodens tveersnit og afstremning og siehetd tilgaengelig historisk
afstrgmningsdata. Den estimerede gennemsnitliggfsémemning for de fa VS
med tilgeengelig in situ data blev fundet til at gamellem 4,1 og 13,8% af den
malte gennemsnitlige afstramning.

Et af hovedproblemerne med at bruge RA i en hydislosammenhang er den
relativt lave malingsfrekvens, som indtil nu harrespa mellem 10 til 35 dage.

Dertil skal leegges, at den VS ikke ngdvendigviplaceret pa det punkt, hvor
der er brug for malinger. P& den anden side erfedeastarste fordele ved

dataseettet dets tilgaengelighed i teet ved realisseDegenskaber gar RA ideelt
til brug i dataassimilering, hvor information fraodeller kombineres med

realtidsobservationer for dermed at kunne produfmieedrede forudsigelser og
reducere usikkerheder ved forudsigelser.

Fokus i anden og tredje artikel af denne afhandlagderfor brugen af RA til at
opdatere data gennem dataassimilering. Den valgoda var at simulere
lagring i vandlgb med en simpel Muskingum routingtode drevet af en
afstremningsmodel, samt at opdatere tilstandsVenad ved at benytte det
udvidede Kalman filter.

Den udviklede metode til data assimilering bleveardt i to studier: oplandene
for floderne Brahmaputra og Zambezi. For Brahmaldden blev data fra 6
Envisat VS langs hovedlgbet af floden assimilerssimileringen ggede
modellens ydelse, hvor Nash-Sutcliffe effektivite{f®SE) steg fra 0,78 til 0,84
ved oplandets udlgb.

| Zambezifloden blev data fra 9 Envisat VS lokalte to adskilte vanddistrikter

assimileret. P& grund af tilstedeveerelsen af dme $lodslette Barotse i omradet,
blev routing metoden koblet til en simpel flodstetiodel. Den overordnede
ydelse af modellen blev med dataassimileringen @8geNSE steg fra 0,21 til

0,63 og 0,82 til 0,78 ved udlgbet fra de 2 afvagsamrader.

Resultaterne fra bade Zambezifloden og Brahmapotiaf viste, at der delvist
kan kompenseres for den lave opdateringsfrekvedstafved at bruge flere VS.
Derved vil man kunne fa data fra forskellige dagennem den 35 dages cyklus.
Dette fremhzever de fordele, man vil opnd med RA daéd en hgjere rumlig
oplgsning og dermed muliggare overvagning af flenindre floder. | begge
studier viste den anvendte simple fejlmodel siyate et af de svage punkter
ved vores metode, og yderligere forskning i demteimg anbefales.
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1 INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

While fresh water is a vital resource, the quantityglobally available water in

lakes, rivers, wetlands and reservoirs as wellsskemporal and spatial variations
are not well known (Alsdorf et al., 2007). Knowledgnd prediction of the

quantities of water flowing in rivers is of greabportance in order to improve
water allocation efficiency, reservoir and hydrogovoperation or in order to

mitigate floods and droughts. The total amountretli water flowing in rivers

and to the ocean is also an important unknown oball circulation models

which are used to drive weather and climate mog@édtlorf et al., 2007).

In order to keep track of and predict water avalitgb both in-situ river gauges
and hydrological model forecasts are widely useoweéler, in-situ monitoring
density varies greatly between different geograghéceas and in many regions
of the globe in-situ data is either inexistentawailable with considerable delays
due to poor accessibility, costs or political utwgness to share data (Calmant
and Seyler, 2006; Alsdorf et al., 2007).

With the development of satellite remote sensinggnyn new datasets are
available to monitor different parts of the watgcle which allows hydrologists

to rely less heavily on in-situ data. Remote sengata is now widely used

either as forcing to hydrological models or ashraliion/validation datasets. The
types of data available are varied and include ipitation (e.g. Stisen and

Sandholt, 2010), temperature, reference evapotiratign (e.g. Schmugge et al.,
2002), topography (Farr et al., 2007), total waterage from gravimetry (e.qg.
Tapley et al., 2004), surface soil moisture (e.@gWér et al., 1999), inundation
extent form synthetic aperture radars (e.g. Matgeal., 2007) etc. We refer the
reader to e.g. Tang et al. (2009) for a reviewh# tise of remote sensing in
hydrological applications.

While these remote sensing datasets help with théerstanding and
quantification of the inland water cycle, no remsémnsing technique is currently
capable of measuring river discharge which is uguhe variable of interest in
hydrological applications and is a useful quarfatlymodel calibration/validation
as it presents the integrated basin response ®onodbgical forcing.

Traditional discharge monitoring relies on the nomng of river levels and their
conversion to discharge through a rating curve lwvhis a site-specific



relationship between level and discharge. Ratingesuare typically established
by fitting a power-law through a number of pointsresponding to simultaneous
measurements of discharge and level.

In order to measure discharge from space, the prostising technology is radar
altimetry. Radar altimetry is a technique to measbeight and with repeat
measurements over a surface water body temporal Mariations in lakes,

wetlands and rivers can be tracked (Koblinsky et1#®93; Birkett, 1995; Birkett,

1998). The location of the intersection betweendgaellite ground track and a
water body at which the measurement is made is cortymreferred to as a
virtual stationor VS

While altimetry data does not suffer from the sam&rictions in coverage or
distribution as in-situ data, the use of radamadtry in hydrological studies is
not widespread due to several specific challenges.

Firstly obtaining level time-series from altimetoyer rivers can be difficult
because radar altimetry was initially designed, andptimized, for operation
over oceans. The response over rivers, due tobbenae of waves as well as the
inclusion of response from the surrounding teriaithe altimeter footprint, is
complex and requires detailed analysis of individedurns (e.g. Berry et al.,
2005).

Secondly, the spatial resolution, with for exammhe measurement every 369 m
along-track for the Envisat RA-2 altimeter, makerent altimetry missions
unsuitable for the monitoring of narrow rivers.

Thirdly, the temporal resolution is low, with a eg time of between 10 and 35
days for the different satellite missions whichmach longer than what is needed
in particular for real-time optimization problemact as flood mitigation or
reservoir operation.

And finally, because where VS do not coincide wiiksitu gauges, no rating
curves are available. Thus, other methods, for @l@melying on models or
bathymetry, need to be developed and used in tod#bstain discharge.

1.2 RESEARCH OBJECTIVES

In this context, the PhD research has focused erusie of river altimetry for

hydrological applications in large data sparserrbasins. The first portion of the
work focused on the generation of level and disphaime-series at VS locations



and the second portion focused on the assimilatfoniver altimetry to large-
scale routing models in data sparse regions.

The main objectives of the research were:
» Precise semi-automatic selection of data for namneers (Papetr)

» Development of rating-curves with minimal in-situatd to obtain
discharge from level (Papkr

« Assimilation of radar altimetry to large scale iagtmodels (Papdi and
Papeill )

This thesis is based on the three papers writtggadof the PhD study. Chapter
2 presents a literature review of previous worktlod research topic, chapter 3
presents the two case studies, and chapter 4 psetbenmethods used for the
study. The main results from the papers are suraedrin chapter 5 and
chapters 6 presents the conclusions. Finally, tineet papers can be found in
chapter 8.






2 CONTEXT

2.1 RADAR ALTIMETRY FOR INLAND WATER MONITORING

Radar altimetry is a technique to measure heightadar pulse is emitted by the
satellite in the nadir direction and analysis & #cho returned from the surface
of the Earth allows for the determination of di#fet characteristics of the
underlying terrain. The time taken for the sigmabbunce back to the satellite is
used to determine thenge which is the distance between the satellite ard th
surface. The signal is assumed to travel at thedspelight and corrections need
to be applied to the range due to deceleratioheftectromagnetic waves in the
atmosphere. These corrections are out of the suofhes study and we refer the
reader to e.g. Calmant et al. (2008) or Rosmordat €2011) for further details.

After correction of the range and with precise klemge of the satellite position,
the land or water surface elevation relative tereestrial reference (for example
the ellipsoid) can be calculated. The elevatiorthef underlying surface is then
equal to the satellite altitude relative to theerehce surface minus the range (see
Figurel for illustration).

Figure 1: lllustration of satellite altimetry (Figure: CNES/Ducros in Rosmorduc et al.
(2011))

Due to bandwidth limitations and in order to redmoése, for all past missions,
the returned echoes were averaged on board beéimg bransmitted from the
satellite. For example, for the Envisat satellitee pulse was emitted with a



frequency of 1800 Hz but 100 echoes were averagdabard to produce the 18
Hz waveforms which were sent from the satellite.

While satellite based radar altimetry was initialgsigned for ocean monitoring,
the different satellite missions have been colhgctiata over continental surfaces
and in particular over surface water bodies (Catnetnal., 2008). The first
studies concerning the use of radar altimetryritand water monitoring focused
on large lakes and reservoirs for which the rewragnal to the altimeter is
“‘ocean-like”. This is an important feature as tihege of returned echoes over
oceans fits a Brown model (Brown, 1977) from whikk extraction of range is
well established.

Some of the first applications over lakes includerié and Gill (1994) who
used the TOPEX/Poseidon (T/P) Geophysical Data ldsd@DR) data over the
Great Lakes and found root mean square (rms) eofd3scm and Birkett (1995)
who showed that the T/P GDR heights could be ueeghdnitor lakes with a
surface area > 300 Krwith high accuracy (~4 cm rms).

Birkett (1998) showed that T/P data was also ableack river and floodplain
levels for rivers > 1.5 km wide and found rms esroglative to gauged levels in
the Amazon of 60 cm.

Over smaller water bodies, the returned echoesotibave “ocean-like” shapes.
This is due to their smooth very reflective naturke altimeter footprint, which
is of about 2-10 km over oceans but is significasthaller over land surfaces,
will also typically not only contain informationdm the water surface but also
from the surrounding terrain. While a water bodyhivi the footprint will usually
dominate the return signal due to the much higeBectivity of water compared
to land, this will lead to more complex waveformbieh need post processing.
This processing is callegktracking (e.g. Koblinsky et al., 1993; Birkett, 1998;
Berry et al., 2005).

By retracking Geosat altimetry data at four VS tawas on the Amazon River,
Koblinsky et al. (1993) showed that water levelia@ons could be tracked in
large rivers using satellite radar altimetry. Thesults showed a 70 cm rms error
which was due in large part to errors in the odatermination. Further studies
over the Amazon using Envisat data have found mms<less than 30 cm (e.g.
Frappart et al., 2006).



Berry et al. (2005) showed that by retracking imndiinal echo shapes, altimetry
levels could be retrieved from smaller surface whtalies than was previously
considered feasible. Birkinshaw et al. (2010) usedh data in a study of the
Mekong River and found rmse values between 44 a@mdrf for retracked
Envisat data over rivers down to 400 m in width.

One of the main obstacles to the use of altimetayadfor hydrological
applications is their coarse temporal resoluticor. $atellites which have carried
radar altimeters in the past, the repeat periodoeasn of between 10 days (for
the TOPEX/Poseidon satellite) and 35 days (folBheisat satellite).

Roux et al. (2008) proposed a method to overconeetémporal resolution
limitation. By using linear models exploiting negrpauging stations, they were
able to generate daily water level time series &Safrom the 35-day repeat
Envisat data.

2.2 ESTIMATING RIVER DISCHARGE FROM RADAR ALTIMETRY
Measuring river discharge from space remains arortapt research question in
the hydrological community and the most promisieghhology for this purpose
is radar altimetry.

In traditional discharge monitoring, a rating curveating water levels to
discharge is established by fitting a power-law railtiple simultaneous
measurements of level and discharge. Water levelshen recorded, typically
on a daily basis, and converted to discharge ubkiagating curve.

Obtaining river discharge from radar altimetry riegsi the establishment of such
rating curves at each VS location, often in theeabs of in-situ discharge
measurements.

If an in-situ rating curve is available at a VSdton, obtaining river discharge is
fairly straightforward, the one remaining task lgeto find a common reference
level between the in-situ rating curve and thenadtry levels. Another similar
approach which avoids the leveling issue is to bgve rating curve based
directly on altimetry measurements and coincidemtsiiu discharge

measurements (e.g. Kouraev et al., 2004; Zakhaevva., 2006; Papa et al.,
2010). While this method vyields good results, ipplecation is limited to VS

locations where altimetry and in-situ dischargeadat available for overlapping
time periods.



Bjerklie et al. (2003) studied the potential foti@siting river discharge from
remote sensing data only, including radar altimelrigey proposed a method
which relies on the measurement of hydraulic datenfremote sensing and
multiple regression analysis of discharge measun&m® derive rating curves
and found that discharge could be determined witheerage uncertainty of less
than 20%.

Leon et al. (2006) and Getirana et al. (2009) udsdharge estimates from
calibrated hydrological models at VS locations idey to develop rating curves.
While this method removes the need for in-situiatat at the VS, the quality of

the rating curve will be directly related to theatjty of the calibrated model

which will typically depend on availability of ints data elsewhere in the basin
for the calibration/validation of the model.

2.3 RIVER ALTIMETRY FOR HYDROLOGICAL MODELING

Hydrological models are widely used as decisionpsup tools by water
resources managers for long-term planning apptinafi such as analyzing the
consequences of the construction of a new resem®iwell as to deal with real-
time management issues such as flood and drougigation.

Models can be broadly split into rainfall runoff RR models, which simulate
land processes, and hydrodynamic models, which latewuwater routing in
reaches. Both RR and hydrodynamic models are usedbcal to global scales
with varying degrees of simplification and concepzation.

Hydrological model predictions are subject to higihcertainties which stem
from many different sources including model forgingstructure,

parameterization, initial conditions and uncertaidack of calibration/validation
datasets (e.g. Liu and Gupta, 2007).

Because many parameters in models are either reattlgi related to measurable
quantities or need to be representative of largasatydrological models rely on
the calibration/validation process where model pmters are tuned to fit
simulated and observed states and fluxes. Caldorai commonly carried out
using in-situ discharge (for RR models) and lewaisoth (for hydrodynamic

models) as calibration data and lack of such degtassn be a major obstacle in
modeling of remote areas.

Getirana (2010) showed that using Envisat altime@ta with a 35-day repeat
period for the automatic calibration of a modethe Branco River basin yielded



similar results to using daily gauged dischargevioled knowledge of the rating
curves at the VS. Getirana et al. (2013) furthanalestrated the potential for
calibrating a large-scale flow routing scheme & #&mazon basin without using
in-situ data.

Using altimetry in combination with other remotensimg data sources (surface
soil moisture and gravity), Milzow et al. (2011)csessfully calibrated a model
of the poorly gauged Okavango catchment.

Even when models are well calibrated, flow preditsi are still subject to

uncertainties due to errors in forcing data, mogarameters and model
formulation. For real-time applications, one saatio reduce these uncertainties
is the integration of observations into the modehnfework using data

assimilation.

Data assimilation is the process through which adehds updated using

observations of the modeled system in order to avgmredictions. It can be

used to update model inputs, states, parameterygtput variables and has been
used in the field of hydrology since the 1980s dKitis and Bras, 1980a;

Kitanidis and Bras, 1980b).

For real-time applications which rely on accuratelatively short-term
predictions, knowledge of the current state of tharological system is
paramount. Sequential data assimilation in which ugadate is carried out
whenever a hew measurement becomes available nsfdhe well adapted to
these types of applications.

While many difficulties remain, in particular inlagion to the specification of
model and measurement uncertainties, the updafirgjates in rainfall runoff

and hydrodynamic models using in-situ water leveld astream flow

measurements has been successfully used to updeds & hydrodynamic (e.g.
Refsgaard, 1997; Madsen and Skotner, 2005; Vrugtl.et2005) and rainfall

runoff models (e.g. Pauwels and De Lannoy, 2006&rkCét al., 2008). Liu et al.
(2012) present a comprehensive review on the custate of data assimilation
for hydrological applications.

As far as the use of remotely-sensed river levalischarge is concerned, it has
been shown that assimilating water levels derivechfsynthetic aperture radar
imagery and high resolution digital elevation med& hydrodynamic models



improved model predictions (Neal et al., 2009; @iusi et al., 2011) but
unfortunately, high resolution DEMs are not curkgavailable on a global scale.

Studies preparing for the launch of the Surface eNddcean Topography
(SWOT) mission, which is scheduled to be launche@019 and has a swath
altimeter on board, have used synthetic swath attyrdata as assimilation data
to update hydrodynamic models and found that, pexviknowledge of the

bathymetry at the VS, modeled depth and dischargee vimproved through

assimilation (Andreadis et al., 2007; Biancamatiale 2011).

Using altimetry levels over reservoirs, Pereiradeaal et al. (2011) showed that
the assimilation of altimetry from Envisat improvewdeled reservoir levels in
the Syr Darya River Basin, but no studies haventedahe use of nadir altimetry
over rivers in a data assimilation framework.
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3 CASE STUDIES

3.1 THE ZAMBEZI RIVER BASIN

The Zambezi River is the largest water resourc8anthern Africa draining a
basin of 1.37-10km? and discharging an average 130°kmar to the Indian

Ocean (The World Bank, 2010). Eight countries hiawel areas in the Zambezi
River Basin: Angola, Botswana, Malawi, Mozambiqudéamibia, Tanzania,

Zambia and Zimbabwe (Figure 2).
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Figure 2: The Zambezi River Basin with location of the modélivatersheds

Water availability in the basin is highly spatiabiyd temporally variable. Most
of the water in the basin comes from the northegians where precipitation is
high with up to 1400 mm/year while in some of tlmithern areas the value
declines to 500 mm/year (The World Bank, 2010). tMidghe rainfall occurs in
the rainy season between the months of OctobeMamdh.

The major water resources management issues itabie are related to the
operation of the large hydroelectric dams (lakesldéaand Cahora Bassa are the
largest, but many smaller dams are also presethteirbasin) and the timing of
reservoir releases relative to water requiremenrtsrfigation. While the current
area equipped for irrigation is low (less than ©@0l6f the total basin area),
currently planned irrigation projects if realizedwd triple this area (The World
Bank, 2010).

Discharge data for the basin is available from @&lebal Runoff Data Centre
(GRDC) but of the 98 stations reported in the dasab only 34 have data up to
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the year 2000 and the latest reported data powtativis from 2006. More recent
data for Zambian gauging stations was obtained fiteenDepartment of Water
Affairs (DWA). The dataset made available for tpi®ject contains level and
discharge up to the year 2008 for the most recamd.dThe dataset is not
complete and the location of the gauging statioitls data after the year 2001 is
shown in Figure 2.

For the Zambezi case study, Envisat altimetry aeda retracked by the Earth
and Planetary Remote Sensing Lab (E.A.P.R.S) tneewhole of the basin. The
first part of the study focused on extraction ofadaoints corresponding to rivers
in order to produce level time series at all VSaloans identified as useable
(Paperl). The potential for discharge monitoring at the W8s studied using

different approaches for different data availapiitenarios (Pape}.

Paperlll focused on the use of altimetry data in two ddttivatersheds in the
Zambezi River basin (see Figure 2) for assimilationa routing model and
improved inflow prediction to the Itezhi-Tezhi akdriba reservoirs.

3.2 THE BRAHMAPUTRA RIVER BASIN

The Brahmaputra River is located in South Asia drains a basin of 580-10
km?. It flows through China, India and Bangladesh aigtharges an average
19.3-18 m*s into the Ganges-Brahmaputra Delta where it neengith the
Ganges before flowing to the Bay of Bengal (Fig8ixe

The largest portion of Rainfall in the basin (ab®&@%) occurs during the
monsoon between the months of June and Octobdhelrsummer, snowmelt
contributes to river discharge. The river flowshmraided channels for most of its
course.

The main water management challenge in the Brahtreapeasin is flood

mitigation. Floods are common during the monsooasse, with peak flows
typically occurring during July and August, and fleoding often poses a threat
to human lives and livelihoods.
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Figure 3: The Brahmaputra River Basin
In-situ data was available at three locations @Bhahmaputra River: the Nuxia
and Nugesha stations in Tibet and the Bahadurataaidrs in Bangladesh. No
recent low-flow data is available at these statidfistorical data at Bahadurabad
was used to evaluate model performance during dmtins.

For the Brahmaputra study, the River Lake Hydrol@8itH) data product was
used. Six VS were found to be located on the mer rstretch and Papér
focused on the assimilation of the data from théSeto a routing model of the
Brahmaputra River.
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4 METHODS

4.1 RADAR ALTIMETRY TIME-SERIES

The altimetry data used in the PhD study was froenEnvisat RA-2 instrument.
The satellite emitted a pulse in the nadir directiath a frequency of 1800 Hz
which corresponds to one data point approximatghrye 3.69 m along-track.
However, due to bandwidth limitations and in orttereduce noise, averaging of
100 echoes was carried out on board to producel@kelz waveforms which
were sent from the satellite.

The altimetry data used in Papkrand Papedll was the 18 Hz retracked
waveforms, called the Radar AlTimetry product (RABgrry et al., 2005). The
data was provided by the Earth and Planetary Re®eising Lab (E.A.P.R.S.)
over the whole of the Zambezi River Basin and dqadmnts corresponding to
rivers had to be selected. This was done geogralphibased on the distance
between each RAT data point and the river. The timcaof rivers was
determined by calculating the Normalized Differedagetation Index (NDVI).
NDVI values for open water are typically betweenafid -0.1 and a threshold
was set after visual inspection of the Landsat emagfor each VS. This
extraction method can be compared to the semi-attormethod described in
Roux et al. (2010).

Further selection was carried out based on thedoatier coefficient which is a
function of the power reflected from the surfacd anll vary based on the nature
of terrain and wind conditions (Birkett, 1998). Thackscatter coefficient is
noted sigma0c®). It is expressed in dB and is included for eaatagoint in the
RAT product. Its value is typically of about 10dBep oceans and has values
from approximately 20 to over 40dB over rivers ametlands (Birkett, 1998).
The selection was therefore carried out by keepnly data from waveforms
whereg® = 20 dB.

VS were then classified according to quality basedheir rms errors relative to
in-situ water levels. Because many VS did not admaevith gauging stations but
were located along the same reach as one, varyasg-sectional area and travel
time were taken into account in order to evalua& quality (see Papdr for
details on the procedure).

The altimetry data used in Papéris the River and Lake Hydrology (RLH)
product (Berry et al., 2005). The RLH data is atemnputed from the 18 Hz
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retracked waveforms. However, fewer retrackers wwed than for the RAT
product and complex echo shapes are flagged andurtber processed. The
extraction is based on predefined “boxes” centerethe riverand all retracked
waveforms within a box will be used to produce regg data point per satellite
pass.

RLH data is freely available online on the Europ&pace Agency River and
Lake Project homepadbttp://tethys.eaprs.cse.dmu.ac.uk/RiverL ake/sharaidy.

4.2 DISCHARGE FROM ALTIMETRY

In Paperl, three methods to obtain discharge from altimébrydifferent data
availability scenarios were tested. The three naghelied on obtaining a rating
curve and some reference level. Because of thesed@mmporal and spatial
resolutions considered in this study and the faat mho looped rating curves were
observed in the in-situ data, the kinematic wavpr@gmation was assumed
valid for all discharge computations.

4.2.1 METHOD 1 - IN-SITU RATING CURVE METHOD
For VS locations where rating curves were availathley were directly used to

estimate discharge once a common reference walsliss& for the altimetric
and in-situ level time series. This common refeeewas established by shifting
the altimetry levels by the difference between ihesitu and altimetric time
series’ means.

4.2.2 METHOD 2 - FIELD DATA METHOD
The second method was based on field work carngdnoZambia in May and

June of 2010. Over the course of the field workV®were visited. At each VS,

one coincident measurement of discharge and cexd®s was made. For

narrow rivers (up to 120 m wide), the measuremerdse carried out using a

tagline, weight and propeller (USGS Type AA-MH @nt meter). Depth was

sampled every 5 to 10 meters and velocity measuresnveere taken at 0.8 and
0.2 times the total depth at each point. The ve&xiwere then averaged and
integrated over the cross sectional area to oldiaoharge (see full description of
the velocity area method in Dingman, 2002).

For wider rivers an Acoustic Doppler Current Pmfil(ADCP, RiverRay,
Teledyne RD Instruments) was used.

The objective of the field work was to gather erfougformation in order to
apply Manning’'s equation and calculate dischargduegs from altimetry
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measurements. Manning’s equation is a widely usegirecal method to
determine turbulent open channel flow from the ptajscharacteristics of the
channel (Chow et al., 1988). The equation reads:

A5/3
Q:PT%Q/gf (1)
whereQ is the river discharge [ifs], A is the cross sectional area’]nP is the
wetted perimeter [m]n is Manning’s roughness [sHf] and § is the friction
slope which is equal to the bed slofgin the kinematic wave approximation

(Chow et al., 1988).

The common difficulty in applying Manning’'s equatics the determination of.
Manning’s equation at the time of measurement reads

An5/3
Q. :WQ/ Sm (2)
Where them index indicates values measured in the field. As8ag n and &
constant, Manning’s equation can then be rewrgken

5/3 2/3
A P
- “m 3
e=a 2| %) ©
Having measured cross-sections in the fiéldand P can then be expressed as
functions of river depth. All other terms on thghti hand of the equation are

known. Altimetry level ) to depth ) conversion was carried done by using the
measured field depth and the closest altimetry areasent as references:

dalti = hallti _( hneas+ dmeag (4)

4.2.3 METHOD 3 - HISTORICAL FLOW DATA METHOD
Dingman and Sharma (1997) showed that the followatogg curve which has

the advantage of relying only on measurable moqaicél characteristics of the
river, could be used to obtain a good estimateisfhédrge for a wide range of
rivers:

Q= 1.564 A3 R4 DS—0.0543]ongS) (5)
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WhereA is the cross-sectional area?JrR is the hydraulic radius [m] an8is
the water-surface slope which is equal to bed slopéhe kinematic wave
approximation (Chow et al., 1988).

Bjerklie et al. (2003) pointed out that while mastthe variables needed in the
equation can be measured from remote sensing, dgpthot. As little inter-
annual variation in dry-season flows is observethm uncontrolled reaches of
the Zambezi, our approach consisted in using hestbaverage low flows in
order to derive a reference depth.

The reference depth was obtained by assuming angatar cross section and
injecting the average annual low flow in equatibh (

0.4
s W )
=1.5640(w X PIBm Y How | [g0.05431091¢S) 6
Q|0W OW) W + Zmow % ( )

WhereQy. is the average annual low-flow fm] andd,,, is the reference low-
flow depth [m]. The average altimetry height foe ttriest monthb,,,, was then
extracted and the altimetry to depth conversion@awout:

d=h-(h,, - d,) (7)

Channel width was determined from Landsat imagemg &ed slope was
obtained by extracting elevation data from the @&&uRadar Topography
Mission (SRTM) along 20 km reach stretch and penfog a linear regression.

4.2.4 UNCERTAINTY
Uncertainties on the variables used in the threehdirge computation methods

were estimated and the impact on the dischargeesaletermined using Monte
Carlo simulations. All variables were assumed ndiyrdistributed with a mean
equal to the measured value and the standard mmsatvere estimated as
described in Table 1. 1000 Monte Carlo runs wergezhout for each method.
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Table 1: Uncertainties on discharge calculation paramet&f®(values are only indicated if a
common value/percentage was used for all VS)

Method STD Comments
1 Rating none: in-situ rating curves used as
curve benchmark
depth 5cm estimated from field procedure
. distance 50 cm estimated from field procedure
(tagline)
velocity 5 mm/s estimated from field procedure
2 discharge output from measurement
(ADCP) g P
slope -- determined from linear regression
, 20% of estimated from measurement
width .
3 measured width procedure
reference computed from sample of average dry
low flow flows

4.3 ASSIMILATION STRATEGY

Reliable short-term river discharge predictions hrghly valuable for water
managers. In order to improve forecasts and redihedr typically high
associated uncertainties, data assimilation mergedel and observations to
obtain the best possible estimate of the curreé sif a system.

Paperll and Papeill focus on the assimilation of radar altimetry |lsvéb
update states in a routing model in order to impronodeled flows in the
Brahmaputra and Zambezi where reliable dischargecésts have the potential
to help with flood mitigation and reservoir opeoatirespectively.

4.3.1 MODELING
In any data assimilation problem, one of the fgaestions to answer is which

model states to update. In this study, the decisias made to decouple the land
phase (the rainfall-runoff model or RR model) frahe routing phase. The

output from the RR model was then used as forane routing model and the

updates were carried on the volume of water routed.

This choice was made because of the complex rakitip and time-lags
between the measured value, level, and the inagrssbf the RR model, such as
soil or aquifer storage. Updating the RR states ldvdterefore require an
ensemble based assimilation procedure which woulehtly increase the
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computational burden, in particular for large-scafglications which are the
focus of this study.

The assimilation strategy used in Papkrandlll is based on a Muskingum
routing scheme driven by the output of calibratadfall runoff (RR) models.

Expressing the Muskingum routing scheme in termstafage yields:

N_

Suja = A DZ;{( My-i et Mysi ) Dkﬁclk}
N o (8)

N-1 S\I—i,j N-1
+4DQN %[ZmN—i [@1‘ XN—i)+At Dk: —mcui ' Ca,N Esw
wheresy ; is the storage in read¥ at time steg [m?] andM, ; is the runoff inflow to
reachN at time steg [m¥s]. Xx[-], a weighing factor an&y [days], the travel time of
the flood wave through the reach, are assumedan®r each reacN and4t is the
model time step [days] (Chow et al., 1988). Reaaresnumbered in ascending order
from the furthest upstream to the furthest dowasire

Ay is defined as:

At [K
A = > 9)
At+2[K, [{1- X))
andC;y andCgy are defined as in Chow et al. (1988):
At-2[K, X
N = v (10)
2[K,, [{1- X, ) +At
20K, 01- X, )—-At
Con = - X,) (11)

N 20K, If1- X, ) +At

For the Brahmaputra model (Papiey;, the output of a Budyko type (Zhang et al.,
2008) RR model of the Brahmaputra was used to dheerouting model. The
RR model was forced using direct precipitation andwmelt. In order to obtain
snowmelt, a simple temperature index method wad tsenodel snow storage
and snow melt (Hock, 2003yhe model was calibrated using in-situ flows at 3
gauging stations located at the outlets of subba&i® and 17 assuming constant
calibration parameters within the upstream andcfrea 1 to 6) and downstream
(reaches 7 to 9) portions of the model (for a dedailescription of the RR model
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see Finsen et al.: Using radar altimetry to updatirge-scale hydrological
model of the Brahmaputra River Basin, submittetiydrology Researgi2012).
The meteorological forcing is described in Table 2.

For the Zambezi model (Papkl), the RR model was built using the Soil and
Water Assessment Tool (SWAT). The general setuptiier SWAT model
including landcover and soil datasets was modetteat &chuol et al.(2008) and
the meteorological forcing used is described inl@&h Calibration was carried
out manually and focused primarily on groundwatmameters.

Table 2: Meteorological datasets used for the RR modg)sTljis dataset starts in 2008 and
was extended to cover the whole period (see Pafmrdetails).

Precipitation Temperature

Brahmaputra Tropical Rainfall Measuring European Centre for Medium
Mission (TRMM) Multi-satellite  range Weather Forecast
Precipitation Analysis (TMPA) (ECMWEF) Operational
3B42RT real-time product(*) Surface Analysis Data Set

Zambezi Famine Early Warning European Centre for Medium
Systems Network (FEWS-Net) Weather Forecast (ECMWF)
rainfall estimate product (RFE) ERA-Interim product

Because of the presence of the Barotse floodphaithe study area, a simple
floodplain model was coupled to the routing modéie floodplain model was
built using an approach similar to Dincer et al9§Z). Two processes were
modeled: water transfers between the main reachHlaodplain driven by head
differences and evaporation from the floodplaing(ffe 4). Direct precipitation
to the floodplain was not considered as it is alyetaken into account in the
SWAT model. Open water evaporation rate was assuetgwl to potential
evaporation which was computed in the RR modelgugie Hargreaves method.

The equations for the floodplain processes wene:the

%zcoeﬁ[q h-h)- ADE] (12)

% =msK s M- coeffl h- ) (13)

whereVj, is the floodplain volume [fh, coeffthe transfer coefficient for the'1
order exchange between reach and floodplafis]yh,. and ht, the water levels
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in the reach and floodplain respectiveby, the floodplain area [k ETo the
potential evaporation [m/sls. the water stored in the reach ]Jmmsk the
Muskingum routing operator as presented in equains the state vector of
volumes in all reaches an the input from the RR model fifs].

A one-day time step was used for modeling andwlais assumed small relative
to the time-scale of the floodplain processes. Tlbhedplain equations were
therefore solved assuming mean daily volume in ftbedplain equal to the
volume at the end of the previous day, minus ewwpor. Evaporation was
assumed to be removed before any transfers take.pldne explicit solution is
then:

Viok = Vipia ™ coeff[@ B = By k—l) - AnUE] (14)
Sex = MK 81, My, M)= coefif h.— h.) (15)
Where i« is the level in the reach after the addition/sattion of volume from

the Muskingum routing but before any transfers wité floodplain in the time
step.

Reach

HET
”1;;odphin

Exchange

X Floodplain

Figure 4: Reach and floodplain cross-section geometry anstithition of floodplain processes.

The reach cross sections were assumed trapezaitiatonstant bank slope,,
and the bottom of the floodplain was assumed te wsh distance from the
reach following:

h, =(B)" (16)

Wheref andm are shape parameters andg the distance from the side of the
floodplain closest to the reach (see FigdjeThe relative values of the shape
parameters were fixed based on literature value$ldodplain extent (770 000
ha) and storage (average annual storage of 8% (Beilfuss and dos Santos,
2001).
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In both case studies, reach width and bank slope wletermined based on
Landsat imagery. Bank slope was estimated by measilow and high flow
widths as well as high and low flow altimetric heligjfrom the same location:

o =tar? alti,,, —alti,,, (17)
’ (Whigh - \Nlow)/ 2

The base width of the reaches was assumed eqoedasured low flow widths.

Muskingum’sK as well as the floodplain exchange coefficieuieff and shape
parameterm, were calibrated using both in-situ flows andnadttric levels.

4.3.2 MEASUREMENT OPERATOR
In order to carry out data assimilation of radamadtry derived river levels, a

measurement operator which maps the model stateBetaipdated (reach
storages) in the measurement space (altimetri¢slemeeds to be defined.

Reaches were assumed trapezoidal with bottom wigtbank slopea, and
lengthL. The reach storage can be expressed as a fuftt@pth,d:

5= L[ﬁw[m d j (18)

tan@, )

Solving for depth yields:

i —WL+\/(WL)2 +4L/tan@, )5
- 2L /tan@, )

(19)

Because the altimetric observations are measursnoéntater surface elevation
rather than depth, a common reference was set&mob

_-wL+ J(WL)’ +4L/tan@, )5 DIMCEWOREO)
2L /tan@, ) n

h(s) (20)
Where (alti) are the altimetric height measurements hnd the measurement
operator.

4.3.3 THE EXTENDED KALMAN FILTER
The Extended Kalman Filter (EKF) was chosen fomaigation in Paperdl and

lIl . The EKF is the non linear extension of the linkalman filter (KF) which is
a widely used sequential data assimilation straté¢ng EKF is used when the
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model operator, the measurement operator or betmam-linear. The basic idea
is then to replace the non-linear operators witlirthfirst order Taylor
approximations at the forecasted state.

Equations (21) to (25) present the basic KF eqnafin these equations, thé °
superscript indicates a forecasted state or cawagiaand the & exponent
indicates an analysis (or updated) state or covegia

The propagation equations are:
S£+1:Fk+l|35li +Gk+1|]'lk+l+rk+lljwk (21)
Pkf+1 = FPkf F +I',,,Q krT|<+1 (22)

Wheres is the forecasted state vectoris the model forcingw is a sequence of
white Gaussian noise with covarian@e F is the state transition matriG the
control input matrix,I" the noise input matrix an® is the state covariance
matrix.

The state and its covariance are propagated untima stepm when an
observation of the system is made. The state andriemce at time stem are
then updated using the new measurement:

$h=sh+PRHLH PR )y 7H fs') (23)
P;:[|—Pr;[ﬂ-|TmE@H PIH+R r)_l[E-I %[91 (24)

WhereH is the measurement operator which is defined as:
ym = H m |Etm-'- Vm (25)

Wherey is the measuremend, is the true state andis a sequence of white
Gaussian noise with covarian&g, The difference(y, -H ,¥!) is called the

innovation or measurement residual.

In case of non-linear model and measurement opsratpations (21) and (25)
use the non-linear model and measurement operdicestly. For all other
instances ofF and H in equations (21) through (24), the first orderylda
approximations of the non-linear operators arounedforecasted model state are
used:
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For the Brahmaputra case study, only the measurteopemator was non-linear,
while for the Zambezi case study, the inclusiorthef Barotse floodplain made
the model operator non-linear as well.

4.3.4 ERROR MODEL
In order to perform data assimilation with the EKRodel and measurement

error need to be specified.

Measurement errors on altimetry data points weserasd normally distributed
with zero mean. In previous studies, Envisat altignkevels over different rivers
were found to have standard errors between 20 GnchB(see e.g. Frappart et
al., 2006; Birkinshaw et al., 2010; Papa et all@Michailovsky et al., 2012).

In the Zambezi, the error estimates from Papewere used as a basis to
determine standard errors at the different VS. @ilmers used were between 34
and 74 cm over the basin and in the Brahmaputrasthedard error on the
measurements was assumed to be of 70 cm.

The quantification of model error is a very comptagk due to the difficulty to
isolate and quantify the different sources of eand simplifying assumptions
are usually made. In this study, we assumed theatdtminant source of error
stemmed from the RR forcing to the routing modelg.(Andreadis et al., 2007;
Biancamaria et al., 2011).

The magnitude of the error on RR model outputypscally proportional to the

magnitude of the modeled runoff and the model enas therefore implemented
as a multiplicative error term applied to the fargi In order to quantify the
uncertainty of the RR model, the normalized runzdfibration residuals were
analyzed.

In the Zambezi to obtain in-situ measurements afoffiy gauged flow was
assumed equal to runoff for upstream catchmentsc&ochments located further
downstream gauged runoff from a given area was nasguequal to the
difference between downstream and upstream gaugelaadge.

In the Brahmaputra, only the data from Bahadurat@ad be used and the
normalized discharge residuals were therefore w@setthe error assumed to
stem in equal proportions from all subbasins.

25



The residuals in both cases showed a high temporggdlation. In order to obtain
a model error term in equation (21) closer to theuanption of white Gaussian
noise, the autocorrelation was explicitly takeroiaiccount in the assimilation
scheme. This was done by assuming a first-ordep-r@gressive (AR1)

representation for the residuals:

W, =al_ +é, (26)

wherea is the AR1 parameter anrds a sequence of white Gaussian noise with
covarianceQ’.

The Kalman Filter equations can then be appliedunymenting the state vector
with the correlated noise term (see e.g. Jazwid€kiP). By setting:

S F. T, , G,. , 0
S:|:W:| ] I:|(+1:{ I(()l akl:l]lj| 1Gk+1:{ (;1j| ,andrk+1:|:|j|

where all matrices and vectors are as defined pusly andl is the identity
matrix. Equation (21) can then be rewritten as:

S =F 1 5 +G o W + T 18 (27)

And equations (22) to (24) can then be applieda@pgs, F, G andI’ by S, F’,
G’ andI”.

4.3.5 MODEL EVALUATION CRITERIA
In order to assess the performance of the detestiirand assimilation model

runs both in terms of accuracy and precision, tfiewing measures were used:

- Coverage: the percentage of observations whichafidilin the predicted
nominal confidence interval (this measure is atferred to aseliability).

- Nash-Sutcliffe Efficiency (NSE)
- Root Mean Square Error (RMSE)
- Sharpness: the width of the predicted nominal clanfce interval

Because the choice of one prediction model overth@notypically requires

tradeoffs between sharpness and reliability, @maitcombining both was used:
the interval skill score (ISS) which is definedfaBows (Gneiting and Raftery,

2007):
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ISS, =2 iss( ) u ¥ (28)

(u-1) if <x<u
and iss,(lL,u, =< (u=-h+2/al- x) if x< | (29)
(u-N+2/adx-u) if x<u

wherex is the observed value ahdndu the upper and lower confidence bounds
at significance levek. The ISS should therefore be minimized as a higlaes
will indicate wider confidence bounds and/or moleservations falling outside
of the confidence bounds.
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5 RESULTS

In this chapter, the main findings of the reseandlh be highlighted. The first
two sections present results for the monitoringesels and discharge in the
Zambezi river basin (Papéj. The third section presents the results from the
assimilation of radar altimetry data to routing relsdof the Brahmaputra (Paper
[I') and Zambezi (Papdi ) rivers. The main results obtained were the follmy

- Radar altimetry level time series were successfedyacted at 31 VS in
the Zambezi for rives between 80 and 400 m wideh wihs errors
between 0.32 and 0.72 m

- Discharge at the good quality VS in the Zambezi deermined within
4.1 to 6.5% of mean annual in-situ gauged amplitusiag in-situ rating
curves and from 6.9 to 13.8% using the field arstidnical data methods.

- Assimilation of radar altimetry to simple routingodels provided
improved predictions in both case studies with N®rovements from
0.78 to 0.84 in the Brahmaputra and from 0.21 & @&nd 0.82 to 0.88 in
the Zambezi.

- There is a need for better error modeling as shdynthe lack of
robustness in terms of model reliability

- The low temporal resolution of the altimetry datas@n be overcome by
using multiple VS depending on data availability

5.1 LEVEL MONITORING IN THE ZAMBEZI RIVER BASIN

A total of 423 crossings between the river netwamkl the satellite ground track
were identified in the Zambezi river basin. Aftenroving crossings over small
rivers where no data could be acquired and thassdd over floodplains, lakes
or reservoirs, 31 virtual stations were identifeaduseable (see Figure 5).

The rivers at the retained VS had widths from 4@Q@06 m, with the majority of
them being between 100 and 250 m wide. For the 4l0¢8ted at an in-situ
gauging station, rms errors relative to in-situelswvere found to be between 32
and 72 cm which is within range of literature rdpdrvalues for the Envisat
altimeter over different rivers though previous ds&s focused on rivers of
minimum 450 m width (e.g. Frappart et al., 2006kBishaw et al., 2010; Papa
et al., 2010).
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For the classification of VS shown in Figure 5, Wih an rms error of less than
40 cm were classified as “good”, those with an en®r of less than 70 cm
classified as “moderate” and the rest classifiethad” quality. A table detailing

the results at each VS is included in Pdper
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. @ Bad quality VS
0 100 200 400 Kilometers Main Rivers O Moderate quality VS @  Undetermined (lack of data)

T T Zambezi River Basin

Figure 5: Location and quality classification of VS in therZlaezi River basin

No unique characteristic of a VS was identifiedpasdicting the quality of the
altimetric data in this study.

5.2 DISCHARGE MONITORING IN THE ZAMBEZI RIVER BASIN

Of the VS identified in the Zambezi River Basin)yofour were at the location
of an existing gauge with an available rating-curVbe rating curves used in
method 1 were the same as those used to produce-site discharge data and
the computed discharge at the three VS classifietyaod” (109, 150 and 222)
were therefore predictably found to be in very gagudeement with the in-situ
values with rms errors between 4.5 and 7.2% of naaplitude and standard
deviations (std) on the estimate within the samgegTable 1).
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Table 3: Discharge calculation results using method 1

VS RMSE RMSE STD STD Nb. of Hist. Hist.
[m3/s] % of mean [m3/s] % of points O.f mean mean
amplitude mean compari amplitude flow
amplitude son [m3/s] [m3/s]
109 694 7.2 64.6 6.7 8 957.8 181.6
150 485 6.1 57.1 7.2 14 796.0 242.2
222 19.9 4.5 25.4 5.7 6 445.6 144.8
237 2994 44.1 331.2 48.9 35 677.3 1030.3

Three of the rating curves built using the fieldthaoel (method 2) were found to
be close to the in-situ rating curves (at VS 1) and 222), and the discharge
results were similar to those obtained using mett{ddble 4).

The results at the fourth VS, however, were incasige. While flows estimated
using the field data were systematically underestth compared using the
gauging station’s rating curve, the field ratingv@was found to be similar to an
older rating curve from the same gauging statioein® unable to determine
which in-situ rating curve to use, we chose to edelthe results from this VS.

Table 4: Discharge calculation results using method 2

VS RMSE RMSE STD STD Nb. of Hist. Hist.
[Mm3/s] % of mean [m3/s] % of points O.f m<|e_an d Tlean
amplitude mean compari amplitude ow

amplitude son [m3/s] [m3/s]

150 59.9 7.5 69.5 8.7 14 796.0 242.2
222 49.8 11.2 42.2 9.5 6 445.6 144.8
309 429 5.4 54.5 6.8 11 796.0 242.2

The results using only remote sensing and histolova flow data (method 3)
were found to have higher errors but they remaimelll within acceptable errors
for discharge measurements with rmse values betwekiand 13.8% of mean
amplitude for VS located at gauge locations.

31



Table 5: Discharge calculation results using method 3. Eaton a grey background signal VS
location not coinciding with that of the gauge usadcomparison.

VS RMSE RMSE STD STD Distance Hist. Hist.
m3/s]  %of  [m3/s]  %of J;‘;rg“e am”;ﬁ?ﬂ o Toan
mean mean

amplitude amplitude [km] [m3/s] [m3/s]

79 88.9 34.7 121.2 47.3 90 256.1 68.4
109 1325 13.8 113.5 11.8 0 957.8 181.6
150 55.2 6.9 70.6 8.9 0 796.0 242.2
173 297.4 31.1 154.8 16.2 20 957.8 181.6
222 54.0 12.1 57.9 13.0 0 445.6 144.8
266 33.0 76.3 24.1 55.7 40 43.2 17.9
267 82.8 19.8 61.8 14.8 15 418.6 158.5
299 538.0 15.9 478.2 14.1 80 3383.3 2720.8
309 473 5.9 74.2 9.3 25 796.0 242.2

5.3 ALTIMETRY ASSIMILATION

5.3.1 BRAHMAPUTRA RIVER CASE STUDY
Six VS were used for assimilation in the routingdaloof the Brahmaputra

River. The VS are located at the outlets of subitzagj 8, 12, 14, 15 and 16. The
results are presented at the outlet of subbasirbaurh7 which coincides with

the Bahadurabad gauging station, the only locatiaihe basin for which recent
discharge data was available. The location of ti& and gauging station is
shown in Figure 3.

Analysis of model residuals yielded the followingrameters for the AR1 error
model:

a =0.9562 and o(&) =0.098

The results at Bahadurabad are presented in Tadhel G-igure 6. Model fit was
found to improve significantly through assimilatiddowever, model reliability
was strongly degraded with the number of obsermatwithin the 95% falling
from 92% for the deterministic run to 76% for thesianilation run leading to a
deterioration of the interval skill score.
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Table 6: Assimilation Results at Bahadurabad. .Coveragepsleas and ISS refer to a
significance level of 0.05.

Validation Period Calibr_ation
Deterministic  Assimilation % (DetPe?rrrlﬁr?istic
Run Run change Run)
Coverage a=0.95 91.96 76.30 93.15
% a=0.70 91.54 85.90 93.81
NSE a=0.95 0.777 0.840
a=0.70 0.777 0.844
RMSE a=0.95 10045 8510 -15.3
m°/s a=0.70 10045 8396 -15.9
Sharpness a=0.95 22725 14129 -37.8
m°/s a=0.70 21793 17117 -215
ISS a=0.95 42.10° 55.10° 29.6
m°/s a=0.70 43.10° 42.10° -4.0

12+
95% confidence bounds (deterministic)
95% confidence bounds (assimilation)
10k Deterministic run

Assimilation run

In situ data

[oe]
I

Discharge [m3/s]
b o
I
Ay
=
=
e

\
4

2008 2009 20‘10 20‘11
Figure 6: Assimilation results at Bahadurabad (AR1 param&&562)

The influence of the error model was tested by imoprihe assimilation again
with a lowered AR1 parameter which may have beearastimated in the
residual analysis due to the smoothing effect @& tiver routing. Theo(g)
parameter was adjusted to obtain the same covd@gaigh flows in the
calibration period as in the previous run.
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The results show that while the NSE and rms emane only slightly affected,
the coverage was largely improved (Table 6). Thassgivity to the error
representation is a weakness of the assimilatitierse used as there is no
agreed upon method to determine model error andnatibning error model
parameterization will not be transferrable to a mwase study.

While the Envisat satellite has a 35-day repeabgethe shifted reading times at
the 6 VS used meant that, provided no missing pdatats, a measurement was
acquired every 3 to 9 days. This proved to be gronmant factor in the success
of the assimilation over the Brahmaputra River agprovements from the
assimilation tended to wash out 6 to 10 days afteeasurement (Figure 7).
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Figure 7: RMSE improvement as a function of the time sineel#ist altimetry measurement

5.3.2 ZAMBEZI RIVER CASE STUDY
Assimilation of altimetry in the Zambezi River baswvas carried out in the

western part of the basin: upstream of Lake Ka(iatershed 1) where 6 VS
were available and upstream of Lake Itezhi-Tezhaténshed 2) where 3 VS
were available (see Figure 2 for the location ofensheds and VS).

The results show improvements in all measures lasuddbasins except for a
slight loss of coverage for subbasin 17 (<3%) arldrge loss of coverage for
subbasin 24 (~14%) which led to a degradation @88 at this subbasin.
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Table 7: Assimilation results in the ZRB. Coverage, sharpreexl ISS refer to a significance
level of 0.1. Shaded backgrounds indicate a degdramkcator.

Id Coverage RMSE NSE Sharpness ISS
det assim det assim diff det assim det assim diff det assim diff
[%] [%] [m¥s][ms] %] [ [ [m®/s] [m%s] [%] [m®/s] [m%/s] [%]
14 83.8 80.0 596.8351.7 -41 0.42 0.80 1398 810 -42 1938 1359 -30
24 799 66.0 503.0343.2 -32 0.58 0.81 1091 569 -48 1611 1814 +13

32544 728 784.9459.6 -41 0.18 0.72 1413 594 -58 27322631 -1
34 54.0 70.9 896.5598.6 -33 0.21 0.65 1211 545 -55 4252 3958 -7

12 73.5 81.8 76.7 55.1 -28 0.72 0.86 153 93 -40 374 304

AR
O

17 86.7 84.3 1215 99.0 -19 0.82 0.88 227 174 -23 306 288 -6

Figure 8a shows that the improvements from asdiimilavere unevenly spread
over time as can be seen for example in the difaran performance between
the years 2005 and 2007.

Deterministic run Calibration period
Assimilation run 90% confidence bounds (deterministic)
In situ data 90% confidence bounds (assimilation)
6000 "a) Reach Number 34
2 4000+ ‘
= 1\ ,
= 2000} x /
0 i / . = i r =
2003 2004 2005 2006 2007 2008
b) Reach Number 17
— 1500
(%)
m\
£ 1000~ ‘ﬂ
—_— |
i |
o s £\ K—/ .‘/\ | \ !
g V / j ]
ot S - i -l S
2003 2004 2005 2006 2007 2008

Figure 8: Assimilation and deterministic runs at the outlets of watershed 1 (a) and 2 (b).

Inspection of the altimetric time series revealeat in 2007, a large gap existed
in the dataset with only one value available ovperdod of 67 days, between the
9" of February and the f7of April and that the update carried out on thay d

decreased the model performance. The maximum deédyween 2 satellite

passes over one of the VS in watershed (1) is aday& which means that even
in the best case scenario, the altimetry datasgtrmoabe able to capture sharp
peaks in the hydrograph. The fact that the VS viecated on narrow reaches
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increased the risk of the altimeter not being abléock on to the water surface
leading to a missing data point, or of contamimatay other surfaces leading to
an erroneous measurement.

In watershed (2), the same problem occurred becanige3 VS were available
to perform the update and the 3 VS are all visitgdhe satellite within 6 days of
each other over the 35-day satellite repeat period.

36



6 CONCLUSIONS

The objective of this PhD study was to study the o$ radar altimetry for
hydrological monitoring and modeling in large rivesins.

The analysis of Envisat altimetry over the Zamlidezs shown that with precise
geographical selection, water level time series lmarextracted for rivers much
narrower than the 369 m along-track resolution leé tdata product would
suggest, with good results being obtained for s\mtween 80 and 400 m wide.

Two methods were developed and tested to prodwsmhalige time-series from
altimetry in the absence of in-situ rating curvébe results for the Zambezi
suggest that a virtual discharge gauging stationlma set up at a VS location
using data from a single field visit or using hrgtal datasets to determine a
reference low-flow depth. However, the methods dauily be tested at a limited

number of locations and further studies are ne@udedder to determine whether
they are widely applicable. In many regions of giebe, river monitoring has

declined since the 1980s and the use of histodatd to set up virtual gauging
stations at or near decommissioned in-situ gaugtagons therefore has great
potential.

A simple data assimilation method to update th&estaf a routing model using
radar altimetry was developed. The method is suibethrge river basins with
minimal in-situ data and was designed as an adad-be easily coupled with any
rainfall-runoff model. Data assimilation was cagrieut using this method in the
Brahmaputra and Zambezi river basins. Model perémre in terms of accuracy
was greatly improved through the assimilation ithbcase studies, but the issue
of model reliability remained unsolved due to thd#figilty in accurately
representing model errors, in particular for therencomplex Zambezi case
study.

The results in the Zambezi showed that for areaerevhiver dynamics are
complex, representing model error by a multiplatfactor on rainfall-runoff
forcing is inadequate and further work should fooansquantifying and taking
into account the uncertainty of the routing schetself. Another option would
be the use of more detailed hydrodynamic model would diminish the
routing model error, and potentially make the alitassumption of a runoff-
dominated model error valid. This would howeveradlwe switching to an
ensemble based assimilation strategy due to the swnplex routing equations
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and the added computational burden may need tmbsgidered for large-scale
applications.

The Zambezi case study also highlighted the limotest linked to the low
temporal resolution of the Envisat data in areasretonly few VS are available,
in particular if the VS are located on narrow rv@rhere missing/erroneous data
points are more likely. However, future satelli@sbd altimetry missions, in
particular the Surface Water Ocean Topography (SYV@igsion scheduled to
be launched in 2019, will provide data at a higspatial and temporal resolution
and over narrower rivers than is currently possiblas will enhance the value
of radar altimetry in data assimilation applicatoifhe limitations linked to the
resolution of the dataset could also be mitigatggomtly assimilating altimetry
and other remote-sensing data types in a moreratesjapproach.

In conclusion radar altimetry is a valuable datdsethydrologists, in particular
for applications in data-sparse regions, and whinot in a position to replace
in-situ gauging networks, methods to integrateuke of radar altimetry jointly
with other remote-sensing and in-situ data types laydrological models have
the potential to greatly improve knowledge and mteuh of freshwater

availability.
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